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Abstract

Large pre-trained transformer-based language models (PTLMs) have recently dominated the
state-of-the-art in Information Retrieval tasks such as web search and question answering.
Despite the advantages such models offer with respect to utilizing term context for building
better query and document representations, their large number of parameters and computational
complexity introduce important constraints and challenges. Thus, training such models for
retrieval typically relies on point-wise similarity learning or pair-wise contrastive learning.
However, such training settings discard inter-document information and deviate from the actual
target objective of search, i.e., comparing a query against a very large collection of documents.
Essentially, they overlook the effect of ranking context: that is, the benefit derived from jointly
assessing the relevance of a large enough set of candidates in meaningful relationship to the
same query and therefore to one-another. Ranking context has been found to be beneficial
in earlier Leaning-to-Rank approaches that employ non-PTLM neural networks on top of
handcrafted features.

In this work, we first investigate the effect of ranking context and its constituent parts:
(1) jointly scoring a large number of candidates, (2) using retrieved (query-specific) instead of
random negatives, and (3) a fully list-wise loss. To this end, we introduce COntextual Docu-
ment Embedding Reranking (CODER), a highly efficient and generic fine-tuning framework
that for the first time enables incorporating context into transformer-based language models
used in state-of-the-art dense retrieval. CODER acts as a lightweight performance enhancing
framework that can be applied to virtually any existing dual-encoder model, and used both for
standalone single-stage retrieval, as well as for reranking.

We next explore the potential that CODER offers in directly optimizing retrieval for
essentially context-dependent, list-wise properties, such as ranking fairness. We find that,
compared to the existing alternatives for deep neural retrieval architectures, our end-to-end
differentiable and efficient approach based on CODER can attain much stronger bias mitigation
(fairness). At the same time, for the same amount of bias mitigation, it offers significantly better
relevance performance (utility). Crucially, our method allows for a more finely controllable
and predictable intensity of bias mitigation.

Lastly, we seek to enhance the ranking context itself by addressing the problem of sparse
relevance annotation in modern large-scale retrieval datasets. To mitigate penalizing the
model in case of false negatives during training, we propose evidence-based label smoothing,
1.e., propagating relevance from the ground-truth documents to unlabeled documents that
are intimately related to them. To that end, we leverage the concept of reciprocal neighbors,
moving beyond geometric similarity and exploiting local connectivity in the shared represen-
tation space. We find that using the CODER framework to fine-tune retrievers based on the
recomputed “smooth” labels substantially improves ranking effectiveness.
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Chapter 1

Introduction

1.1 Transformer-based Language Models for Information
Retrieval

1.1.1 A new paradigm

Deep learning has already been successfully used for about a decade now in information
retrieval (IR) [1]. However, the pivotal breakthrough that has resulted in unprecedented
progress in the field was the advent of transformers, and especially of large pre-trained
transformer-based language models (PTLMs). In fact, such models currently dominate the
state-of-the-art in IR tasks such as web search and question answering (2, 3, 4, 5, 6], far
outperforming established algorithmic methods based on lexical overlap features [7], as well
as various machine learning approaches leveraging lexical features and their interactions
(e.g. [8,9)).

By extracting contextualized term representations both from the query as well as the target
documents, the transformer architecture offers unique advantages with respect to capturing
the user’s intent from the query, and the salient topics in target documents. It thus enables
building informative vector representations of queries and documents, optimally embedded in
a common vector space. This is of critical importance for the effectiveness of dense retrieval
methods, whose function relies on computing a simple similarity/distance metric between
query and document vectors, and then retrieving the nearest neighbors with respect to this
metric (e.g. [10]). Given the vector representations, the latter function can be efficiently
performed during inference time using optimized libraries for retrieving Approximate Nearest
Neighbors (e.g. [11]) and GPUs.

As a second approach, in so-called cross-encoder models (e.g. [12]), the tokens of the
query and candidate documents, separated by special tokens, are concatenated within the same
input context window, and the self-attention mechanism of the transformer encoder enables
rich interactions between query and document term representations on multiple abstraction
levels. As such, these models can typically achieve higher ranking effectiveness, but due to the
O(N?) computational cost of self-attention with respect to the length of the context window
N, they are forbiddingly computationally expensive: the need to concatenate queries with
candidate documents leads both to slower processing times per candidate document, as well

2



as separate evaluation of all query-candidate combinations. They are therefore inevitably used
only for reranking the top-£ results retrieved for each query by first-stage methods, such as
dense retrieval methods, with k separate (but potentially concurrent, to an extent depending on
batch size) evaluations per query.

1.1.2 Limitations of current methods and the problem of ranking context

Despite the opportunities PTLM models offer with respect to utilizing term context, their
large number of parameters and computational complexity introduce important constraints
and challenges. In particular, when training such models for information retrieval, current
approaches typically rely either on (a) point-wise similarity learning - used especially for cross-
encoders models, e.g. [12] - where each document is scored with respect to its similarity to a
query in isolation, as described above, or (b) pair-wise contrastive learning - used practically
in all contemporary dense retrieval methods, e.g. [10] - where the model is asked to score
the similarity between the query and a ground truth relevant document (termed positive)
more highly than the similarity between the query and a negative document. However, such
training settings deviate from the actual end-target objective of search, i.e., simultaneously
comparing a query against a large collection of documents, and additionally discard inter-
document information. Essentially, they overlook the effect of ranking context, which has been
previously found to be very beneficial in Leaning-to-Rank approaches that employ non-PTLM
neural networks on top of handcrafted features [13, 14]. By ranking context we mean a
large enough set of documents that are in meaningful relationship to the same query (and by
extension to one-another) and are jointly evaluated with respect to their relevance to this query.

Interestingly, recent works have partially (and unwittingly) rediscovered aspects of ranking
context as individual techniques and best practices, such as mining “hard negatives” (e.g. [10,
15, 16]) or including a large number of in-batch random negatives through the use of huge
batch sizes and multiple GPU (e.g. [17]). The most effective state-of-the-art pipelines come
with a very high computational cost, integrating the above techniques alongside others such as
heavy-weight cross-encoder PTLMs for filtering negatives, distillation and and pseudo-labeling
of additional collection documents (e.g. [2]).

Such techniques employed in contemporary dense retrieval literature can in fact be be
seen as individual steps towards procuring and sanitizing a ranking context for training dense
retrieval models, albeit never recognized as such. The fact that current PTLM-based retrieval
research (which traces its origins in generic Natural Language Processing rather than Learning-
to-Rank Information Retrieval) is oblivious to the concept of ranking context is exemplified
by the fact that no method uses more than a handful of mined hard negatives, with some of the
most influential works in the field advocating that no more than 4 hard negatives should be
used based on empirical findings [10], and other works arguing that this negative impact of a
larger number of hard negatives may be attributed to false negatives and thus proposing the
filtering of negatives as essential [17].



1.2 The contributions of this work

1.2.1 A method for training PTLMs through contextual similarity learn-
ing

After identifying ranking context as an important component of training dense retrieval models,
in Chapter 2 we expressly investigate its effect and what we consider its constituent parts:
(1) jointly scoring a large number of candidates, (2) using retrieved (query-specific) instead of
random negatives, and (3) a fully list-wise loss. To this end, we introduce COntextual Docu-
ment Embedding Reranking (CODER), a highly efficient and generic fine-tuning framework
that for the first time enables effectively incorporating context into transformer-based language
models used in state-of-the-art dense retrieval. By relying on precomputed, fixed document
representations and fine-tuning only the query encoder, CODER acts as a lightweight per-
formance enhancing framework that can be applied to virtually any existing dual-encoder
model, and used both for standalone single-stage retrieval, as well as for reranking. More
than a concrete training method, our work acts as a set of specifications for effective similarity
learning with PTLMs and draws the connection between existing best practices to the concept
of ranking context.

1.2.2 Leveraging contextual similarity learning for bias mitigation

Having introduced a methodology for contextual similarity learning, in Chapter 3 we explore
the potential it inherently offers for directly optimizing retrieval with respect to essentially
context-dependent, list-wise properties, such as ranking fairness. Compared to the existing
alternatives for deep neural retrieval architectures, which are based on adversarial training,
we find that our end-to-end differentiable and efficient approach based on CODER can attain
much stronger bias mitigation (fairness). At the same time, for the same amount of bias
mitigation, it offers significantly better relevance performance (utility). Moreover, our method
allows for the first time a finely controllable and predictable intensity of bias mitigation, which
is essential for practical deployment in production systems.

1.2.3 Enhancing the ranking context of dense retrieval through Recipro-
cal Nearest Neighbors

Finally, in Chapter 4 we propose novel methods that can enhance ranking context and poten-
tially leverage it more effectively by exploiting relationships between the candidate documents
and the query that extend beyond simple geometric proximity. We accomplish this by ad-
dressing the problem of sparse relevance annotation in modern large-scale retrieval datasets.
To mitigate penalizing the model in case of false negatives during training, we propose
evidence-based label smoothing, i.e., propagating relevance from the ground-truth documents
to unlabeled documents that are intimately related to them. To that end, we leverage the
concept of reciprocal nearest neighbors, taking into account the local density of documents in
the representation space, i.e., the degree of connectivity of documents to their surroundings.
We find that using reciprocal nearest neighbors provides an additional measure of similarity



that is more robust when ranking candidate documents. Importantly, when using this similarity
for computing “smooth” labels for documents, we find that the fine-tuning retrievers through
the CODER framework offers substantially improved ranking effectiveness.

Repository

The corresponding code and other resources are available at:
https://github.com/gzerveas/CODER
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Chapter 2

An efficient framework for improving
retrieval through contextual reranking of
document embeddings

2.1 Introduction

2.1.1 Limitations of contemporary training methods for retrieval models

Neural text retrieval models typically rely on a contrastive training optimization that uses
(query, positive document, negative document) triplets as training samples. This scheme is
especially popular, as it is well-suited to the computational constraints of large transformer-
based language models such as BERT [1] and its variants for retrieval [2, 3, 4, 5]. Referred to
as pair-wise training, the model is asked to score the similarity between the query embedding
and a ground truth relevant (positive) document embedding, higher than the one between the
query and a negative document embedding.

While such contrastive learning approaches are effective, by only considering pairs of
positive and negative documents at a time, they (1) deviate from the target objective of
comparing a query against many documents while discarding inter-document information, and
(2) depart from core list-wise evaluation metrics like nDCG [6].

Addressing the first shortcoming, recent works have employed “in-batch” negatives: given a
batch containing (query, positive document) tuples, the negatives to a tuple are set as the known
positive documents from other queries within that batch (e.g. [4, 7, 8, 9, 10]). Although this
approach efficiently increases the number of negatives to improve performance, the presence
of hard negative samples' is critical in achieving state-of-the-art (SOTA) [9, 10, 11, 12].

The rich literature on learning-to-rank (L2R) has outlined compelling reasons for taking
into account the context of other candidate documents being jointly ranked for relevance
with respect to the same query when scoring each individual document [13, 14, 15]. This
ranking context is realized in various list-wise optimizations. Learning-to-rank approaches
allow for the model to directly optimize IR metrics as opposed to a surrogate pair-wise

'Hard negatives look similar in topic and term distribution to relevant documents, while not actually satisfying
the information need.



loss as seen in the contrastive training regime. However, despite achieving competitive
results in a variety of ranking situations, considerations of computational complexity and
stochastic stability practically relegate them to shallow neural models over handcrafted feature
vectors [16, 17, 18].

In any case, contemporary methods employed for training the SOTA retrievers that are
based on pre-trained transformer-based language models seem oblivious to the beneficial
effects of ranking context and are not designed to leverage it in a systematic fashion as a
means to improve ranking effectiveness.

2.1.2 Our contribution

In this chapter, we extend existing work in negative sampling and list-wise learning to
allow large pre-trained language models to take advantage of the context found in a large,
coherent set of candidate documents. We particularly examine the effect of constituent parts
of the query context, i.e. (1) jointly scoring a large number of negatives, (2) using retrieved
(query-specific) instead of random negatives, and (3) a fully list-wise loss. To this end, we
introduce COntextual Document Embedding Reranking (CODER), a highly efficient and
generic fine-tuning framework that for the first time enables incorporating context, previously
only considered in learning-to-rank neural networks, into transformer-based language models
used in state-of-the-art dense retrieval. CODER acts as a lightweight performance enhancing
framework that operates on precomputed document embeddings, while transforming the query
to account for new list-wise context information over a large number of query-specific hard
negative candidate documents. It can be applied to virtually any existing dual-encoder model,
and used both for single- as well as two-stage dense retrieval.
Our contribution is three-fold:

* We introduce an efficient framework which enables leveraging ranking context.

* We conduct a large set of experiments on the MS MARCO [19] and TripClick [20]
collections and show that CODER can considerably enhance the effectiveness of a wide
class of dense retrieval models at minimal computational cost, while achieving new
SOTA results on TripClick.

* We explore the impact of the constituent parts of ranking context in learning effective
models.

2.1.3 Motivation for simultaneously scoring a large number of negative
documents

In contrastive learning, models are trained to assign a higher score for similarity between
the query and a positive document than between the query and all negative documents:
s(q, p;“) > s(q,p; ), V1,7, where pj denotes a positive and p;” a negative document/passage
respectively. In Figure 2.1, vector representations of documents are depicted as points (red for
positive, blue for negative documents) in a d-dimensional space that is shared with the query
representation vector.
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Figure 2.1: Positive (blue) and negative (red) document vectors in a shared document and query
embedding space of 1 (upper row) and 2 (lower row) dimensions. The contrastive learning
objective simply requires the query representation to be mapped closer to the positive than
all negative documents; this means that for a d-dimensional space, the query representation
need not necessarily lie in proximity to the positive document, but simply within an infinite
subspace (left column: grey part of line in 1D space, grey-outlined part of plane in 2D space).
At least d + 1 negative documents are required to constrain the space of favorable query
mappings to a bounded convex polytope. Given that the positive document is contained within
a simplex formed by d + 1 negative documents as vertices in that space (interval in R, triangle
in R?, tetrahedron in R? etc), the loss function will favor mapping the query onto another
simplex in the same space (right column: grey interval in 1D space, grey-outlined triangular
area in 2D space).

Because functions used to compute similarity increase with decreasing Euclidean distance,
the objective can be fulfilled by learning to map the query within a smaller distance from a
given positive document p;r compared to all negative documents>. However, for a space of
dimension d, when fewer than d + 1 negative documents are included in a loss calculation,
there is an infinite subspace where the query representation can lie, arbitrarily far from the
positive document, and still satisfy this condition.

At least d 4 1 negative documents are required to constrain the space of objective-favored
query mappings to a bounded convex polytope: given that the positive document is contained
within a simplex formed by d + 1 negative documents as vertices in that space (interval in
R, triangle in R2, tetrahedron in R? etc), the loss function will favor mapping the query onto
another simplex in the same space, within which the distance from the positive document will
be bounded.

*Because document vectors are distributed far from the origin, this will typically be true even when the dot
product is used as a similarity function.
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Of course, training with fewer than d+ 1 negative documents per query still works: although
the loss landscape as revealed by only a few negative documents is a rough approximation,
and thus the parameter updates computed by stochastic gradient descent for each batch will
be suboptimal and noisy, a good minimum of the loss can still be found in expectation by
iterating over the entire training set. However, as the number of negative documents per query
increases to d + 1, the approximations of the gradients of the loss and thus parameter updates
at each training step will be more accurate and therefore training will be more efficient.

Increasing the number of negatives to an even higher number is still expected to yield a
performance improvement, but at a reduced rate: this is because (a) there is no guarantee
that with d + 1 negatives per query, the positive document will be contained within a simplex
of negatives, but with every additional negative this probability increases, and (b) once the
positive document is contained within a finite simplex, the probability for every additional
negative document to further constraint the bounded subspace where the loss can be minimized
becomes increasingly smaller.

The above theoretical analysis can explain the observations made e.g. by Hofstitter et al.
[9], who obtained significantly better performance when increasing the batch size from 32 to
256, or by Qu et al. [10], who used “cross-batch” random negatives (pooled from different
GPUs) to effectively increase the number of “in-batch” negatives to a few thousand documents
in order to “reduce the discrepancy between training and inference", and noticed a substantial
improvement of performance as a result. Also, in agreement to our explanation above, the
performance improvement they observed as a function of the number of negatives quickly
saturated when exceeding the dimensionality of the document embedding space.

Finally, it is evident from the analysis above that the closer the negative document represen-
tations lie to to the ground truth representation (i.e. the more relevant the negatives are), the
smaller the bounded convex subspace will be, a fact which supports the observed importance
of challenging negatives in literature [9, 10, 11, 12].

2.2 Related Work

Recent work has demonstrated the importance of the quality of negative documents used
during fine-tuning. Xiong et al. [11] periodically re-encode every query and document in the
collection during training in order to mine the most difficult documents to use as negative
candidates via approximate nearest neighbor (ANN) search. Improving on this slow and
resource-intense process, Zhan et al. [5] (published as Zhan et al. [12]) forego fine-tuning of
the document encoder, instead only fine-tuning the query encoder while dynamically mining
negatives. TAS-B [9] also improves the quality of negatives by clustering semantically similar
queries, such that the in-batch negatives are indirectly related to the ground truth document.
While we contribute to this line of research, we show that one can avoid such complexity
and directly benefit from list-wise optimization applied on a large, coherent and informative
context of candidate documents, retrieved for each query in advance.

Moving from quality to quantity of negative candidates, RocketQA [10] drastically in-
creases the quantity of random in-batch negatives to several thousands by sharing negatives
across at least 8 V100 GPU instances. Despite its huge size, this pool of sampled negatives
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includes only 4 retrieved hard negatives per query and is otherwise almost entirely random,
with no shared context across documents. Unlike CODER, this approach necessitates training
an expensive cross-encoder model to “denoise” (filter out) retrieved candidates, otherwise
yielding poor performance. Moreover, it involves using the cross-encoder to pseudo-label
additional data samples, an approach adopted by the currently top performing dual encoder
models following up this work, RocketQAv2 [21], which additionally leverages list-wise cross-
encoder teaching, and PAIR [22], which includes a loss term capturing similarity between
passages.

To address the increasing complexity and computational requirements of training pipelines,
Gao and Callan [23, 24] instead propose corpus-specific, self-supervised pre-training with
a bespoke transformer add-on (see Baselines in Section 2.4). An orthogonal approach to
reduce computational requirements focuses on jointly optimizing query optimizer and product
quantization for ANN search [25].

List-wise loss functions have been extensively used within learning-to-rank (L2R), although
they have been limited to either shallow neural models [13, 16] or various deep networks Ai
etal. [14, 15], Pang et al. [17], Pasumarthi et al. [26] in works focusing on L2R datasets. These
consist of handcrafted feature vectors representing query-document similarity such as term
overlap, click-through rate, BM25 scores, and other salient features. Effectively applying L2R
concepts to transformer-based language models used for ad-hoc dense retrieval is a non-trivial
challenge, and represents CODER’s extension of prior works.

Finally, there is a body of work utilizing large pre-trained language models for retrieval in
cross-encoder [2, 27, 28], late cross-encoder [3, 29], and generative rankers [30], as well as
query/document expansion and indexing [31, 32, 33, 34, 35]. Co-BERT [36], a recent method
leveraging ranking context, uses a cross-encoder BERT Reranker to select candidates and to
compute feature vectors as input for the L2R methods above [17] through query-document
term interactions. In comparison, CODER is orders of magnitude more efficient both during
training and inference.

All existing approaches either advocate for using a handful of hard negatives (e.g. [7]),
or compromise with it due to computational constraints. By recognizing the importance of
context, our proposed framework is the first to allow the combination of quantity and quality of
negatives for training SOTA dual encoder models with very modest computational resources.

