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Introduction 

 The discovery, commercialization, and widespread use of antibiotics is arguably one of the 

greatest medical innovations of the 20th century. Shortly following the discovery of penicillin in 

the 1920s and its widespread use during the second World War, the modern paradigm of empiric 

treatment with broad-spectrum antibiotics was established (Bigger, 1944; Fleming 1929; Ventola, 

2015). While empiric therapy has facilitated increasingly invasive and complex medical 

procedures, by mitigating the risk of post-operative infection, this treatment strategy is not without 

drawbacks (Roberts and Morris, 2020; Salking and Rao, 2011). The first shortcoming of this 

approach is the rapid development of antibiotic resistance amongst nosocomial pathogens, which 

results in clinical failure, skyrocketing healthcare costs, and ever-increasing mortality rates 

(Centers for Disease Control & Prevention, 2013; Ventola, 2015). Second, systemic antibiotic use 

within the agricultural sector has generated environmental reservoirs of antibiotic resistance that 

can leak back into healthcare settings or promote the development of multidrug resistance in 

community-acquired pathogens (Lebreton et al., 2013; F. Ma et al., 2021; Manyi-Loh et al., 2018; 

Woolhouse et al., 2015). Finally, a critical shortcoming of the empiric antibiotic paradigm is a lack 

of drug specificity. Broad-spectrum antibiotics function on conserved biological processes within 

bacteria (Kohanski et al., 2010), thus both pathogenic and non-pathogenic species can exhibit 

sensitivity to these drugs. More specifically, it is widely understood that the symbiotic microbes 

comprising the mammalian microbiome are also susceptible to antibiotic-mediated killing (Blaser, 

2011; Dethlefsen and Relman, 2011; Modi et al., 2013). Disruption of these beneficial microbial 

communities, termed dysbiosis, has a suite of acute and chronic negative consequences to the host 

(Ni et al., 2019; M. Y. Yoon and S. S. Yoon, 2018). Given these shortcomings, there is increased 

recognition for the need of a 21st century antibiotic paradigm. While there is still active debate 
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about what this new paradigm ultimately looks like, any novel therapeutic strategy should aim to 

mitigate off-target toxicity to the microbiome. To do so, it is imperative to gain a fundamental 

mechanistic understanding of why certain species within the microbiome have increased (or 

reduced) susceptibility relative to the community at large, and what are the biotic and abiotic 

factors that dictate said drug susceptibility.  

 

Fundamentals of the Mammalian Microbiome  

Defining the Microbiome 

 The term “microbiome” refers to the amalgam of microorganisms (bacteria, archaea, fungi, 

and viruses), genetic material, and small molecules contained in distinct ecological niches within 

the mammalian host (Berg et al., 2020; Gilbert et al., 2018; Ursell et al., 2012). After birth, 

compositionally and functionally distinct microbial communities assemble through primary 

ecological succession in tissue systems including the skin, nasopharyngeal tract, urogenital tract, 

and gastrointestinal tract (Dominguez-Bello et al., 2010; Gilbert and Lynch, 2019). In humans, 

these communities reach their steady state composition between ages 3 and 5, at which point they 

become stable and individualized (Eckburg et al., 2005; Faith et al., 2013; Jones et al., 2018; 

Schloissnig et al., 2013; Rodríguez et al., 2015; Yatsunenko et al., 2012). In fact, these microbial 

assemblages contain an approximate average of 1013 total bacterial cells, with significant spatial 

variation in density; the skin averages 104-106 total bacteria, while the lower gastrointestinal tract 

averages 1011-1012 total bacteria (Sender et al., 2016; The Human Microbiome Project Consortium, 

2012; Costello et al., 2009; Grice et al., 2009; Lloyd-Price et al., 2017; Sender et al., 2016). This 

intense biogeographical variation speaks to inherent differences in the ecology of these body sites 

and the functional roles of resident microbes within a host. While the communities outside of the 
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gastrointestinal tract are significantly involved in host health and physiology, this introduction will 

specifically focus on microbes of lower gastrointestinal tract, due to their relevance to the findings 

presented in Chapters 2 and 3. 

 

Compositional Characteristics of the Microbiome 

 The colonic microbiota is consistently dominated by the phyla Bacteroidetes and 

Firmicutes in both humans and mice, with Proteobacteria, Actinobacteria, Fusobacteria, and 

Verrucomicroba typically comprising the remaining bacterial portion (The Human Microbiome 

Project Consortium, 2012; Eckburg et al., 2005). This phylum-level compositional conservation 

initially fueled fervent efforts to identify a list of shared species that comprise a core “healthy” 

microbiome (The Human Microbiome Project Consortium, 2012; Costello et al., 2009). However, 

studies utilizing higher taxonomic resolution have consistently demonstrated that the gut 

microbiome exhibits significant inter-individual variation, even within closely related family 

members (Arumugam et al., 2011; Falony et al., 2016; Jones et al., 2018; Schloss et al., 2014). 

