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Abstract of A Systematic Investigation of Feature-Based Visual Learning: Mechanisms 

and Application, by Zhiyan Wang, Ph.D., Brown University, May 2021. 

Visual perceptual learning is defined as visual performance improvement after 

visual perceptual experiences. It is controversial how changes in association with feature 

representation change, namely feature-based plasticity, occurred.  In Aim 1, the 

dissertation investigated where do changes occur in association with feature-based 

plasticity. In Experiments 1 & 2, we used decoded fMRI neurofeedback to induce a 

pattern in V1/V2 similar to that of a Sekuler motion stimulus. The Sekuler motion 

consisted of both local motion directions and a global motion direction which was the 

summation of local motion signals. Previous psychophysical studies demonstrated that 

local motion directions corresponded to feature-based plasticity. Aim 1 demonstrated that 

after neurofeedback training in early visual areas (V1/V2), improvement was found 

among the local motion ranges, suggesting changes in early visual areas are associated 

with feature-based plasticity. In Aim 2, we performed three experiments and trained four 

groups of subjects: the Reward Before group, the Reward After group, the Arousal 

Before group, and the Arousal After group. Each group differed in the temporal order of 

how reward or arousal cues were paired with the trained orientation feature. Aim 2 

demonstrated that reward and arousal have differential effects on feature-based plasticity. 

Moreover, fitting the normalization model of vision to the psychophysical data indicated 

an excitatory effect of arousal and an inhibitory effect of reward. In Aim 3, the 

dissertation demonstrated that feature-based learning of complex visual images such as 

faces involves feature representation changes. In Aim3, a group of BDD and healthy 

control subjects were trained on low spatial frequency faces to enhance holistic 
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processing. The experiment showed dissociable blood-oxygen-level-dependent (BOLD) 

changes in body dysmorphic disorder patients and healthy control subjects consistent 

with their pre-training representation of holistic face processing. To conclude, our results 

demonstrated how feature-based visual learning occurred and can be potentially applied 

to clinical populations.  
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General Introduction 

As the early pioneer Ramon y Cajal addressed in his publication to the young 

scientists: “Any man could, if he were so inclined, be the sculptor of his own brain”(y 

Cajal, 2004). To some extent, Ramon y Cajal implies that the brain is plastic enough and 

can be changed in response to a person’s own experience even after adulthood. We refer 

to this process as learning, which is ubiquitous and fundamental in animals and humans 

alike. The learning that occurred due to experience with the visual system after adulthood 

has triggered extensive interest among psychologists since the late 1800s. William James 

(James, 1890) and Fechner (James, 1890) conducted psychophysical tasks and observed 

behavioral improvement on visual discrimination tasks after training. The long-term 

performance improvement as a result of visual experiences is defined as visual 

perceptual learning and has been studied extensively as a manifestation of brain plasticity 

(Dosher & Lu, 2017; Sagi, 2011; Sasaki, Nanez, & Watanabe, 2010; Shibata, Sagi, & 

Watanabe, 2014; Watanabe & Sasaki, 2015). For instance, the accuracy of discriminating 

benign tissues from malignant lesions by observing a mammography image would 

increase dramatically with the radiologists’ years of practice (Frank et al., 2020). A 

novice or a naïve subject will perform poorly at this task without visual training. A 

professional tea merchant in China would distinguish different types and years of teas by 

observing tea leaves' color and shape, while a novice would fail at this task. From real-

life examples, we can learn how our experiences, namely, training, can ‘sculpt’ our 

brains.   
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In a lab environment, visual perceptual learning is usually investigated with 

simplified stimuli representing a type of visual feature. As shown in Figure 1, oriented 

gratings (Figure 1A) or moving dots (Figure 1B) are typically used to test the 

performance of orientation discrimination or motion discrimination. The orientation and 

signal-to-noise ratio in the grating are usually manipulated in experiments. For motion 

stimuli, the directions and the percentage in which the dots are collectively moving are 

used. It is crucial to study visual perceptual learning as a framework to understand the 

plasticity of the brain for the following reasons.  

First and foremost, it has been well-established that the visual system develops 

mainly during one’s critical period in infancy (Hensch, 2005a, 2005b). It is also widely 

accepted that the visual system will remain relatively stable after the critical period. 

A) B)

Figure 1.  Illustration of visual stimuli used in visual perceptual learning. A) An 

orientation stimulus consisted of a sinusoidal grating overlaid with Gaussian 

noise. The orientation of the grating and the signal-to-noise ratio are the 

parameters that are usually manipulated in experiments. B) A motion stimulus 

consisted of randomly moving dots. A certain percentage of the dots move in the 

same direction.  
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However, visual perceptual learning has shown that even the visual system can transition 

from stable to plastic in response to environmental changes after the system has 

developed sophisticatedly. Therefore, the changes of visual systems might serve as a 

valuable tool and model to elucidate the mechanisms of learning on the whole-brain 

level.   

Furthermore, a number of studies have applied visual perceptual learning in 

clinical populations, such as with amblyopia and glaucoma patients (Astle, Blighe, 

Webb, & McGraw, 2015; Levi, 2012; Maniglia et al., 2016; Maniglia, Soler, & Trotter, 

2020; Plank et al., 2014; Polat, 2009; Polat, Ma-Naim, Belkin, & Sagi, 2004; Polat, Ma-

Naim, & Spierer, 2009; Rosa, Silva, Ferreira, Murta, & Castelo-Branco, 2013; Sterkin et 

al., 2018). Understanding the mechanisms of visual plasticity might benefit in developing 

interventions to provide amelioration and restoration for clinical populations.   

Finally, recent studies in visual perceptual learning have demonstrated that visual 

perceptual learning involves changes associated with multiple regions of the brain. The 

changes are related to a network of the brain including, early visual areas (H. Harris, 

Gliksberg, & Sagi, 2012; Karni & Sagi, 1991, 1993; Schoups, 2001; Yotsumoto, 

Watanabe, & Sasaki, 2008), higher-level cognitive control regions (Kahnt, Grueschow, 

Speck, & Haynes, 2011; Law & Gold, 2008, 2009; R. Wang, Cong, & Yu, 2013; Xiao et 

al., 2008; T. Zhang, Xiao, Klein, Levi, & Yu, 2010), subcortical nuclei (Yu, Zhang, Qiu, 

& Fang, 2016) as well as white matter connections between regions (Yotsumoto et al., 

2014), etc. Therefore, visual perceptual learning studies can promote the understanding 

of how the visual system interacts and is influenced by other systems in the brain.  
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One of the major controversies in visual perceptual learning is the changes that 

are involved in the process. Previous studies have emphasized two aspects of changes in 

association with visual perceptual learning. A vast majority of studies in visual 

perceptual learning have demonstrated feature and location specificity. Namely, the 

improvement in one orientation does not transfer to other untrained orientations (Harris 

et al., 2012; Karni & Sagi, 1991; Schoups, 2001; Schoups, Vogels, & Orban, 1995; 

Shibata, Watanabe, Sasaki, & Kawato, 2011). Training in one location of the visual field 

does not generalize to improvement in other locations of the visual field (Jeter, Dosher, 

Liu, & Lu, 2010; Yotsumoto, Chang, Watanabe, & Sasaki, 2009; Yotsumoto, Sasaki, et 

al., 2009; Yotsumoto et al., 2008). The specificity of training has suggested that changes 

should have occurred in a level of visual processing that represents visual features 

distinctly. Therefore, these studies have indicated that visual perceptual learning involves 

changes in feature representation. On the other hand, some other studies have suggested 

that visual perceptual learning involves learning a task rule and improving on task 

performance (Ahissar & Hochstein, 1997, 2004; Pavlovskaya & Hochstein, 2011; R. 

Wang et al., 2013; R. Wang, Zhang, Klein, Levi, & Yu, 2012; Xiao et al., 2008; J.-Y. 

Zhang et al., 2008; J.-Y. Zhang et al., 2010; T. Zhang et al., 2010). Under these 

circumstances, visual perceptual learning occurred due to repetitive processing of a task 

and improving on the rules of a task instead of changes in the feature representation.  A 

dual-plasticity model has been proposed recently to reconcile the controversies about the 

changes in association with visual perceptual learning (Watanabe & Sasaki, 2015).  This 

model has summarized that visual perceptual learning involves changes in feature 

representation, termed feature-based plasticity, and changes in task processing termed 
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task-based plasticity. Although the model has suggested a comprehensive theory to 

explain the mechanisms of visual plasticity, there is no clear evidence that indicates that 

feature-based plasticity can occur independently of task-based plasticity. Moreover, the 

mechanisms of feature-based plasticity also remain elusive. It is also unclear whether the 

model expands to the learning of a natural and complex visual stimulus.  

One important factor has challenged the investigation of feature-based plasticity. 

It is not entirely clear whether we can separate tasks and features in a visual training 

experiment. Behavioral improvement on a visual task inevitably involves both aspects. 

To provide evidence for feature-based plasticity alone, it is imperative for the visual 

training to be independent of a task.  It has been suggested that there are two types of 

visual perceptual learning: task-relevant learning and task-irrelevant learning. Task-

relevant learning refers to the training process in which the subjects perform a task 

relevant for the features being learning. In contrast, task-irrelevant learning refers to the 

process in which the subjects perform a task irrelevant to the features being trained. Task 

relevant learning consists of the feature- and task-based plasticity. On the other hand, 

task-irrelevant learning consists of only feature-based plasticity. The relationship is 

demonstrated in Figure 2. 
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Another controversy concerning feature-based plasticity is that the models were 

mainly derived from the results using simple visual stimuli consisted of primitive visual 

features. It is unclear how features are learned with complex and natural stimuli.  

Therefore, this dissertation study explores the mechanisms of feature-based 

plasticity through addressing the following questions mainly with task-irrelevant learning 

processes: 

(1) Whether feature-based plasticity can occur independently of task-based 

plasticity and the brain regions associated with feature-based plasticity. 

(2) What factors are involved in the development of feature-based plasticity. 

(3) The mechanisms of learning a higher-level visual feature and its application.  

 

 

 

Task-based 
Plasticity

Feature-based 
Plasticity

Task-relevant 
Perceptual 

Learning

Task-irrelevant 
Perceptual 

Learning
Figure 2. Task- and feature-based plasticity. The figure illustrates the relationship between 

different types of learning and the two types of plasticity. Task-relevant perceptual learning 

consists of both types of plasticity, whereas task-irrelevant perceptual learning consists of only 

feature-based plasticity. This figure is a modified version of Watanabe & Sasaki, 2015.  
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Dissertation Aims 

Aim 1: Whether feature-based plasticity can occur independently and where in the brain 

it can occur.  

The dissertation's first aim is to address whether feature-based plasticity can occur 

independently of task-based plasticity and which area in the brain does feature-based 

plasticity occur.  Psychophysical evidence and animal studies suggest that feature-based 

plasticity can occur as a result of exposure to a visual feature. These experiments have 

shown that by exposing subjects to a visual feature (for example, motion directions) when 

subjects perform a different task (for example, central letter discrimination task, namely 

RSVP task), learning can occur to the exposed visual feature (Gutnisky, Hansen, Iliescu, 

& Dragoi, 2009; Pascucci, Mastropasqua, & Turatto, 2015; Seitz & Watanabe, 2003; 

Tsushima, Seitz, & Watanabe, 2008; Watanabe, Nanez, & Sasaki, 2001). Since under 

these circumstances, no behavioral task has been directed to the trained visual feature, it 

is plausible to assume that feature-based plasticity can occur independently of task-based 

plasticity. Moreover, these psychophysical studies also emphasize the specificity of 

learning which underpins the notion that the plasticity acquired through exposure to a 

task-irrelevant visual feature resides in early visual areas where primitive visual features 

are represented.  

However, two factors precluded the conclusion that feature-based plasticity 

occurred and is associated with early visual areas. First of all, the psychophysical 

manipulation with a center task does not guarantee that attention or higher-level task 

processing is not involved in improving the exposed visual feature. Although the center 
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task is demanding, it is uncertain that subjects have never directed focused attention to 

the irrelevant feature. In particular, the difficulty of the central task might decrease as 

training proceeds. Second, the previous studies have failed to demonstrate a direct 

relationship between early visual areas and feature-based plasticity. The changes in early 

visual areas are primarily deducted from the specificity findings. Nevertheless, there is a 

lack of evidence from human studies to suggest a direct relationship between early visual 

areas and feature-based plasticity.  

To address Aim 1, we conducted a study with decoded fMRI neurofeedback in a 

series of two experiments (Experiment 1 and 2). Decoded fMRI neurofeedback is capable 

of inducing a particular activation pattern specifically in a target brain region. The 

corresponding behavioral response will reflect the outcomes of inducing the brain 

activation pattern. We have the following hypotheses with regards to Aim 1.  

First of all, we hypothesize that feature-based plasticity can occur independently 

of task-based plasticity. Second, we hypothesize that inducing visual patterns in early 

visual areas can result in behavioral changes corresponding to feature-based plasticity.  