2.3 Method

CODER involves fine-tuning a pre-trained query encoder to learn a query representation that
is as proximal as possible to the representation of the ground-truth relevant document(s),
by adjusting it to better account for the context of multiple query-related documents. The
architecture consists of two main components (Fig. 2.2): a query encoder, which builds a query
representation, and the document set scoring module, which, given a query representation,
jointly scores a set of NV precomputed embeddings of positives and hard negatives retrieved
by an arbitrary retrieval method, M. Using precomputed document embeddings reduces
computational costs (memory, FLOPs) by a factor of /NV. Thus, unlike all existing approaches,
we can afford to use a large number of such hard negatives (N = 1000 in our experiments,
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Figure 2.2: Schematic diagram of the CODER method. The architecture consists of two
main components: the query encoding module, which embeds a tokenized query, and the
document set scoring module, which jointly scores a set of N precomputed candidate document
embeddings. Here, we experiment specifically with ¢ = X - g (Z), combined with a list-wise
loss and large N = 1000, which we show allows to effectively leverage ranking context.

unless otherwise noted).

2.3.1 Architecture
Query Encoder

The query encoder can be any pre-trained transformer encoder, such as BERT [1], Distil-
BERT [37], RoBERTa [38], or ERNIE [39]. We initialize its weights from an existing model
already fine-tuned for retrieval, which we call “base model”, Mp.

Formally, for each query token ¢;, t € N : 1 < ¢ < w, where w is the length of the
tokenized query sequence, it extracts a vector representation z, € R%, where d is the encoder’s
internal representation dimension. These vectors can be linearly projected to a space of
different dimensionality and become z} € R?, to match the dimensionality of the document
embeddings d’, in case the latter differs. In the general case we thus denote the extracted
representation of a query ¢ as:

Z' =1z};...;2,) = C(q;0q) € RYx? (2.1)

where 0 are the parameters of the query encoder. The individual token representations
are aggregated into a single vector using an aggregation function g. In our experiments,
we let g(Z') = L 3", 7/, be the mean when using RepBERT [4], and g(Z') = Z/; (i.e. the

T w
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representation of the [CLS] token) when using TAS-B [9] as the base model for implementing
the query encoder ( (see Section 2.4).

Document scoring function

The document set scoring function is represented by ¢ which produces a set of N scalar
relevance scores 5; € R, 7 € N : 1 <4 < N. It takes as an input the aggregated query
representation g(Z') from the previous section, and a set of /N document embeddings x; € R™,
1 € N:1 <11 < N, precomputed by the base model. Using learnable linear projections,
the dimensionality of the document embeddings can potentially be changed to accommodate
different scoring functions (e.g., transformer blocks with an internal representation dimension
d' # m), while matching the dimensionality of the query embeddings. Succinctly, the output

relevance SCOres are:
§=¢(9(Z),X;0p)=X-g(Z) eR", (2.2)

where X = [x;;...;xy] € RV*™ are the N document embeddings, 0 are the parameters
of the scoring function, and d’ = d (i.e. query and document embeddings have the same
dimensionality).

While a variety of functions can be used as a scoring function in our framework, including
transformers , for all results presented in this work we leverage the simple inner product, which
interestingly achieves significant performance improvements even without the contextualized
transformation of document embeddings. It thus appears that jointly scoring a large number of
query-specific candidates for the same query within a list-wise loss establishes a strong enough
context for improving performance. Beyond computational efficiency, the main advantage of
the above function is that it facilitates directly using the fine-tuned query encoder for dense
retrieval (single-stage) through fast approximate nearest neighbor search. Instead, a non-linear
scoring module would only allow using the model for reranking in a two-stage retrieval setting
(candidate retrieval, followed by reranking).

2.3.2 Training through CODER

The document representations X are precomputed using the document encoder part of any
state-of-the-art dual encoder retrieval model Mp. To accelerate training convergence, we
initialize our query encoder ¢ from the query encoder of the same dual encoder retrieval
model. Throughout training, the parameters 0 of the query encoder (and 6 of the scoring
function ¢, if the latter is learnable) are fine-tuned. To support a memory and compute-efficient
training setting without the need for large or parallel GPUs, the document representations X
remain fixed, although in general they can be transformed by function ¢ before computing the
document similarity scores. As with all dense retrieval methods (e.g., [4, 9, 11, 12]), document
representations are assumed to have been precomputed and indexed for fast inference runtimes.

A key difference between CODER and all dense retrieval methods is that, for each query,
along with the £ positive (ground-truth) documents, the model is trained to jointly score
a large number N — k of top candidate documents retrieved by some candidate retrieval
method M-. We note that M- does not need to be the same method as the base method
that provides the document representations and the query encoder. This potentially allows
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leveraging methods with different characteristics (e.g. methods with higher recall versus
precision, or a lexical overlap / sparse representation such as BM25), and can prove beneficial,
as shown in Section 2.5.

2.3.3 Loss function

To best take advantage of jointly scoring /N documents for each query, we choose the ListNet
loss [13], which is the KL-divergence between a distribution over the predicted scores § (given
by Eq. (2.2)) for the N candidate documents, and a distribution over the target (ground-truth)
relevance labels y € RY, given by the dataset for the same set of candidates (the relevance
score of positive documents is a positive scalar, while for negative or documents whose label
is not explicitly defined it is set to —oo):

£(7.8) = Dra (o) | o(8)) = = 3 (), log 2 23

where o denotes the softmax function.

Jointly scoring a large number of retrieved candidates for each query, in combination with
the KL-divergence loss, distinguishes our method from existing dense retrieval methods. This
combination establishes and exploits a context for each query and it is key for obtaining a
performance improvement over the base method, as we show in Section 2.5.4. The benefit is
expected to be even greater for datasets which include multiple document labels per query,
optionally defined over several levels of relevance. We show such results in Section 2.5.2.

2.4 Experimental Setup

Datasets. We conduct the experiments on passage and document retrieval tasks,® using two
large publicly available IR collections in the domains of web and health retrieval. The first
dataset is the MS MARCO Passage Retrieval dataset [19], used for training and evaluation.
We evaluate the models trained on MS MARCO also on TREC Deep Learning Passage
Retrieval track 2019 and 2020 [40, 41]. The second dataset used for training and evaluation
is TripClick, a recently introduced health document retrieval dataset [20]. While the training
data of MS MARCO contains only approximately 1 relevance judgement per query, the
TripClick collection has the advantage of providing a much larger set of relevance information,
namely approximately 42, 9, and 3 data points per query in HEAD, TORSO, and TAIL sets,
respectively. As shown in the next section, this is particularly beneficial when optimizing over
a large ranking context in a list-wise manner.

Baselines. We choose several dense retrieval models as baselines, i. e. “base models” sub-
jected to CODER fine-tuning:

3When referring to the unit of retrieval we use the terms “passage” and “document” interchangeably.
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Parameter Value

Max. query length 32
Max. doc. length (MS MARCO) 256
Max. doc. length (TripClick) 512

Batch size 32
Optimizer RAdam
Adam epsilon 1.3e-7
Learning rate 1.73e-6
LR warmup steps 9000
Weight decay 9.5e-5
Dropout 0.1
Max. gradient clipping 1.0
dmodel 768

Table 2.1: Main configuration parameters of CODER (without transformation of document
representations).

1. RepBERT [4], a BERT-based model with a typical dual encoder architecture which under-
pins all state-of-the-art dense retrieval methods, trained using a triplet Max-Margin loss.

2. TAS-B [9], which, besides being a top-performing dense retrieval method on the MS
MARCO / TREC-DL 2019, 2020 datasets, it also represents methods that have been optimized
with respect to their training process (details in Section 2.2).

3. Finally, to explore the limits of CODER, we use it to fine-tune a trained CoCondenser
retriever [24], the state-of-the-art dense retrieval model that does not make use of query-
document term interactions, cross-encoder teacher models or additional pseudo-labeled data
samples, but instead relies on extensive corpus-specific, self-supervised pre-training using a
special architecture and contrastive loss component. It is a particularly challenging baseline
for our CODER framework, because it has been trained through (a) mining for hard negatives
using a trained version of the model itself, and (b) the Negative LoglLikelihood (InfoNCE)
loss, which is “nearly” list-wise (it differs from our KL-divergence loss only when there are
more than one positive candidates).

Configurations. For the CODER framework, we use the following notation: Mp —
CODER(Mp, M), where M, is the base model used to encode documents into document
embedding vectors (and initialize the query encoder weights), M is the first-stage retrieval
method used to procure the candidate (context) documents reranked during the CODER
training process, and M is the retrieval method used as a first stage when CODER is used
as a reranking method during inference; M vanishes in case CODER is used directly for
single-stage dense retrieval, and the notation CODER(Mp, M) is used instead. In addition
to TAS-B and RepBERT, we also experiment with BM25 (Anserini implementation [42]) as
M and Mg methods.
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Model MS MARCO dev TREC DL 2019 TREC DL 2020 Latency
MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 (ms/query)
BM25 [Anserini] 0.187 0.234 0.843/0.682 0.497/0.417 | 0.820/0.655 0.488/0.412 501
L2Re(ANCE) [5] 0.341 - - 0.675 - - 47
Co-BERT* [36] - - 0.958 0.700 0.839 0.699 > 1000
ColBERT*v1; v2 [3, 29] 0.360; 0.397 - - - - - 458
BM25 — ColBERT" [3] 0.349 - - - - - [BM25] + 61
RocketQAv1; v2 [10, 21] 0.370; 0.388 - - - - - -
CoCondenser [our evaluation] 0.381 0.446 0.971/0.879 0.715/0.656 | 0.937/0.833 0.680/0.618 ~ [RepBERT]
RepBERT (abbrev: RB) [our eval.] | 0.304 0.359 0.917/0.766 0.616/0.548 | 0.902/0.763 0.621/0.561 70
BM25 — RepBERT 0.317 0.373 0.969/0.795 0.674/0.593 | 0.893/0.781 0.640/0.579 [BM25]+5.8
BM25 — CODER(RB, BM25) 0.326 0.384 0.953/0.798 0.675/0.600 | 0.914/0.816 0.654/0.593 [BM25]+5.8
BM25 — CODER(RB, RB) 0.327 0.385% 0.953/0.806 0.677/0.603% | 0.898/0.787 0.672/0.611%° [BM25]+5.8
RB — CODER(RB, RB) 0.324 0.383 0.905/0.785 0.650/0.593 | 0.918/0.785 0.660/0.598 [RepBERT] + 5.8
CODER(RB, BM25) 0.311 0.368 0.855/0.750 0.606/0.552 | 0.906/0.790 0.603/0.550 [RepBERT]
CODER(RB, RB) 0.325 0.384 0.905/0.785 0.652/0.593 | 0.918/0.785 0.660/0.598 [RepBERT]
TAS-B [9] 0.340 0.402 0.892 0.712 0.843 0.693 64
TAS-B [our evaluation] 0.344 0.408 0.951/0.875 0.721/0.659 | 0.921/0.832 0.685/0.620 <50
BM25 — TAS-B 0.343 0.404 0.971/0.857 0.723/0.648 | 0.918/0.838 0.696/0.633 [BM25]+5.5
BM25 — CODER(TAS-B, BM25) | 0.349 0.409 0.983/0.872 0.727/0.654 | 0.935/0.846 0.690/0.629 [BM25]+5.5
BM25 — CODER(TAS-B, TAS-B) | 0.350 0411 0.971/0.828 0.728/0.654 | 0.926/0.846 0.693/0.630 [BM25]+5.5
TAS-B — CODER(TAS-B, TAS-B) | 0.355% 0.419% 0.966/0.857 0.728/0.668 | 0.923/0.844 0.686/0.623 [TAS-B] +5.5
CODER(TAS-B, BM25) 0.347 0.409 0.965/0.890 0.723/0.665 | 0.934/0.835 0.678/0.612 [TAS-B]
CODER(TAS-B, TAS-B) 0.3557 0.419% 0.966/0.857 0.728/0.668 | 0.923/0.844 0.686/0.623 [TAS-B]

Table 2.2: Performance for passage ranking when applying CODER

(middle section) and TAS-B (bottom section) base methods.
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to the RepBERT
notation Mpr —
METHOD(Mp, M¢): Mp is the method used for first stage retrieval when using METHOD
for reranking, Mp is the base method and M is the retrieval method which provides the
context (candidate) passages during training. Bold font denotes best results within the
same section (separated by continuous rules). Results of the statistical significance tests
(paired t-test) are reported only for the best performing models, where the symbols ¢ and °
denote a significant improvement (p < 0.05) with respect to the base Mp and BM25— Mp,
respectively. For TREC DL, two values are given for each metric separated by a slash, corre-
sponding to the lenient / strict (official) interpretation of relevance labels. Models with * use
cross-encoder term interactions.
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Figure 2.3: Histogram of ranks of ground-truth relevant documents across the MS MARCO
validation set. Blue bars: CODER(TAS-B), Red bars: TAS-B. Training through CODER
results in the relevant document more frequently ranking at the very top ranking positions.

2.5 Results and discussion

2.5.1 Results on MS MARCO and TREC DL

After only a fast and efficient fine-tuning (3.5 hours for TAS-B, 4.5 hours for RepBERT on
a single NVIDIA TITAN RTX GPU), we observe a substantial performance benefit when
applying our CODER framework to TAS-B and RepBERT, as seen in Table 2.2.

CODER improves retrieval performance remarkably compared to both the original (single-
stage) RepBERT, as well as two-stage cascade BM25—RepBERT. CODER confers the
largest performance benefit on RepBERT when reranking BM25 candidates in a cascade.
The single-stage retriever fine-tuned through CODER is much improved compared to the
original RepBERT, and almost as effective as the cascade, without introducing any latency or
complexity.

Our framework also significantly improves the performance of the highly optimized
TAS-B method, which leverages hard negatives and dual knowledge distillation from two
powerful cross-encoder models, BERT-Reranker and ColBERT. To better understand where
the improvement of ranking metrics comes from, in Fig. 2.3 we plot a histogram of the ranking
assigned to the ground-truth relevant document across all predictions on the MS MARCO
validation set. We observe that compared to TAS-B (red bards), CODER training shifts the
rank of the relevant documents from near-top towards the very top ranking positions.

We furthermore observe that using the CODER-trained query encoder directly for single-
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Model MRR@10 nDCG@10

BM25! 0.276 0.224
Transformer-Kernel! 0.434 0.284
BERT-Dot (SciBERT)? 0.530 0.243
BERT-Cat (SciBERT; PMBERT)? 0.595; 0.582 0.294; 0.298
RepBERT (abbrev: RB) 0.526 0.255
BM25 — RepBERT 0.538 0.262

RB — CODER(RB, RB) 0.637* 0.318*
CODER(RB, RB) 0.634 0.316

Table 2.3: Performance when applying CODER to RepBERT on the TripClick HEAD dataset,
using multi-level (DCTR) relevance labels (metrics cut-off of 10). All CODER results are
statistically significant (paired ¢-test, p < 0.05) with respect to both the base and BM25—base
methods. The symbol * on best results denotes statistically significant improvement with
respect to all baselines. Results with ! are from Rekabsaz et al. [20], with ? from Hofstitter
et al. [28].

stage dense retrieval is exactly as effective as using CODER to rerank TAS-B candidates
in a cascade, on both MS MARCO and TREC DL tracks (Table 2.2). This result suggests
that under certain conditions, CODER can generalize its ranking function from the provided
training context (limited set of fixed hard negatives) to the entire dataset, even without the use
of dynamic negative mining, huge batch sizes or “denoising” as seen in previous work [10, 11].

Putting these results into context, we can see that simply by training through contextual
reranking, a dual encoder model such as TAS-B can improve to the point that its reranking
effectiveness is higher than a powerful model such as ColBERT, a term-interaction model
still fast enough to be practically considered for real-time reranking, but at a fraction of
the reranking latency cost (5.5 ms vs 61 ms, i.e., less than 1/10th). Its single-stage ranking
performance approaches the one by ColBERT, while being about 10x faster (about 50 ms vs.
458 ms), making it a top-performing method within its latency class.

Finally, to test the limits of CODER (see Section 2.4), we apply it to fine-tuning a trained
CoCondenser retriever, the SOTA dense retrieval model that does not rely on using a cross-
encoder in its pipeline. We observe a slight improvement of 0.002 MRR@10 and 0.004
Recall@10 (the latter statistically significant) on the MS MARCO validation set. This smaller
improvement on MS MARCO is expected, given that it is a dataset providing very few
relevance judgements per query and thus (a) poor context for training, and (b) an evaluation
setting that may be unsuitable to resolve differences in ranking effectiveness for a contextually-
trained model. For this reason, we additionally evaluate the models on TripClick.

2.5.2 Results on TripClick

Following Rekabsaz et al. [20], we report performance in terms of MRR@10, nDCG@10
and Recall@10; nDCG@10 is considered the most important metric, as multiple relevant
documents per query exist, and the DCTR relevance set additionally uses multiple levels of
relevance. The results are presented in Table 2.3: Using the same hyperparameters as in MS
MARCO, CODER fine-tuning tremendously improves the performance of RepBERT trained
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on TripClick, both in reranking as well as in single-stage dense retrieval. The improvement is
especially pronounced on the HEAD subset, where many relevance judgements per query are
available. CODER achieves the SOTA performance by a large margin, ahead of all published
results in the literature and on the TripClick leaderboard®, including ensembles of heavyweight
cross-encoder BERT Rerankers which were pre-trained on the domain-specific PubMedBERT
(medicine) and SciBERT (science) corpora [28]. CODER also significantly outperforms
the best existing dense retrieval method (BERT-Dot pre-trained on SciBERT [28]) on the
TORSO and TAIL subsets (see Table 2.4). However, presumably because these subsets consist
of rare queries with significantly fewer relevance judgements per query, it falls behind the
domain-pretrained cross-encoders.

Finally, we use TripClick’s validation and test sets purely for “zero-shot” evaluating the
RepBERT, CODER(RepBERT), CoCondenser and CODER(CoCondenser) models trained
exclusively on MS MARCO. We emphasize that, uniquely in this setting, these models have not
been trained or fine-tuned on TripClick; they are the same models described in Section 2.5.1,
now evaluated on a large dataset with severe distribution shift (biomedical domain). While zero-
shot evaluation is used increasingly often to demonstrate the effectiveness and generalizability
of large transformer models (e.g. [43, 44, 45]), here we use it as a means to bypass the
challenge of the expensive pre-training and fine-tuning of CoCondenser on TripClick. Results
are shown in Table 2.5: naturally, we observe that zero-shot performance in absolute terms
is low; however, CODER-trained models perform always better. Moreover, the performance
order CODER(CoCondenser) > CoCondenser > CODER(RepBERT) > RepBERT, consistent
with our observations for MS MARCO, holds also here in almost every comparison.

2.5.3 Efficiency

What is the additional cost of using CODER? Using a single NVIDIA TITAN RTX GPU (on
a node with Intel Xeon Gold 6142 CPU), it takes about 186 ms to rank 1000 candidates per
query in a batch of 32 queries (out of which less than 10ms refer to computing representations
and scores, with the rest taken up by batching and loading samples to the GPU), i.e., a latency
of 5.5-5.8 ms per query is introduced when using CODER as a second-stage reranker in a
cascade. Using CODER as a single-stage dense retriever only requires the same processing
time as the base method, e.g. RepBERT or TAS-B. Table 2.2 reports the latency reported in
[4], but this in practice will be determined by the time for loading the query sequence to the
GPU and encoding it (in our setup, approx. 5.4 ms per query, out of which approx. 0.3 ms is
the time to compute the representation), in addition to the time for finding the approximate
nearest neighbors using a library such as FAISS [46].

2.5.4 Analysis of key factors
Importance of context

In this section we wish to assess the intuitions that scoring a document within a context of
other documents related to the same query can be advantageous, and that a list-wise loss

“https://tripdatabase.github.io/tripclick/
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function like the one we present in Section 2.3.3 is better equipped to leverage this context
compared to a superposition of separate pair-wise loss components. We first study the impact
of varying the type and number of negative documents during training.