Currently no consistent species mixture has been found to be representative of a core microbiome 

across all healthy human populations. However, a core group of genes and enzymatic functions 

has been consistently and repeatedly identified (Arumugam et al., 2011; Tian et al., 2020; 

Yatsunenko et al., 2012; Lloyd-Price et al., 2017), highlighting that the microbiome can be defined 

by its capability to fulfill niche-specific functional roles rather than by a list of specific taxa. Thus, 

the gut microbiome exhibits the ecological property of functional equivalence, where multiple 

species across varied taxonomic groups share overlapping functional roles within an ecosystem 

(B. H. Walker, 1992). 
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 Ecological frameworks are regularly leveraged to describe compositional characteristics of 

the microbiome. For example, total biodiversity is used as a metric to assess ecosystem health, 

where high diversity is attributed to community resistance (capacity to withstand external 

stressors) and resilience (capacity with return to a pre-stressor steady state) (Gilbert and Lynch, 

2019; Ives and Carpenter, 2007; Naeem and Li, 1997; Yachi and Loreau, 1999). In the absence of 

disease or external stressors, the microbiome exhibits high biodiversity, and reductions in total 

diversity are often initial biomarkers of community dysbiosis (Gilbert and Lynch, 2019; Kriss et 

al., 2018; Lozupone et al., 2012; Naeem et al., 1994). Dysbiosis itself represents a failure to exhibit 

resilience; the microbiome is incredibly resilient under normal circumstances and regularly 

undergoes taxonomic shifts in response to environmental stimuli while maintaining its mature 

composition throughout the lifetime of the host (Costello et al., 2009; Faith et al., 2013; Kriss et 

al., 2018; Wilkins et al., 2019). This has been partially attributed to functional redundancy within 

the microbiome, although the underlying mechanisms are not fully understood (Moya and Ferrer, 

2016; Tian et al., 2020). Through the lens of community ecology, we currently envision that the 

gut microbiome is a taxonomically diverse system capable of significant resiliency, that is 

somewhat constricted to conserved functional roles within an individual host.  

 

Functional Roles of the Microbiome 

 The microbiome is integral to the proper development of both systemic and mucosal 

immunity in mammals (Ahern and Maloy, 2020; Kuhn and Stappenbeck, 2013; Neish, 2014). The 

use of “germ-free” animals devoid of a native microbiome has enhanced our understanding of 

immune-microbiome interactions; germ-free rodents have a plethora of defects in both the adaptive 

and innate arms of the immune system, defects in the structure of lymphatic and splenic 
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morphology, and impaired development of secondary lymphoid structures within the intestinal 

epithelium like Peyer’s and Crypt patches (Ahern and Maloy, 2020; Bauer et al., 1963; Kamada 

and Núñez, 2013; Smith et al., 2007). Germ-free animals are particularly hampered in their ability 

to maintain balance between pro and anti-inflammatory T cell populations, and this dysregulation 

has been attributed to the presence of microbes such as Segmented Filamentous Bacteria and 

microbially-derived compounds like polysaccharide A (Ahern and Maloy, 2020; Cox et al., 2014; 

Gaboriau-Routhiau et al., 2009; Ivanov et al., 2009; Kamada and Núñez, 2013; Mazmanian et al., 

2005; Round and Mazmanian, 2009). Fecal transplantation of a donor microbiome, intragastric 

delivery of an engineered microbial consortium, or delivery of microbially-derived epitopes to 

germ-free animals can alleviate this T cell dysregulation (Ahern and Maloy, 2020; Kuczma et al., 

2020; Lelie et al., 2021; Ostman et al., 2006). Analogously, disruption of the microbiota during 

the human neonatal period has lasting immunological consequences. Specifically, reducing 

microbial diversity through caesarian mode-of-delivery and pediatric antibiotic administration has 

been implicated in intestinal inflammatory phenotypes and the development of allergic disease 

(Ahmadizar et al., 2017; Cox et al., 2014; Dominguez-Bello et al., 2010; Lynch and Boushey, 

2016; Riiser, 2015; Romano-Keeler et al., 2014), highlighting that both the presence and 

maintenance of the microbiome is critical to host immunological health. 

 Another primary function of the microbiome is to prevent pathogenic species from 

colonizing the gastrointestinal tract. The microbiota employs multiple strategies to provide 

colonization resistance which can be categorized into host-microbe interactions (promoting 

integrity of the intestinal epithelial barrier, immune activation and recruitment, and generation of 

antimicrobial compounds) and microbial interactions (synthesis of bacteriocins, bacteriophages, 

and nutrient-based competitive exclusion) (Ducarmon et al., 2019; Ghosh et al., 2021; Greathouse 



 7 

et al., 2015; Kim et al., 2018). Specifically, the host physically partitions microbes away from the 

epithelium via a dense mucosal layer and secretion of antimicrobial peptides, while the microbiota 

bolsters the integrity of this barrier by providing metabolites that promote the expression of mucus 

synthesis and tight junction formation (Anderson et al., 2010; Cash et al., 2006; Ewaschuk et al., 

2008; Ghosh et al., 2021; Hooper et al., 2003; Rajbir Singh et al., 2019; Woo et al., 2021). 