Aim 2: What factors are involved in the development of feature-based plasticity. 

 The second aim of the dissertation is to address what factors contribute to the 

development of feature-based plasticity. Previous psychophysical studies have shown that 

repetitively pairing a reward with a task-irrelevant visual stimulus can induce visual 

perceptual learning. Primate studies have suggested that ventral midbrain stimulation can 

induce visual plasticity (Arsenault & Vanduffel, 2019). These results suggest that reward 

is involved in the process of feature-based plasticity. Moreover, it has been suggested that 

Moreover, several studies also suggested that reward effectively affects feature-based 
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plasticity through reinforcement processes (Kahnt et al., 2011; Law & Gold, 2009; 

Roelfsema, van Ooyen, & Watanabe, 2010; Sasaki et al., 2010).  

 Reinforcement is not the only process that has been associated with reward. 

Several studies have suggested that reward delivery can also mediate arousal (Sara & 

Bouret, 2012). Animal studies have shown that arousal can improve visual perception by 

enhancing the signal-to-noise ratio in the visual areas (McGinley, 2020; Vinck, Batista-

Brito, Knoblich, & Cardin, 2015). Arousal also affects visual perception through an 

enhancement of general brain states. However, it is unclear how arousal affects the 

processing of visual features. Furthermore, it is unclear how arousal will affect the long-

term development of visual features. 

Therefore, in the second aim, we addressed how reward and arousal affect the 

development of feature-based plasticity with two experiments (Experiment 3 and 4). 

Specifically, we hypothesize that 1) reward induces feature-based plasticity through 

reinforcement processes; 2) arousal induces feature-based plasticity through a general 

enhancement of brain states.  

Moreover, in Aim 2, we fitted our results in Experiment 5 with a computational 

model to address reward and arousal effects on feature-based plasticity. In particular, the 

excitatory or inhibitory effects of reward and arousal on feature-based plasticity.  

Aim 3: Higher level visual features: plasticity and application  

 The dual plasticity model states that feature-based plasticity is associated with 

changes in visual representation in the brain. The majority of visual studies have utilized 

simplified visual stimuli with primitive visual features. However, the visual stimuli in the 

natural environment are innately rich in visual features. The natural stimuli consist of a 
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combination of complex and primitive visual features. Nevertheless, it is unclear whether 

subjects can develop feature-based learning with natural stimuli. It is also controversial 

whether plasticity can be associated with changes in the brain that represent complex 

visual features. 

 Therefore, we aim to investigate the changes in association with the learning of 

complex visual features using natural stimuli. The results will not only provide evidence 

for feature-based plasticity in association with complex natural stimuli, but it will also 

provide implications for the application of visual perceptual learning to everyday 

scenarios.  

 In Aim 3, we trained subjects with one visual component from a complex visual 

stimulus in Experiment 6. We hypothesize that if feature-based learning is also associated 

with representation change, the improvement should be related to changes in the brain 

networks in which the visual component is more dominantly processed. On the other 

hand, if the improvement is associated with changes outside of the network representing 

the visual component, this will be inconsistent with our hypothesis and suggests that the 

learning of complex visual features does not solely depend on feature representation 

change, namely, feature-based plasticity.   
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General Methods 

Subjects 

 A total of 71 subjects (aged 18-60) participated in the dissertation studies. In Aim 

1, 8 subjects participated in Experiment 1 and 10 subjects participated in Experiment 2. 

In Aim 2, 18 subjects participated in Experiment 3 and 16 subjects participated in 

Experiment 4. In Aim 3, 19 subjects participated in Experiment 6. 9 out of the 19 subjects 

were body dysmorphic disorder patients. The other 10 subjects are healthy young adults. 

Healthy adult subjects were recruited from Brown University, and the patients were 

recruited from Rhode Island Hospital. All subjects gave written consent to the protocol 

approved by the institutional review board of Brown University. Subjects had normal or 

corrected-to-normal vision.  

 

MRI Acquisition 

 Under the circumstance that MRI is performed, subjects were scanned in a 3 Tesla 

Siemens PRISMA scanner with a 64-channel head coil at the Magnetic Resonance 

Facility of Brown University. Structural images were acquired with a T1-weighted 

MPRAGE sequence (256 slices, voxel = 1 mm * 1 mm * 1 mm, TR = 1980 ms, TE = 3 

ms, flip angle = 9°). For functional MRI scans, a gradient EPI sequence was acquired 

with 33 continuous slices (TR = 2 s, TE = 30 ms, flip angle = 90°, voxel = 3 mm * 3 mm 

* 3 mm).  To align the structural images across several sessions for Experiment 1, 

AAScout AutoAlign (160 slices, voxel = 1.625 mm * 1.625 mm * 1.6 mm, 0 mm slice 

gap, TR = 3 ms, TE = 1.37 ms, flip angle = 8°) was acquired in addition.  
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Equipment 

 In Aim 1 psychophysical sessions' visual stimuli were presented on an LCD 

monitor (1024 X 768 resolution, 60 Hz refresh rate). The visual stimuli during MRI 

sessions were presented on an LCD monitor compatible with the scanner (BOLDscreen 

32, Cambridge Research Systems, 1920 X 1080 resolution, 120 Hz refresh rate).  

In Aim 2, the visual stimuli were presented on two identical 19’’ CRT displays 

(1024 x 768 resolution, 120 Hz refresh rate). Subjects viewed the stimuli through a 

haploscope. The reward system was controlled via a water dispenser ValveLinkÒ8.2 

system manufactured by Automate Scientific, Inc.  

In Aim 3, the visual stimuli were presented on a scanner-compatible LCD monitor 

(BOLDscreen 32, Cambridge Research Systems, 1920 X 1200 resolution, 60 Hz refresh 

rate). The psychophysical sessions' visual stimuli were presented on an LCD monitor 

(1920 X 1200 resolution, 60 Hz refresh rate).  

The visual stimuli were presented with Matlab Ò  (MathWorks, Natick, MA) and 

Psychtoolbox (Brainard, 1997) controlled via Mac OS or Windows system.  

 

General Procedure 

 In most cases, visual perceptual learning consisted of 3 stages: the pretest stage, 

the training stage, and the posttest stage. The pretest and posttest stages consisted of 1 

session to measure the baseline and post-training performance. The training stages were 

performed for several sessions across different days. The performance was characterized 

as accuracy, d’ or threshold. Accuracy data was calculated as the percent correct 

responses. D-prime was measured as z(Hit Rate) – z(False Alarm). D-prime was 
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measured to characterize for response bias. The threshold was measured with staircase 

procedures. Performance change was measured as percent improvement change as a 

result of training, which was calculated as ( posttest – pretest ) / pretest X 100%.   
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General Analysis 

fMRI Preprocess  

 fMRI preprocess was conducted with Freesurfer (Fischl, 2012) and FsFast 

toolbox across the experiments. First of all, 3D-motion correction was conducted to 

correct the functional EPI scans for motion artifacts. Second, spatial smoothing was 

performed with a Gaussian filter (FWHM = 5mm). Third, intensity normalization amd 

slice timing correction were performed. Fourth, rigid body transformation was performed 

to align the functional runs with the high-resolution structural brain image. Finally, a grey 

matter mask was created to extract the blood-oxygen-level-dependent (BOLD) data from 

the fMRI scans for further analysis.  

 

Statistical Analysis 

 Statistical analyses were performed with Matlab and SPSS 22. The normality of 

the data was checked with the Shapiro-Wilk test using Matlab with customized functions 

(Öner & Deveci Kocakoç, 2017).  

For behavioral data with multiple factors, ANOVA was performed with SPSS 22. 

If we detected a significant main effect or interaction effect, post-hoc t-tests were 

performed. Bonferroni correction was used as a multiple correction method in the 

dissertation. We determined significance after multiple corrections, but uncorrected p-

values were reported in the dissertation. Moreover, effect sizes were also reported. Partial 

eta squared and Cohen's d were reported respectively for ANOVA and post-hoc tests. For 

brain imaging data, permutation tests were conducted to determine the significance of the 

dataset.  
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For model fitting, r-square was used as the parameter to measure the goodness-of-

fit.   
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Aim 1: Whether Feature-Based Plasticity Can Occur 

Independently and Where in the Brain It Can Occur 

Introduction 

 Previous studies have shown that visual perceptual learning can occur as a result 

of exposure to a visual feature (Arsenault & Vanduffel, 2019; Bruns & Watanabe, 2019; 

Galliussi, Grzeczkowski, Gerbino, Herzog, & Bernardis, 2018; Gutnisky et al., 2009; 

Lorenzino & Caudek, 2015; Pascucci et al., 2015; Protopapas et al., 2017; Rosenthal & 

Humphreys, 2010; Seitz, Kim, & Watanabe, 2009; Seitz & Watanabe, 2003; Watanabe et 

al., 2002; Watanabe et al., 2001). We proposed that such learning resulted from changes 

in the modification in feature representation termed feature-based plasticity.  

 Several psychophysical studies have attempted to investigate whether feature-

based plasticity is independent and where in the brain is associated with the changes of 

feature-representation as in Aim 1. Watanabe et al. (2002) conducted a psychophysical 

experiment in which subjects performed a center task to detect numbers among letters 

while a ‘Sekuler display’ was exposed to the subjects as a task-irrelevant stimulus. The 

Sekuler display consisted of a number of dots moving within a predefined motion range. 

The Sekuler display not only induced the perception of the dots moving within their local 

directions, but it also induced the perception of a global motion direction which is the 

temporal and spatial average of the local motion directions  (Williams & Sekuler, 1984). 

Previous researches have also suggested that the local motion directions were processed 

in early visual areas V1/V2 while the global motion direction was processed in higher-

level visual cortex V3A and beyond (Koyama et al., 2005). After the subjects were asked 
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to perform the center letter detection task repetitively, the improvement was within the 

local motion directions. On the other hand, when subjects were asked to perform a task 

on the discrimination of Sekuler display, the improvement was observed first on the local 

motion directions but later on the global motion direction. These results suggest that 

when a visual feature is exposed as task-irrelevant, feature-based plasticity seems to 

occur independently of task-based plasticity. Moreover, the changes seem to occur in the 

early visual areas where the features are represented.    

 However, several factors precluded the conclusion that feature-based plasticity 

can occur independently in early visual areas. First of all, it is not entirely sure that 

attention and higher-level task processing has never been associated with the local motion 

visual features. Although the Sekuler display was exposed as task-irrelevant, it is not 

guaranteed that subjects did not direct their attention while performing the center 

detection task. Second, the psychophysical studies did not provide direct evidence for 

early visual areas' involvement in feature-based plasticity. It is not entirely clear whether 

other task-related brain regions also contributed to the improvement of feature-based 

plasticity.  

 To address Aim 1, we conducted a decode fMRI neurofeedback (DecNef) study 

with Experiments 1 and 2. DecNef can provide a specific brain activation pattern in a 

target brain area (Shibata et al., 2019; Shibata, Watanabe, Sasaki, & Kawato, 2011; 

Watanabe, Sasaki, Shibata, & Kawato, 2017). There was no task involvement or stimulus 

presentation in the DecNef procedure. DecNef can repetitively induce the brain activation 

pattern corresponding to a visual feature in a targeted brain region to explore a causal 
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relationship between brain region changes and behavioral outcomes. In Experiment 1, we 

induced a brain activation pattern corresponding to the local motion signals in the Sekuler 

display in the V1/V2. We hypothesize that we will observe changes in local motion 

directions only without more considerable improvement on the global motion direction, 

as shown in Figure 3A. This result will suggest that feature-based plasticity can occur 

independently of task-based plasticity in early visual areas. If more remarkable 

improvement is induced in the global motion direction as shown in Figures 3B and 3C, 

this will be inconsistent with our hypothesis. In Experiment 2, we conducted a control 

experiment to provide further evidence that the results we observed in Experiment 1 were 

not due to test-retest effects.   

Figure 3 Hypothesis for Experiment 1. A) Only feature-based plasticity is induced with DecNef in 

V1/V2. B) Both feature-based and task-based plasticity is induced with DecNef. C) Only task-

based plasticity is induced with DecNef. 
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Experiment 1 

Experiment timeline  

 Experiment 1 consisted of 4 stages as in Figure 4: the pretest stage, fMRI decoder 

construction stage, neurofeedback stage, and the posttest stage. The neurofeedback stage 

consisted of 3 sessions, and the rest stages consisted of only one session. Each session 

was performed on different days.  

Subjects 

 Eight subjects participated in Experiment 1. 

Stimuli 

 Two types of motion stimuli were used in the Experiment 1 and 2. The Sekuler 

display (Williams & Sekuler, 1984) was used during the decoder construction stage, 

while the coherent motion (Braddick et al., 2001; Salzman, Murasugi, Britten, & 

Newsome, 1992) was used during the pre and posttest stages.  