In Figure 2.4 we show how the performance of a model initialized from a trained RepBERT
base model evolves during fine-tuning through CODER, measured in MRR @ 10 on our MS
MARCO validation set when reranking 1000 candidates first retrieved for each query by
BM25. Different curves correspond to different training settings. The leftmost evaluation
point corresponds to the best model checkpoint achievable through standard triplet-based
training.

Composition of negatives: We observe that training with only randomly sampled negatives,
even in large numbers, leads to a deterioration of performance. We note that this is the case
because through CODER we are optimizing a baseline model which has already been trained
to peak performance through random negative documents. Using a small number of retrieved
candidates together with in-batch random negatives, as in current SOTA methods [5, 10],
again leads to deteriorating performance, even with many random negatives. Only by using
a large number of coherent, query-specific negative samples (i.e. retrieved by a retrieval
method) for the same query can CODER extract additional performance from the baseline.
Moreover, adding 1000 additional random documents per query (in-batch negatives) on top of
those does not yield any benefit, presumably because they are not adding any context (as they
are unrelated to the query and documents under assessment) and/or they are not sufficiently
challenging.

List-wise loss: When training with the most commonly used pair-wise loss (Multi-Label
Max Margin, purple dashed curve), even when using 1000 retrieved candidates as negatives
within exactly the same training setup, i.e. including the same positive and negative examples
for the same query in the same batch, we observe that performance only modestly improves
performance (+0.009 MRR @10). The improvement can be attributed to the fact that the model
now encounters a large number of coherent, query-specific documents for the same query
during a single step of training, which offers a more complete and accurate view of the loss
landscape and thus leads to a more accurate update of parameters. However, the ranking
context is exploited more effectively when using a list-wise KL-divergence loss (dark blue
curve), as CODER fine-tuning improves MRR @ 10 from 0.345 to 0.363 (+0.018).

Finally, we note that the training loss continuously decreased throughout training in all
settings mentioned above (see Figure B.2 in the Appendix), including in the ones where
performance on the validation set was deteriorating at the same time (Figure 2.4). This fact
suggests that deteriorating performance in those settings can be interpreted as overfitting,
when there is insufficient information/signal captured by the training objective in order to
learn to rank more effectively.

Number of context documents

We now investigate the importance of the quantity of negative documents per query during
training. In Figure 2.4, where the number of BM25-retrieved candidate negatives is adjusted,
we observe increasing performance per additional document until we reach a number in the
order of the dimensionality of the embedding space (here, 768 for BERT-base). Increasing
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DCTR Head RAW Head RAW Torso RAW Tail
MRR nDCG  MRR nDCG Recall | MRR nDCG Recall K MRR nDCG Recall

BM25! 0.276  0.224 | - 0.199 0.128 | - 0.206 0.262 | - 0.267  0.409
Transformer-Kernel! - 0.284 | - 0.284 0.167 | - 0.272  0.321 | - 0.295 0.459
BERT-Dot (SciBERT)? 0.530 0243 | - - - - -
BERT-Cat (SciBERT)? 0.595 0294 | - - - 0.459 0360 - 0.377 0408 -

Model

RepBERT (abbrev: RB) | 0.526  0.255 | 0.574 0.344 0.199 | 0.338 0.246 0309 | 0.254 0.268 0.404
BM25 — RepBERT 0.538 0.262 [0.592 0356 0.204 | 0359 0269 0340 |0.278 0.297 0.445
RB — CODER(RB, RB) | 0.637* 0.318* | 0.679* 0.421* 0.235* | 0433 0.308 0.355 | 0.296 0315 0.469
CODER(RB, RB) 0.634 0316 |0.674 0419 0.234 | 0433 0308 0355 | 0296 0315 0.468

Table 2.4: Performance when applying CODER to RepBERT on the TripClick dataset, using
multi-level (DCTR) and binary (RAW) relevance labels (cut-off of 10). The symbol * on best
results denotes statistically significant (paired ¢-test, p < 0.05) improvement with respect to
all baselines. Results with ' are from Rekabsaz et al. [20], with 2 from Hofstitter et al. [28].

Model [Zero-shot] DCTR Head RAW Head RAW Torso RAW Tail
ero-sho MRR nDCG ‘ MRR nDCG Recall ‘ MRR nDCG Recall ‘ MRR nDCG Recall
RepBERT 0233 0.107 | 0278 0.149 0.085 | 0205 0130 0.151 | 0.117 0.122  0.195
CODER(RepBERT) | 0.244 0.113 | 0.294 0.157 0.091 | 0211 0.139 0.166 |0.127 0.137 0.223
Cocondenser 0242 0.114 | 0293 0.156 0091 | 0217 0.144 0.178 | 0.153 0.162 0.254

CODER(Cocondenser) | 0.251 0.117 | 0.305 0.161 0.093 | 0.216 0.146 0.182 | 0.154 0.164 0.259

Table 2.5: Zero-shot results: all models are trained on MS MARCO but evaluated on
TripClick. For CODER, the parenthesis indicates which model was used to provide negatives
and as base for fine-tuning.

the number of negatives beyond this point yields diminishing returns, consistently with our
analysis in Section 2.1.3.

We note that these numbers of negative candidates (as opposed to random documents) per
query are much higher than the ones used in all contemporary work (max. 4 candidates have
been employed in Qu et al. [10] and 30 in Gao and Callan [24]); the reason that such a high
number is necessary in order to achieve a performance improvement is that we are fine-tuning
a model already trained to saturation. Only a large number of retrieved candidate negatives
provides enough training signal to overcome overfitting and improve performance. This is
evidenced by the fact that in the rest of the settings, training loss was decreasing at the same
time that performance on the validation was deteriorating (see Figure B.3 in the Appendix).

The above results suggest that most dense retrieval models would likely benefit from
training using a context, i.e., a large number of retrieved candidate documents per query,
combined with an appropriate list-wise loss.

2.5.5 How context can help even without parametric modeling of docu-
ment relationships

The improvement of our contextual reranking framework over standard triplet training can
be attributed to the fact that the model now encounters many more query-specific candidate
documents for the same query during a single step of training, which offers a more complete
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and precise view of the loss landscape and thus leads to a more accurate update of parameters
in the same step (also see discussion in Sec. 2.1.3). However, this alone constitutes a “weak”
exploitation of ranking context offered by CODER.

The ranking context is exploited more effectively when using a list-wise KL divergence
loss. We hypothesize that one reason is that often, among the retrieved candidates, some
documents which have not been labeled as positive, are in fact relevant (i.e. false/mislabeled
negatives) [10]. The KL-divergence function is well-positioned to deal with this case, com-
pared to a pair-wise loss (e.g. Max-margin loss) and the Negative Loglikelihood Loss (NLL,
a.k.a. InfoNCE) as used e.g. in Karpukhin et al. [7] and Qu et al. [10]. The KL-divergence loss,
which compares the distribution of predicted scores against the annotated relevance scores,
does not directly penalize assigning a high score to a document annotated as non-relevant;
instead, it severely penalizes assigning a low score to a ground-truth relevant document.
Therefore, as long as the ground-truth positive document p receives a not-too-low normalized
relevance score §, = softmax(¢(X)),, e.g. 5, > 0.2, which allows it to escape the very steep
part of the loss curve L(5,) = —log($,) close to 5, = 0, the loss will still be small. Thus, it
will not severely affect the model’s parameters to erroneously force ranking p higher than the
false negatives.

Of course, the more such false negative documents exist, receiving non-zero weight in the
predicted score distribution, the more difficult it becomes for 5, to be high, which leads to
a higher loss. However, the existence of more than one labeled positives (k > 1) per query
alleviates this problem: the individual normalized scores of the £ positives will be affected less
by the existence of false negatives, and because of the form of L(z) = — log(z), the overall
loss will be smaller than in the case of £ = 1. This is an additional benefit the KL-divergence
loss has over NLL, as the NLL only takes into account a single positive document at a time.

2.6 Conclusion

In this chapter, we have examined the importance of ranking context and the effect of its
constituent parts, i.e., a fully list-wise loss, a large number of negatives, and retrieved (query-
specific) instead of random negatives, and showed that they are all important ingredients for
improving performance. We demonstrated that a lightweight reranking framework designed
to leverage context is sufficient to significantly enhance the effectiveness of a wide range
of dense retrieval models, without expensive cross-encoder distillation, pseudo-labeling or
“denoising” negatives. The only computational overhead is a fast, resource-light fine-tuning
process, with little (when the model is used as a reranker) to no (when used as a single-stage
retriever) extra computational cost during inference.

We have thus presented a practical method to leverage the benefits of contextual similarity
learning, previously utilized only in Learning-to-Rank approaches, in the training of state-of-
the-art dense retrieval models based on pre-trained transformer language models.
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Figure 2.4: Performance of BM25—CODER(RepBERT) on MS MARCO validation set over
training steps. The left-most point corresponds to reranking BM25 candidates using the fully
trained RepBERT. Top: Effect of type and number of documents used as negatives. The purple
dashed curve corresponds to training with a pair-wise (Max Margin) loss. Bottom: Effect of
number of BM25 candidates used as negatives during training.
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Chapter 3

Mitigating bias in search results through
contextual document reranking and
neutrality regularization

3.1 Introduction

Information Retrieval (IR) systems reflect and may even exaggerate societal biases and
stereotypes in their results [1, 2, 3, 4, 5]. If optimization of the underlying IR models is left to
exclusively utility-oriented objectives, search engines, through the continual feedback loop of
user interactions, can reinforce these biases in society (and hence back in IR systems) [6, 7, 8,
9, 10]. This accentuates the need for bias-aware IR models, in which fairness constraints are
imposed with an adjustable degree of effect to control the fairness-utility trade-off in retrieval
results [11, 12, 13, 14, 15, 16, 17].

To this end, Rekabsaz et al. [12] recently introduced MSMARCOg,x, a reproducible
evaluation framework to measure gender bias in the text contents of search results, particularly
suited to assessing the interplay of bias mitigation and utility in deep IR models. The
framework identifies a set of bias-sensitive queries, singled out from the queries of the
MS MARCO dataset [18]. Given such a query, an effective and bias-aware IR model should
highly rank relevant documents with a balanced or neutral representation of genders in their
text contents.

Beyond the notion of bias with respect to so-called protected attributes such as gender
or ethnicity, we note that neutrality of documents can also refer to opinion or political
biases: if a query can be answered by a relevant document with purely factual or unbiased
content, this document is preferable to a similarly relevant but overtly biased document, which,
notwithstanding reliability, may contribute to polarization.

As an example, a query such as “what is the role of a governor?” can and should be
answered in a gender-neutral way. A document reading “The governor is the chief executive
of the state. His duties include ... / he is responsible for ...” contains words charged/biased
with respect to gender and induces an unnecessarily gender-biased exposition. Thus, it would
be desirable to rank higher a document offering equally relevant information but using either
gender-neutral words or gender-representative words in a balanced way (e.g. “he or she”).
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Figure 3.1: Schematic diagram of the contextual document embedding reranking (CODER)
framework.

In this example, gender-representative words are pronouns, but additional instances include
“man”/“woman”, “father”/“mother”, “actor”/“actress”, male/female names, etc. Similarly, a
document answering a purely factual query about the current state of the economy (e.g. “is
inflation now higher than in 70’s”’) could be penalized if it contained words indicating political
bias, such as “trumpism”, “wokeness”, “MAGA”, “neoliberal”, “leftist”, etc.

We note that this notion of fairness through neutrality is not applicable to all queries;
rather, we measure it on a set of expert-curated queries for which bias is considered “socially
problematic” [19, 20]. Furthermore, it is not applicable to all retrieval use cases; for example,
when ranking job applicants, who are inevitably gendered, a more suitable framework would
optimize for fairness of exposure [17] (e.g. making sure that, given the same level of fitness,
female applicants are ranked higher than male applicants as often as male applicants are ranked
higher than female applicants).

A variety of past works have proposed effective methods to address bias mitigation, often
using some sort of list-wise optimization such as Gumbel-Softmax, stochastic optimization, or
reinforcement learning [11, 17, 21, 22, 23]. However, to the best of our knowledge, almost
all prior works operate solely on extremely shallow ranking models. As Cohen [24] shows,
naively applying shallow methods to deep transformer based architectures often presents
significant challenges. Given the scope of this contribution, we therefore consider the relevant
work of Rekabsaz et al. [12], where the authors propose integrating adversarial training in
deep ranking models in order to improve bias mitigation. Their adversarial method aims
to remove gender-related information from the model’s internal embeddings, making the
predictions (potentially) agnostic to the explicit/implicit presence of gender concepts in a
given query-document pair.

The inherent point-wise nature of this adversarial method fits well to the current dominat-
ing paradigm of point-/pair-wise optimization [25, 26, 27, 28], embraced mainly due to the
practical and conceptual complexities of training deep IR models [24]. Despite the benefits of
this approach in mitigating gender bias, previous work [12, 29, 30, 31] and our own experi-
ments show that adversarial training can be highly unstable, with unabated fluctuations over
fairness and utility metrics. This issue significantly impedes identifying a model checkpoint
that reliably yields generalizable performance and operates within a desired range in the
fairness-utility trade-off — a necessary aspect for the wide adoption of bias-aware IR models in
practice.
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We approach this topic by proposing a novel list-wise bias mitigation method that leverages
CODER, the retrieval framework we introduced in Chapter 1, which enables set-based training
of any pretrained dual-encoder deep IR model. The latter is a class of models that represents
the state of the art in dense retrieval (e.g. [32, 33, 34]). The guiding principle of bias mitigation
is that neutral/unbiased documents should be ranked higher than biased documents of the same
or similar relevance. To this end, we extend CODER with a novel list-wise regularization term
defined to support neutral documents in final relevance predictions.

We apply our bias-aware optimization method using CODER with TAS-B [32] as the
base transformer encoder model. We compare our method with adversarial training for
bias mitigation of TAS-B and a cross-encoder (query-document term interaction) BERT
Reranker [35], the current SOTA for bias mitigation proposed by Rekabsaz et al. [12]. Ranking
results as well as training dynamics are evaluated in terms of utility (MRR, and Recall) and
neutrality/fairness (NFaiRR) metrics on the MSMARCOg,; collection. Our results show that
besides achieving state-of-the-art performance in terms of fairness for the same utility, our
set-based neutrality regularization method, in contrast to adversarial alternatives, provides a
stable optimization of the network in a short training time, and allows predictably adjusting
the intensity of the trade-off between fairness and utility, in a far wider range.

Our contribution thus represents a significant step towards advancing bias mitigation in
search, from a theoretical discussion point or a largely experimental research topic, to a
practical approach that can be readily integrated in state-of-the-art retrieval systems deployed
in industry.

3.2 Method

Our approach optimizes the parameters of a retrieval model such that it assigns scores to
documents in proportion to their relevance to a query, while at the same time directly imposing
a neutrality constraint on the top-ranked documents. To achieve this, we need a training setup
where a large number of documents is simultaneously scored for the same query, and therefore
the standard training setup using (query, positive document, negative document) triplets is
unsuitable. Making use of in-batch documents (e.g., [33, 36, 37]) can indeed provide a large
number of random documents as negatives; however, random negatives are only very rarely
related to the query or each other, and have been convincingly shown to be less effective than
retrieved negatives [33, 38, 39, 40]. Importantly, we wish to impose neutrality on the top-
ranked documents retrieved by a system, whereas randomly sampled documents are extremely
unlikely to end up in high-ranking positions and are thus poor targets for regularization. For
these reasons, we instead utilize CODER, the contextual document embedding reranking
framework we introduced in Chapter 1, which, given a query, jointly scores a large set of
candidate documents that together constitute a ranking context.

Here, for quick reference, we provide a brief description of the framework, with more
details and a schematic diagram (Figure 3.1) given in Chapter 1. A pre-trained transformer
encoder ( first transforms a tokenized query ¢ of length w into a sequence of d-dimensional
embedding vectors: Z = [z;...;2z,] = ((q;00) € RY*? out of which an aggregator
function g(Z) extracts a single vector. In this work, as ¢ we choose the query encoder from
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TAS-B [32], which is based on DistilBERT [41] and was the most effective base model
evaluated by Zerveas et al. [40]. The aggregation function here simply selects the output
embedding corresponding to the first query token, i.e., [CLS]: g(Z) = z; € R%.

A scoring function ¢ computes a scalar relevance score s; for each document embedding
x; € R% i = 1,..., N, based on their similarity to the query embedding g(Z). The set
of N documents consists of the ground-truth relevant document(s) and the top candidates
retrieved for the same query by an arbitrary retrieval method (here, BM25 [42] by Anserini
[43]) in advance. Their embeddings have been precomputed by the document encoder of a
dual-encoder model (here TAS-B). As we have seen in the previous chapter (and also observed
in other work, e.g. [33]) a large number of negative documents is essential for providing
adequate signal to effectively capture relevance, and as before, we use N = 1000. Although
the scoring function can in general be parametric, here again we simply use the dot-product,
which is commonly used for evaluating similarity and was shown in the previous chapter to be
effective:

§=¢(9(2),X)=X-g(Z) e RY 3.1)

Throughout training, the parameters of the query encoder are fine-tuned through the ListNet
loss [44], which for a given query is equivalent to the KL-divergence between a distribution
over the target (ground-truth) relevance labels y € R”, defined for the set of IV candidate
documents (where the relevance of all documents not explicitly defined is assumed to be 0),
and a distribution over the corresponding predicted scores §:

o(8);
o(y),

N
L, (y,8) =Dxw (a(y) || 0(8) = = Y o(y), log (3.2)
i=1
where o denotes the softmax function.
The loss function above guides parameter optimization towards maximizing the relevance
of top-ranked documents, i.e., the utility for the user. To impose neutrality on the top-ranked
documents, we add the following neutrality loss term to obtain the total loss:

Lo (y0.8) = Dict, (0(8) || o(yn)) = Zo— Jlog )> (3.3)

Etot - Eu + )\rﬁn (34)

where )\, is the regularization coefficient, C' is the cut-off rank for considering neutrality
(we use C' = 10), and y,, are the neutrality scores for each document. These are computed
following Rekabsaz et al. [12], and are based on the frequency of occurrence of terms indicative
of bias with respect to the protected attribute.

We note that the order of distributions in the asymmetric KL-divergence is reversed in the
two loss terms: in the utility loss, we primarily penalize assigning a low score to ground-truth
relevant documents (rather than the case of assigning a high score to documents which have
not been annotated as relevant). This is desirable, among other reasons, because relevance
annotations are sparse and many candidate documents can be relevant without having been
marked as such [33]. By contrast, the neutrality loss primarily penalizes assigning high scores
to documents with low neutrality scores, rather than the case of assigning a low score to neutral
documents (since neutrality alone is not indicative of relevance).
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Figure 3.2: Utility (MRR @ 10) versus fairness (NFaiRR @ 10). The intensity of color corre-
sponds to an increasing adversarial or regularization factor. Compared to adversarial baselines,
regularization with CODER allows modulating fairness to much higher values, while for the
same values of fairness, utility is higher.

3.3 [Experiments

3.3.1 Resources

Our experimental setting closely follows Rekabsaz et al. [12]. Fairness and utility of the
models are evaluated on 215 curated bias-sensitive queries, i. €. “gender-neutral queries for
which biases in their retrieval results are considered as socially problematic” [19, 20], provided
by MSMARCOg,x. The models are trained on the data provided by the MS MARCO Passage
Retrieval collection [18], and retrieval is conducted on the collection’s passages. The protected
attribute is gender, defined in binary fashion using the gender-representative words (158 words
for each gender) provided in previous work [12, 45]. These words are used to calculate the
neutrality score for each document with the term occurrence threshold set to 1 (c. f. Rekabsaz
etal. [12]).