Accordingly, defects in the mucus barrier are a major determinant of enteric pathogen 

susceptibility. Antibiotic depletion of beneficial microbes or overgrowth of muciniphilic taxa like 

Akkermansia muciniphila can result in mucus breakdown and place the host in a pathogen-

susceptible state (Alipour et al., 2016; Feng et al., 2019; Ganesh et al., 2013; Jakobsson et al., 

2015; Theriot et al., 2016; Wlodarska et al., 2011). Thus, the composition of the microbiome is 

crucial to maintaining gut structural and spatial integrity (Ducarmon et al., 2019; Duncan et al., 

2021; Zarepour et al., 2013). Antibiotic depletion of the microbiota also decreases colonization 

resistance because native species are known to generate pathogen-antagonistic metabolites; in fact, 

microbiota-derived bacteriocins and lethal pheromone plasmids have been identified to inhibit 

prominent infectious agents including, but not limited to, vancomycin-resistant Enterococci, 

Clostridioides difficile, enteropathogenic Escherichia coli, and Salmonella enterica (Corr et al., 

2007; Gilmore et al., 2015; Hrala et al., 2021; Rea et al., 2010; Sharma et al., 2020). 

 Perhaps the most critical function of the microbiome is its role in nutrient metabolism and 

energy harvest. While the mammalian small intestine is highly efficient at nutrient absorption, 

certain molecules like complex polysaccharides and dietary fibers are undigestible by host 

enzymes (Chassard and Lacroix, 2013; Koepsell, 2020; Oliphant and Allen-Vercoe, 2019). 

Meanwhile, the colonic microbiome is highly adapted to the fermentation of these molecules, as it 

possesses an extensive carbohydrate-focused gene repertoire (Gill et al., 2006; Kaoutari et al., 
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2013; Tasse et al., 2010). The metabolites generated by carbohydrate fermentation can be 

subsequently funneled back to the host; thus, the microbiota allows for energy salvage from 

otherwise inaccessible resources (Chassard and Lacroix, 2013; Hooper et al., 2001; Oliphant and 

Allen-Vercoe, 2019; J. L. Sonnenburg et al., 2005). For example, fiber  fermentation generates 

short-chain fatty acids (SCFA) like acetate, butyrate, and propionate, which are a primary nutrient 

source for intestinal colonocytes (Chassard and Lacroix, 2013; Donohoe et al., 2011). 

Metabolically active colonocytes, in turn, lower the local pH and increase anaerobicity of the 

colon, thus effectively selecting for the presence of carbohydrate-fermenting obligate anaerobes 

(Furuta et al., 2001; Litvak et al., 2018). Although carbohydrates function as the primary nutrient 

source for intestinal microbes, the microbiome also participates in the digestion of proteins, lipids, 

vitamins, and xenobiotics (Jandhyala et al., 2015; Oliphant and Allen-Vercoe, 2019). The 

importance of the microbiome in nutritional harvest can be further gleaned from perturbation 

studies. For example, germ-free mice are notably leaner than their conventional counterparts, and 

experience rapid weight gain and fat storage after receiving microbiome transplantation without 

experiencing hyperphagia (Bäckhed et al., 2004). Computational analysis of the microbiome from 

obese mice indicates increased capacity for energy harvest compared to lean mice (Turnbaugh et 

al., 2006). Finally, antibiotic depletion of the microbiome changes colonic metabolism and reduces 

the overall capacity for dietary energy capture (Basolo et al., 2020; Zarrinpar et al., 2018). 

Together, it is undeniable that the intricate associations between mammals and their microbes are 

critical for proper health and development. It is likely that the functions of the microbiome have 

been critical to host survival, and this may explain why these communities are omnipresent and 

exhibit high functional redundancy.  
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Analytical Methods for Studying the Microbiome 

Characterizing Microbiome Structure: 

 The development and commercialization of massively parallel sequencing technologies in 

the early 2000s was foundational to the study of the microbiome (Quail et al., 2012; Weinstock, 

2012). Replicating the intestinal milieu via in vitro culture continues to be a major experimental 

roadblock for microbiome studies, thus the field has relied heavily on sequencing for sample 

capture (Hitch et al., 2021; Mori and Kamagata, 2014). Currently, taxonomic classification is 

conducted using either marker gene-based amplicon sequencing or shotgun metagenomics (Y.-X. 

Liu et al., 2021). The former relies on the small subunit of the 16S ribosomal RNA (rRNA) as a 

marker, since this gene has both near-ubiquitous conservation and mutable hypervariable regions 

(Pace, 1997; Clarridge, 2004; Gray et al., 1984; Patwardhan et al., 2014). While 16S rRNA 

sequencing is highly affordable, it suffers from hypervariable region-dependent amplification bias, 

fails to reach species and strain-level taxonomic resolution, and fails to provide functional 

information (Bukin et al., 2019; Poretsky et al., 2014). While computational approaches like 

PICRUSt have been developed to infer functionality from 16S data, shotgun metagenomics 

provides a more robust characterization of taxonomic composition and community functional 

potential (Douglas et al., 2020; Y.-X. Liu et al., 2021; Poretsky et al., 2014). Metagenomic 

sequencing can yield comprehensive annotations of bacteria, fungi, archaea, viruses, and 

eukaryotic parasites from a single sample due to lack of amplification bias during library 

generation (Y.-X. Liu et al., 2021; Qin et al., 2010; Vemuri et al., 2020). By providing coverage 

of entire genomes, metagenomics also allows for functional inference via gene content abundance 

(Qin et al., 2010). However, the sequencing depth required to obtain said coverage can make this 

method costly, and annotation of gene content is limited by the completeness of references bases 
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used during sequence alignment (Raes et al., 2007; W.-L. Wang et al., 2015). Another drawback 

of metagenomics is that it is unable to provide transcriptional information, but parallel analyses 

are often employed alongside metagenomics to overcome this limitation.  