Day 2 (fMRI)
Decoder 

Construction

Global Motion Decoder Construction
Retinotopy

Day 1
Pre-test Motion Discrimination Task

Day 3-5 (fMRI)
Neurofeedback

Training
Real-time Decoded Neurofeedback

Day 6
Post-test

Motion Discrimination Task

Figure 4. Experiment 1 timeline. 
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The Sekuler motion consisted of 100 dots. For each frame, 65 dots moved 

spatiotemporally locally within a specific range (-30° – 30°) of the global motion 

direction. The signal dots generated the perception of not only the local motions but also 

the global motions which was the spatiotemporal average of the local motions as in 

Figure 5A. 35 dots were assigned as noise dots. Noise dots moved randomly. Each frame 

was presented for 50ms. Two ranges of global motion displays were used. The global 

motion direction was away from each other to ensure no overlap between the two ranges 

-60◦

0◦ 0◦

+60◦ +60◦

-30◦

+30◦

-30◦

+30◦
-30◦

0◦ 0◦

+30◦

-30◦

+30◦

A)

B)

C)

Figure 5 Stimuli in Experiment 1. A) Sekuler display. The global motion is shown as the red 

arrow, which is the temporal and spatial average of the local motion signals. B) Illustration of the 

global and local motion directions used in Sekuler motion. The local motion ranges were in blue, 

while the global motion direction was shown in red. C) Coherent motions that were presented 

during pre- and posttests consisted of the global motions (red), local motions (blue), and other 

motion directions (brown).  
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of the global motion display as in Figure 5B. One range of the global motion display was 

selected pseudorandomly as the trained global motion range.  

 The coherent motion stimuli consisted of 70 dots moving randomly within a 4.5° 

radius aperture. 10% of the dots were assigned as the signal dots and moved coherently in 

a predetermined direction at a speed of 7.1°/sec. Each from a different set of dots was 

selected as the signal dots. The rest of the dots (noise dots) were placed randomly within 

the aperture. Each frame was presented for ~16.7 ms. 18 motion directions were tested to 

cover the range of the global motion direction, the local motion directions, and the 

motion directions outside of the global and local motion ranges, as shown in Figure 5C.  

Pre- and posttest 

 The sensitivity of each motion direction was measured with 20 trials. The trained 

and untrained global motion directions and other related motion directions were tested in 

two different blocks. The order of each of the tested motion directions was 

pseudorandomized within each block.  

In one trial, subjects performed a motion discrimination task. After a 400 ms 

fixation point, one coherent motion direction was presented for 500 ms. Subjects were 

then presented with 9 arrows indicating the alternatives and were asked to respond which 

direction was presented by pressing the keyboard button. D-prime was calculated for 

each direction as the index for performance. We fitted the tuning curve as a function of 

the motion directions with a smooth spline with piecewise polynomials. The smoothing 

parameter was 0.95. The d-prime within the trained and untrained motion ranges were 

summed as the mean improvement for each subject and then averaged across subjects.  
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fMRI decoder construction 

 To acquire the blood-oxygen-level-dependent (BOLD) signal activation patterns 

corresponding to the two global motion directions, the decoder construction stage was 

conducted inside MRI with structural brain image acquisition, AutoAlign and functional 

EPI scans.  

 The subjects’ BOLD activation signals were acquired with EPI runs while they 

performed a fixation task when two types of global motion stimuli were passively 

exposed to them pseudorandomly. Each run consisted of 24 trials and lasted for 300 sec. 

Each trial consisted of a 6 sec stimulus period and 6 sec fixation period. During the 

stimulus period, the color of the fixation point changed from white to green for 500ms. 

The fixation point could change color in 12 of the 24 trials. During the fixation period 

that followed, subjects responded by pressing a button with the index finger if they 

noticed a color change. Each run started with a 10 sec fixation period and ended with a 2 

sec fixation period. At the beginning of the run, the fixation period was inserted for the 

magnetic field of the scanner to reach equilibrium. There were 10 runs in total.  

 Retinotopy mapping runs were also acquired with the EPI runs in the same 

session to delineate each individual subject's visual areas (Engel et al., 1994; Fize et al., 

2003; Yotsumoto et al., 2008). The stimuli used during retinotopy mapping were 

checkboard stimuli that alternated between the vertical and horizontal meridians and 

upper and lower visual fields. The retinotopic stimuli occupied a smaller radius than the 

decoder construction stimuli to avoid selecting the stimuli' edges. Each type of 

checkboard stimuli was presented for 8 sec. There was a 0.01 probability that the color of 
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the fixation point changed to red on each frame. Subjected responded by pressing a 

button with their index finger as soon as they noticed the color change.  

 Decoder construction runs and the retinotopy runs were preprocessed with 

Freesurfer (Fischl, 2012) as described in the General Analysis section, except that no 

spatial smoothing was performed for the decoder construction runs.  

The decode was constructed with a voxel-based intensity analysis. First, V1/V2 

were delineated from the retinotopy analysis. Then, the time-courses of BOLD intensities 

were extracted from the voxels within the V1/V2. The functional data were then shifted 

by 6 sec, which was assumed to be the hemodynamic delay in this study. The linear trend 

was removed from the data, and the intensities were z-scored. We created the data sample 

used to construct the decoder by averaging the intensities from 3 volumes representing 

the stimulus period. In total, there were 240 data samples with 120 trials for each global 

motion direction.  

The decoder was created by training a sparse logistic regression to the data 

samples (Miyawaki et al., 2008; Yamashita, Sato, Yoshioka, Tong, & Kamitani, 2008). 

Sparse logistic regression automatically selected the voxels with the V1/V2 relevant for 

the separation of the two Sekuler motion types. The regression calculated the weights for 

the selected V1/V2 voxels as a decoder to separate the representation of the two Sekuler 

motion types. We conducted leave-one-out cross-validation with 9 runs of the data 

samples as training samples and the rest run as the test sample. After 10 rounds of cross-

validation, we averaged the 10 accuracy scores as the accuracy of the decoder. 
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Neurofeedback 

 We applied the decoder acquired for each subject to the neurofeedback stage. The 

8th volume from the first decoder construction run was obtained as a template to evaluate 

the spatial correlations between decoder and neurofeedback sessions in order to avoid 

motion artifacts in real-time experiments so that the voxels selected during 

neurofeedback experiments corresponded to the decoders constructed in V1/V2. We 

performed induction runs during the neurofeedback sessions to induce the trained global 

motion pattern in V1/V2. Each run lasted for 330 sec, started with a 30 sec fixation 

period, and consisted of fifteen 20 sec trials. Each trial consisted of a 6 sec induction 

period, a 6 sec fixation period, a 2 sec feedback period and a 6 sec intertrial interval. 

During the induction period, a ‘+’ sign was presented at the center of the screen. The 

subjects were instructed to try to make a later-presented green disc as large as possible. A 

‘-’ sign was presented to signal the following fixation period. The fixation period was 6 

sec to match the assumed hemodynamic delay. A green disc was presented timely during 

the feedback period. The green disc's size is proportional to the likelihood of the trained 

global motion pattern calculated by applying the decoder to the BOLD intensities from 

the fixation period of the current trial.   A ‘=’ sign was presented for the subsequent 

intertrial interval period. Subjects were instructed to fixate at the center of the display 

throughout the whole induction run. When no induction was conducted, subjects were 

instructed to attempt to relax.  

 The real-time feedback was computed as follows with MATLAB and SPM. 3D 

motion correction was performed to align each real-time volume to the first volume. A 

spatial correlation between the current volume and the template image was calculated. If 
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the correlation is lower than 0.85, the run was then terminated. A new set of structural 

images was acquired with AutoAlign to ensure the proper selection of voxels with little 

motion artifact. Then, the BOLD intensities time courses were extracted from the voxels 

in V1/V2. Later, the time course was detrended and z-scored to the 10 sec – 30sec 

functional data from the onset of the run. Next, the decoder weights were applied to the 

averaged time course for three volumes to calculate to the likelihood of the current 

activation pattern. The disc of the green disc was proportional to the likelihood. 

 Subjects underwent a mean of 10.63 +/- 1.5 runs during one neurofeedback 

session. Subjects were encouraged to freely report what strategies they used to finish the 

task. The strategies summarized in Table 1 were not related to motion. 

Table 1. Reported strategies during the neurofeedback stage 

 Strategies 

Subject 1 Green disk 

Subject 2 Visualizing a huge green disk, and it gets larger. 

Subject 3 Visualizing green  

Subject 4 Emotional argument; Random feelings of life; Imagining some 

details of a landscape  

Subject 5 Happy memories and events; Job and family members; Music and 

dancing 

Subject 6 Visualizing a circle getting larger and small objects 

Subject 7 Landscapes images involving green such as ponds and grass; 

Movie scene from ‘Shining’; Algae; Maintaining fixation and 

imaging scenes with green elements. 
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Subject 8 Musical notes and philosophical questions 

 

Offline leak analyses 

 In order to confirm that the induced patterns in V1/V2 during neurofeedback were 

confined in the target area, we assessed whether similar activation patterns were also 

found in other brain regions, namely whether the activity patterns in V1/V2 leaked 

outside of the targeted area V1/V2. If the activity patterns in other brain areas showed 

similarity to the induced global motion pattern, this would indicate that the behavioral 

changes were not driven solely by changes in V1/V2. If, on the other hand, only the 

activity patterns in V1/V2 were similar to the targeted pattern, this would support our 

conclusion that activities in V1/V2 drove the behavioral changes. 

 We used the following ROIs: V1/V2 (the target area during neurofeedback), V3A, 

the middle temporal area (MT), and the medial superior temporal (MST) area as the 

potential areas for leakage as these ROIs are closely related to motion processing. We 

defined V3A, MT and MST using the parcellation published with Freesurfer template 

brain (Glasser et al., 2016). First, we preprocessed the runs from the neurofeedback stage 

with Freesurfer, including motion correction, detrending, z-scoring. We created the data 

samples by averaging the time courses corresponding to the 6 sec induction period. We 

reconstructed the likelihood of the induced motion pattern in each of the ROIs during 

neurofeedback with sparse linear regression (Toda, Imamizu, Kawato, & Sato, 2011). We 

trained the sparse linear regression using data from two sessions and tested the likelihood 

from the rest of the session. We then transformed the real-time score of the trained 

motion likelihood with a hyperbolic tangent function since the score we acquired in real-
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time was nonlinearly distributed. The reconstruction in each ROI was defined as a Fisher-

transformed correlation coefficient between the reconstructed linear regression score and 

transformed real-time score. The statistical significance was calculated with permutation 

tests in the following way. First, the reconstructed linear regression score was permuted 

1000 times and 1000 correlation coefficients were obtained between the permuted score 

and the real-time score. Second, we evaluated the reconstructed score in each ROI 

concerning the permutation distribution. If the reconstructed score was ranked higher 

than the top % percentile, the score was regarded as significant. Z-score was calculated 

for between-subject comparisons.   

Result 

 The results section contained the decoder accuracy for the decoder construction 

stage, the performance for the pre- and posttest stages shown in d-prime as well as the 

leak analysis.  

 The mean accuracy of the decoder after cross-validation was significantly higher 

than 50% chance level [t(7) = 2.38, p = 0.04, Cohen’s d = 0.842]. During the 

neurofeedback stage, we observed an significant increase of the score of the trained 

Sekuler display pattern with a mean improvement of 5.41 +/- 2.11 (SEM), t(7) = 2.56, 

p=0.038, Cohen’s d = 0.905.  

Subjects also demonstrated performance improvement on the motion 

discrimination task, which contained the trained global and local motion ranges. There 

was no improvement in the untrained global and local motion ranges, as shown in Figure 

6. Moreover, there was no significant improvement for the trained global motion 
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direction [t(7) = 0.9601, p = 0.369, Cohen’s d = 0.339] and the untrained global motion 

direction [t(7) = 0.046, p = 0.965, Cohen’s d = -0.016] (0° motion direction in Figure 6) 

We calculated the mean performance improvement in the trained and untrained 

local motion ranges by summing the improvement in each local motion direction and 

averaging across subjects. As shown in Figure 7, the improvement in the trained local 

motion rages was significantly greater than zero, [t(7) = 2.57, p = 0.037, Cohen’s 

d=0.91]. The improvement in the untrained local motion ranges was not different from 

zero [t(7) = -0.866, p = 0.415, Cohen’s d = -0.3062].  

The leak analysis result confirmed that the induced motion pattern was largely 

confined in the target V1/V2 region. We performed sparse linear regression in V1/V2, 

V3A, MT, and MST to reconstruct the induced motion pattern's likelihood in each of 
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Figure 6 Performance improvement on the motion discrimination task. A) Mean (+/- SEM) 

improvement in the trained motion range. Improvement was found in the trained local motion 

ranges.  B) Mean (+/- SEM) improvement in the trained motion range. No significant improvement 

was found.  0 deg represents the global motion direction. The red line indicates the fitted curve of 

the tuning function. The shaded area corresponds to the local motion ranges.  