3.3.2 Retrieval Models

All models are trained and evaluated by reranking candidates first retrieved by BM25 [42].
CODER(TAS-B) is our proposed bias mitigation approach explained in Section 3.2. We
select TAS-B [32] as a base transformer encoder for CODER, due to its superior retrieval
performance in reranking and dense retrieval scenarios. AAvBERT is the model introduced
by Rekabsaz et al. [12] which applies adversarial training to a BERT Reranker [35]. The
adversarial network in AdvBERT is defined on the output vector of the [CLS] token when
both query and documents are passed to the BERT model. Following Rekabsaz et al. [12],
the prediction label of the adversarial network is defined as a binary variable, which is set
to 1 (gendered) if either the given query or document are not fully gender neutral texts, and
0 otherwise. AdvBERT approaches removing gender-related information in models using a
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gradient reversal mechanism [46]. The gradient of the loss corresponding to the adversarial
“gender detector” is scaled by the adversarial factor \,, which allows tuning the intensity
of bias mitigation. AdvBERT is the best performing model reported in Rekabsaz et al. [12],
achieved by fine-tuning the BERT-Mini [47] model. AdvTAS-B applies a similar adversarial
training procedure as AdvBERT to the TAS-B model, providing an adversarial baseline
directly comparable with CODER(TAS-B). Because AdvBERT is a cross-encoder model,
while TAS-B is a dual encoder, in AdvTAS-B the adversarial network is defined over the
concatenation of the query and document embeddings (the [CLS] output of the corresponding
encoder), and training aims to remove gender-related information in both query and document
encoders.

3.3.3 Evaluation of Bias Mitigation and Utility

The fairness of the ranking models is evaluated in terms of the Normalized Fairness of Retrieval
Results (NFaiRR) metric [12]. The NFaiRR metric measures to what extent the contents of
the retrieved documents show a balanced representation of a protected attribute (gender in our
experiments). This is done by first calculating FaiRR scores as the sum over the neutrality
scores of the top retrieved documents, weighted by their ranking positions. The NFaiRR
metric provides comparable results across queries by normalizing the per-query FaiRR scores
over the ideal FaiRR inferred from a background set of documents (e.g. the top documents
retrieved by a baseline BM25 model [12]). We calculate the NFaiRR metric with a cutoff at
10 for each bias-sensitive query, and report the average results over queries. The utility of
the models is evaluated with common metrics for MS MARCO (which defines relevance in a
binary fashion and is a sparsely annotated collection, most often with a single relevant passage
per query), namely mean reciprocal rank (MRR) and Recall, both at cutoff 10.

3.3.4 Training, Model Selection and Hyperparameters

When tuning the intensity of bias mitigation, we need to train a model for each value of
the regularization coefficient or adversarial factor. Which time-dependent model instance
(checkpoint) should we choose as “best”, in order to evaluate the method’s performance?
Since there is a trade-off between utility and fairness, we follow the principled approach
proposed by Rekabsaz et al. [12]: we max-min normalize MRR and NFaiRR to a range
between 0 and 1, and choose the instance where their harmonic mean (F1 score) is maximum
over the entire training session. In the case of adversarial methods, because validation
performance fluctuates persistently during training, it is not clear when to stop training. By
contrast, CODER shows a smooth convergence behavior (see Fig.3.4) and in practice would
benefit from stopping criteria based on the relative improvement of metrics. However, to avoid
giving this advantage to CODER, while still reflecting practical concerns for model training
and selection, we fix the maximum training time of all models to a value that we estimated to
be sufficient for each model to achieve its “best” performance (as defined above), after running
a few tentative training sessions. Consequently, regardless of the regularization/adversarial
factor, this value was set to 10 hours for CODER, 12 hours for AdvTAS-B, and 8 days for
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Figure 3.3: Modulation of utility and fairness by controlling the regularization factor (CODER)
or the factor of adversarial gradient (AdvBERT, AdvTAS-B). Regularization with CODER
allows to select the utility vs. fairness trade-off in a finely controllable and predictable manner.

AdvBERT!.

We nevertheless note that, unlike in the case of the adversarial models, in the case of
CODER the “best” performance was most often reported at or close to the very end of training,
which indicates that its maximum performance is likely underestimated and that it would
benefit from a training time dependent on the regularization coefficient.

To train CODER, we use the same hyperparameters as in Chapter 1, but increase batch
size from 32 to 64 to accelerate convergence.

3.4 Results

Figure 3.2 depicts how retrieval performance changes in terms of utility and fairness/neutrality
(measured as described in Section 3.3 in terms of MRR @ 10 and NFaiRR @ 10 respectively)
as we progressively increase the intensity of bias mitigation (shown by the intensity of
marker color), starting from 0. Compared to the adversarial baselines, it is evident that
regularization with CODER allows modulating fairness to much higher values. Importantly,
our method yields an approximately linear trade-off between utility and fairness and allows
finely controlling it through the regularization coefficient \,. This is more directly shown in
Figure 3.3. By contrast, in the case of adversarial training, although fairness can be increased
to some extent, the dependence of utility and fairness on the adv. gradient factor )\, is
complicated and unpredictable. It is thus difficult to select a desired point in the trade-off, and
the corresponding evaluations appear as a disorderly point cloud on Figure 3.2.
Furthermore, for the same values of fairness, Figure 3.2 shows that CODER can achieve

substantially higher utility (evaluation points lie higher and to the right of all baseline points).

Given that AdvBERT is the hitherto state-of-the-art method for this task and dataset, our
neutrality regularization method based on CODER therefore achieves the new state-of-the-art
performance.

! AdvBERT requires a much longer time because it is a model based on much slower self-attention over the
concatenated query and document, and because it is fine-tuned from the standard BERT-Mini, as opposed to
TAS-B, an encoder already pretrained for retrieval on MS MARCO.
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F1 NFaiRR@10 MRR@10 Recall@10

CODER(TAS-B) 0.356 0.915 0.222 0.429
Mean  AdvTAS-B 0.351 0911 0.217 0.381
AdvBERT 0.318 0.919 0.193 0.402
CODER(TAS-B) 0.358 0.914 0.223 0.428
Median AdvTAS-B 0.346 0911 0.214 0.386
AdvBERT 0.316 0.920 0.191 0.401
CODER(TAS-B) 0.379 0.927 0.240 0.450
Max AdvTAS-B 0.348 0.915 0.231 0.394
AdvBERT 0.331 0.926 0.202 0.435

Table 3.1: Comparison of ranking performance based on top 4 F1 scores within the NFaiRR
range [0.9 - 0.93].

In the limited range of NFAIRR@10 € [0.90, 0.93] we find the top 4 points in terms of F1
scores (harmonic mean between MRR @ 10 and NFaiRR @ 10) for each method and display
statistics of performance metrics in Table 3.1. NFaiRR itself is provided only as a reference
in this table, since it acts as the control parameter and the range is merely chosen to have
overlapping values.

Besides unpredictability with respect to the bias mitigation control factor, the performance
of models undergoing adversarial training fluctuates haphazardly during training and it is thus
very difficult to know whether the model has reached peak performance in order to stop training.
In practice, one resorts to using a fixed training time. By contrast, in Figure 3.4 we observe that
regularization with CODER shows smooth convergence patterns and allows setting a stopping
criterion based on monitoring performance, which in turn allows an adaptable training time
for each regularization coefficient and can yield better performance (although for the sake of
comparison we didn’t use this technique in this work).

Finally, we note that Rekabsaz et al. [12] also introduced TRECDLga g, a subset of the
TREC Deep Learning Track 2019 queries, but discovered that this set is not very challenging,
and all methods they examined performed well. Indeed, we find that CODER(TAS-B) with
A, = 1 can attain an MRR @10 score of 1.0 at a NFaiRR@ 10 score of 0.967, and when
boosting NFaiRR@10 to 0.985 with A\, = 8 MRR@10 only drops to 0.944, which is a
stronger performance than all reported methods in Rekabsaz et al. [12].

3.5 Conclusion

In this chapter, we have introduced a novel method for reducing bias in search results, which is
based on directly imposing a neutrality regularization loss to the documents most highly scored
for relevance. To achieve this, we leveraged a contextual document embedding reranking
framework, which, for the same query, jointly scores a large set of retrieved candidate
documents that together constitute a retrieval context. We demonstrated that our method
can lead to much stronger bias mitigation/fairness compared to the existing alternatives for
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Figure 3.4: Utility (left) and fairness (right) on MSMARCO dev during training, for a particular
regularization or adversarial factor, chosen such that the models perform comparably. Training
times are significantly shorter for CODER and thus the horizontal axis is normalized in the
same range.

deep neural retrieval architectures, which are based on adversarial training. At the same time,
it achieves the state-of-the-art performance with respect to utility (relevance) for the same
amount of bias mitigation. Finally, our method allows for a more finely controllable and
predictable intensity of bias mitigation, which is of paramount importance with respect to
widespread adoption.
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Chapter 4

Enhancing the ranking context of dense

retrieval through Reciprocal Nearest
Neighbors

4.1 Introduction

4.1.1 Addressing the problem of sparse annotation

The training of state-of-the-art ad-hoc text retrieval models [1, 2, 3, 4, 5, 6, 7, 8], which are
based on pre-trained transformer Language Models, relies on large-scale datasets that are
sparsely annotated, typically comprising only a small number of relevance judgements for
each query.! These labels are usually derived from submitting the strongest pseudo-relevance
signals in user click logs to human judges for verification. Despite potential future endeavors
to extend annotation, this sparsity and the resulting issue of false negatives [10, 11] —1i.e., only
a minuscule fraction of all documents pertinent to a query are ever seen by users or judges and
identified as relevant — will inevitably persist. To eliminate the sparsity, it would be necessary
to acquire either human judgements, or perhaps expensive evaluations by Large Language
Models, to verify the relevance of the entire document collection (typically tens of millions
of documents) with respect to every query in the dataset, leading to an intractable Cartesian
product. Consequently, it is crucial to explore optimizing the utilization of existing information,
and extract richer structural relationships between documents and queries, without additional
annotations.

To this end, in the present work we follow a two-pronged approach: first, we employ
the concept of reciprocal nearest neighbors (rNN) to improve the estimation of semantic
similarity between embeddings of queries and documents. Two documents ¢; and c; are
said to be k-reciprocal nearest neighbors if c¢; is within the k-nearest neighbors of ¢;, and
at the same time ¢; is within the k-nearest neighbors of ¢;. Second, we attempt to enhance
the query-specific ranking context used to train dense retrievers, going beyond the notion of
using mined candidates merely as negatives for contrastive learning. Specifically, we use the

'E.g., on average 1.06 documents per query in MS MARCO [9].
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similarity of ground-truth documents to candidates in the same ranking context as the query as
evidence to guide the model’s predicted relevance probability distribution over candidates.

.\%F//

Figure 4.1: Query (yellow star), positive (red cross) and negative (full blue circles) document
embedding vectors in a shared 2D representation space. Based on top-4 Nearest Neighbors, the
positive would be ranked lower than the 3 nearest neighbors of the query. When using top-4
Reciprocal Nearest Neighbors, its ranking is improved, because of its reciprocal relationship
to the query, which one of 3 nearest neighbors of the query lacks. Adding an extra negative to
the context (circle #1) does not affect this ranking, but the second extra negative (#2) disrupts
the reciprocal relationship, becoming the 4th nearest neighbor of the positive.

4.1.2 Limitations of contemporary dense retrieval

Dense retrieval, the state-of-the-art approach for single-stage ad-hoc retrieval, is premised
on modeling relevance between a query and a document as the geometric proximity (e.g.,
dot-product or cosine similarity) between their respective embeddings in the common repre-
sentation vector space. Top retrieval results are therefore the documents whose embeddings
are the nearest neighbors of the query embedding. However, this modeling assumption may
be sub-optimal: previous work in the field of image re-identification has shown that, while
geometric similarity can easily differentiate between candidate embeddings in near proximity
from a query embedding, the differences between relevance scores of candidate embeddings
become vanishingly small as distance from the query increases [12]. It was found that the
degree of overlap between sets of reciprocal nearest neighbors can be used to compute an
improved measure of similarity between query and candidate embeddings [13].

Moreover, geometric similarity is used in mining “hard” negatives, which have been
consistently found to improve performance compared to random in-batch negatives [3, 10,
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14, 15]. Hard negatives are typically the top-ranked candidates retrieved by a dense retriever
(nearest neighbors to a query embedding) that are not explicitly annotated as relevant in the
dataset.

On the one hand, the effectiveness of mined negatives is limited by how effectively this
dense retriever can already embed queries and relevant documents in close proximity within the
shared representation space, although the periodical or dynamic retrieval of negatives during
training can partially alleviate this problem [3, 14]. On the other hand, when the retriever used
to mine hard negatives indeed succeeds in retrieving candidates that are semantically relevant
to the query, these are often not marked as positives due to the sparsity of annotation and are
thus spuriously used as negatives for contrastive learning (false negatives)?, confounding the
training signal [10, 11].

4.1.3 The contribution of this work

In this work we investigate to what degree these issues can be mitigated through the use
of reciprocal nearest neighbors, essentially extracting additional relationship information
between queries and documents beyond flat geometric distances, such as the local degree
of node connectivity. Furthermore, unlike all existing dense retrieval methods, instead of
using candidates exclusively as negatives, we propose using their estimated similarity to the
ground-truth document(s) as evidence for label smoothing; we thus redistribute probability
weight in the target score distribution from the ground truth to a larger number of likely false
negatives.

Finally, our work places a strong emphasis on computational efficiency: label smoothing
can be performed entirely offline on CPUs and can be trivially parallelized, while no latency is
introduced during training and our models can be trained (e.g., on MS MARCO) within hours,
using a single GPU with a batch size of 32. Reranking based on reciprocal nearest neighbors,
when used, introduces a few milliseconds latency per query on a CPU.

By contrast, the current state-of-the-art dense retrieval methods (e.g. [4, 10]) depend on
the existence of better performing, but computationally demanding re-ranking models such
as cross-encoders, which are typically run offline on several GPUs with huge batch sizes
and are used either for pseudo-labeling additional training data, for discarding negatives
which are likely unlabeled positives (i.e., false negatives), or directly for distillation through a
teacher-student training scheme. However, besides the very high computational cost of such
pipelines, the existence of a model that is more powerful than the retrieval model we wish to
train is a very restrictive constraint, and cannot be taken for granted in many practical settings.

Synopsis of contributions:

* We propose evidence-based label smoothing, a novel method which mitigates the
problem of false negatives by leveraging the similarity of candidate documents within
the ranking context of a query to the annotated ground truth in order to compute soft
relevance labels. Different from existing methods like teacher-student distillation or

2Qu et al. [10] estimate that about 70% of the top 5 candidates retrieved by a top-performing dense retrieval
model that are not labeled as positive are actually relevant.
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pseudo-labeling, our approach does not rely on the existence of more powerful retrieval
methods.

* We explore the applicability of the concept of reciprocal nearest neighbors in improving
the similarity metric between query and document embeddings in the novel setting
of ad-hoc text retrieval. Its applicability is far from guaranteed, because this setting
substantially differs from the previously proposed setting for image re-identification,
beyond a simple change of input modality: queries and documents are entities with
very distinct characteristics from one another, differing in length, style, vocabulary, and
intent. Essentially, we wish to model relevance and not the invariance of the same entity
under different photographic conditions.

* Through extensive experiments on two different large-scale ad-hoc retrieval datasets,
we demonstrate that the concept of reciprocal nearest neighbors can indeed enhance the
ranking context in a computationally efficient way, both when reranking candidates at
inference time, as well as when applied for evidence-based label smoothing intended
for training.

* We find that besides degrading training, false negatives also pose challenges for eval-
uation, affecting performance bench-marking. Specifically, We find that in sparsely
annotated datasets like MS MARCO, validation loss may be a better predictor of model
generalization than IR metrics such as MRR, and that evaluation on datasets with higher
annotation depth (such as TREC DL), as well as zero-shot evaluation, can better reflect
the ranking effectiveness of models.

4.2 Related work

Our proposed label smoothing, which encourages the model to assign higher relevance scores
to documents intimately related to the ground truth, conceptually finds support in prior work
that proposed local relevance score regularization [16], adjusting retrieval scores to respect
local inter-document consistency. Despite the entirely different methodology, both methods
are premised on the intuition that documents lying closely together in the representation vector
space should have similar scores; this in turn is related to the cluster hypothesis, which states
that closely related documents (and thus proximal in terms of vector representations) tend to
be relevant to the same request [17].

In Chapter 2 we argued that jointly scoring a large number of candidate documents
(positives and negatives) closely related to the same query within a list-wise loss constitutes
a query-specific ranking context that benefits the assessment of relevance of each individual
candidate document with respect to the query. We thus extended well-established insights
and empirical findings from Learning-to-Rank literature [18, 19, 20] to the realm of dense
retrieval through transformer-based Language Models. While in-depth annotation of candidate
documents (i.e., hundreds of relevance judgements per query) explicitly provides a rich
context for each query in Learning-to-Rank datasets [21, 22, 23], such information is not
available in the sparsely annotated, large-scale datasets used to train dense retrieval models.
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The relationship exploited thus far to “build a context” (practically, this means mining hard
negatives), is simply that of geometric proximity between the embeddings of a query and
candidate documents.

Addressing the problem of sparse annotation, several works have utilized the relevance
estimates from supervised (e.g. 4, 10, 24) or unsupervised (e.g. lexical: 25, 26) retrieval
methods or other dataset-specific heuristics (e.g. bibliography citations: 27) to derive soft
labels for documents used to train a model, e.g., in a teacher-student distillation scheme. In
this work, we instead shift the perspective from assigning labels based on similarity with
respect to the query, to similarity with respect to the ground-truth document(s), but within a
query-specific ranking context. We furthermore leverage the concept of reciprocal nearest
neighbors, introduced as a reranking method for image re-identification [12, 13], to improve
the similarity estimate.

False negatives have been identified as a significant challenge by prior work, which has
employed powerful but computationally expensive cross-encoders [1] to discard documents
that receive a high similarity score to the query and are thus likely relevant from the pool
of hard negatives [4, 10]. However, discarding top-ranking hard negatives also discards
potentially useful information for training.

Recently, Zhou et al. [11] tackled the problem of false negatives through selective sampling
of negatives around the rank of the ground-truth document, avoiding candidates that are ranked
either much higher than the ground truth (probable false negatives) or much lower (too easy
negatives). This approach differs from ours in the perspective of similarity (query-centric vs
ground-truth-centric), and in the fact that information is again discarded from the context, as
only a small number of negatives is sampled around the positive. Additionally, a query latency
of up to 650 ms is added during training.

Ren et al. [5] leverage the similarity of candidate documents to the ground truth document
(positive), but in a different way and to a different end compared to our work: all documents
in the batch (“in-batch negatives”) as well as retrieved candidates are used as negatives in an
InfoNCE loss term, which penalizes the model when it assigns a low similarity score between
a single positive and the query compared to the similarity score it assigns to pairs of this
positive with all other candidates. Thus, it requires that the ground truth lies closer to the
query than other candidates, but the detrimental effect of false negatives on the training signal
fully persists.

By contrast, our method jointly takes into account all positives and other candidates in the
ranking context, and through a KL-divergence loss term requires that the predicted relevance
of the query with respect to all documents in the ranking context has a similar probability
distribution to the target distribution, i.e., the distribution of similarity between all ground truth
positives and all candidate documents in the context. False negatives are thus highly likely
to receive a non-zero probability in the target distribution, and the penalty when assigning a
non-zero relevance score to false negatives is lower.
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4.3 Methods

4.3.1 Similarity metric based on Reciprocal Nearest Neighbors

Nearest Neighbors are conventionally retrieved based on the geometric similarity (here, inner
product) between embedding vectors of a query ¢ and candidate document ¢;: s(q,¢;) =
(xg, x¢;), With , = m(q) and x., = m(c;) embeddings obtained by a trained retrieval model
m. In this section, we additionally define the Jaccard similarity s; that measures the overlap
between the sets of reciprocal neighbors of q and c;. We provide a derivation of s; below.