 

Characterizing Microbiome Function:  

 Metatranscriptomics, the sequencing of total RNA from complex samples, provides a direct 

assessment of active transcription within the microbiome and, when paired with metagenomics, 

can yield gene expression data that is normalized for both taxonomic and gene abundances (Chung 

et al., 2020; Deng et al., 2018; Franzosa et al., 2018; Zhang et al., 2021). Just like metagenomics, 

metatranscriptomics requires incredibly high sequencing depth and can be cost prohibitive thus it 

is less frequently implemented in microbiome studies (Aguiar-Pulido et al., 2016; Bashiardes et 

al., 2016; Monleon-Getino and Frias-Lopez, 2020). Sequencing reads can be mapped to multiple 

functional databases including the Kyoto Encyclopedia of Genes and Genomes, MetaCyc 

pathways, Carbohydrate-Active Enzymes, SEED Subsystems, antibiotic resistance genes, and 

others, facilitating a wide examination of functional activity within a single study (Cantarel et al., 

2009; Kanehisa and Goto, 1999; Karp et al., 2000; B. Liu and Pop, 2009; Overbeek et al., 2014). 

Additionally, reads can be mapped to individual reference genomes allowing for single-species 

RNA sequencing from metatranscriptomics reads (Cabral et al., 2019; Deng et al., 2018). While 

this is robust, it is important to note that annotation and alignment are limited by the maintenance 

of the reference database of choice (Bashiardes et al., 2016). Another limitation of 

metatranscriptomics is that RNA preparations are typically contaminated with rRNAs and host-

derived messenger RNAs, although library preparation protocols now routinely include rRNA and 

mRNA depletion steps, and in silico quality control methods can be implemented to remove 
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contaminating reads for which a reference genome or database is available (Aguiar-Pulido et al., 

2016; Bashiardes et al., 2016; McIver et al., 2018).    

 An  inherent limitation to metatranscriptomic data is that it fails to provide information 

regarding post-transcriptional enzymatic activity or biotransformation of environmental 

metabolites. Comprehensive study designs can use methods like metaproteomics and 

metabolomics alongside sequencing to provide these data (Abbondio et al., 2019; Aguiar-Pulido 

et al., 2016; Blakeley-Ruiz et al., 2019; Chuang et al., 2012; Kuang et al., 2020; Lei et al., 2011; 

Nusbaum et al., 2018; Obrenovich et al., 2017; Piccolo et al., 2018; Salvato and Hettich, 2021; 

Wikoff et al., 2009; Yasuda et al., 2020; Yu et al., 2018). Both metaproteomics and metabolomics 

employ chromatography, compound ionization, and mass spectrometry to provide spectral peaks 

affiliated with specific peptides or heterogeneous metabolites, respectively (Aguiar-Pulido et al., 

2016; Isaac et al., 2019; Salvato and Hettich, 2021). These spectra are then aligned to relevant 

databases and thus are subject to the same database limitations as sequencing technologies (Isaac 

et al., 2019; Salvato and Hettich, 2021). Recently, some computational pipelines have begun to 

account for variations between anaerobic and aerobic compound metabolism and have generated 

anaerobically focused spectral databases (Han et al., 2021). Hopefully, the accuracy of these 

platforms will continue to improve alongside database annotation and curation as ion annotation 

is the major bottleneck of these technologies. Despite these limitations, an undeniable strength of 

metabolomics is the ability to perform quantitatively focused “targeted” or hypothesis agnostic 

“untargeted” analyses, and the capacity of the technology to detect compounds with significant 

variation in thermostability, volatility and polarity  (Aguiar-Pulido et al., 2016; Chen et al., 2019; 

H. Luan et al., 2019). Ultimately, comprehensive analyses of microbial ecosystems should employ 

both structural and functional assessments in their study design. 
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Impacts of Dietary Macronutrient Composition on Microbiome Community Dynamics  

 Nutrient availability is one of the strongest selective pressures on the structure and function 

of the microbiome. Within the colon, nutrient abundance is shaped by the composition of the host 

diet, host macronutrient uptake efficiency, and host pancreaticobiliary sections, all of which 

subsequently impact microbial metabolic function (Reese and Carmody, 2019). Dietary 

composition has been postulated as a primary driver of mature microbiome assemblage in humans 

(Johnson et al., 2019; A. W. Walker et al., 2011; Xu and Knight, 2015). For example, the typical 

microbiota of industrialized nations significantly differs from those of hunter-gather tribes, in large 

part due to differences in the macronutrient content of their preferred diets (Smits et al., 2017; E. 