 
29 

ROI. Our results demonstrated that only V1/V2 was able to largely reconstruct the real-

time score, reflecting the induced patterns during the real-time neurofeedback stage. The 

reconstructed score was shown as a Fisher-transformed correlation coefficient in Figure 

8. The reconstructed performance was significantly larger than zero for V1/V2 [z = 

8.171, p=0.000]. There was no other motion-related region that showed a significant 

reconstruction score greater than zero [MT: z = 0.498, p = 0.31; MST: z = 0.569, p = 

0.28; V3A: z = -0.421, p = 0.66] 
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Figure 7 Mean (+/- SEM) improvement for the trained and the untrained local motion ranges. 

There was signifiicant improvement only in the trained local motion ranges. * p<.05.  
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Experiment 2 

 Experiment 2 was conducted to assess whether the exposure to the global motion 

stimuli during the decoder construction session has induced the behavioral findings. The 
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Figure 8. Mean Fisher-transformed correlation coefficient between the induced 

pattern and the reconstructed score in ROIs. V1/V2 (target ROI) were shown in red, 

and the other control ROIs were shown in black. Only the activation pattern in V1/V2 

(red) can significantly reconstruct the estimated scores of the V1/V2 activation 

pattern during the neurofeedback stage [z = 8.171, p=0.000]. *** p<.001.  



 
31 

control experiment also aimed to rule out that test-retest effects contributed to the results 

in Experiment 1.  

Experiment timeline 

 Experiment 2 consisted of 4 stages: pretest stage, decoder exposure stage, rest 

stage, posttest stage. The pre- and posttest stages were the same as in Experiment 1. The 

decoder exposure stage consisted of the same stimuli as in the decoder construction stage 

in Experiment 1. The difference was that the subjects conducted the decoder exposure 

stage outside of the scanner in a psychophysical room and responded with a keyboard 

button press. The rest stage was inserted so that the timeline between pre- and posttest 

stages was similar to Experiment 1.  

Subjects 

 Ten subjects with normal or corrected-to-normal vision participated in 

Experiment 2.  

Results 

 The subjects’ performance for the trained and untrained local direction ranges 

were calculated as improvement in summed d-prime improvement for each subject and 

then averaged across 10 subjects. As shown in Figure 9, in contrary to Experiment 1, 

there was no improvement for clockwise [t(9) = -1.595, p = 0.145] or counterclockwise 

local motion ranges [t(9) = -0.373, p = 0.717]. We further compared whether there was a 

difference between the two groups using a two-way mixed-design ANOVA with 

‘direction’ as a within-group factor and ‘group’ as the between-group factor. There was a 

significant interaction effect [F(1,16) = 4.631, p = 0.047, partial h2 = 0.224]. Moreover, 

the trained local motion ranges showed significant higher d-prime compared to the 
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clockwise local motion ranges, [t(16) = 2.703, p = 0.016, Cohen’s d = 0.676 ]. The 

difference between the Experiment 1 and Experiment 2 demonstrated that the effects 

were largely related to neurofeedback training rather than confounded by test-retest 

effects or exposure to the global motion stimuli during the decoder construction stage in 

Experiment 1. 

Discussion and Conclusion 

 Previous psychophysical results suggest that exposure to a visual feature can 

induce feature-specific plasticity in early visual areas. However, two problems prevented 

the ultimate conclusion that feature-based plasticity is independent and feature-based 
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Figure 9. D-prime improvement for local motion ranges in Experiment 2. There was no significant 

improvement for the clockwise or the counterclockwise local motion ranges.  
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plasticity of a primitive visual feature originated from early visual areas. First, it is not 

guaranteed that no attention has been diverted to the exposed visual feature to ensure that 

feature-based plasticity occurs. Second, psychophysical results can only provide indirect 

evidence for the brain areas in association with feature-based plasticity. Therefore, in 

Aim 1, we conducted a series of two experiments, neurofeedback in Experiment 1 and 

control analysis in Experiment 2, to address the two issues.  

 In Experiment 1 we trained subjects of the Sekuler display which was known to 

induce both feature-based and task-based plasticity. The local motions in the Sekuler 

motion, which corresponded to feature-based plasticity, were repetitively induced in 

V1/V2 with decoded neurofeedback. The neurofeedback procedure ensured that there 

was no relevant task that has been performed. Moreover, subjects were never exposed to 

the stimuli but were only exposed to a brain activation pattern corresponding to the 

feature in V1/V2. We found that the subjects improved on the local motion directions 

with no specific improvement to the global motion direction, which corresponded to task-

based plasticity. Experiment 1 supported our claim that feature-based plasticity can occur 

independently irrespective of task-based plasticity. Moreover, we conducted an offline 

analysis to investigate whether the induced brain activation pattern was only confined to 

V1/V2. The offline analysis further confirmed that the induced pattern was exclusively 

restricted in V1/V2. This result suggested that the behavioral improvement was induced 

by changes in V1/V2, which is consistent with our hypothesis that feature-based 

plasticity occurred in V1/V2. The results in Experiment 2 further ruled out other 

confounding factors, such as test-retest effects, etc. Experiment 2 corroborated our 

findings in Experiment 1.  
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In conclusion, we found that feature-based plasticity can be developed 

independently of task-based plasticity. Furthermore, feature-based plasticity is associated 

with changes in V1/V2. More specifically speaking, the changes in featural 

representation could explain how feature-based plasticity develops in early visual areas 

V1/V2. 
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Aim 2: What Factors Are Involved in the Development of 

Feature-Based Plasticity 

Introduction 

 In Aim 1, we addressed the controversy about whether feature-based plasticity 

can occur independently of task-based plasticity. We also investigated the brain regions 

in association with feature-based plasticity. However, it is unclear what factors are 

involved in the development of feature-based plasticity.  

 The reward is one of the most intriguing functions that has been extensively 

studied related to learning (Rescorla & Wagner, 1972; Schultz, 2002, 2006, 2015, 2016; 

Schultz, Dayan, & Montague, 1997). The dominant reward model suggests that it is 

effective on learning through reinforcement and prediction error (Rescorla & Wagner, 

1972). Schultz also found that dopamine neurons were activated when rewards occurred 

at unpredicted time points, signaling prediction error (Schultz, 2002, 2006). Several 

studies have shown that reward (Frankó, Seitz, & Vogels, 2010; Law & Gold, 2008, 

2009; Seitz & Dinse, 2007; Seitz et al., 2009; Xue, Zhou, & Li, 2015) play a critical role 

in promoting visual perceptual learning. Specifically, Seitz and his colleagues (Seitz et 

al., 2009) presented a sequence of two orientations in random order, which were made 

invisible by the continuous flash suppression paradigm (Tsuchiya & Koch, 2004). One 

orientation was paired with a reward. The other orientation was not paired with reward. 

All of the orientation stimuli were consistently presented in one eye for each subject. The 

results showed that performance was enhanced only with the orientation paired with 

reward, and no transfer was found to the untrained eye. These studies suggest that reward 
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plays a significant role in VPL, specifically for feature-based plasticity that occurred in 

early visual areas.  

 It has also been suggested that arousal level could also be influenced by reward 

presentation (Aston-Jones & Cohen, 2005; Sara & Bouret, 2012). Salient stimuli can 

change the arousal level and influence the cortex mediated by locus coeruleus (Sara & 

Bouret, 2012). Arousal is also part of the attention system's functions, which can increase 

the rate at which visual stimuli are being sampled (Posner & Petersen). Animal models 

have suggested that arousal level can enhance the visual cortex's signal-to-noise ratio 

(Kim, Lokey, & Ling, 2017; McGinley, 2020; Vinck et al., 2015). However, the effects 

of arousal on feature-based plasticity remain unclear.  

We hypothesize that reward is affects feature-based plasticity through 

reinforcement learning rules. Thus, for a visual feature to be learned, the feature needs to 

be presented before reward so that the feature is predictive of reward.  

 On the other hand, we hypothesize that arousal is affects learning through an 

enhancement of the signal-to-noise ratio. The effect of arousal can be induced with a 

salient stimulus regardless of the presentation order of the feature and arousal stimuli. We 

thus predict that arousal can induce learning of a visual feature when an arousal cue is 

presented before or after the visual feature. 

 In Experiment 3 and 4, we investigated the mechanisms of reward and arousal, 

respectively. To further clarify the effects on the visual cortex, in Experiment 5, we fitted 

a revised normalization model (Carandini & Heeger, 2011; Reynolds & Heeger, 2009) 

with the effects of reward and arousal. 
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Experiment 3 

Experiment timeline 

The experiment consisted of 4 stages: pretest (1 session), training (12 sessions), 

posttest (1 session).  

Subjects 

 18 subjects participated in the study. 9 subjects participated in the ‘Reward 

Before’ group. 9 subjects participated in the ‘Reward After’ group.  

Stimuli 

 Noise masked sinusoidal gratings were presented during test and training 

sessions. The gratings were orientated 112.5o or 22.5o, with 4o diameter, 10% contrast, 

and a spatial frequency of 2 cycles/degree. The gratings were presented at the center of an 

8o annulus surrounded by a gray background. The 4o to 8o field of the annulus was 

presented with Gaussian masked random noise. The stimuli were presented at the 0o to 4o 

of the visual field and were masked by different levels of noise. The noise was generated 

from a sinusoidal luminance distribution to ensure identical statistical distributions of the 

luminance for the noise and the gratings. Consequently, there were no texture cues in 

association with different noise levels. During the pre- and posttest stage, 7 different 

signal-to-noise levels (SN: 0.03, 0.05, 0.07, 0.1, 0.13, 0.16 and 0.2) were presented 

pseudorandomly on different trials. During the training stage, a constant SN level of 0.2 

for the grating was used.  

Pretest and Posttest 

 Sensitivity tests were performed during pre- and posttest sessions, as shown in 

Figure 10A. These test sessions were scheduled at least one day apart from the training 
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sessions. During the test sessions, stimuli were presented to one eye, and a gray screen 

was presented to the other eye. The testing sessions consisted of 8 blocks, with each 

block containing 112 trials. Subjects were instructed to align the two screens with the 

haploscope before starting each testing block. At the beginning of each trial, random 

noise was presented with a green fixation point for 500ms. The noise was followed by the 

grating stimuli and a red fixation point for 500ms. The red fixation point will be 

presented for another 2500ms after the stimuli disappeared. The red fixation point 

indicated the presence of stimuli and the signal for participants to make responses. 

Subjects were instructed to decide whether 112.5o or 22.5o grating was presented by 

pressing the corresponding buttons. 7 SN levels were presented for each of the two 

orientations in two eyes separately. The 28 conditions were pseudorandomly interleaved 

with 32 trials for each condition. Subjects were tested for a total of 896 trials in total 

during the pretest and posttest sessions.  

Training  

 Subjects were trained consecutively for 12 sessions. Each training session was 

scheduled on different sessions, which were at least 24 hours apart. Subjects were 

instructed to abstain from eating and drinking for five hours before each training session. 

Water was provided as a reward to the subjects during the training period. Subjects in the 

'Reward Before' group and the 'Reward After' group differed in their timing of receiving 

the reward. The continuous Flash Suppression (CFS) paradigm (Tsuchiya & Koch, 2004) 

was used during the training session to render the stimulus invisible to the subjects, as 

shown in Figure 10C. This procedure reduced the subject's conscious bias of associating 

grating stimuli with the presence or absence of reward.  
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We presented an alternating mini-block of 15s CFS stimuli to each eye to ensure 

contiguous suppression from flash patterns. During the first mini-block, the untrained eye 

was presented with high contrast flashing noise. The CFS stimuli consisted of a sequence 

of full-screen textured pattern images presenting at a rate of 10 Hz. The texture pattern 

consisted of 300 randomly placed, physically overlapping rectangles or ellipses of 

various sizes with dimensions from 0.5o to 5o. The shapes were of different orientations 

and saturated colors (0 or 100 cd/m2).  In addition, 50% of the screen was covered with 

spatially sparse, colored noise. The trained eye was presented with 2Hz noise. 

Intermittently, a grating stimulus (112.5o or 22.5o) of 0.2 SN was presented to the trained 

eye for 500 ms. One of the orientations was chosen randomly as the trained orientation. 

The time interval between the grating stimulus was at least 3000 ms. For the ‘Reward 

Before’ group, water was delivered 400ms prior to the onset of the trained grating 

stimulus. For the ‘Reward After’ group, water was presented 400ms subsequent to the 

presentation of the trained grating stimulus. No reward was paired with the untrained 

grating stimulus. In both cases, the reward was presented for 500ms, inducing a 100 ms 

overlap with the stimulus presentation. The overlap was inserted to ensure the processing 

of reward and maximize the possibility that water reward could be associated with 

orientation stimulus. After the first 15s mini-block, the trained eye was presented with the 

CFS stimuli, while the untrained eye was presented with a gray screen. No reward was 

presented during this 15s mini-block. The 15s mini-blocks alternated for 5 minutes, and 

subjects were asked to take a 3-minute break after the 5-minute block. These sequences 

were repeated 6 times per session, yielding a total of 120 trials for the trained and 
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untrained orientations, respectively. Subjects were requested to adjust the haploscope to 

align the two screens after each break as shown in Figure 10B.   