Let C be a collection of documents, including the query used for search, and NN(g, k)
denote the set of k-nearest neighbors of a probe g € C — besides the query, ¢ here can also be
a document or any other element that can be embedded in the common representation space.
If d(q,¢;) = dy(x4,%.,), ¢; € Cis a metric (distance) in the vector space within which the
embeddings of the query x, and documents x; reside, we can formally write:

NN(q, k) ={c; | dy(x¢;,xq) < dg(xe,,%g)}, Vie N: 1 <i <|C|, 4.1)

where |-| denotes the cardinality of a set, and document ¢y, is the k-nearest neighbor of the
query based on d, i.e., the k-th element in the list of all documents in C sorted by distance d
from the query in ascending order®. Naturally, [NN(q, k)| = k.

The set of k-reciprocal nearest neighbors can then be defined as:

R(c;, k) = {ci | ¢ € NN(¢j, k) A c; € NN(¢;, k)} 4.3)

i.e., to be considered a k-reciprocal neighbor, a document must be included in the k-nearest
neighbors of the query, but at the same time the query must also be included in the k-nearest
neighbors of the same document. This stricter condition results in a stronger similarity
relationship than simple nearest neighbors, and |R(q, k)| < k.

Since using the above definition as-is can be overly restrictive, prior work has proposed
applying it iteratively in order to construct an extended set of highly related documents to the
query that would have otherwise been excluded. Thus, Zhong et al. [13] define the extended
set:

R*(Q7 k) = R(Qa k) U R(Cia Tk)?
s.t. | R(q, k) NR(c;, 7k)| > ;‘R(Ci, k)|, (4.4)
Vci S R(q, /i?)

Effectively, we examine the set of 7k-nearest reciprocal neighbors of each reciprocal neighbor
of ¢ (where 7 € [0, 1] is a real parameter), and provided that it already has a substantial
overlap with the original set of reciprocal neighbors of ¢, we add it to the extended set. The

3When some measure of similarity s is used instead of a distance d, the relationship equivalently becomes:
5(X¢,;,Xq) > s(Xe, , Xq), and the k-nearest neighbors are the first &£ documents sorted by s in descending order.
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underlying assumption is that if a document is closely related to a set of documents that are
closely related to the query, then it is most likely itself related to the query, even if there is
no direct connection in terms of geometric proximity. Thus, one can improve recall at the
possible expense of precision.

Although using this new set of neighbors as the new set of candidates and sorting them
by their distance d can form the basis of a retrieval method, Zhong et al. [13] additionally
proceed to define a new distance that takes into account this set, which is used alongside d.
Specifically, they use the Jaccard distance between the (extended) reciprocal neighbor sets of
a query ¢ and documents c¢;:

B |R*(q, k) N R*(ci, k)|
|R*(q, k) UR*(ci, k)|

This distance quantifies similarity between two elements (here, ¢ and ¢;) as a measure of
overlap between sets of neighbors robustly related to each of them.

To reduce the computational complexity of computing the Jaccard distance, which relies
on the time-consuming, CPU-bound operations of finding the intersection and union of sets,
one may instead carry out the computation with algebraic operations, by defining for each
element g € C sparse vectors of dimensionality |C|, where non-zero dimensions denote graph
connectivity to other documents. Instead of using binary vectors, one may assign to each
neighbor ¢; a weight that depends on its geometric distance to the probe q. Thus, following
Zhong et al. [13], we define the elements of reciprocal connectivity vectors v, € |C| as
follows:

dj(q,c;) =1 4.5)

o { fw(d(q,c)) ifc; € R*(q, k) 4.6)

aci otherwise

0
While Zhong et al. [13] exclusively use f,,(z) = exp(—x), one one can use any monotonically
decreasing function, and we found that f,,(z) = —z in fact performs better in our experiments.
Instead of directly using the sparse vectors above, which would yield a discretized similarity
metric, we additionally perform a local expansion, mixing each one of them (including the
query) with its k.., neighboring vectors (again including the query, if among the neighbors):

kexp

1
Ve, = 7 Y Vi, V¢ € NN(¢;, kexp) - (4.7)

T
k
exp iy

It is possible to use the element-wise min and max operators on the expanded sparse
vectors from Eq. (4.7)) to compute the number of candidates in the intersection and union sets
of Eq. (4.5) respectively as:

[R*(q.k) N R*(ci, k)| = > min(vy, ve,) (4.8)
|R*(q, k) UR (e, k‘)| = Z max(vg, Ve, ), (4.9)

and thus the Jaccard distance in Eq. (4.5) can be written as:
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Z‘chzll min(vq,cj' ’ UCi:Cj)

dJ(Q? Ci) =1- C : (410)
lezll ma’X(Uqaij UCiﬁj)
Equivalently, Jaccard similarity can be therefore written as:
cr s
o min(vge;, Ve, c;
sal,) = 1 - ss(g, ) = St e o) (.11

C] '
Zj:l max(vq,cg- ) Ucmj)

Finally, instead of the pure Jaccard similarity s, we use a linear mixture with the geometric
similarity s controlled by hyperparameter A € [0, 1]:

S*(% Ci) = A S(Qa Ci) + (1 - >\) SJ(Q, Cz‘), 4.12)

which we found to perform better both for reranking (as in 13), as well as for label smoothing.

Importantly, unlike prior work [12, 13], which considered the entire gallery (collection) of
images as a reranking context for each probe, we only use as a context a limited number of
candidates previously retrieved for each query. This is done both for computational tractability,
as well as to constrain the context to be query-specific when computing the similarity of
documents to the ground truth; documents can otherwise be similar to each other with
respect to many different topics unrelated to the query. We empirically validate this choice in
Section 4.5.1.

4.3.2 Evidence-based label smoothing

The full procedure for evidence-based label smoothing is given in Algorithm 1, and in the
following sections we provide a rationale for the method in detail.

Main principles

Although training with a KL-divergence loss and a large number of (positive and negative)
candidates per query may provide some robustness with respect to false negatives (see Sec-
tion 2.5.5), it would be still beneficial to identify the unlabeled positives among the mined
negatives, in order to rectify the signal for learning similarity. Given that for approx. 95% of
all queries in MS MARCO the ground-truth relevance distribution over all candidates is a 1-hot
vector, in order to match it with the estimated score distribution, the loss pushes the model to
assign all probability mass on a single relevant document, which is likely counterproductive
and mis-calibrates relevance scores.

Label noise, and especially false negatives, exist in most datasets. Uniform label smoothing
is a well-established technique [28] that is used to mitigate the effects of label noise and
improve score calibration, and was recently also employed for contrastive learning [29]. It
involves removing a small proportion € € [0, 1] of the probability mass corresponding to the
ground-truth class and uniformly redistributing it among the rest of the classes, thus converting,
e.g.,a l-hot vectory = [1,0,...,0] € RY to:

y'=[1-¢ ¢/(N-1),...,¢/(N-1)] € RY (4.13)
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Nevertheless, naively distributing the probability mass € uniformly among all candidates, as in
Eq. (4.13), would result in true negatives predominantly receiving a portion of it, apart from
the small number of false negatives®.

For this reason, we instead propose correcting the sparse annotation vectors by selectively
distributing relevance probability among negatives that are highly likely to be positive, or at
least are ambiguous with respect to their relevance to the query. The proportion of probability
mass each candidate shall receive depends on its degree of similarity to the annotated ground-
truth document, which can be quantified by the Jaccard distance of Eq. (4.10), if we wish to
exclusively consider reciprocal nearest neighbors, or the mixed geometric-Jaccard distance of
Eq. (4.12), which allows any candidate close to the ground-truth to be considered.

Target relevance score transformations

In standard contrastive learning, including when using a KL-divergence loss, as in CODER [15],
there is a very stark difference between the probability of the handful of ground-truth docu-
ments and the zero probability of the negatives in the target (ground-truth) distribution.

In evidence-based label smoothing, we are using the continuous similarity scores of
candidates with respect to the ground-truth positive document(s) as soft labels for training,
which means that that there is a reduced contrast between the highest and smallest score values.
Additionally, the output values of the model’s similarity estimate reside within an arbitrary
value range, determined primarily by the model’s weights, and for the same rank, there is a
large variance of values between queries (Fig. 4.2). This means that after passing through a
softmax, which is highly non-linear, the target score distribution will be either concentrated or
diffuse, depending on the range of score values for each particular query. Normalizing values
into the same range will facilitate learning consistent relevance estimates. Furthermore, given
a single query, we wish that target scores rapidly decrease as the rank increases (Fig. 4.3).

Score for each rank Normalized score for each rank

0850 - Median 10 — Median
5% 25%
0825 5% 5%
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Figure 4.2: Similarity scores per rank across a large number of queries.

“Indeed, Qu et al. [10] observe that among mined “hard negative” candidates, the percentage of false negatives
falls to 4% by rank 40.
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Figure 4.3: Similarity scores of the top 1000 candidates for a single query, sorted in descending
order. Since they are used as training labels, to avoid very diffuse estimated score distributions,
we need to ensure that there is a large contrast between the top and bottom candidates and
that probability (i.e. values after the scores pass through a softmax) abruptly decreases after
the first few ranks. We achieve this through appropriate normalization - here, max-min (blue)
instead of dividing by max (orange).

Therefore, to facilitate learning, we wish to ensure that (a) there is large enough contrast
between the first and last ranks, and (b) this is true for all queries. We can achieve this by
applying a normalizing function f,, such as max-min, on the vector s € R”" of candidate
scores for a single query:

s — min(s)

fn(s> =

or the following, which is based on the standard deviation o across N candidate scores for a
single query:

(4.14)

max(s) — min(s)

: S — 'Sj N ’
fn(s):w, o= Z’< ;LJ / ) (4.15)

Therefore, since the value range of similarity scores that each model outputs is effectively
arbitrary, before applying a softmax to obtain a distribution over candidates, we perform
normalizing transformations as described above, and additionally multiply the values of
the original ground-truth documents by a factor b > 1 to normalize the range and increase
the contrast between the top and trailing candidates. Furthermore, we limit the number of
candidates that receive a probability above 0 to the top ny.x candidates in terms of their
similarity to the ground-truth document(s).

We found that these transformations primarily depend on the dataset rather than the model,
and that training without limiting n.,,x leads to overly diffuse score distributions. In case more
than one ground-truth documents exist for the same query, the similarity of each candidate is
the mean similarity over all ground-truth documents.
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Algorithm 1 Evidence-based label smoothing

Require: Dense retrieval model m, set of queries O, document collection C, set of all ground-truth

label documents per query | J £(q), Vq € Q

1: Compute embedding vectors z, = m(q), Vg € Q and z., = m(¢;), Ve; € C.

2: for each query ¢ do

3: Retrieve top-N Nearest Neighbors per query based on geometric similarity: s(q,c;) =
(xq,xc,;) forall ¢; € C.

4: for each candidate ¢;,7 = 1,..., N do

3: Compute relevance score 7" as mixed geometric and reciprocal-NN Jaccard similarity s ;
with respect to all ground-truth documents [:

1
r(q,¢i) = 2] > st (e,
q leL(q)
s(lei))=X-s(l,e)+ (1= X)) -sy(l,e), 0 <A<1
6: Transform scores by applying normalization function f;,, boost factor b and cut-off thresh-
old nmax:
b fn(r"(q,ci)) ife; € L(q),
7J<Q: Ci) =93y if i > nmax,
I (P"(q,¢)) otherwise.
7: end for
8: end for

9: Fine-tune model m with target distribution:

r(q) = softmax (r'(q)) ,

and loss function:
£(r(q),8(a)) = Dk (r(q) I 8(q)) ,

where §(q) = softmax (8'(¢)/T) is the model-predicted score distribution, with 7" a learnable
temperature parameter.

4.3.3 Computational efficiency

Computing rNN similarity involves computing pairwise similarities among N + 1 ranking
context elements (including the query), and computing the overlap between the top-k reciprocal
nearest neighbors of each candidate requires, for each candidate, sorting the rest of the
N candidates by their similarity. The computational cost per query is thus O(N?) and
O(N?log N), respectively; if we are only interested in the top-k reranked candidates, the
latter can be reduced to O(N?log k). Of course, all pairwise distances between document
embeddings (and corresponding sorted lists) can be pre-computed in advance, offline, which
would reduce the cost to O(/V) and O(N log k) per query respectively.

We find (Sections 4.5.1, B.2) that a small subset of the full ranking context with size
N, < N is generally sufficient when computing rNN-based similarities. For MS MARCO,
N, = 60 and the delay per query when reranking on a single CPU and core (AMD EPYC
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7532, 2400 MHz) is about 5 ms (Fig. 4.4).

Evidence-based label smoothing imposes no cost during training or inference; it only
requires offline computation of rNN-similarities for each query context /V, and sorting/top-
k as above, followed by simple vectorized transformations, e.g. max-min normalization.
Furthermore, all computations above can be trivially (‘embarrassingly’) parallelized in a
multi-CPU/core setup.
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Figure 4.4: Time delay per query (in milliseconds) when reranking using reciprocal nearest
neighbors-based similarity, as the number of candidates in the ranking context grows. Hyper-
parameters are the same as in Fig. 4.5. Processing time scales according to O(N?). Processor
(1 CPU, 1 core): AMD EPYC 7532 32-Core Processor, 2400 MHz.

4.4 Experimental setting

Datasets. To evaluate the effectiveness of our methods, we use two large-scale, publicly
available ad-hoc retrieval collections: the MS MARCO Passage Retrieval dataset [9], and
TripClick, a health document retrieval dataset [30]. Each has distinct characteristics and
represents one of the two realistic data settings practically available for training dense retrieval
models (see details in Appendix A.1, A.2).

Baselines. To compute the similarity metric based on reciprocal nearest neighbors, and
thus the scores used to either rerank candidates at inference time or calculate the smoothed
labels for training, we only need access to the encoder extracting the document and query
embeddings. The methods we propose are therefore applicable in principle to any dual-
encoder dense retriever. However, we eschew training pipelines based on cross-encoders, both
to ensure computational efficiency, as well as to eliminate the dependence on more powerful
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Hyperparameter TAS-B , CODER(TAS-B) , CoCondenser , CODER(CoCondenser)

N,.: context size 60 60 53 63
k: num. NN 21 21 21 19
Kexp: num. NN for expansion 3 3 5 8
T: trust factor 0 0 0.128 0.5
A: linear comb. coeff. 0.451 0.451 0.469 0.473

Table 4.1: Hyperparameters for reranking with Reciprocal Nearest Neighbors, MS MARCO.

retrieval methods. Instead, we choose CODER [15], a fine-tuning framework that enhances
the performance of dense retrievers used as “base models” through a large ranking context
of query-specific candidate documents and a list-wise loss: it serves as a natural framework
to evaluate evidence-based label smoothing, because it allows us to directly utilize a large
number of soft labels per query, while being very light-weight computationally.

As in Chapter 2, we select the following base models subjected to CODER fine-tuning :
1. RepBERT [31], a BERT-based model with a typical dual encoder architecture which
underpins all state-of-the-art dense retrieval methods, trained using a triplet Max-Margin loss.
2. TAS-B [24], one of the top-performing dense retrieval methods on the MS MARCO / TREC-
DL 2019, 2020 datasets, which has been optimized with respect to their training process,
involving a sophisticated selection of negative documents through clustering of topically
related queries.
3. CoCondenser [6], the state-of-the-art dense retrieval model, excluding those which make use
of heavyweight cross-encoder (query-document term interaction) teacher models or additional
pseudo-labeled data samples; it relies on corpus-specific, self-supervised pre-training through
a special architecture and contrastive loss component.

4.5 Results and Discussion

4.5.1 Inference-time reranking with reciprocal nearest neighbors

In this work, rather than directly employing reciprocal nearest neighbors for inference-time
reranking, we primarily focus on using them as a means to enhance evidence-based label
smoothing. Nevertheless, it is still important to evaluate their effectiveness at improving the
similarity metric between queries and documents. This is far from guaranteed in the web
retrieval setting, because it substantially differs from the previously proposed setting of image
re-identification [12, 13], beyond a simple change of input modality: while all image samples
are homologous entities, queries and documents are entities with very distinct characteristics
from one another, differing in length, style, vocabulary, and intent. Essentially, we wish to
model relevance, not the invariance of the same entity under different photographic conditions.

We provide a full description of the inference-time reranking evaluation experiments in the
Appendix Section B.2, and summarize the salient results below.

Across all query sets in two important evaluation settings, MS MARCO (Table 4.2) and
TripClick (Table 4.3), we observe that using a similarity based on reciprocal nearest neighbors
can consistently improve ranking effectiveness for all tested models. The magnitude of
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MS MARCO dev.small MS MARCO dev TREC DL 2019 TREC DL 2020

Model MRR nDCG Recall MRR nDCG Recal MRR nDCG Recall MRR nDCG Recall
RocketQAv2 [4] 0.388 - - - - - - - - - - -
ERNIE-Search [8] 0.401 - - - - - - - - - - -
AR2 [7] 0.395 - - - - - - - - - - -
AR2 + SimANS [11]  0.409 - - - - - - - - - - -
TAS-B 0.344 0.408 0.619 | 0.344 0407 0.618 | 0.875 0.659 0.222 | 0.832 0.620 0.302
R. TAS-B 0.347 0411 0.625 | 0.346 0.410 0.623 | 0.886 0.664 0.226 | 0.828 0.627 0.311
CODER(TAS-B) 0.355 0419 0.633 | 0.353 0416 0.627 | 0.857 0.668 0.224 | 0.844 0.623 0.306
R. CODER(TAS-B) 0.357 0.421 0.637 | 0.354 0.418 0.631 | 0.853 0.679 0.231 | 0.860 0.634 0.317
CoCondenser 0.381 0.446 0.665 | 0.381 0.446 0.664 | 0.879 0.656 0.226 | 0.833 0.618 0.301
R. CoCondenser 0.384 0.449 0.670 | 0.381 0.447 0.666 | 0.877 0.658 0.226 | 0.833 0.627 0.306
CODER(CoCond) 0.382 0.447 0.668 | 0.382 0.447 0.665 | 0.895 0.655 0.228 | 0.844 0.639 0.314
R. CODER(CoCond) 0.384 0.450 0.671 | 0.383 0.448 0.667 | 0.895 0.664 0.230 | 0.844 0.641 0.316

Table 4.2: Recip. NN reranking, MS MARCO collection. Metrics cut-off @10. Bold: best
in model class. As a reference, at the top we include all SOTA dense retrieval models from
literature that ourperform the methods we evaluated, noting that, unlike ours, they all rely
heavily on cross-encoders for training (e.g. distillation, ranking, pseudolabeling etc). Blue:
our contributions.

improvement is generally small, but becomes substantial when measured on the TREC DL
datasets (approx. +0.010 nDCG@10), where a greater annotation depth and multi-level
relevance labels potentially allow to better differentiate between methods.

We furthermore observe that ranking effectiveness initially improves when increasing the
size of the ranking context (i.e., the number of candidates considered for reranking), which is
expected, because the probability to include a remote ground-truth document in the context
increases. However, as this size further increases, ranking effectiveness saturates, often peaking
at a context size of a few tens of candidates (Figures 4.5, B.4, B.6, B.8). We hypothesize that
this happens because, as we keep adding negatives in the context, the chance that they disrupt
the reciprocal neighborhood relationship between query and positive document(s) increases
(see Figure 4.1).

We therefore conclude that we may use a relatively small number N of context candidates
for computing reciprocal nearest neighbor similarities, which is convenient because computa-
tional complexity scales with O(N?). In MS MARCO, a context of 60 candidates corresponds
to peak effectiveness for CODER(TAS-B) and introduces a CPU processing delay of only
about 5 milliseconds per query (Figure 4.4). We expect the optimal context size to depend
on the average rank that ground-truth documents tend to receive, and for models of similar
ranking effectiveness, this would primarily be determined by the characteristics of the dataset.