D. Sonnenburg and J. L. Sonnenburg, 2014). Industrialized (Western) diets are enriched for simple 

sugars, animal proteins, animal-derived fats, and are significantly lacking in dietary fiber compared 

to non-Western diets (Zinöcker and Lindseth, 2018). These macronutrient differences have 

significant impacts on carbohydrate and lipid metabolism within the microbiome and can induce 

multiple negative metabolic phenotypes for the host (Kanoski et al., 2014; Qi et al., 2009; Zinöcker 

and Lindseth, 2018). The low levels of fiber within a Western diet functionally starves obligate 

anaerobes that rely on carbohydrate fermentation, instead promoting mucolytic behavior in 

Bacteroides and bolstering the expansion of muciniphiles like A. muciniphila (Bisanz et al., 2019; 

Desai et al., 2016). The resultant cleavage of mucus oligosaccharides makes the underlying sugar 

structures available to other members of the community, further disrupting gut metabolic 

homeostasis (Desai et al., 2016; Turnbaugh et al., 2009; Chassard and Lacroix, 2013; Reese and 

Carmody, 2019; Smits et al., 2016). As previously stated, this disruption can prime the host for a 

slew of acute conditions including decreased colonization resistance, and these perturbed 
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phenotypes are transferable to germ-free animals during microbiome transplantation (Desai et al., 

2016; Turnbaugh et al., 2008).  

Consumption of Western diets also greatly perturbs lipid homeostasis, increasing the overall 

secretion of primary bile acids to increase fatty acid emulsification. While most bile acids are 

recycled in the upper GI a fraction does migrate to the colon (Reese and Carmody, 2019). Once 

there, primary bile acids can either exhibit bactericidal activity, promote the sporulation of 

intestinal pathogens like C. difficile, or be subjected to biotransformation by bile-resistant 

members of the microbiome (Greathouse et al., 2015; Reese and Carmody, 2019; Ridlon et al., 

2014). Interestingly, Western diets can shift the preferential conjugation of primary bile acids from 

glycine to taurine, which is a more favorable conjugation for pathobiont expansion (David et al., 

2014; Devkota et al., 2012). Changes in microbiome metabolism in response to Western diet 

consumption can occur within 12 hours, and can additionally involve modifications to protein, 

polyphenol, and vitamin metabolism (Reese and Carmody, 2019; Schoeler and Caesar, 2019; X. 

Zheng et al., 2017). Thus, the degree to which dietary composition influences the microbiome is 

profound and represent a near-constant selective pressure on this ecosystem.  

 

Impacts of Host Metabolic Disease on Microbiome Community Dynamics 

Given its significant role in macronutrient metabolism, the microbiome and host metabolic 

function are dynamically linked. This is especially apparent when examining patient populations 

with metabolic diseases like dysglycemia, type-I and type-II diabetes mellitus, and obesity. These 

diseases have complex pathologies involving multiple organ systems, but all feature notable shifts 

in microbiome composition and function (Aw and Fukuda, 2018; Fabbiano et al., 2017; Hartstra 

et al., 2015; Herrema and Niess, 2020; Sabatino et al., 2017; Scheithauer et al., 2020; P. Zheng et 
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al., 2018). Metabolic dysregulation has been characterized by the loss of multiple SCFA-producing 

and carbohydrate-fermenting taxa that is concurrent with the expansion of pro-inflammatory 

pathobionts in multiple clinical cohorts with varying age and geographic locals (Kostic et al., 2015; 

Y. Liu et al., 2020; Q. Ma et al., 2020; Qin et al., 2012; Rotimi, 2020; Thingholm et al., 2019). 

This taxonomic restructuring regularly occurs before diagnosis and can be used to predict if certain 

therapies will ameliorate glucose dysregulation (Boursi et al., 2015; Kostic et al., 2015; Y. Liu et 

al., 2020). Functionally, the microbiota of metabolically perturbed hosts has reduced capacity for 

carbohydrate fermentation and modified expression of genes involved in the metabolism of 

branched chain and aromatic amino acids, long-chain fatty acids, polyunsaturated fatty acids, and 

oxidative stress responses, as well as an overall shift away from nutrient biosynthesis in favor of 

passive nutrient transport (Kostic et al., 2015; Org et al., 2017; Qin et al., 2012; Wu et al., 2020; 

Zhou et al., 2019). In some cases, dysglycemic patients experience microbial infiltration of the 

epithelial mucosa, demonstrating a conversion towards mucolytic behavior by the microbiota 

(Chassaing et al., 2017).  

  Drastic shifts in microbiome taxonomy and function also occur in animal models of 

metabolic disease. There are many strategies to perturb metabolic homeostasis in rodents, although 

no model perfectly recapitulates the complex pathology of human disease. Models can elicit 

desired phenotypes via genetic manipulation (ob/ob, NOD, Akita), dietary supplementation (diet-

induced obesity), or chemotherapeutic administration (streptozotocin, alloxan), and the selection 

of model is dependent on research questions and which variables are most desired to control for 

(Al-awar et al., 2016; Deeds et al., 2011; Skovsø, 2014; C.-Y. Wang and Liao, 2011). Early work 

in ob/ob mice demonstrated that, like in humans, microbial gene content can be correlated with 

obesity, dyslipidemia, and fatty liver disease (Devaraj et al., 2013; Ley et al., 2005). The reduction 
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of carbohydrate fermenting taxa upon type-II diabetic onset occurs in multiple rodent models, and 

is concurrent with increased mucolytic activity and oxidative stress within the microbiome, 

suggesting that diabetic host signaling can directly impact microbiology ecology in the gut (S. Liu 

et al., 2019; Q. Ma et al., 2020; Piccolo et al., 2018; Sabatino et al., 2017; Thaiss et al., 2018). 