Figure 10. Procedure for Experiment 3 and Experiment 4. A) Orientation detection task in the pre- 

and posttest stages. Subjects were requested to decide which orientation was presented when 

the fixation point turned red. B) The illustration of the haploscope and the water delivery device. 

C) CFS paradigm in the training sessions for Experiment 3. Water reward was paired with the 

trained orientation in the trained eye. D) CFS paradigm in the training sessions for Experiment 4. 

Arousal sound was presented in association with the trained orientation. Part of the figure was 

also shown in the preprint (Z. Wang, Kim, Pedroncelli, Sasaki, & Watanabe, 2019) 
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Awareness Test 

An awareness test was conducted immediately after the posttest. The awareness 

test was conducted to ensure that the CFS paradigm has successfully rendered the stimuli 

invisible. Subjects were presented with the same stimuli as in training sessions for one 

block. During the awareness test, subjects were instructed to decide whether a grating 

was presented and its orientation by pressing the corresponding buttons. Subjects were 

also interviewed whether they detected any grating during the awareness test session and 

the previous training sessions. Subjects were also inquired about whether they were 

aware of any patterns associated with water delivery timing.  

Results 

 Performance for the orientation detection task was measured as the percentage of 

correct responses under each S/Ns in the pre- and posttest sessions. The percent correct 

was shown in Figure 11 for the ‘Reward Before’ and the ‘Reward After’ group in 

different panels. We performed a three-way mixed-model ANOVA for the Reward group 

with ‘Orientation and ‘Eye’ as the within-subject factors and the ‘Order’ as the between-

subjects factor. The ANOVA showed a marginal significant interaction of Eye x Order 

interaction, [F(1, 16) = 4.219, p < .06, partial h2 = 0.209]. We also observed a marginal 

significant interaction of Feature x Order interaction, [F(1, 16) = 4.286, p <. 06, partial h2 

= 0.211]. we performed post-hoc analysis for each sub-group. For the ‘Reward After’ 

group, we performed a 2-way repeated-measures ANOVA with ‘Orientation’ and ‘Eye’ 

as the factors. We found a significant main effect of ‘Eye’, [F(1,8) = 5.66, p < .05, partial 

h2 = 0.41]and a marginal significant interaction between the ‘Eye’ and the ‘Orientation’, 

[F(1,8) = 4.31, p = .07, partial h2  = 0.35 ]. We performed post-hoc t-tests to each of the 
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eye and orientation conditions. We found a significant difference between the paired 

orientation versus the control orientation in the trained eye, [t(8) = 2.381, p < .05, 

Cohen’s d = 0.793], There is no significant difference between the paired versus the 

control orientation in the untrained eye. Moreover, the improvement for the trained eye is 

significantly different from zero with [t(8) = 4.81, p<.01, Cohen’s d = 1.60]. We found no 

significant ANOVA effects for the' Reward Before' group, indicating no difference 

between the conditions. We found no difference between the paired versus the control 

orientation in either the trained or the untrained eye. For the awareness test, the subjects 

rarely pressed the button, and the accuracy for correctly recognizing the orientation of the 

grating was less than 5%. To conclude, there was significant improvement only for the 
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Trained 
Eye

Untrained 
Eye

Trained 
Eye

Untrained 
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Figure 11. Percent correct change for the 'Reward Before' (A) and the 'Reward After' (B) group. 

The percent correct was shown in different panels. The line indicates the mean and the SEM is 

shown in the ribbon. Blue represents the pretest, and red represents the posttest. Significant 

improvement was only found for the reward after condition for the paired orientation in the trained 

eye. * p<.05. ** p<.01 

** 
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‘Reward After’ group. Moreover, the improvement was only found for the paired 

orientation in the trained eye.  

Experiment 4 

Experiment timeline 

 Experiment 4 consisted of 3 stages: pretest stage (1 session), training stage (12 

sessions), posttest stage (1 session). 

Subjects 

 16 subjects participated in Experiment 4.  

Procedure 

 The experimental procedure for Experiment 4 was primarily similar to 

Experiment 3. The pretest and posttest stages were the same as in Experiment 3. During 

the training stage, the visual stimuli and the visual presentation's timing were controlled 

the same as in Experiment 3. The only difference was that an arousal sound instead of 

water reward was presented in association with the paired orientation, as shown in Figure 

10D. For the ‘Arousal Before’ group, the sound was presented 400 ms before the onset of 

the paired orientation. For the ‘Arousal After’ group, the sound was presented 500 ms 

after the onset of the paired orientation. The sound lasted for 500 ms. Subjects conducted 

the awareness test after the sensitivity test of the posttest session.    

Results 

 Performance for the orientation detection task in Experiment 4 was measured as 

the percentage of correct responses under each S/Ns in the pre- and posttest sessions. The 

performance was shown in separate panels in Figure 12. We performed a three-way 
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mixed-design ANOVA with ‘Orientation’ and ‘Eye’ as the within-subject factor and the 

‘Order’ as the between-subject factor. we found a significant effect of Feature, [F(1, 14) 

= 6.476, p < .05, partial h2 = 0.316].  

 We performed post-hoc analyses for the ‘Arousal Before’ and the ‘Arousal After’ 

group separately. For the ‘Arousal Before’ group, we performed a two-way repeated 

measures ANOVA with ‘Orientation’ and ‘Eye’ as the factors. We found a significant 

main effect of ‘Orientation’. We found a significant difference between the paired and the 

control orientation in the trained eye, [t(7) = 2.675, p < .05, Cohen’s d = 1.00]. There was 

also a significant difference between the paired and the control orientation in the 

untrained eye, [t(7)= 2.408, p <. 05, Cohen’s d = 0.91]. Furthermore, we found a 

significant improvement in the trained eye for the paired orientation and the control 

orientation, [t(7) = 3.54, p < .05, Cohen’s d = 1.33] and [t(7) = 5.10, p<.05, Cohen’s d = 

1.92]. For the ‘Arousal After’ group, the ANOVA did not reveal any between condition 

differences. However, there was significant improvement in all of the eye and orientation 

conditions. There was significant improvement for the paired orientation in the trained 

eye [t(7) = 3.7, p < .01, Cohen’s d = 1.39], for the control orientation in the trained eye 

[t(7) = 3.03, p < .05, Cohen’s d = 1.23], for the paired orientation in the untrained eye 

[t(7) = 3.48, p < .01], Cohen’s d = 1.31] and for the control orientation in the untrained 

eye [t(7) = 3.88, p < .01, Cohen’s d = 1.46]. Moreover, there was no significant 

difference between the conditions during the post-hoc analyses. Subjects’ performance 

during the awareness tests was similar as in Experiment 3.  

To conclude, there was a significant improvement when arousal sound was 

presented before and after the paired orientation stimulus. Moreover, for the arousal 
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before condition, we found a significant eye transfer. For the arousal after condition, we 

found a significant eye and orientation transfer.  

Experiment 5: Model Fitting 

 To individually characterize the effects of reward and arousal in Experiments 3 & 

4, we fitted the results with a normalization model that describes the visual system's 

population response (Carandini & Heeger, 2011; Reynolds & Heeger, 2009). The 

normalization model was first developed to explain the responses in the primary visual 

cortex and then proposed to be a universal computation at different sensory systems and 

other computation levels. The principal motivation was to explain how the primary visual 

cortex responses are regulated with increasing stimulus intensity. If no regulation were 

implemented, with the increase of stimulus intensities, the neurons would continue to fire 

Arousal Before Arousal AfterA) B)

Figure 12. Percent correct change for the 'Arousal Before' (A) and the 'Arousal After' (B) group. 

The percent correct was shown in different panels. The line indicates the mean, and the SEM is 

shown in the ribbon. Blue represents the pretest, and red represents the posttest. Significant 

improvement was found in both groups. * p<.05. 
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stronger and ultimately reach their limit. The model proposed that the neurons firing in 

the primary visual areas were regulated with normalization. The normalization model 

computes the population responses as the neurons' excitation divided by a normalization 

factor, which is usually a summation of activities from a pool of neurons. Thus, the 

population responses from primary visual areas can be described as the excitation 

normalized by pooled responses as in Equation 1. The excitation 𝐸(𝑥, 𝜃)! is the summed 

activity in the neurons’ population with different orientation and spatial location 

preferences and is driven by the stimulus. The excitation was acquired by convoluting an 

orientation and a spatial location filter to the stimulus. The normalization factor consists 

of a constant 𝜎 and the pooling of responses over spatial locations and orientations for a 

broader range of neurons 𝑁(𝑥, 𝜃)!. The pooling is computed as the suppressive field 

𝑠(𝑥, 𝜃)	convoluted with the excitation driven by stimulus (Equation 2). The convolution 

is computed assuming independence of orientation and spatial location pooling. The 

exponent n represents the rectification to the shape of firing for primary visual cortex 

neurons which is usually 2.  

𝑅(𝑥, 𝜃) = 	
𝐸(𝑥, 𝜃)!

𝜎! + 𝑁(𝑥, 𝜃)!
	 (1) 

 

𝑁(𝑥, 𝜃) = 𝑠(𝑥, 𝜃) 	∗ 𝐸(𝑥, 𝜃) (2) 

To illustrate the effects of reward and arousal, we added the reward field 

𝑅(𝑥, 𝜃)	and the arousal field 𝐴(𝑥, 𝜃)	as an additional factor to the stimulus drive 

(Equation 3). We assumed independent effects of arousal and reward. Based on the 

psychophysical findings, we regarded the effects of arousal to be more excitatory and the 
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reward effects to be more suppressive. The model's normalization factor was computed as 

the suppressive field convoluted with the stimulus responses integrating the reward and 

arousal effects.  

𝑅(𝑥, 𝜃) = 	

𝐴(𝑥, 𝜃)
𝑅(𝑥, 𝜃)	𝐸(𝑥, 𝜃)

!

𝜎! + 𝑁(𝑥, 𝜃)! 		 (3) 

𝑁(𝑥, 𝜃) = 𝑠(𝑥, 𝜃) 	∗ 	
𝐴(𝑥, 𝜃)
𝑅(𝑥, 𝜃)

	𝐸(𝑥, 𝜃) (4) 

A schematic illustration of the model is shown in Figure 13. The stimulus was 

represented as the excitation as stimulus drive. The arousal field and reward field were 

added to the stimulus drive to generate the numerator's overall signal. A suppressive field 

was convoluted with the excitation to generate the suppressive drive for the denominator. 

A Normalization of Reward and Arousal
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Figure 13. A normalization model of reward and arousal. The model consisted of stimulus drive, 

arousal, and reward field. The three effects were multiplied to construct the overall excitation, 

which was the nominator of the model. The nominator was convoluted with the inhibitory field to 

generate the model’s suppressive drive, which was the denominator of the model. The population 

response was acquired by the overall excitation divided (normalized) by the suppressive drive.  
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The normalization response was the excitation drive divided by the suppressive drive. 

Additionally, the population response was linearly transformed to be consistent with the 

range of the psychophysical responses.  

Results 

We fitted the model to the behavioral measurements in Experiment 3 and 

Experiment 4. We only fitted the results with trained and control orientation since the 

model did not account for eye specificity. The pretest condition was fitted with a model 

in which there was no arousal or reward modulation. The model was fitted with only the 

stimulus drive normalized by the suppressive field. The posttest was modeled for 

R2 = 0.82
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Figure 14. Model fitting for the ‘Arousal Before’ condition. The goodness-of-fit was 0.82. A) 

Comparison between model and psychophysical data. The model was shown in lines, and the 

psychophysical data was shown in dots with error bars representing the SEM. B) Schematic 

illustration of model parameters. 0 indicated the trained orientation and spatial location.  
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different experimental conditions with the arousal and reward field. For the ‘Arousal 

Before’ condition, we observed behavioral improvement in the paired orientation but no 

transfer to the control orientation. The posttest for trained orientation and the control 

orientation was extracted from the population response tuned to different orientations. 

The best-fitted model was shown in Figure 14 below. The goodness-of-fit was measured 

with r2, which equals 0.82 for this model. The first two figures demonstrated the kernels 

for stimulus drive and the kernels for the suppressive field. The arousal effects were 

modeled by a pointed location kernel and a wider orientation kernel. 0 on the x-axis 

demonstrated the trained orientation. The ‘Arousal Before’ condition was modeled with a 
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Figure 15. Model fitting for the ‘Arousal After’ condition. The goodness-of-fit was 0.94. A) Comparison 

between model and psychophysical data. The model was shown in lines and the psychophysical data was 

shown in dots with error bars representing the SEM. B) Schematic illustration of model parameters. 0 

indicated the trained orientation and spatial location.  
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specific enhancement to location and a broader enhancement to the orientation 

surrounding the trained orientation. The ‘Arousal After’ condition was shown in Figure 

15. Unlike the ‘Arousal Before’ condition, there was no effect of arousal orientation 

kernel. On the other hand, there was a sharp response to the arousal location kernel. The 

goodness-of-fit was measured with r2, which equals 0.94 for this model. 