Indeed, we find that the hyperparameters in computing rNN-based similarity (e.g. k, A, 7,
fuw), as well as the context size N, predominantly depend on the dataset, and to a much lesser
extent on the dense retriever: hyperparameters optimized for CODER(TAS-B) worked very
well for TAS-B, CoCondenser and CODER(CoCondenser) on MS MARCO, but very poorly
when transferred to TripClick.
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DCTR Head RAW Head
MRR nDCG MRR nDCG Recall

BM25! 0.276 0.224 - 0.199 0.128
BERT-Dot (SciBERT)? | 0.530 0.243 - - -
BERT-Cat (SciBERT)? | 0.595 0.294 - - -

RepBERT [abbrev: RB] | 0.526  0.255 | 0.574 0.344  0.199

Model

R. RepBERT 0.525 0.256 | 0.575 0.346  0.200
CODER(RB) 0.634 0316 | 0.674 0419 0.234
R. CODER(RB) 0.638 0.317 | 0.679 0418 0.234
RB + CODER(RB) 0.637 0318 | 0.679 0.421 0.235

RB + R. CODER(RB) | 0.641 0.319 | 0.681 0.422 0.236

Table 4.3: Recip. NN reranking, TripClick Test (cut-off @10). Bold: overall best, underline:
best in model class. Row !: from [30], 2: [32]. Blue: our contributions.

@ Max: (60,0.3563) —@— Recip, NN reranking 0.420501 @_ Max: (60, 0.4205) —@— Recip, NN reranking
0.3562 + —-—- geometric sim. —-—- geometric sim.
0.42025 4
0.3560
0.420004 ®
0.3558 A
o o 0.41975 4
= 0.3556 —
® &
g 8 0.41950
= 0.3554 - e
3
[ ]
.41925 A
0.3552 4 0.41925
0.3550 i
osssod{ | . 0.41900
0.4187
0.3548 - J, ¢4875¢ ™/
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of candidates Number of candidates

Figure 4.5: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-B)
results on MS MARCO dev. small, as the number of candidates in the ranking context grows.
Hyperparameters are optimized for a context of 1000 candidates. Performance is slightly
improved compared to ranking exclusively based on geometric similarity and peaks at 60
in-context candidates.
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TREC DL 2019 TREC DL 2020

Model MRR nDCG MAP Recall | MRR nDCG MAP Recall
TAS-B 0.875 0.659 0.222 0.259 | 0.832 0.620 0.302 0.363
CODER(TAS-B) 0.857 0.668 0.224 0.270 | 0.844 0.623 0.306 0.365
CODER(TAS-B) + uniform sm. 0.857 0.669 0.223 0.273 | 0.835 0.619 0.304 0.360
CODER(TAS-B) + geom. smooth labels 0.848 0.665 0.220 0.271 | 0.842 0.626 0.310 0.370
CODER(TAS-B) + rNN smooth labels 0.857 0.671 0.226 0.276 | 0.862 0.632 0.315 0.369
CODER(TAS-B) + mixed rNN/geom. smooth lab. 0.889 0.675 0.227 0.277 | 0.842 0.637 0.318 0.376
CoCondenser 0.879 0.656 0.226 0.269 | 0.833 0.618 0.301 0.366
CODER(CoCondenser) 0.895 0.655 0.228 0.269 | 0.844 0.639 0314 0.384
CODER(CoCondenser) + mixed rNN/geom. smooth lab. | 0.884 0.661 0.232 0.278 | 0.856 0.646 0.316 0.383

Table 4.4: Evaluation of label smoothing applied to training CODER(TAS-B) on MS MARCO.
Metrics cut-off @10. Bold: best performance in each model class. Blue: our contributions.

4.5.2 Evidence-based label smoothing
Training on MS MARCO

In order to achieve the best possible results using evidence-based label smoothing, one should
ideally optimize the hyperparameters related to rNN-based similarity for the specific task
of training a retrieval model with recomputed soft labels. However, to avoid repeatedly
computing soft labels for the training set, we simply chose an rNN configuration that was
optimized for reranking a large pool of candidates (/N = 1000) in the MS MARCO collection —
i.e., the same one used in the previous section. Although this configuration may not be optimal
for our specific task (e.g., small changes in score values might be sufficient for reranking
candidates but ineffective as soft training labels), we expect that it can still provide a reliable
lower bound of optimal performance.

Table 4.5 shows an example case of label smoothing. We observe that although only a
single document is annotated as relevant in the data set (ground truth), the top documents
selected by evidence-based label smoothing will deservedly receive higher than zero target
similarity, as they are all relevant. In fact, in this case, most documents even up to rank 300
were relevant, although in many other cases relevance decreases after the top few ranks, which
justifies using a cut-off maximum number of soft-positives n,,,. Tables B.3 and B.4 in the
Appendix show more examples of label smoothing, which are characteristic of our general
observations through manual inspection.

We next evaluate the effects of training with evidence-based smooth labels on ranking
effectiveness. Figure 4.6 shows how the ranking performance of the TAS-B base model (left-
most point, step 0) on the validation set evolves throughout fine-tuning through CODER. The
red curve corresponds to additionally using evidence-based label smoothing computed with
reciprocal NN-based similarity (rNN-related hyperparameters are the same as in Section 4.5.1),
whereas for the blue curve the smooth label distribution is computed using pure geometric
similarity. We observe the following seemingly paradoxical phenomenon: compared to plain
CODER training, label smoothing significantly reduces the validation loss (computed with
the original labels, top panel), indicating that the ground truth passages are now receiving
proportionally higher scores in the estimated relevance distribution, but the retrieval metric
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Query: "what is the appropriate amount of daily protein intake"

rank

docID

text

1

1832110%*

Since 1 gram of protein = 4 calories, divide protein calories by four: 360/4 = 90 grams of
protein per day. No matter what your calculations are, remember that there are no magic
foods or supplements that can replace the right training and the right diet.

623435

For a 1401Ib female, calorie intake=1800 calories, protein=20%: 1800 x .20 = 360 calories
from protein. Since 1 gram of protein = 4 calories, divide protein calories by four: 360/4 =
90 grams of protein per day. No matter what your calculations are, remember that there are
no magic foods or supplements that can replace the right training and the right diet.

5775976

Protein should comprise 10 - 15% of a healthy diet. If you eat 1500 calories per day, then
you should eat about 56 grams of protein. Take 1500 calories times 15%, then divide by 4
calories per gram. 1500 calories seems low for someone in a weight training program. Your
calorie requirements may be as high as 60 calories per kilogram per day.

362449

So, if you consume 2,000 calories per day, at least 200 should come from protein, or about
50 grams. You should try to eat around one gram of protein per one kilogram of body weight,
or around 0.4 grams per pound. An easier way to figure this out in your head is to take your
weight, divide it in half, and subtract 10.

697249

As a general rule, between 10 percent and 15 percent of your total calories should come from
protein. So, if you consume 2,000 calories per day, at least 200 should come from protein, or
about 50 grams. You should try to eat around one gram of protein per one kilogram of body
weight, or around 0.4 grams per pound. An easier way to figure this out in your head is to
take your weight, divide it in half, and subtract 10.

5996638

All proteins have 4 calories per gram, so if you normally consume around 2,200 calories per
day, you need 55 to 192 grams of protein each day. Having a vigorous workout regimen may
require you to stick to the higher end of the recommendation.

1413743

As a general rule, between 10 percent and 15 percent of your total calories should come from
protein. So, if you consume 2,000 calories per day, at least 200 should come from protein, or
about 50 grams. You should try to eat around one gram of protein per one kilogram of body
weight, or around 0.4 grams per pound. An easier way to figure this out in your head is to
take your weight, divide it in half, and subtract 10. The total will be the number of grams of
protein you should consume each day.

4013046

If you take in 1,800 calories per day, 180 to 630 of those calories should be from protein.
Each gram of protein has 4 calories, according to the U.S. Food and Drug Administration, so
you need to take in 45 to 157.5 grams of protein to meet these recommendations.

2069624

For example, if you should weigh 160 pounds but you currently weigh 200 pounds, then your
goal for protein intake is in the range of 120 to 150 grams of protein per day. Since each
gram of protein is four calories, this means 480 to 600 calories per day from protein.

Table 4.5: Top documents selected by evidence-based label smoothing to receive higher than
zero target relevance. Although only the 1st document (ID: 18322110) is annotated as relevant
in the dataset, in this case we observe that all identified documents are actually relevant (false
negatives), and will rightfully be treated as soft positives.
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Figure 4.6: Evolution of performance of TAS-B (left-most point, step 0) on MS MARCO dev
validation set, as the model is being fine-tuned through CODER. The red curve corresponds to
using evidence-based (EB) label smoothing computed with rNN-based similarity, whereas
for the blue curve the smooth label distribution is computed using pure geometric similarity.
EB label smoothing significantly reduces validation loss (computed with the original labels,
top), indicating that the ground truth passages are receiving higher probability in the estimated
relevance distribution, but the retrieval metric (bottom) fails to register an improvement due
to annotation sparsity (compare with Fig. 4.7, for a dataset with greater annotation depth).
Distillation leads to precipitous degradation of performance.

(bottom panel) does not register an improvement.

In fact, this phenomenon may be fully explained through the presence of false negatives:
through the smooth target label distribution, the model learns to assign high relevance scores
to a larger number of documents (diffuse distribution). Therefore, although on average it
places a proportionally higher relevance distribution weight to the ground truth document
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compared to plain CODER, essentially improving the relevance estimate for the ground truth,
at the same time it distributes relevance weight to a higher number of candidates, such that the
ground truth ends up being ranked slightly lower (see Figure 4.8).

EB label smoothing hyperparam. CODER(TAS-B) CODER(CoCondenser)

b: boost factor 1.222 1.525

Nmax: Softmax cut-off 4 32

fn: normalization func. max-min std-based
learning rate: peak value 1.73e-06 137e-06

learning rate: linear warm-up steps 9000 12000

Table 4.6: Hyperparameters for training with evidence-based label smoothing, MS MARCO.
The hyperparameters related to computing rNN-based similarity are the same as in Table 4.1.

We can easily confirm that the model trained with evidence-based label smoothing indeed
promotes a more diffuse relevance distribution (systematically distributes relevance probability
among more candidates besides the top-ranked). Using all predictions on the validation set,
we measure that the average entropy of the relevance probability distribution is 6% higher
compared to training without label smoothing. We also measure that the top-ranked candidate
now on average receives 10% lower relevance probability, and that the average number of
candidates with probability greater or equal to 5% relative to rank 1 is 12% higher.

The crucial question therefore is, whether the candidates now receiving a higher relevance
score than before are actually relevant.

Manual inspection of ranking results obtained after training with evidence-based label
smoothing indicates that this is indeed most often the case: Table 4.7 shows an example where,
although the ranking of the ground-truth positive document decreased from 1 to 3, thereby
reducing the MRR from 1 to 0.333, the two documents superseding the ground truth in rank
are actually relevant, and so are in fact all top 9 documents. Table B.5 in the Appendix shows
another such case, where the ground-truth positive document was demoted from rank 3 to
rank 6, but in fact all documents ranked higher than itself were more relevant and informative.
Our inspection also revealed that the drop in rank is often caused by the presence of unlabeled
near-duplicate documents.

Since the MS MARCO dev dataset almost always contains only a single positive-labeled
passage per query, it would miss any positives promoted to higher ranks than the ground truth,
and it is therefore fundamentally ill-suited for measuring ranking effectiveness improvements
by a training scheme that primarily promotes a diffuse relevance distribution over several
candidates. For this reason, we must rely on datasets containing more judgements per query,
such as the TREC DL 2019, 2020 datasets.

Table 4.4 shows that evidence-based label smoothing using a similarity based on reciprocal
nearest neighbors can significantly improve the performance of each dense retriever even
beyond the benefit of the plain CODER fine-tuning framework. Furthermore, using an rNN-
based Jaccard similarity as a metric for computing the soft labels yields significantly better
performance than using geometric similarity, and the best results are achieved when using a
linear combination of the two metrics.
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Query: "how long is a semester"

rank

docID

text

Releyv.

1

2388818

A semester divides the school year into two equal parts. This means that if the academic year is 32
weeks, each semester is 16 weeks long. In different countries, in different colleges and universities,
the academic year has no standard, so the length may vary. For colleges and universities that operate
on a regular two semester academic year, a semester generally runs anywhere from 14 to 16 weeks
depending on the institution.

True

4615643

A semester divides the school year into two equal parts. This means that if the academic year is 32
weeks, each semester is 16 weeks long. In different countries, in different colleges and universities,
the academic year has no standard, so the length may vary.

True

1006820*

A semester (from the Latin meaning six-monthly) has come to mean either of two academic terms,
generally excluding the summer or January terms, if any, and so can be 12 to 20 weeks long. The
word semester is sometimes used as a synonym for a term, as in a summer semester.

True*

445722

Make sure you know that term is a generic word that is commonly used in educational colleges and
universities, to outline the length of an academic schedule. It is mostly used in institutions in Britain
whereas semester is a more popular word in the educational colleges in the United States. The length
of a semester is 6 months and there are normally 2 semesters each year. However, a few schools have
trimesters and quarters which is 3 to 4 terms in a year.

True

1054466

How long does a semester last in college? A semester divides the school year into two equal parts.
This means that if the academic year is 32 weeks, each semester is 16 weeks long. In different
countries, in different colleges and universities, the academic year has no standard, so the length may
vary.

True

1965901

The semester system divides the calendar year into two semesters of 16 to 18 weeks each, plus summer
sessions of varying lengths. The two semesters together constitute 32 to 36 weeks of instruction,
so that three academic quarters equal two academic semesters. semester (from the Latin meaning
six-monthly) has come to mean either of two academic terms, generally excluding the summer or
January terms, if any, and so can be 12 to 20 weeks long. The word semester is sometimes used as a
synonym for a term, as in a summer semester.

True

5840984

A semester divides the school year into two equal parts. This means that if the academic year is 32
weeks, each semester is 16 weeks long. In different countries, in different colleges and universities,
the academic year has no standard, so the length may vary. community college semester lasts roughly
4.5 months. This will vary depending on how long each specific college allows for Christmas break
and New Years break.

True

5808478

A typical college semester can be defined as fifteen weeks long, depending on the school. With a
typical fifteen-week-long semester, the academic calendar is divided into three semesters. The fall
and spring semesters will both be fifteen weeks long and the third semester, summer, will usually be
shorter. The summer semester is generally about twelve weeks long. You might find semester lengths
vary from school to school, within a range of one to three weeks.

True

3425574

A typical college semester has three months. However, the length of a semester varies from state to
state. The fall and spring semesters each have 15 weeks, while the summer semester is usually shorter
with about 12 weeks.

True

Table 4.7: Top documents retrieved by a CODER(TAS-B) model trained through EB label
smoothing. Although only the document marked with * (ID: 1006820) is annotated as relevant
in the dataset, we observe that all top documents are actually relevant (false negatives), and thus
the MRR metric would erroneously decrease from 1 (as the ground-truth positive previously
ranked 1st) to 0.333.

66



DCTR Head RAW Head

Model MRR nDCG Recall  MRR nDCG Recall
RepBERT 0526 0255 0242 | 0574 0344 0.199
CODER(RB) 0610 0300 0276 | 0.656 0401 0.228
CODER(RB) hparam. 0608 0300 0277 | 0.649 0401 0.229
CODER(RB) + EB smooth. | 0.611  0.305 0.280 | 0.661 0.411 0.234

Table 4.8: Evaluation of evidence-based label smoothing (mixed rNN - geom. similarity) on
TripClick HEAD Test. Models were trained on TripClick HEAD U TORSO Train and validated
on HEAD Val. Metrics cut-off @10. “hparam”: model trained with same hyperparameters as
the one with label smoothing. Blue: our contributions.

Zero-shot evaluation on TripClick. As TripClick also contains several (pseudo-relevance)
labels per query, we additionally evaluate the MS MARCO-trained models zero-shot (i.e.,
without any training) on TripClick Test and Val (Figures B.1, B.2, Appendix). We again
observe that evidence-based label smoothing with an rNN-based metric improves performance
compared to plain CODER; however, we note that in this zero-shot setting, the best performing
models were not in general the same as the best performing models on TREC DL. The best
ranking performance was achieved by CODER(TAS-B) using soft labels from pure rNN-based
Jaccard similarity.

We thus find that in sparsely annotated datasets like MS MARCO, validation loss might be
a better predictor of model generalization than IR metrics such as MRR, and that evaluation
on datasets with higher annotation depth (such as TREC DL or TripClick), potentially even in
a zero-shot setting, might better reflect the ranking effectiveness of models.

Comparison to distillation and uniform label smoothing. A critical difference of evidence-
based label smoothing from distillation is that soft document labels are computed based on
their similarity to the ground truth instead of the query. To demonstrate the importance of this
change of perspective, we show how CODER fine-tuning performs when using soft labels
coming from geometric similarity with respect to the query, as in distillation (Figure 4.6, purple
curves): even when applying the same transformations to the scores as in the case of evidence-
based label smoothing, the model’s performance rapidly degrades instead of improving. This
is expected, because distillation only works when a superior model is available; training cannot
be bootstrapped from the scores of the model itself.

We also observe that, unlike evidence-based label smoothing, uniform label smoothing
fails to noticeably improve performance compared to plain CODER fine-tuning (Figure 4.6,
Table 4.4), even when we ensure that the exact same probability weight as in the case of
evidence-based smoothing is distributed from the ground-truth positive(s) among the rest of
the candidates.

Training on TripClick

Finally, we examine how EB label smoothing performs when training in an important alter-
native setting, TripClick: a dataset with significantly more relevance labels per query, that
come from pseudo-relevance feedback without human judgements. Unlike above, here we
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investigate the joint optimization of rNN-related parameters together with training-specific pa-
rameters (e.g., learning rate and linear warm-up steps), instead of using the same rNN-related
hyperparameters for label smoothing as for reranking. To allow this, we train on the union
of the HEAD and TORSO training subsets (avg. 42 and 9 annotations per query, respectively),
and omit the TAIL subset, which consists of a large number of rare queries (each with only 3
annotations on average). We use HEAD Val as a validation set, and evaluate on HEAD Test.
Table 4.8 and Figure 4.7 show that training with mixed geometric/rNN-based smooth labels
significantly improves performance also in this dataset setting compared to plain CODER
training (+0.010 nDCG @10). To ensure that any improvement cannot be attributed to better
hyperparameters found during the joint optimization described above, we also apply the same
hyperparameters to plain CODER training (denoted “hyperparam.” in the table).

0.115 A
—— CODER(RepBERT)
0.68 - —— CODER(RepBERT) (hyperparam:)
0.1101 —— EB smoothing (geom.)
0.66 - —— EB smoothing (rNN)
® RepBERT
0.105 A1
S 0.64
o 0.62 =1 0.100 A
=
0.60 A
—— CODER(RepBERT) 0.095 -
0.58 —— CODER(RepBERT) (hyperparam.)
' —— EB smoothing (geom.)
—— EB smoothing (rNN) 0.090 -1
0.56 ® RepBERT
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Step Step

Figure 4.7: Evolution of performance of RepBERT (left-most point, step 0) on the TripClick
HEAD Val validation set, as the model is being fine-tuned through CODER on TripClick
HEADUTORSO Train. The red curve corresponds to additionally using evidence-based label
smoothing computed with a reciprocal NN-based similarity component, whereas for the blue
curve the smooth label distribution is computed using pure geometric similarity. Only evidence-
based smoothing with rNN similarity substantially improves performance compared to plain
CODER(RepBERT), despite “CODER(RepBERT) (hyperparam.)” and “EB smoothing” with
geometric similarity using the same training hyperparameters.

We observe similar improvements on TORSO Test and TORSO Val ( Table 4.9).

4.6 Limitations and applicability to other frameworks

In principle, the methods we propose in this chapter are applicable to any dual-encoder dense
retriever: computing the similarity metric based on reciprocal nearest neighbors only requires
access to the encoder extracting the document and query embeddings.
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Test RAW Torso Val RAW Torso

Model MRR@10 nDCG@10 Recall@10 | MRR@10 nDCG@10 Recall@10
RepBERT 0.338 0.247 0.309 0.398 0.288 0.342
CODER(RepBERT) 0.390 0.276 0.330 0.426 0.310 0.354
CODER(RepBERT) hyperparam. 0.389 0.277 0.331 0.428 0.310 0.354
CODER(RepBERT) 0.391 0.282 0.340 0.421 0.312 0.367

+ mixed rNN/geom. smooth label.