Interestingly, recent work has demonstrated that antibiotic-mediated disruption of Firmicutes 

within the gut can perturb carbohydrate and lipid metabolism, and that early-life antibiotic 

administration accelerates the onset of metabolic disease phenotypes in susceptible mouse strains 

(Livanos et al., 2016; Patterson et al., 2015; Rajpal et al., 2015). Together, clinical and animal data 

highlight how tightly connected microbial and host health are in relation to metabolic homeostasis. 

Additionally, these data reveal how disruption of either the host or the microbiome has profound 

impacts on the other. Microbial metabolism in the gut ecosystem in inextricably linked to host-

provided metabolites that are, in part, dictated by host metabolic well-being.  

 

The Relationship Between Microbial Metabolism and Antibiotic Susceptibility 

Antibiotic-Induced Dysbiosis 

 Microbiome dysbiosis related to antibiotic administration significantly perturbs the gut 

ecosystem and has both chronic and acute consequences for the host, including impairments in 

metabolic function, colonization resistance, and immune regulation, as mentioned previously 

(Buffie et al., 2012; Cox et al., 2014; Kim et al., 2018; Ni et al., 2019; M. Y. Yoon and S. S. Yoon, 

2018). Antibiotics deplete taxonomic diversity within hours of administration, reducing the 

abundance of carbohydrate-fermenting obligate anaerobes and promoting the outgrowth of 

facultative anaerobes like Proteobacteria (Cabral et al., 2019; Dethlefsen and Relman, 2011; Litvak 

et al., 2017). The exact taxonomic shifts that occur in response to antibiotics are dictated by a 
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combination of antibiotic spectrum of activity, length of treatment, route of administration, and 

individual differences in host diet, and physiology (Cabral et al., 2019; Dethlefsen and Relman, 

2011; Ferrer et al., 2017; Gao et al., 2019; Iizumi et al., 2017; Ng et al., 2019). Changes in 

taxonomic composition can also be influenced by intrinsic and acquired antibiotic resistances 

amongst gut microbes (Hollenbeck and Rice, 2012; Penders et al., 2013). Perhaps unsurprisingly, 

antibiotic treatment elicits significant changes to the functional capacity of the microbiome as 

measured via multi-omic methodologies (Antunes et al., 2011; Cabral et al., 2019; Ferrer et al., 

2017; Hernandez et al., 2013; Korry et al., 2020). Drug challenge profoundly perturbs metabolic 

homeostasis of carbohydrates, bile acids, and steroid hormone conjugations, impacting almost 90 

percent of the intestinal metabolome in some studies (Antunes et al., 2011; Cabral et al., 2019; 

Hernandez et al., 2013).  Antibiotic treatment can also elicit transcriptional changes in the 

resistome (gene content specifically involved in antibiotic resistance) by creating intense selective 

pressure for resistance acquisition (Korry et al., 2020; Penders et al., 2013). Because the 

microbiome is natively resilient, much of its compositional diversity returns after antibiotic 

cessation, however this can be delayed by months or years, and many individual strains are 

permanently lost (Koo et al., 2019; Lozupone et al., 2012; Ng et al., 2019; L. P. Shaw et al., 2019). 

This is particularly true of antibiotic administration during the neonatal period, which has lasting 

impacts on microbiome function throughout life (Ainonen et al., 2021; Cox et al., 2014; S. Y. 

Shaw et al., 2010; Stewart et al., 2018). However, functional redundancy within the microbiome 

ensures that most of the primary functions of the microbiome are still fulfilled to a degree. A 

pressing question within the field has been what factors dictate the functional responses of the 

microbiota to drug challenge. 
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Metabolism Determines Bactericidal Antibiotic Susceptibility 

Until recently, the prevailing school of thought has been that bactericidal antibiotics were 

able to actively kill bacterial cells through the inhibition of their primary biological target. For 

example, β-lactam antibiotics inhibit cell wall synthesis by interrupting the cross-linking of 

peptidoglycan while fluoroquinolones inhibit the replication machinery by blocking DNA gyrase 

and topoisomerase IV (Cho et al., 2014; de Lastours and Fantin, 2015; Falla and Chopra, 1998). 

Interruption of these processes leads to cell lysis and lethal double-stranded DNA breaks, 

respectively.  

In the early 2000s it was proposed that futile cycling also induces bactericidal activity via 

the generation and accumulation of reactive oxygen species (ROS) (Kohanski et al., 2007). Once 

an antibiotic has locked into its target substrate, the bacterial cell is subsequently sent into a toxic 

futile cycle where it continues to synthesize cellular components that are doomed for immediate 

breakdown (Adolfsen and Brynildsen, 2015). Ultimately, the continual synthesis and degradation 

of cellular components incurs a high metabolic demand and induces cell death via depletion of 

intracellular ATP stores and concurrent ROS toxicity (Adolfsen and Brynildsen, 2015; Stokes et 

al., 2019). Multiple research groups have provided supporting evidence for this model, suggesting 

that bactericidal activity is a multidimensional process that involves a metabolic component  

(Belenky et al., 2015; Cho et al., 2014; Dwyer et al., 2014; Ferrándiz et al., 2016; Hong et al., 

2019; Lam et al., 2020; G. Luan et al., 2018; Stokes et al., 2019; Van Acker and Coenye, 2017; 