The reward conditions incorporated both the effects of arousal and reward. For 

the ‘Reward Before’ condition, we found that the best-fitted model incorporated both the 

reward and arousal as in Figure 16. The effects of arousal were modeled the same as in 

Figure 14. In addition, the reward kernel was to both the location and the orientation 

R2 = 0.77
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Figure 16. Model fitting for the ‘Reward Before’ condition. The goodness-of-fit was 0.77. A) Comparison 

between model and psychophysical data. The model was shown in lines and the psychophysical data was 

shown in dots with error bars representing the SEM. B) Schematic illustration of model parameters. 0 indicated 

the trained orientation and spatial location. 
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kernel to the paired orientation and spatial location. The reward kernels were modeled as 

negative since the arousal field was divided by the original model's reward field. The 

‘Reward After’ condition was also modeled incorporating both the orientation and the 

location kernels, as shown in Figure 17. The goodness-of-fit was measured with r2, which 

equals to 0.77 for this model. 

The arousal effects were modeled as in the ‘Arousal after’ condition. Moreover, 

there were no effects of reward to the location. There were inhibitory effects to the 

orientations surrounding the trained orientation. The goodness-of-fit was measured with 

r2, which equals to 0.81 for this model. 
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Discussion and Conclusion 

 Aim 2 intends to illustrate the effects of reward and arousal on feature-based 

plasticity. In Experiment 3, we found that reward only induces learning when the reward 

is presented after the visual stimulus. Moreover, the learning in association with reward is 

specific to the trained orientation and the trained eye. In Experiment 4, we found that 

arousal induces learning differently. Arousal both presented before and after the stimulus 

can induce learning of the trained orientation. Moreover, arousal presented before the 

R2 = 0.81
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Figure 17. Model fitting for the ‘Reward After’ condition. The goodness-of-fit was 0.81. A) Comparison 

between model and psychophysical data. The model was shown in lines, and the psychophysical data 

was shown in dots with error bars representing the SEM. B) Schematic illustration of model 

parameters. 0 indicated the trained orientation and spatial location. 
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visual stimulus also induces a transfer to the untrained eye. Arousal presented after the 

visual stimulus also induces transfer to the untrained orientation and the untrained eye.  

 The psychophysical results indicate that arousal has an excitatory effect, whereas 

reward has an inhibitory effect on the visual cortex. To quantify the effects of reward and 

arousal on feature-based learning, we applied the normalization model to the current 

psychophysical datasets. The parameters from fitting the model indicated that arousal 

presented before the stimulus has a broader excitatory field compared to arousal cues 

presented after the stimulus. Furthermore, reward cues presented before the stimulus can 

be best modeled by a larger inhibitory field, and the reward cues presented after the 

stimulus can be best modeled by a restrictive filed to the untrained orientations. In order 

to clarify the excitatory or inhibitory effects of reward and arousal, future experiments 

need to be conducted to directly measure the inhibitory or excitatory activation of 

neurotransmitters in the brain (Shibata et al., 2017).  

  Interestingly, the psychophysical results implied that feature learning driven by 

arousal might be in accordance with the physiological findings in the locus-coeruleus 

norepinephrine (LC-NE) system. The LC-NE system's phasic activities will fluctuate 

with different levels of arousal in an inverted U-shaped curve (Aston-Jones & Cohen, 

2005). The activities are lower when the arousal level is either high or low. The phasic 

activities within the LC-NE system reach the maximum with mid-level arousal. 

Moreover, the phasic activities are associated with regulating the decision-making areas 

where fewer specificities are observed. Moreover, pre-cues are associated with a higher 

level of arousal compared to post-cues. Therefore, we speculate that the post-stimulus 

sound might have a better effect in inducing generalization due to an appropriate arousal 
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level. On the other hand, the pre-stimulus sound might have a weaker effect in 

generalization since the arousal level might be beyond the ideal peak. Furthermore, the 

result cannot be simply explained by attention since attention would have predicted the 

opposite result as in the current findings. As pre-cues would induce higher focused 

attention than post-cues, we would expect the pre-stimulus sound to have a larger 

generalization, which is the opposite of what we found. which is the opposite to what we 

found. Therefore, our findings indicate that the effects were not driven by focused 

attention.   

 One may also argue that the cues in the arousal condition may be useful as a 

reward. However, we argue here that this scenario is implausible. First of all, the sound 

was also presented in the reward condition, yet different results were acquired. Second, in 

the reward group, the subjects abstained from drinking and eating for five hours before 

coming to the experiment. However, in the arousal group, no fasting was required from 

the subjects to lower the possibility that any value will be associated with the arousal 

cues. Finally, subjects were interviewed whether they had knowledge of where the sound 

was coming from or if they associated the sound with any visual stimuli. None of the 

subjects reported associating the sound with the stimuli.  

 One potential argument that may undermine the conclusion in Aim 2 was the lack 

of direct measurement of arousal level indicated by the pupils' diameter (Bijleveld, 

Custers, & Aarts, 2009; Leuchs, Schneider, Czisch, & Spoormaker, 2017; Vinck et al., 

2015). In the current Experiment 3 and 4, measuring pupils' dilation was restricted due to 

the use of haploscopes. In future studies, a control group can be recruited without the 

haploscope to measure arousal and reward cues' effects on the arousal levels. The control 
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group can supplement the current argument about feature-based plasticity in association 

with change in arousal levels.  

 To conclude, in Aim 2, we illustrated potential excitatory effects of arousal on 

feature-based plasticity and the inhibitory effects of reward on feature-based plasticity.  
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Aim 3: Higher Level Visual Features: Plasticity and 

Application 

Introduction 

Aim 1 and Aim 2 focused on the feature-based learning of a primitive visual 

feature, such as the orientation of a grating or the directions of the moving dots. 

However, two significant challenges remain unaddressed by the previous results. First of 

all, the mechanisms of feature-based plasticity with natural and socially relevant images 

remain elusive. The perception of natural and socially relevant images is an essential 

component of everyday life. For instance, face detection is a critical component of social 

context. Detecting low spatial frequency face components has been associated with 

identity and rapid emotional detection (Duchaine & Yovel, 2015; Vuilleumier, Armony, 

Driver, & Dolan, 2003). Natural and socially relevant images usually contain richer 

visual details across a wide range of visual features. Therefore, given the limited number 

of studies, it is unclear how feature-based learning can be developed for natural and 

socially relevant images. Despite recent studies on clinical images (Frank et al., 2020) 

and a previous study on face view discrimination (Bi, Chen, Zhou, He, & Fang, 2014), 

there is a limited number of studies that trained subjects to detect complex and socially 

relevant stimuli like faces. It is also unclear whether feature-based learning was 

developed for natural images with these two studies. Second, visual perceptual learning 

has been proposed to be a promising tool for patients with visual deficits from early 

visual areas, such as amblyopia (Levi, 2012; Polat, 2009; Polat et al., 2004; Polat et al., 
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2009; Rosa et al., 2013) and macular degeneration (Astle et al., 2015; Maniglia et al., 

2016; Maniglia et al., 2020; Plank et al., 2014). However, visual perceptual learning 

mechanisms among patients whose visual deficits originated from higher-order visual 

areas remain unknown.  

In Aim 3, we hypothesize that feature-based plasticity for natural images occurs 

in the networks representing the visual components. Just as for primitive visual features, 

the feature-based changes occur in early visual areas; the changes for natural images will 

occur in representing the complex visual features. Moreover, we hypothesize that the 

changes in complex feature representation will occur in patients as well.  

 Body dysmorphic disorder (BDD) is a psychiatric disorder defined as having 

distressing thoughts and preoccupation with slight defects in appearances and particular 

faces. Body dysmorphic disorder affects 1% to 2% of the population (Beilharz, Castle, 

Grace, & Rossell, 2017; Li, Arienzo, & Feusner, 2013; Phillips, 2009). Previous studies 

have suggested that BDD patients have deficits in holistic visual processing, and 

specifically an imbalance between holistic and featural processing of faces (Beilharz et 

al., 2017; Feusner, Moller, et al., 2010; Kerwin, Hovav, Hellemann, & Feusner, 2014; Li 

et al., 2013).  When performing a low spatial frequency face-matching task, BDD 

patients showed higher left hemisphere blood-oxygen-level-depend (BOLD) activities in 

the lateral prefrontal and temporal regions in the dorsal face processing pathway of the 

brain (Feusner, Moody, et al., 2010; Feusner, Townsend, Bystritsky, & Bookheimer, 

2007). Recent studies have highlighted the temporal-parietal junction (TPJ)’s role in the 

face and social processing. TPJ and, in particular, left TPJ plays a vital role in 

representing others’ beliefs (Samson, Apperly, Chiavarino, & Humphreys, 2004; Saxe & 
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Kanwisher, 2003). The abnormal dorsal activities shown in the previous BDD studies at 

least partially overlapped with the TPJ (Arienzo et al., 2013; Feusner, Moody, et al., 

2010; Feusner et al., 2007). Moreover, BDD patients showed hypoactivity in the left 

occipital cortex when performing low spatial frequency tasks than normal controls 

(Feusner, Moody, et al., 2010), suggesting an imbalance between hemispheric activities. 

Furthermore, BDD patients demonstrated abnormal functional connectivity globally in 

the bilateral occipital regions and between FFA and occipital regions (Arienzo et al., 

2013; Moody et al., 2015).  

 On the other hand, holistic visual processing in healthy control subjects is 

associated with low spatial frequency faces and is processed mainly in the fusiform face 

area (FFA) in the ventral pathway (Duchaine & Yovel, 2015; Goffaux et al., 2011; Grill-

Spector, Knouf, & Kanwisher, 2004; Haxby & Gobbini, 2011; Nancy Kanwisher, 

McDermott, & Chun, 1997; N. Kanwisher & Yovel, 2006; Richler & Gauthier, 2014; 

Rossion et al., 2000; Rotshtein, Vuilleumier, Winston, Driver, & Dolan, 2007; Yovel, 

2016).  

 To conclude, the processing of low spatial frequency faces dissociates between 

the BDD patients and the healthy control subjects. While BDD patients likely represent 

low spatial frequency components with both the dorsal and the ventral face processing 

pathways as well as more left hemisphere activities, the healthy control subjects represent 

low spatial face components with more right hemisphere activities (Duchaine & Yovel, 

2015; A. Harris & Aguirre, 2008, 2010; Haxby & Gobbini, 2011; Rossion et al., 2000; 

Schiltz & Rossion, 2006) majorly in the ventral pathway. Therefore, if our hypothesis is 

correct and feature-based learning for complex visual features develops in the 
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representation change, we predict that the changes in BDD patients will occur in both the 

ventral and dorsal processing pathways. On the other hand, the changes for healthy 

control subjects will occur only in the ventral processing pathway. Moreover, we predict 

that no changes will occur in other brain regions that lack the representation of low 

spatial frequency face components.   

Experiment 6 

Subjects 

A total of 9 subjects with BDD (22 - 52 years, mean 34.9 +/- SD 11.34) and 10 

healthy control subjects of a similar age range (20 – 60 years, mean 27.8 +/- SD 11.81) 

participated in the study. BDD patients consisted of 8 females and one male. Healthy 

control subjects consisted of 5 females and 5 males. The larger portion of females in the 

BDD group might be related to a more significant portion of female patients willing to 

seek medical care than male patients on the population level (Phillipou & Castle, 2015). 

The healthy control subjects were recruited through Brown University, and the BDD 

patients were recruited through Rhode Island Hospital. All subjects have given written 

consents approved by Brown University and Rhode Island Hospital's institutional review 

board. Healthy control subjects were all pre-screened of psychiatry disorders and 

psychoactive medications. BDD patients were diagnosed with respect to the DSM-V 

criteria. All subjects have a normal or corrected-to-normal vision. 

Experiment timeline 

The study consisted of 4 stages as shown in Figure 18C: sensitivity measurement 

stage (1 session), pretest stage (1 session), training stage (6 sessions), and posttest stage 

(1 session). The pre- and posttest stages were conducted in the MRI scanner. The pre- 
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and posttest stages contained structural image acquisition, task measurement, functional 

connectivity measurement, and regions-of-interest measurement. The sensitivity 

measurement and training stages were conducted in a dimly lighted psychophysical 

testing room outside the MRI scanner. Each session was scheduled at least one day apart. 