Table 4.9: Label smoothing applied to CODER(RepBERT) trained on TripClick HEAD U TORSO
Train, validated on HEAD Val; evaluation on TORSO Test and Val.

However, we note that the reason we were able to compute the soft labels for evidence-based
label smoothing completely offline was that we utilized CODER as a fine-tuning framework:
CODER only fine-tunes the query encoder, using fixed document representations. Using
evidence-based label smoothing in a training method with learnable document embeddings
means that the rNN-based similarity has to be computed dynamically at each training step
(or periodically every few training steps), because their mutual distances/similarities will
change during training, albeit slowly. Similarly, every time candidates/negatives are retrieved
dynamically (periodically, as in 14, or at each step, as in 3) the rNN-based similarity has to be
recomputed among this new set. Nevertheless, as we discuss in the paper, we only need to use
a context of tens or at most a couple of hundred candidates in order to compute the rNN-based
similarity most effectively. Even in these cases, this would therefore introduce at most up to a
hundred milliseconds of training delay per batch, while inference would remain unaffected.
Most likely, the initial “soft” (smooth) labels would be anyway useful as a mitigation for false
labels, thereby improving the training signal and calibrating the model’s relevance scores;
dynamically recomputing the soft labels as document representations change would simply
offer an additional improvement to effectiveness of the method.

The KL-divergence loss used within the CODER framework is a suitable choice for utilizing
the soft labels computed by evidence-based label smoothing in training dense retrievers. Since
practically all contemporary dense retrieval training methods rely on a contrastive loss such
as InfoNCE (also known as Negative Log-Likelihood), to directly allow incorporating the
recomputed labels, one would have to binarize them, e.g. by setting a relevance score threshold,
above and below which the documents would be considered positive or negative respectively.
However, this forced discretization will presumably yield a sub-optimal effect. Instead, a likely
more suitable option would be to simply replace the InfoNCE loss used in these methods with
KL-divergence; it is an approach that allows seamless utilization of the continuous “smooth”
scores, and shows promise, as existing training pipelines have already successfully integrated
this loss as part of a knowledge distillation scheme (using scores assigned by a cross-encoder
as a teacher) [4].

4.7 Conclusion

In this chapter we have proposed evidence-based label smoothing to address sparse annotation
in dense retrieval datasets. In this method, to mitigate penalizing the model in case of false
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negatives during training, we compute the target relevance distribution by assigning non-zero
relevance probabilities to candidates most similar to the documents annotated as ground truth.
To estimate similarity we leverage reciprocal nearest neighbors, which allows considering local
connectivity in the shared representation space, and can independently be used for reranking.

Extensive experiments on two large-scale retrieval datasets and three dense retrieval models
demonstrate that our method can effectively improve ranking, while being computationally
efficient and foregoing the use of resource-heavy cross-encoders.

Finally, we have shown evidence that evaluating on sparsely annotated datasets like
MS MARCO dev may systematically underestimate models with less sharp (i.e. more
diffuse) relevance score distributions. We have found that in such datasets, the KL-divergence
loss between predicted and target distribution may in fact better capture the actual ranking
effectiveness of the model. To evaluate retrieval models more reliably, it appears to be
indispensable to evaluate on datasets with greater annotation depth (e.g. TREC DL), even
when evaluation is performed zero-shot (i.e. without previously training on that dataset), and
even when the annotations originate from click-through models and not human judgments (e.g.
TripClick).
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Figure 4.8: Because many more documents receive higher than zero relevance in the target
distribution after label smoothing, by design it promotes a diffuse predicted distribution
(bottom). Thus, although the predicted relevance of the ground-truth positive document is
now significantly higher compared to when not using label smoothing (top), indicating a
model improvement, the document ends up ranking lower because of the dispersed relevance
estimates, and thus the MRR metric decreases. By contrast, the KL-divergence (i.e. loss
function) correctly captures the improvement in assessing the relevance of the ground-truth
positive. We note that in sparsely annotated datasets like MS MARCO, the “1-hot” ground-
truth annotations (right) are very often incorrect among the top ranks, and some of the
candidates ranked more highly than the ground truth (e.g. Candidates 3 and 4 in the figure)
may actually be relevant, which would render the MRR metric spurious; 10 estimate that about
70% of the top 5 candidates retrieved by a top-performing dense retrieval model that are not

labeled as positive are in fact relevant.
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Chapter 5

Conclusion and outlook

5.1 A new framework for contextual ranking and similarity
learning for Large Language Models

The focus of this thesis was to investigate the potential of contextual ranking and similarity
learning in improving the state-of-the-art information retrieval methods, which are based
on large, pre-trained transformer language models (PTLMs). As an overarching conclusion,
we have gathered strong evidence in support of the thesis that utilizing ranking context can
substantially benefit the training and ranking effectiveness of PTLM-based retrievers, and we
have introduced practical methods towards that end.

We have identified that individual best practices employed in contemporary dense retrieval
methods, such as mining hard negatives and using a large number of negatives for contrastive
learning, can be seen as partial steps towards building a ranking context. Ranking context,
which was systematically exploited in pre-PTLM Learning-to-Rank models, is to be understood
as a large enough set of documents in meaningful relationship to the same query (and thus to
one-another), that are all jointly assessed with respect to their similarity to the query.

We have examined the constituent parts of ranking context, that is, specificity to the
query, a large number of candidates, and the use of a list-wise loss, and found that together
they can significantly contribute to the ranking effectiveness of trained models. To leverage
ranking context in a way compatible with the computational constraints introduced by large
transformer-based models, we have proposed CODER (COntextual Document Embedding
Reranking), an efficient and light-weight framework that relies on training with precomputed,
fixed document representations and only fine-tuning the query encoder part of the common
dual encoder architecture. Using an existing trained retriever as a starting point, contextual
similarity training can thus substantially boost its ranking performance at the minimal cost of
a short fine-tuning on a single GPU.

Importantly, incorporating ranking context into the training of PTLM retrieval models
enables us to optimize them with respect to context-dependent properties: that is, properties
such as ranking fairness, that only manifest themselves when examining the ranking of an
entire set of documents. We have demonstrated how adding a neutrality regularization term
to the relevance-optimizing loss term allows one to easily train a model that systematically
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promotes more gender-neutral documents. The intensity of regularization during training
allows us to continuously and predictably modulate the neutrality-boosting effect, unlike
existing alternatives for bias mitigation, such as adversarial training, and the approach offers
both higher ranking effectiveness and higher neutrality compared to these alternatives. We
have thus introduced the first truly practical approach for training PTLM retrieval models by
inherently taking into account fairness, source bias and other important properties besides
ranking effectiveness.

Finally, we investigated the potential for improving dense retrieval when leveraging a simi-
larity metric beyond simple geometric proximity between query and document embeddings.
Using the concept of Reciprocal Nearest Neighbors to compute this metric allows us to take
into account the local density of documents, i.e., the degree of connectivity of query and
documents to other documents in the common representation space. Although we showed
that such a metric is in itself useful when ranking, we further utilized it as part of a label
smoothing scheme, in which the degree of similarity of unlabeled documents to a ground-truth
relevant document serves as evidence for distributing higher than zero relevance probability
among candidates in the same ranking context. In practice, using these smooth labels enhances
the ranking context available for training retrieval models, mitigating the sparse relevance
annotation problem of the large datasets their training relies on and improving their ranking
effectiveness.

5.2 (Very) Large Language Models for in-context ranking

Since Brown et al. [1] convincingly demonstrated the capabilities of very large, pre-trained
Language Models (LLMs) for few-shot in-context learning, they have been applied with
impressive success on most Natural Language Processing tasks. It then comes as little surprise
that they have been recently also employed for in-context re-ranking of retrieved passages.

In particular, Sun et al. [2] use ChatGPT (i.e., GPT-3.5) and GPT-4, each hundreds of
billions of parameters large, to rerank a small number of top passages retrieved for a given
query, by means of providing the query, the numbered passages and a natural language
instruction within a prompt, asking the LLM to output a permutation of the passages in the
order of descending relevance. Because of the models’ context size limitations constraining
the prompt length, reranking entails successively sorting subsets of the passages within a
sliding window of size k. Starting from the bottom of the list, the bottom k passages are
reranked, and the window is shifted by a stride of k/2 ranks higher to form a new, overlapping
context window, where the top reranked passages of the previous window are compared with
the bottom passages of the new, shifted window. The process is repeated until the passages
deemed most relevant float to the top. This approach was found significantly more effective
than alternative approaches, where the LLM was asked to output a relevance score for a
passage given a query, and results are sorted by score.

We note that, because of the onerous latency and computational cost it introduces, this
approach is limited to only reranking top results retrieved by other methods. Therefore, it is
not in competition with dense retrieval, which procures candidates as a first-stage method, but
neither is it yet truly competitive with cross-encoder reranking, which is currently much faster
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Model TREC DI’19 TREC DL’20

BM25 0.506 0.480
Supervised (cross-encoder reranking)
monoBERT (340M) 0.705 0.673
monoT5 (220M) 0.715 0.670
monoT5 (3B) 0.718 0.689
Cohere Rerank-v2 0.732 0.671
DeBERTa-Large (304M) 0.689 0.614
Llama-7B 0.692 0.590
Distillation (cross-encoder trained from ChatGPT labels)
DeBERTa-Large (304M) 0.707 0.672
Llama-7B 0.718 0.669
LLM API (permutation generation)
GPT-3.5-turbo 0.658 0.629
GPT-4 0.756 0.706
Ours (dense retrieval)
CODER(TAS-B) (66M) 0.728 0.686
CODER(TAS-B) + rNN rerank 0.740 0.695
CODER(CoCondenser) (110M) 0.715 0.697
CODER(CoCondenser) + rNN rerank 0.723 0.698

Table 5.1: Ranking effectiveness (nDCG@10) on TREC DL 2019, 2020 of SOTA models
trained on MS MARCO (ChatGPT and GPT-4 are not trained, but evaluated few-shot through
API calls). Results other than CODER come from Sun et al. [2]. To directly compare, here
we follow the same “lax” method of computing nDCG, where a ground truth score of “1” is
considered relevant (and is not mapped to 0, as per official TREC guidelines).

and cheaper to run compared to in-context reranking through LLMs. Even if considered mainly
for academic reasons, it is however still interesting to examine the performance achieved by
in-context reranking with LLMs, to surmise its role in current and future information retrieval.

Table 5.1 shows how LLM reranking through APIs performs on the TREC DL 2019,
2020 evaluation sets compared to the top-performing cross-encoders trained on MS MARCO.
We observe that, although GPT-3.5 cannot outperform the top specialized cross-encoders,
GPT-4, which is substantially larger and more extensively pre-trained, presently sets the record
performance.

How do our own models compare? Interestingly, we see that our best performing models
on these two evaluation sets (from Chapter 4) outperform both the largest and most powerful
cross-encoders trained on MS MARCO labels (which introduce hundreds of milliseconds of
latency per query), as well as those trained using distillation from GPT-3.5 annotations. In
fact, they essentially perform on par with GPT-4, which, as we noted above, is not really a
practical or scalable method for retrieval. This is result is very impressive, considering that
our models (a) comprise 66M and 110M parameters, instead of several hundred billion, and
(b) can be directly used for first-stage retrieval, with an additional reranking latency of a few
milliseconds per query; their are thus orders of magnitude faster and cheaper to run.
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Consequently, we can conclude that a suitable training setting, such as the contextual
similarity learning framework introduced in this thesis, has a tremendous effect on performance,
and can easily compete with the largest, most computationally expensive models to date.

Instead of using LL.Ms for reranking documents, it would appear that their greatest po-
tential lies in their unparalleled capability for generation: one can thus envisage their use for
enhancing the training context of supervised models by generating synthetic documents of
specified relevance levels, given a query. We intend to explore this use in future work.

5.3 Remaining challenges and future directions

5.3.1 Expanding the generality of the contextual similarity learning
framework

In the frame of this thesis, we have demonstrated that training state-of-the-art dense retrieval
models stands to benefit from contextual similarity learning, and proposed practical methods
to achieve this.

The principles we have examined, but also the corresponding methods we proposed, are
applicable to any dual-encoder dense retriever — some, like evidence-based label smoothing,
can also be used to train cross-encoder models. However, in its present form, the main
framework we have introduced can only fine-tune existing models as a separate step, because
it relies on static, precomputed document embeddings. To directly integrate our methods into
the most advanced, computationally expensive pipelines that are used to train the SOTA dense
retrieval models from scratch, we would need to make certain modifications.

In Section 2.5.4 we have seen that while a large number of context candidates is important,
there are diminishing returns as this number grows beyond a few hundred documents. To
allow trainable document representations, we could thus limit the context size to, e.g., 256
pre-retrieved candidates, while dispensing with the large number of random in-batch negatives,
which, as we have seen, do not meaningfully contribute to improving ranking effectiveness,
despite their ubiquitous use in contemporary literature in lieu of a large enough number
of retrieved candidates. Presumably, random in-batch negatives could still be useful at the
beginning of training, and could be progressively phased out in favor of retrieved candidates
as training continuous. These candidates can be retrieved dynamically, as proposed by Xiong
et al. [3] and Zhan et al. [4].

At the same time, instead of the InfoNCE loss, that is employed by contemporary pipelines,
it is straightforward to use the same list-wise loss as in CODER, i.e. the KL-divergence
between the target relevance distribution and the model-estimated relevance score distribution.
Besides better exploiting ranking context (see Section 2.5.4), this would also allow the seamless
use of the soft labels computed by the evidence-based label smoothing method; otherwise, one
would need to binarize the continuous target relevance labels and use them either as positives
or negatives in contrastive learning, which is likely sub-optimal.

With these changes, the principles of contextual similarity learning we have explored could
be incorporated into a pipeline that involves a large number of GPUs and could train SOTA
dense retrieval models from scratch (e.g. [5, 6]).
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Finally, techniques for parameter-efficient fine-tuning, such as adapters [7] and LoRa [8],
combined with modern methods for training models using low-precision arithmetic (quantiza-
tion) [9] are a very promising approach for incorporating contextual similarity learning into
the training pipeline of dense retrieval models, while allowing optimization of both the query
as well as the document representations.

5.3.2 Extending the versatility of the bias mitigation approach

The modifications in the above section would allow optimizing SOTA models for properties
like fairness exactly in the way described in Chapter 3. However, we note that the practicality
of this method is still limited, in the sense that one has to decide in advance the strength of
regularization applied during training, and therefore the point in which the deployed model
will be operating in the trade-off between utility and fairness. Additionally, we have only
tested that the approach works when optimizing for fairness with respect to a single protected
attribute (e.g. gender), while in practice we would prefer fair outcomes with respect to a
combination of such attributes (gender, nationality, ethnicity, race, religious background, etc).
It principle, one could train the retrieval model within CODER by adding several regularization
loss terms, one for each attribute, at the same time, but it remains to be empirically validated.

As an alternative, in work following up on our work presented in Chapter 3 [10], it
was demonstrated that it is possible to separately train individual adapters, one for each
such protected attribute and one for the relevance ranking task, and then finally train an
AdapterFusion module [11] to use all adapters simultaneously. However, training through
CODER with several regularization terms simultaneously is a much simpler and efficient
approach, and should be investigated in future work.
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Appendix A

General

A.1 Data

A.1.1 MS MARCO and TREC Deep Learning

Following the standard practice in related contemporary literature, we use the MS MARCO
dataset [1], which has been sourced from open-domain logs of the Bing search engine, for
training and evaluating our models. The MS MARCO passage collection contains about 8.8
million passages and the training set contains about 503k queries labeled with one or (rarely)
more relevant passages (1.06 passages per query, on average), on a single level of relevance.

For validation of the trained models we use a subset of 10k samples from “MS MARCO
dev”, which is a set containing about 56k labeled queries, and refer to it as “MS MARCO
dev 10k”. As a test set we use a different, officially designated subset of “MS MARCO dev”,
originally called “MS MARCO dev.small”, which contains 6980 queries. Often, in literature
and leaderboards it is misleadingly referred to as “MS MARCO dev”.

Because of the very limited annotation depth (sparsity) in the above evaluation sets, we also
evaluate on the TREC Deep Learning track 2019 and 2020 test sets, each containing 43 and 54
queries respectively, labeled to an average “depth” of more than 210 document judgements per
query, and using 4 levels of relevance: “Not Relevant” (0), “Related” (1), “Highly Relevant”
(2) and “Perfect” (3). According to the official (strict) interpretation of relevance labels!, a
level of 1 should not be considered relevant and thus be treated just like a level of 0, while the
lenient interpretation considers passages of level 1 relevant when calculating metrics.

A.1.2 TripClick

TripClick is a recently introduced health IR dataset [2] based on click logs that refer to about
1.5M MEDLINE articles. The approx. 700k unique queries in its training set are split into 3
subsets, HEAD, TORSO and TAIL, based on their frequency of occurrence: queries in TAIL
are asked only once or a couple of times, while queries in HEAD have been asked tens or
hundreds of times. As a result, each query in HEAD, TORSO and TAIL on average ends up
with 41.9, 9.1 and 2.8 pseudo-relevance labels, using a click-through model (RAW) where

"https://trec.nist.gov/data/deep2019.html
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every clicked document is considered relevant. The dataset also includes alternative relevance
labels using the Document Click-Through Rate (DCTR), on 4 distinct levels (the latter follow
the same definitions as the TREC Deep Learning evaluation sets). We note that, although the
number of labels per query is much higher than MS MARCO, unlike the latter, these labels
have not been verified by human judges.

For validation and evaluation of our models we use the officially designated validation and
test set, respectively (3.5k queries each).

A.2 Evaluation principles

All training and evaluation experiments are produced with the same seed for pseudo-random
number generators. We use mean reciprocal rank (MRR), normalized discounted cumulative
gain (nDCGQG), mean average precision (MAP) and recall to evaluate the models on TREC
DL tracks, MS MARCO and TripClick, in line with past work (e.g. [2, 3, 4, 5]). While
relevance judgements are well-defined in MS MARCO and TripClick, for the TREC DL tracks
there exist strict and lenient interpretations of the relevance scores of judged passages (see
Section A.1). In this work, unless otherwise noted, we use the official, strict interpretation.
We calculate the metrics using the official TREC evaluation software.?

A.3 Social impact considerations

By being computationally efficient and foregoing the use of resource-heavy cross-encoders
in its pipeline, our proposed contextual similarity learning methods allow top-performing
dense retrieval models to be fine-tuned on MS MARCO within 7 hours on a single GPU. We
therefore believe that it is well-aligned with the goal of training models in an environmentally
sustainable way, the importance of which has been recently acknowledged by the scientific
community Information Retrieval and more broadly [6].

Additionally, as we describe in Chapter 3, our framework enables us to optimize dense
retrieval models so as to mitigate bias with respect to attributes such as gender, nationality, po-
litical ideology and others, and promote neutrality among the top-ranked documents retrieved
for a user’s query.

On the other hand, the transformer-based Information Retrieval models examined in
our study may intrinsically exhibit societal biases and stereotypes. As prior research has
discussed [7, 8, 9, 10, 11, 12, 13], these biases stem from the latent biases acquired by
transformer-based language models throughout their pre-training, as well as the fine-tuning
process on IR collections. Consequently, the practical use of these models might result in
prejudiced treatment towards various social groups (e.g., as manifested in their representation
or ranking in retrieval result lists). We therefore firmly encourage a mindful and accountable
application of these models.