Zhao et al., 2015). Bacterial metabolic state has been demonstrated to mediate antibiotic 

susceptibility, where permissive metabolic processes that generate ATP (like the tricarboxylic acid 

cycle (TCA)) contribute to antibiotic lethality via ROS toxicity (Adolfsen and Brynildsen, 2015; 

Belenky et al., 2015; Lobritz et al., 2015; Meylan et al., 2017; Mok et al., 2015; Ranji Singh et al., 
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2009; Stokes et al., 2019; Thomas et al., 2013). Furthermore, metabolic starvation and mutations 

that divert metabolism away from the TCA cycle or reduce electron transport are known antibiotic 

tolerance mechanisms in select pathogens (Ahn et al., 2016; Cabral et al., 2018; Lee et al., 2018; 

Nguyen et al., 2011; Ranji Singh et al., 2009; Thomas et al., 2013). Thus, changes in metabolism 

that decrease metabolic rate, like a switch to fermentation or use of anaerobic electron acceptors, 

reduce bactericidal drug activity (Baek et al., 2011; Conlon et al., 2016; Greulich et al., 2015; 

Gusarov et al., 2009; Lobritz et al., 2015).  In fact, bacterial metabolic rate was recently 

demonstrated to be one of the best predictors of susceptibility in vitro (Lopatkin et al., 2019). 

While these works have revolutionized our mechanistic understanding of antibiotic susceptibility, 

the bulk of this work has been conducted in vitro with species that are highly genetically tractable. 

The question then becomes if this holds true within dynamic polymicrobial ecosystems like the 

microbiome.  

 Cabral et al. recently demonstrated that microbial metabolism is tightly linked with 

bactericidal antibiotic activity within the context of the gut microbiome (Cabral et al., 2019). 12-

hour administration of amoxicillin reduces the overall metabolic capacity of the microbiome, 

suggesting that the taxa who survive drug treatment can induce a metabolic-based tolerance 

phenotype. In this work, the gut symbiont Bacteroides thetaiotaomicron was able to dominate the 

post-antibiotic treated microbiome by efficiently prioritizing the fermentation of dietary-derived 

complex polysaccharides. Cabral et al. found that supplementation with glucose modulated 

amoxicillin susceptibility in this species both in vivo and in vitro, proposing that carbohydrate 

substrate availability can impact bactericidal activity in vivo via modifications of microbial 

metabolism (Cabral et al., 2019).  
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Thesis Overview and Summary of Findings 

The goal of this dissertation is to expand upon the hypothesis that carbon source availability 

and microbial metabolism dictate the severity of antibiotic-induced dysbiosis within the 

microbiome. Specifically, this work aims to take an ecology and systems-sensitive examination of 

host-related factors that can shape the local nutrient pool within the cecum, including dietary 

composition and host metabolic health. This work utilizes and integrates multiple high throughput 

‘omics methods including metagenomics, metatranscriptomics, and metabolomics, to gain a 

holistic examination of diet and host metabolism on gut microbiome function during antibiotic 

treatment. Chapter 2 characterizes the impact that short-term consumption of a Western diet has 

on ciprofloxacin toxicity within the gut. We found that the microbiota of mice consuming the 

Western diet was enriched for mucolytic behavior and simple sugar sequestration which 

subsequently increased transcription of glycolysis and reduced polysaccharide fermentation. By 

placing the community in a more metabolically permissive state, the Western diet enhanced the 

microbiome’s susceptibility to ciprofloxacin, demonstrating that dietary-induced changes in the 

gut nutrient pool can potentiate bactericidal antibiotics.  

Chapter 3 examines the degree to which host metabolic dysfunction contributes to 

antibiotic-induced dysbiosis. In this work we used the chemotherapeutic streptozotocin (STZ) to 

induced rapid hyperglycemia in mice without dietary modification, then performed multi-omic 

profiling of the cecum before and after amoxicillin administration. We found that STZ-induced 

hyperglycemia caused an expansion of A. muciniphila and significantly restructured both the 

transcriptional and metabolite landscape of the cecum before antibiotic treatment. Specifically, 

STZ promoted a shift away from polysaccharide fermentation and increased primary respiration 

by the microbiota. This resulted in significantly higher antibiotic susceptibility within the gut. STZ 
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pre-treatment exaggerated the loss of Firmicutes and expansion of B. thetaiotaomicron, and 

completely restructured how the larger community and B. thetaiotaomicron transcriptionally 

responded to amoxicillin exposure. Lastly, we challenged STZ and amoxicillin co-treated mice (as 

well as normoglycemic controls) with an intragastric infection of S. enterica Typhimurium to 

assess how STZ and amoxicillin co-treatment impacted colonization resistance. We found that 

hyperglycemic animals were more susceptible to colonization, suffered further microbiome 

dysbiosis, and had reduced survival compared to normoglycemic and vehicle-treated control 

animals.  