Stimuli 

For the sensitivity measurement stage and task measurement during the pre- and 

posttest stages, a set of face images with neutral facial expressions and house images 

were used, as shown in Figure 18A. We created four stimulus categories with spatial 

A)

B)

200 ms 600 ms 200 ms 1000 ms

C)

One Trial

Experiment Timeline

D)

TestSensitivity
Measurement

Training
Test

0 40 80 120 160 200 240 280 320 360 400
Time [s]

-4

-3

-2

-1

0

1

2

3

4

5

R
es

id
ua

l

L-FFA

R-FFA

LRLSF Face HSF Face LSF House HSF House

Figure 18. Methods for Experiment 6. A) Illustration of four types of visual stimuli used during 

sensitivity measurement, pre- and posttest stages. The stimuli include low spatial frequency 

(LSF) and high spatial frequency (HSF) face and low and high spatial frequency house. B) One 

trial in the 2IFC task. C) Experiment timeline. The red box indicates sessions that were conducted 

in the MRI. D) Example for functional connectivity. The figure shows the time course of residuals 

used in functional connectivity from the left and right FFA. 



 
61 

frequency filtering. The low spatial frequency (LSF) face and house categories contained 

frequency components that were less than 10 cycles/degree. The high spatial frequency 

(HSF) face and house categories contained frequency components that were greater than 

15 cycles/degree. Each category contained four unique face/house images. During the 

training stage, only the LSF face category was used. 12 unique face images were used 

during the training stage. The face images used during training were different from the 

sensitivity measurement and testing stages to ensure that the training effects were not the 

result of learning a specific face image but a result of learning to detect LSF components 

of faces. The images were in greyscale, and the contrast of the images was matched. The 

face and house images were tilted 45o from the upright position to make the task 

challenging for the subjects. The stimuli were created by replacing certain portions of the 

pixels of the images with random Gaussian noise. The background was grey except for a 

center white bull’s eye on a grey disc with a radius of 0.75°.  

During ROI measurement, standard images for localizing fusiform face area 

(FFA) and parahippocampal place area (PPA) were used. These images contained upright 

faces, phase scrambled faces, upright houses, and phase scrambled houses.  

Sensitivity measurement  

The purpose of the sensitivity measurement is to obtain each subject’s threshold 

for detecting the face and house stimuli in different spatial frequencies. Subjects 

performed a two-interval-forced-choice (2IFC) task as shown in Figure 18B. Each of the 

image categories of each of the spatial frequency components was tested in different 

blocks. Each trial contained two 200ms stimulus intervals with a 600ms fixation period in 

between. The trial ended with a 1000ms interval in which the subjects made a response. 
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One of the stimulus intervals contained a stimulus overlaid with Gaussian noise, and the 

other stimulus interval contained only noise. Subjects responded whether the first or the 

second interval contained the stimulus by pressing “1” or “2” on a keypad. The signal-to-

noise (S/N) level was controlled with a 3-down-1-up procedure equivalent to an ~84% 

accuracy rate. The initial S/N ratio was 25%. The step size of the staircase was 0.05 log 

units. After 10 staircase reversals, the testing block ended. The S/N ratio threshold was 

calculated as the geometric mean of the last six reversals.  

Pretest and Posttest 

 The pre- and posttest stages consisted of structural image acquisition, task 

measurement, functional connectivity measurement, ROI measurement. First, during the 

structural image acquisition, a T1-weighted sequence was conducted to acquire a high-

resolution structural brain image of each subject. Second, for the task measurement, 

subjects performed the 2IFC tasks on the face and house stimuli of each of the low and 

high spatial frequency components. At the same time, their blood-oxygen-level-

dependent (BOLD) activity was measured with fMRI. In total, there were four stimulus 

categories. The task measurement consisted of 6 fMRI runs in a blocked design. Each run 

lasted 150 secs and consisted of twelve 12-sec mini blocks. Each mini block consisted of 

6 trials and measured only one image category. Each trial lasted for 2 sec and consisted 

of two 200ms stimulus intervals with a 600ms interval in between and a 1000ms fixation 

interval. The S/N ratio level for each of the stimulus categories was set to the threshold 

that had been measured during the sensitivity measurement stage. Additionally, each run 

started with a 4 sec fixation period and a 2 sec fixation period. The fixation period was 

added at the beginning of each run for the scanner's magnetic field to reach equilibrium. 
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Throughout the run, subjects were instructed to maintain their fixation at the white bull’s 

eye in display center. Third, ROI measurement was conducted with two fMRI runs of a 

1-back task in which the participant responded whether the current face or house stimulus 

matched the previous image. Each run lasted 200 sec. Fourth, functional connectivity was 

acquired with a 410 sec fMRI run while subjects were instructed to maintain their 

fixation at the center of the display.   

Training 

The training stage was conducted in a dimly lighted psychophysical room over 6 

sessions. Subjects performed the 2IFC task of a face image with only low spatial 

frequency components. Each session consisted of 10 blocks. Each block was controlled 

with the 3-down-1-up staircase procedure. The initial S/N ratio was 25%. The step size of 

the staircase was 0.05 log units. After 10 staircase reversals, the training block ended. 

The S/N ratio threshold of each block was calculated as the geometric mean of the last six 

reversals. Subjects performed around 500 trials for each session.  

fMRI data processing 

Preprocessing 

 The fMRI runs from the pre- and posttest sessions were preprocessed with the 

Freesurfer (Fischl, 2012) software. First, each run underwent 3D motion correction. The 

runs from each measurement section were corrected to the first volume from the first run 

of that measurement section as a template. For example, the task measurement runs were 

corrected to the first volume of the first task measurement run, and the ROI measurement 

runs were corrected to the first volume of the first ROI measurement run, etc.  Second, 

spatial smoothing was performed with a Gaussian filter (FWHM = 5mm).  Third, a gray 
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matter mask was created. Fourth, intensity normalization and slice timing correction were 

performed. Finally, rigid body transformation was performed to align each template run 

to the high-resolution structural image. 

ROI definition 

 ROI related to face processing was defined functionally and structurally on each 

subject’s left and right hemisphere individually. A general linear model (GLM) model 

assuming a gamma-shaped hemodynamic response function (HRF) with a delay of 2.25 

sec and a dispersion of 1.25 sec was fitted to the BOLD data from ROI measurement. The 

model was also fitted with nuisance regressors, including the motion correction 

regressors, the polynomial drift regressors and temporal whitening. The fusiform face 

area (FFA) and the occipital face area (OFA) were defined with a contrast of face vs. 

scrambled face. The parahippocampal place area (PPA) was defined with a contrast of 

house vs. scrambled house. These ROIs were defined to include all of the voxels that 

passed the threshold (p<.001, uncorrected). Left and right temporal-parietal junctions 

(TPJ) were defined anatomically as all of the voxels with a 5mm radius range of the 

average of the published Talairach coordinates (x = 54, y= -47, z = 28 and x = -54, y=-47, 

z = 28). The early visual areas were defined anatomically with the Freesurfer 

parcellation. 

Task measurement  

 The general linear model (GLM) model with the same gamma-shaped HRF 

function was fitted to the BOLD data from task measurement. The model was also fitted 

with the same nuisance regressors. The model included four conditions from the task 

measurement: low spatial frequency face, high spatial frequency face, low spatial 
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frequency house, and high spatial frequency house. Beta coefficients for each condition 

were extracted from the general linear model.  

Functional connectivity 

 To investigate the brain connectivity changes in association with training, we 

analyzed the functional connectivity using the resting states BOLD data. First, nuisance 

regressors were created for the functional connectivity data. There are four nuisance 

regressors: the cerebrospinal fluid, the white matter, motion correction parameters, slice 

time correction with a fifth-order polynomial. Second, GLM models with the nuisance 

regressors were fitted to the BOLD data from each of the following ROIs as the target 

ROI: left FFA and left TPJ. The residual of each fitted GLM model was extracted. Third, 

we selected the right FFA, the left and right OFA as the pair ROIs. We fitted the BOLD 

data from the pair ROIs with the GLM models and the residual terms were extracted. The 

residual terms from the left FFA and right FFA from one subject was shown in Figure 

18D. Fourth, functional connectivity was measured as a fisher-transformed correlation 

coefficient between the error term of each pair of the target ROIs and the pair ROIs.  

Results 

 We trained the body dysmorphic disorder (BDD) patients and healthy control 

subjects on a 2IFC detection task of low frequency face component over 6 sessions. We 

compared their performances on detecting faces and houses of different spatial 

frequencies during pre- and posttests. We found that both the BDD group and the healthy 

control group improved detecting face images of low spatial frequency components, as 

shown in Figure 19. The improvement was calculated as the (posttest accuracy – pretest 

accuracy) / pretest accuracy ´ 100%.  We performed a mixed-design ANOVA with 
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‘Group’ as the between-subject factor and ‘Condition’ as the within-subject factor. There 

was a significant main effect of ‘Condition’ [F(3, 51) = 4.547, p = 0.007, partial h2 = 

0.211]. We further conducted post-hoc t-tests for each condition in the BDD and healthy 

control group separately. We found that there was a significant improvement for the low 

spatial frequency face for the BDD group [t(8) = 3.892, p = 0.005, Cohen’s d = 1.29] 

after multiple correction. There was a significant improvement in the healthy control 

group [t(9) = 2.775, p = 0.02, Cohen’s d = 0.91] before multiple correction. There was no 

significant improvement in the other conditions for the BDD and the healthy control 

group. There was no difference between the BDD group and the healthy control group 

[t(17) = 1.829, p=0.085].  
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Figure 19. Performance improvement for the BDD (N = 9) and the control group (N=10). Both 

groups showed significant improvement only for the low spatial frequency face, which was the 

trained condition. + p<.05 before multiple corrections. * p<.05 after multiple corrections.  
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 We further measured the BOLD activities change in association with the learning 

of face images of low spatial frequency components. Previous studies have suggested that 

BDD patients showed higher activation in the left temporal and parietal region (left TPJ) 

in association with the processing of low spatial frequency faces compared with healthy 

control subjects. Moreover, low spatial frequency faces in healthy control subjects have 

largely been associated with ventral pathway activities. Thus, we hypothesized that 

training of low frequency face components would affect the processing in the left 

temporal parietal junction (TPJ) only in the BDD group. We measured the beta weights 

in association with face images of low and high spatial frequency components. We 

calculated a beta index as the beta weights of low spatial frequency components minus 

the high spatial frequency components' beta weights. The beta index measured during 

pre- and posttests for BDD and healthy control groups when they performed the face 

tasks were shown in Figure 20A. We performed a mixed-design ANOVA with a 

between-subject factor as the ‘Group’ and a within-subject factor as the ‘Test’. We found 

a significant interaction effect between the two factors [F(1,17) = 4.576, p=0.047, partial 

h2 = 0.212]. We performed a post-hoc t-test for each condition in each subject group 

separately. For the BDD group, the beta index measured during posttest decreased 

significantly compared to the beta index measured during pretest, [t(8) = 3.07, p=0.015, 

Cohen’s d = 0.7]. There was no significant change for the healthy control group, [t(9) = 

0.561, p = 0.589]. The results indicated that after training on detecting face images of low 

spatial frequency components, the BOLD activation in left TPJ decreased for low spatial 

frequency faces as compared to high spatial frequency faces only in the BDD group. 

Moreover, we measured the beta index for house perception as the difference between 
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low spatial frequency houses and high spatial frequency houses. As shown in Figure 20B, 

there were no significant changes in the left TPJ in association with house perception.  