2trec.nist.gov/trec_eval/index.html
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Appendix B

Supplementary material

B.1 Using a transformer as a contextual document scoring
function

We have experimented with more complex, parametric functions ¢ as contextual scoring
modules, including feed-forward neural networks and stacks of transformer blocks (see
diagram in Figure B.1), which explicitly model inter-document relationships. When we use a
transformer encoder as a scoring module, we do not use positional encodings over the input
document embeddings, because we require permutation invariance: given fixed positional
encodings of ranking order, it would be trivial for the model to learn to assign higher scores
for documents of higher rank; at the same time, there is no meaningful sequence order over
document embeddings other than relevance ranking.

Although a transformer encoder of 2 blocks was able to marginally outperform the simple
function of Equation (2.2), the small improvement (at least as measured on MS MARCO dev
makes it hard to justify precluding the option of single-stage dense retrieval, as well as the
additional computational cost. Future work may more thoroughly investigate the use of a
transformer-based scoring function, adding more transformer blocks, which we have not been
able to implement due to computational constraints - self-attention incurs a O(N?) GPU
memory dependence on the number of context documents V.
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Figure B.2: Evolution of the loss on the training set, as training of BM25—CODER(RepBERT)
progresses. Different curves correspond to a different type and number of documents used as
negatives during training. While training loss is decreasing in all cases, only using numerous
retrieved candidates as negatives, combined with a list-wise KL-divergence loss, results in
a significant improvement of performance over the base method (see Figure 2.4) on the
validation and test sets.
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Figure B.3: Evolution of the loss on the training set, as training of BM25—CODER(RepBERT)
progresses. Different curves correspond to a different number of BM25 candidates used as
negatives during training. While training loss is decreasing in all cases, only using a large
number of candidates results in a significant improvement of performance over the base
method on the validation and test sets (see Figure 2.4).
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B.2 Inference-time reranking with reciprocal nearest neigh-
bors

Prior work on rNN reranking considered the entire gallery of images (collection C) as a
reranking context for each probe, i.e. N = |C|. With |C| in the order of tens of millions, this is
intractable for the task of web retrieval using transformer LMs, and a smaller context size must
be used instead. To investigate the importance of the context size, we therefore initially fix the
number of in-context candidates per query to a large number within reasonable computational
constraints (N = 1000) and optimize the hyperparameters of reciprocal nearest neighbors (e.g.
k, Eexps A, T, fu) on the MS MARCO dev. small subset.

We first rerank candidates initially ranked by a CODER-optimized TAS-B retriever, denoted
as “CODER(TAS-B)”. To determine an appropriate size of reranking context, we first sort
candidates by their original relevance score (geometric similarity) and then recompute query
similarity scores with a growing number of in-context candidates (selected in the order
of decreasing geometric similarity from the query), while measuring changes in ranking
effectiveness.

Figure 4.5 shows that INN-based reranking slightly improves effectiveness compared to
ranking purely based on geometric similarity, with the peak improvement registered around
a context size of 60 candidates. This behavior is consistent when evaluating rNN-based
raranking using the same hyperparameters on different query sets: MS MARCO dev (Fig. B.4),
which is an order of magnitude larger, and TREC DL 2020 (Fig. B.5) and TREC DL 2019
(Fig. B.6), where the improvement is larger (possibly because it can be measured more
reliably due to the greater annotation depth). In all cases performance clearly saturates as
the number of candidates grows (somewhat slower for TREC DL 2019). The same behavior
as described above is observed when reranking the original TAS-B model’s results using the
same hyperparameters chosen for the CODER-trained version, with the performance benefit
being approximately twice as large (Fig. B.7).

While it is expected that progressively increasing the context size will increase performance,
as there is a greater chance to include the ground-truth passage(s) which may have been initially
ranked lower (i.e. embedded farther from the query), the peak and subsequent degradation
or saturation is a novel finding. We hypothesize that it happens because the more negative
candidates are added in the context, the higher the chance that they disrupt the reciprocal
neighborhood relationship between query and positive document(s) (see Figure 4.1).

We can therefore conclude that we may use a relatively small number /V of context candi-
dates for computing reciprocal nearest neighbors similarities, which is convenient because
computational complexity scales with O(N?). For a context of 60 candidates, a CPU process-
ing delay of only about 5 milliseconds per query is introduced (Figure 4.4). These results
additionally indicate that the context size should best be treated as a NN hyperparameter to be
jointly optimized with the rest, which is reasonable, as it is expected to depend on the average
rank that ground-truth documents tend to receive.

After optimizing rNN-related hyperparameters (including the context size) on MS MARCO
dev.small for CODER(TAS-B), we evaluate tfNN reranking on the other evaluation sets
(including its x 8 larger superset MS MARCO dev) and present the results in Table 4.2. We
observe that a similarity based on reciprocal nearest neighbors can indeed improve ranking
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Figure B.4: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-
B) results on MS MARCO dev, as the number of candidates in the ranking context grows.
Hyperparameters are the same as in Fig. 4.5. Performance is slightly improved compared to
ranking exclusively based on geometric similarity and peaks at 60 in-context candidates.
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Figure B.5: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-
B) results on TREC DL 2020, as the number of candidates in the ranking context grows.
Hyperparameters are the same as in Fig. 4.5. Performance is improved compared to ranking
exclusively based on geometric similarity and peaks at 60 in-context candidates.
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Figure B.6: Performance of reciprocal nearest neighbors-based reranking of CODER(TAS-
B) results on TREC DL 2019, as the number of candidates in the ranking context grows.
Hyperparameters are the same as in Fig. 4.5. Performance is improved compared to ranking
exclusively based on geometric similarity but does not clearly saturate.

effectiveness compared to using purely geometric similarity. The improvement is more
pronounced on the TREC DL datasets (+0.011 nDCG@10), where a greater annotation depth
and multi-level relevance labels potentially allow to better differentiate between methods.

Additionally, we find that rankings from TAS-B — whose embeddings are relatively similar
to CODER(TAS-B) — also improve, despite the fact that hyperparameters were chosen based
on the CODER(TAS-B) model (also see Figure B.7).

The strongest dense retrieval models we evaluate, CoCondenser and CODER(CoCondenser),
also show improved performance, again measured primarily on TREC DL: the former im-
proves by +0.009 nDCG@ 10 on TREC DL 2020 and the latter by 0.009 nDCG@ 10 on TREC
DL 2019. Notably, reranking effectiveness when using the exact same hyperparameters as for
CODER(TAS-B) and TAS-B is only very slightly worse.

By contrast, when transferring hyperparameters selected for MS MARCO to reranking
candidates on the TripClick dataset, we find that performance deteriorates with respect to
geometric similarity. Therefore, we can conclude that NN hyperparameters predominantly
depend on the dataset, and to a much lesser extent on the dense retriever.

After optimizing hyperparameters on TripClick HEAD Val, we evaluate on HEAD Test,
using both RAW (binary) as well as DCTR (multi-level) relevance labels; we present the
results in Table 4.3. Also for this dataset, which differs substantially in characteristics from
MS MARCO, we again observe that using reciprocal nearest neighbors to compute the
similarity metric can slightly improve ranking effectiveness for all examined retrieval methods.
We also observe the same saturation behavior with respect to the ranking context size, i.e. the
number of candidates considered when reranking (Fig. B.8).
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Figure B.7: Performance of reciprocal nearest neighbors-based reranking of TAS-B results on
MS MARCO dev, as the number of candidates in the ranking context grows. Hyperparameters
are the same as in Fig. 4.5. Performance is improved compared to ranking exclusively based
on geometric similarity and peaks at approx. 60 in-context candidates.
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Figure B.8:  Performance of reciprocal nearest neighbors-based reranking of

CODER(RepBERT) results on TripClick HEAD Test, as the number of candidates in
the ranking context grows.
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B.3 Evidence-based label smoothing

Test: DCTR Head RAW Head
Model MRR@10 nDCG@10 Recall@10 | MRR@10 nDCG@10 Recall@10
TAS-B 0.278 0.139 0.130 0.339 0.188 0.113
CODER(TAS-B) 0.279 0.140 0.130 0.338 0.191 0.115
CODER(TAS-B) 0.285 0.143 0.134 0.344 0.195 0.116
+ geom. smooth labels
CODER(TAS-B) 0.288 0.144 0.134 0.347 0.195 0.116
+ rNN smooth labels
CODER(TAS-B) 0.284 0.142 0.132 0.342 0.192 0.115
+ mixed rNN/geom. smooth lab.
CoCondenser 0.242 0.114 0.105 0.293 0.157 0.092
CODER(CoCondenser) 0.251 0.117 0.107 0.306 0.161 0.093
CODER(CoCondenser) 0.250 0.117 0.107 0.304 0.162 0.094
+ mixed rNN/geom. smooth lab.

Table B.1: Performance of models trained on MS MARCO but zeroshot-evaluated on TripClick
Test. Bold: overall best, Underline: best in model class.

Val: DCTR Head RAW Head
Model MRR@10 nDCG@10 Recall@10 | MRR@10 nDCG@10 Recall@10
TAS-B 0.299 0.145 0.136 0.355 0.200 0.118
CODER(TAS-B) 0.300 0.146 0.140 0.353 0.203 0.121
CODER(TAS-B) 0.297 0.147 0.140 0.355 0.204 0.121
+ geom. smooth labels —
CODER(TAS-B) 0.300 0.147 0.141 0.357 0.205 0.122
+ rNN smooth labels —_ —_
CODER(TAS-B)
+ mixed rNN/geom. smooth lab. 0.299 0.147 0.141 0.355 0.204 0.122
CoCondenser 0.247 0.115 0.105 0.308 0.167 0.097
CODER(CoCondenser) 0.254 0.120 0.111 0.314 0.173 0.101
CODER(CoCondenser)
+ mixed rNN/geom. smooth lab. 0.254 0.118 0.109 0.311 0.169 0.098

Table B.2: Performance of models trained on MS MARCO but zeroshot-evaluated on TripClick
Val. Bold: overall best, Underline: best in model class.
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Query: "iatrogenic infection definition”

rank doclD

text

Iatrogenic infection: Related Diseases. Iatrogenic infection: Iatrogenic infection is listed as
a type of (or associated with) the following medical conditions in our database: 1 Hospital
or surgery-related conditions.hese medical condition or symptom topics may be relevant to
medical information for Iatrogenic infection: 1 latrogenic. 2 latrogenic disease. 3 latrogenic
disorder. 4 Infection (1293 causes). 5 Infection symptoms (1293 causes)

These medical disease topics may be related to latrogenic infection: 1 radiation therapy-
orchemotherapy. 2 fibromyalgia. 3 dissociative identity disorder. 4 bipolar disorder. 5
somatoform disorder.hese medical condition or symptom topics may be relevant to medical
information for latrogenic infection: 1 Iatrogenic. 2 Iatrogenic disease. 3 Iatrogenic disorder.
4 Infection (1293 causes). 5 Infection symptoms (1293 causes)

Confidence votes 407. An iatrogenic infection is one actually caused by accidental medical
actions. Iatrogenic means a complication as a result of treatment.Iatrogenic means that was
caused by a doctor, or by a treatment prescribed by a doctor.plit and merge into it. Answer by
Vtel57. Confidence votes 407. An iatrogenic infection is one actually caused by accidental
medical actions. Iatrogenic means a complication as a result of treatment. latrogenic means
that was caused by a doctor, or by a treatment prescribed by a doctor

Causes. latrogenic infection is complex because it has so many causes, including chance,
negligence, medical error, and interactions of prescription drugs. Nosocomial infections,
another leading cause of iatrogenic illness, are those that occur during hospitalization or
through treatment in another health care setting. Vectors for infection in these facilities
include vomit, blood, urine, and feces. Some microorganisms can be spread through the air

These diseases could be caused by a number of things, and in some cases they are more of an
effect or symptom than a full-on disease. A complication after surgery or another medical
procedure could be classified as an iatrogenic disease

Disease Topics Related To Iatrogenic conditions. Research the causes of these diseases that
are similar to, or related to, latrogenic conditions: 1 Radiation therapyorchemotherapy. 2
Fibromyalgia. [...]

caused by treatment or diagnostic procedures. An iatrogenic disorder is a condition that
is caused by medical personnel or procedures or that develops through exposure to the
environment of a health care facility. See also nosocomial. iatrogenesis, iatrogeny,

iatrogenic. adjective Referring to a physical or mental condition caused by a physician or
health care provider, eg, iatrogenic disease, due to exposure to pathogens, toxins or injurious
treatment or procedures.aused by treatment or diagnostic procedures. An iatrogenic disorder
is a condition that is caused by medical personnel or procedures or that develops through
exposure to the environment of a health care facility

1 1423013+
2 1423019
3 1423015
4 741411
5 769742
6 1423014
7 1499919
8 1423010
9 1499918

iatrogenic adjective Referring to a physical or mental condition caused by a physician or
health care provider, eg, iatrogenic disease, due to exposure to pathogens, toxins or injurious
treatment or procedures

Table B.3: Top documents selected by evidence-based label smoothing to receive higher
than zero target relevance probability. Although only the 1st document (ID: 1423013) is
annotated as relevant in the dataset, we observe that most selected documents are relevant
(false negatives), and in fact more informativeygnd relevant than the ground truth. Documents
in ranks 2 and 6, albeit non-relevant, scored highly due to their pronounced similarity to a
non-relevant part of the ground-truth document.



Query: "how to calculate demolition costs"

rank

docID

text

1

2513851*

Instructions. Mesure the square footage of the structure you wish to demolish using a tape
measure. Multiply the length and the width of the structure to arrive at its area, which is
represented in units squared.For example, if your structure is 10 feet wide and 14 1/2 feet
long, you will arrive at the sum of 145 feet. You will then have to pay for 145 square feet of
demolition.View the structure and determine its number of floors and the building material
it’s made of. Additional floors will add cost to demolition, and various building materials
will have different demolition costs per square foot. [...]

2

2221219

Instructions. Mesure the square footage of [...] Additional floors will add cost to demolition,
and various building materials will have different demolition costs per square foot.

3

2600307

Multiply the length and the width of the structure to arrive at its area, which is represented
in units squared. For example, if your structure is 10 feet wide and 14 1/2 feet long,
you will arrive at the sum of 145 feet. You will then have to pay for 145 square feet of
demolition.View the structure and determine its number of floors and the building material
it’s made of. Additional floors will add cost to demolition, and various building materials
will have different demolition costs per square foot.rovide the structural information and ask
for a quote from each demolition expert. Ask if they add hauling and landfill fees into their
quote. An average cost of residential demolition was $6 to $15 per square foot, as of 2010.

7171531

Calculating the cubic yards of demolition debris is simple and involves converting the cubic
footage of the structure to cubic yards while also accounting for the air space in the building
(0.33). For our 2,000 sq. ft. house example, let’s assume our home is 2 stories and the
dimensions are 40 ft. x 25 ft.

194518

Measure the square footage of your driveway by multiplying its length by its width. For
example, the square footage of a 40 ft. long x 20 ft. wide driveway is 800 square feet. In
this example, a typical demolition cost would range from $800 to $2,400.ther cost factors to
consider include permits and inspections. The national average cost to demolish a concrete
driveway is $1,500, but the price can top $3,000 in some cases.

5517379

There’s not a standard per-square-foot-cost to go by, so be sure to check with at least one
other demolition contractor in your area to see if it can beat the quoted cost of a competing
company. EXAMPLE: A 1,500 square foot house will typically cost $6,000 to $22,500 to
demolish. The wide gap in price is due to the multitude of factors that influence demolition
costs (e.g., location, asbestos abatement, etc.).

3

783054

Measure the square [...] to $2,400.

o]

4724391

Measure the square [...] to $2,400. For curvy and/or multi-width driveways, the calculation
is a bit more complicated.

9

5567534

Measure the square [...] to $2,400.

Table B.4: Top documents selected by evidence-based label smoothing to receive higher
than zero target relevance probability. Although only the 1st document (ID: 2513851) is
annotated as relevant in the dataset, we observe that most selected documents are relevant
(false negatives). Documents in ranks 1, 2 and 5, 7, 8, 9 are near-duplicates.
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Query: "what cause you to lose your taste and smell"

rank

docID

text

Relev.

1

3857566

3857574

8173187

3857571

732708

7111647*

4993775

732707

4453402

There are many causes behind loss of smell and taste. One of the main causes is aging, which brings
on degeneration of nerve cells that control smell and taste buds. Other causes include excessive
smoking, nutritional deficiencies, certain nervous system diseases, radiation therapy, fever, blocked
nasal passages, sinusitis, viral or upper respiratory infections, and gum diseases.

Another cause of loss of smell and taste may be upper viral or respiratory infections. Sinusitis or
blocked nasal passages cause a blockage in air flow; this reduces the amount of aromas reaching the
smell receptors.

Anything that interferes with these processes, such as nasal congestion, nasal blockage, or damage to
the nerve cells themselves, can lead to loss of smell. The ability to smell also affects our ability to
taste. Without the sense of smell, our taste buds can only detect a few flavors, and this can affect your
quality of life. Anosmia Causes Nasal congestion from a cold, allergy, sinus infection, or poor air
quality is the most common cause of anosmia.

This may be due to a degeneration of the nerve cells which control smell, together with a loss of
sensitivity in one’s taste buds. Men, regardless of age have a lower ability to distinguish between

odors. Smoking causes damage to the nasal membranes and reduces one’s ability to identify odors.

Foods will also become tasteless as a result of smoking and one may even lose his/her ability to smell
aromas. Certain nervous system diseases or radiation treatment for cancer patients may result in a
lack of taste and smell.

Sometimes loss of taste and smell contributes to depression. Loss of taste and smell also might tempt
you to use excess salt or sugar on your food to enhance the taste, which could be a problem if you have

high blood pressure or diabetes. If you’re experiencing loss of taste and smell, consult your doctor.

Although you can’t reverse age-related loss of taste and smell, some causes of impaired taste and
smell are treatable. For example, your doctor might adjust your medications if they’re contributing to
the problem.

Sometimes loss of taste and smell contributes to depression. Loss of taste and smell also might tempt
you to use excess salt or sugar on your food to enhance the taste, which could be a problem if you have

high blood pressure or diabetes. If you’re experiencing loss of taste and smell, consult your doctor.

Although you can’t reverse age-related loss of taste and smell, some causes of impaired taste and
smell are treatable. For example, your doctor might adjust your medications if they’re contributing to
the problem. Many nasal and sinus conditions and dental problems can be treated as well.

1 A gradual loss of smell and taste may be due to a cold/flu or sinus infection. 2 If after the cold or
sinus infection has cleared up, your sense of smell and taste has not returned, it is important that you
visit your GP so that he/she can identify any underlying cause for your loss of smell or taste. Smoking
causes damage to the nasal membranes and reduces one’s ability to identify odors. 2 Foods will also
become tasteless as a result of smoking and one may even lose his/her ability to smell aromas. 3
Certain nervous system diseases or radiation treatment for cancer patients may result in a lack of taste
and smell.

Various other factors also can contribute to loss of taste and smell, however, including: 1 Nasal
and sinus problems, such as allergies, sinusitis or nasal polyps. 2 Certain medications, including
beta blockers and angiotensin-converting enzyme (ACE) inhibitors. 3 Dental problems. 4 Cigarette
smoking. 5 Head or facial injury.

Nose or sinus problems might make you lose your sense of smell, for a little while or even a long time.

Your sinuses might be swollen or polyps (tiny growths) might block your nose passages. Infections
(like colds or flu) or a head injury might also make you lose your ability to smell. Parkinson’s disease
or Alzheimer’s disease can make people lose their sense of smell. Infection or inflammation in your
mouth can cause loss of taste. (Inflammation means redness and swelling.) Head injury and Bell’s
palsy can also affect the ability to taste.

True

True

True

True

False

False*

True

True

True

Table B.5: Top documents retrieved by a CODER(TAS-B) model trained through EB label
smoothing. Here, the only non-relevant documents are in fact the only document annotated
as relevant in the dataset (marked with *, ID: 7111647) and its duplicate in rank 5 - all other
documents are actually more relevant and ingo mative. Yet, because in the original model’s
results the ground-truth positive was ranked 3rd, its demotion to rank 6 would decrease MRR
by half, although fully justified.
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