 Second, we measured the BOLD activity in the left and right FFA, which was part 

of the ventral face processing pathway. Previous studies have suggested that low spatial 

frequency components are processed dominantly in the right FFA, and BDD patients 

have deficits in low spatial frequency components. Moreover, BDD patients 

demonstrated higher left hemisphere activities in the left hemisphere. We, therefore, 

hypothesized that training BDD patients on low spatial frequency faces would induce 

changes in the left and right FFA. We measured the dominance of right hemisphere 

activity of FFA as a right lateralization index. The right lateralization index was 

calculated as rightFFA[beta(low spatial frequency) – beta(high spatial frequency)] – 

leftFFA[beta(low spatial frequency) – beta(high spatial frequency)]. The right 
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Figure 20. BOLD activation in the left temporal parietal junction (TPJ) for the face (A) and house 

(B) stimuli. A) There was a significant decrease in the BOLD activation in the left TPJ of the BDD 

subjects after VPL training. There was no change for the healthy control group.  B) There was no 

change in association with the house stimuli. * p<.05.   
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lateralization index for the BDD group and healthy control group during pre- and posttest 

measurements was shown in Figure 21A. We performed a two-way mixed-design 

ANOVA with ‘Group’ as the between-subject factor and ‘Test’ as the within-subject 

factor. There was a significant interaction effect of Group x Test [F(1, 17) = 15.936, p = 

0.001, partial h2 = 0.484].  Post-hoc t-tests showed that there was a significant increase in 

right lateralization index for the BDD group [t(8) = 3.009,  p = 0.017, Cohen’s d = 1.003] 

and there was a significant decrease in right lateralization index for the healthy control 

group [t(9) = 2.6137, p = 0.028, Cohen’s d = 0.827]. The results indicated that the BDD 

group increased their BOLD activities in the right FFA compared to the left FFA when 

processing faces of low spatial frequency components. Moreover, the healthy control 

group decreased their BOLD activities in the right FFA compared to the left FFA when 

processing faces of low frequency components. Furthermore, there was a significant 

Pearson correlation between the changes in right lateralization index and behavioral 

improvement in BDD patients, as shown in Figure 23 [ r = 0.780, p = 0.013].  We further 

tested whether the effect could also be observed in association with house images' 

perception, as shown in Figure 21B. We performed the two-way mixed-design ANOVA 

and no significant interaction effect [F(1,17) = 2.042, p = 0.17], no significant main effect 

of Test [F(1,17) = 1.434, p = 248] or Group [F(1,17) = 0.550, p = 0.468].  
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 Third, we measured the BOLD activity change in early visual areas to test 

whether the changes in association with low spatial frequency faces were specific to the 

face processing networks. We did not observe significant BOLD activity change in the 

early visual areas (V1) in association with the training of low spatial frequency face 

images in the BDD and the healthy control group, all ps >.05 (Figure 22). 
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Figure 21. BOLD lateralization index in the FFAs for the face (A) and the house (B) stimuli. A) 

The right lateralization index for the face stimuli. There was a significant increase in the right 

lateralization index for the BDD group. There was a significant decrease in the right lateralization 

index for the healthy control subjects. B) There was no significant change in association with the 

house stimuli.  
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Figure 23. Correlation between the BOLD change in right lateralization index and the 

performance improvement in the BDD group. 
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Figure 22. BOLD activation change in the left V1 (A) and the right V1 (B). There was no BOLD 

activation change in the left or the right V1 for the BDD or the healthy control subjects.  
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We measured functional connectivity changes between the dorsal and ventral 

pathways and the connectivity changes within the ventral pathways using fisher-

transformed correlation coefficients. First, we measured the functional connectivity using 

the TPJ as the target ROI. We found a significant functional connectivity change between 

the TPJ and the left OFA, as shown in Figure 24A. A two-way mixed-design ANOVA 

with ‘Group’ as the between-subject factor and ‘Test’ as the within-subject factor showed 

a significant effect of ‘Test’ [F(1, 17) = 6.569, p = 0.020, partial h2 = 0.279]. Post-hoc t-

tests showed that the functional connectivity between the left TPJ and the left OFA 

increased from post-test to pre-test measurement [t(8) = 3.914, p = 0.005, Cohen’s d = 

1.305]. There was no significant change in the healthy control group [t(9) = 0.619, p = 

0.551].  

  Moreover, we used the left FFA as the target region and measured the functional 

connectivity change associated with the left FFA. We found that the functional 

connectivity between the left and right FFA changed with training, as shown in Figure 

24B.  A two-way mixed-design ANOVA showed that there was a significant interaction 

between the ‘Group’ and the ‘Test’ factor [F(1, 17) = 18.75, p = 0.0005, partial h2 = 

0.524]. Post-hoc t-tests showed that there was a significant decrease in the functional 

connectivity between the left and right FFA [t(8) = 4.221, p = 0.003, Cohen’d = 1.407]. 
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Moreover, there was a significant increase in the functional connectivity between the left 

and right FFA [t(9) = 2.698, p = 0.025, Cohen’s d = 0.853].  

Discussion and Conclusion 

 In Experiment 6, we trained BDD subjects and healthy control subjects on 

detecting LSF faces over the course of 6 sessions. Both groups showed improvements in 

detecting LSF faces.  Consistent with our hypothesis, we found a substantial decrease of 

BOLD activities in the left TPJ and a significant increase of right dominance in the FFA 

for the BDD group. Moreover, we found a significant change of functional connectivity 

in association with the left TPJ and the FFAs, suggesting a global change in both the 

ventral and dorsal pathways of face processing for the BDD group after VPL. Moreover, 
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Figure 24. Functional connectivity change. A) Fisher-transformed correlation coefficient between 

the left TPJ and the right OFA. There was a significant increase in the correlation coefficient in 

the BDD group after training. B) Fisher-transformed correlation coefficient between the left and 

right FFA. There was a significant decrease in bilateral connectivity in the FFA for the BDD 

group . There was significant increase in bilateral connectivity in the FFA for the healthy control 

group. ** p<.01. * p<.05.  
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the healthy control subjects decreased their right dominance in FFA in the ventral 

pathway after VPL.  

Our study has several important implications. Our results indicated that training 

low spatial frequency face stimuli could induce global changes in the face processing 

pathways where low spatial frequency information is processed. Similar to the VPL 

studies using simple visual stimuli and primitive visual features, we provided further 

evidence that feature-based learning and plasticity are associated with representation 

change in the brain, regardless of the stimuli' complexity (Watanabe & Sasaki, 2015).  

Second, we showed that feature-based learning could enhance behavioral 

performance and induce BOLD changes in patients with deficits that originated from 

higher-level visual areas. BDD patients showed deficits in association with holistic visual 

processing, in particular left dominance in brain activities and imbalance between the 

featural and holistic processing. After learning low spatial frequency visual features, the 

BDD patients showed behavioral improvement and manifested corresponding BOLD 

activities changes that correlated with the behavioral improvement. Moreover, by training 

low spatial frequency faces that feature holistic processing, there was an increase in right 

dominance of FFA, which is characteristic of holistic processing. Additionally, there was 

a decrease in the activity in TPJ, which is characteristic of emotional and featural 

processing. These results demonstrated that feature-based learning can influence BDD 

patients' holistic processing in a targeted manner and may be developed as a promising 

clinical tool as an intervention for the patient population.  

Third, our results demonstrated a substantially different mechanism of learning 

between the BDD and healthy control subjects. We propose that the improvement of 
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holistic processing in BDD patients has been associated with a transition from the dorsal 

processing pathway to the ventral processing pathway. Previous studies have suggested 

an imbalance between the featural and holistic processing, namely a hyperactivation of 

featural processing and a lack of activation in the holistic processing, underlies the 

abnormalities of BDD patients. After a training procedure featuring holistic processing, 

the activity in the TPJ decreased, manifesting a lower activation in the dorsal featural 

processing pathway. Meanwhile, the FFA activity becomes right dominant, namely, 

similar to the normal BOLD activity in healthy control subjects. Therefore, the BOLD 

activity transits from more featural processing to more holistic processing. Functional 

connectivity changes also accompanied the BOLD activity transition. We speculated that 

the increase in functional connectivity between TPJ and OFA might suggest that the 

processing of low spatial frequency faces transited from dorsal to ventral through the 

increased connection between TPJ and the OFA, which is the input to the ventral 

processing pathway. On the other hand, we propose that an increased left FFA activity 

drove the improvement in healthy control subjects. This result is consistent with previous 

studies (Bi et al., 2014; Rossion et al., 2000) investigating the learning of face views in 

which the left FFA activity also increased after training. We propose that the left FFA is 

more plastic in healthy control subjects compared to the right FFA. The reason might be 

that the right FFA is over-specialized and over-developed for face processing in healthy 

adult subjects, and therefore there is more room for improvement in the left FFA. 

The functional connectivity changes in the FFA and the BOLD activity change in 

the FFA lateralization index might suggest a mechanism underlying FFA dominance. 

Initially, BDD patients showed left dominance with higher functional connectivity 
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between the left and right FFA. The healthy control subjects showed right dominance 

with lower functional connectivity between the left and right FFA. After training, the 

increase in right dominance of BDD patients was accompanied by lower functional 

connectivity. In contrast, the decreased right dominance of healthy control subjects was 

accompanied by higher functional connectivity between the two FFAs. Therefore, the 

dominance of the right FFA might result from less connectivity between the two 

hemispheres. Nevertheless, more studies are necessary to clarify the relationship between 

functional connectivity and dominance.  

One potential argument that may undermine the current study is the controversy 

underlying the processing of low spatial frequency faces. While most studies support the 

processing of low frequencies faces as holistic processing in the FFA and the ventral 

pathway, some studies suggested that low spatial frequency faces were also processed in 

the dorsal pathway (Rotshtein et al., 2007; Vuilleumier et al., 2003). However, depending 

on different tasks, presentation times, and subjects' attention to different visual features, 

the processing of low frequency faces involves different brain areas. In Experiment 6, the 

presentation time is short and might involve the ventral processing pathway to a larger 

extent.  

It is not entirely clear whether task-based plasticity occurred or not with 

Experiment 6. Although we observed a dissociation between the healthy control subjects 

and BDD patients, since task-relevant learning is involved, it is challenging to exclude 

task-based plasticity. One possibility is that task-based plasticity occurred at the initial 

stage of learning, and at a later stage, feature-based plasticity occurred. One future 

direction of Experiment 6 is to train low spatial frequency faces with task-irrelevant 
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learning or neurofeedback to isolate the effects of feature-based plasticity in association 

with complex visual features.  

Another future direction of Experiment 6 is to evaluate the symptoms and 

cognitive biases of BDD patients. In Experiment 6, we focused on the behavior and 

BOLD activity change in association with feature-based learning.   

To conclude, Aim 3 showed that feature-based learning of faces involves changes 

in the face representation areas. Moreover, VPL of faces induced global changes in the 

BDD patients and may be used as a potential intervention for BDD patients.
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General Discussion and Conclusions 

Visual perceptual learning refers to the long-term performance improvement with 

visual experiences. Visual perceptual learning provides an insight into how learning and 

plasticity develop in general in the brain. One of the controversies in visual perceptual 

learning is how the brain learns visual features. The dissertation focuses on the discussion 

of feature-based visual learning in three aims.  

Aim 1 and Aim 2 addresses how feature-based learning is developed with 

primitive visual features using simple visual stimuli. A two-stage model has summarized 

the learning of simple visual features as feature-based plasticity, which involves a 

feature-representation change in the brain.  

Aim 1 addresses which brain areas are associated with feature-based plasticity 

using decoded fMRI neurofeedback. We repetitively induced the brain activation pattern 

corresponding to a Sekuler display in early visual areas V1/V2. The Sekuler display, if 

presented visually, induces the perception of the local motion directions and a global 

motion direction which is the temporal and spatial average of the local motion directions. 

Local motions were processed in V1/V2, whereas global motion was processed in V3A 

and beyond. By inducing the brain activation pattern corresponding to the Sekuler 

display, subjects improved on discriminating the motion directions that corresponded to 

the local motion ranges but not specifically to the global motion direction.  Therefore, we 

concluded that feature-based plasticity is induced with representation change in early 

visual areas.  
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Aim 2 addresses what factors are involved in the development of feature-based 

plasticity. Specifically, we focused on how reward and arousal can evoke visual 

perceptual learning. We presented rewards either before or after the visual stimulus in 

different groups. Reward presented before the visual stimulus did not evoke learning. 

Reward presented after the visual stimulus induced visual learning for the orientation 

paired with the water reward. Moreover, there was no transfer to the untrained orientation 

or the untrained eye. Arousal played a different role in learning. Arousal sound presented 

before the visual stimulus and after the visual stimulus can both induce learning in the 

orientation paired with the sound. Moreover, arousal presented before the visual stimulus 

induced the learning to transfer to the untrained orientation. Furthermore, arousal 

presented after the visual stimulus induced the learning to transfer to the untrained 

orientation and location.  

We quantified the effects of reward and arousal with the normalization model.   

The psychophysical data were best fitted by modeling the arousal as an excitatory effect 

and modeling the reward as an inhibitory effect. 

In Aim 3, we addressed how feature-based learning is developed with natural and 

socially relevant visual stimuli with complex visual features. We trained BDD patients 

and healthy control subjects with low spatial frequency face stimuli. Previous studies 

suggested a dissociation between the processing pathway of low spatial frequency face 

stimuli. In BDD patients, the low spatial frequency faces were processed in both the 

ventral and dorsal pathways of the brain. On the contrary, the healthy control subjects 

processed the low spatial frequency faces only in the ventral pathway of the brain. After 

training with low spatial frequency faces, the BDD patients showed changes in both the 
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ventral and dorsal processing pathways. On the other hand, the healthy control subjects 

only showed changes in the dorsal processing pathway. The dissociation suggested that 

training of complex visual stimuli will induce changes in association with the 

representation of features in the brain.  

The current dissertation's future direction is to investigate the neural mechanisms 

of how reward and arousal induce feature-based learning. Moreover, the BDD patients 

and healthy control subjects also dissociate in high spatial frequency processing. Another 

future direction is to train both subject groups with high spatial frequency processing to 

explore whether they dissociate when processing high spatial frequency features.   

To conclude, the learning of visual features is related to the representation change 

in the brain. It is also strongly influenced by the reward and arousal levels associated with 

delivering the visual stimulus.
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