Together the data presented in Chapters 2 and 3 demonstrate that alterations to the cecal 

nutrient pool, either through diet or through disruption of host metabolic homeostasis, are 

sufficient to worsen bactericidal antibiotic-induced dysbiosis. Additionally, these data show that 

these antibiotics are potentiated in Western diet-fed and hyperglycemic animals due to changes in 

the metabolic behavior of the gut microbiome. Overall, these data highlight the need to 

contextualize host-related activities in any examination of microbiome-related antibiotic damage, 

and that host behavior should be considered during the development of therapeutic strategies 

designed to mitigate dysbiosis.   
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Abstract 
Dietary composition and antibiotic use have major impacts on the structure and function of the gut 
microbiome, often resulting in dysbiosis. Despite this, little research has been done to explore the 
role of host diet as a determinant of antibiotic-induced microbiome disruption. Here, we utilize a 
multi-omic approach to characterize the impact of Western-style diet consumption on 
ciprofloxacin- induced changes to gut microbiome structure and transcriptional activity. We found 
that Western diet consumption dramatically increased Bacteroides abundances and shifted the 
community toward the metabolism of simple sugars and mucus glycoproteins. Mice consuming a 
Western-style diet experienced a greater expansion of Firmicutes following ciprofloxacin 
treatment than those eating a control diet. Transcriptionally, we found that ciprofloxacin reduced 
the abundance of tricarboxylic acid (TCA) cycle transcripts on both diets, suggesting that carbon 
metabolism plays a key role in the response of the gut microbiome to this antibiotic. Despite this, 
we observed extensive diet-dependent differences in the impact of ciprofloxacin on microbiota 
function. In particular, at the whole-community level, we detected an in- crease in starch 
degradation, glycolysis, and pyruvate fermentation following antibiotic treatment in mice on the 
Western diet, which we did not observe in mice on the control diet. Similarly, we observed diet-
specific changes in the transcriptional activity of two important commensal bacteria, Akkermansia 
muciniphila and Bacteroides thetaiotaomicron, involving diverse cellular processes such as 
nutrient acquisition, stress responses, and capsular polysaccharide (CPS) biosynthesis. These 
findings demonstrate that host diet plays a role in determining the impacts of ciprofloxacin on 
microbiome composition and microbiome function.  
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Importance 
Due to the growing incidence of disorders related to antibiotic- induced dysbiosis, it is essential to 
determine how our “Western”-style diet impacts the response of the microbiome to antibiotics. 
While diet and antibiotics have profound impacts on gut microbiome composition, little work has 
been done to ex- amine their combined effects. Previous work has shown that nutrient availability, 
influenced by diet, plays an important role in determining the extent of antibiotic- induced 
disruption to the gut microbiome. Thus, we hypothesize that the Western diet will shift microbiota 
metabolism toward simple sugar and mucus degradation and away from polysaccharide utilization. 
Because of bacterial metabolism’s critical role in antibiotic susceptibility, this change in baseline 
metabolism will impact how the structure and function of the microbiome are impacted by 
ciprofloxacin expo- sure. Understanding how diet modulates antibiotic-induced microbiome 
disruption will allow for the development of dietary interventions that can alleviate many of the 
microbiome-dependent complications of antibiotic treatment.  
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Introduction 

The gut microbiome includes the trillions of largely commensal bacteria, archaea, and 

fungi that inhabit the gastrointestinal tract (Gilbert et al., 2018; Rowan-Nash et al., 2019; Ursell et 

al., 2012). These communities play an important role in numerous biological processes such as 

digestion, neurological development, colonization resistance, and immune function (De Luca and 

Shoenfeld, 2019; Dickerson et al., 2017; Foster and Neufeld, 2013; Hartstra et al., 2015; Leong et 

al., 2018; Lynch and Boushey, 2016; Mukherjee et al., 2014; Peleg et al., 2010; Riiser, 2015; Rea 

et al., 2011; Tremlett et al., 2017; Vieira et al., 2014; Blaser, 2011; Stiemsma and Michels, 2018). 

Consequently, it is unsurprising that disruption of microbial homeostasis, termed dysbiosis, has 

numerous harmful impacts to the host. The gut microbiome is highly sensitive to perturbations 

such as broad-spectrum antibiotic usage. Within hours of treatment, antibiotics induce dramatic 

reductions in both bacterial load and diversity within the microbiome, both of which are common 

indicators of dysbiosis (Cabral et al., 2019; Dethlefsen and Relman, 2011). 

While compositional changes are typically transient and recover following the cessation of 

a perturbation, oftentimes the structure and diversity of the microbiota never return to their original 

levels. The resulting dysbiosis often has numerous acute and chronic impacts on host health. In 

the case of antibiotic usage, this may increase the risk of infection with opportunistic fungal and 

bacterial pathogens by reducing colonization resistance (Blaser, 2011; Chang et al., 2008; 

Mukherjee et al., 2014; Peleg et al., 2010; Preidis and Versalovic, 2009; Rafii et al., 2008; Rea et 

al., 2011; Rowan-Nash et al., 2019; Theriot et al., 2016). Most notably, broad-spectrum antibiotic 

treatment is a major risk factor in Clostridioides difficile infection (Chang et al., 2008; Hryckowian 

et al., 2018; Lessa et al., 2015; Theriot et al., 2016). Persistent dysbiosis is correlated with many 

chronic conditions with considerable morbidity and mortality, such as asthma, obesity, and 
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inflammatory bowel disease (Blaser, 2011; De Luca and Shoenfeld, 2019; Dickerson et al., 2017; 

Foster and Neufeld, 2013; Hartstra et al., 2015; Hryckowian et al., 2018; Lynch and Boushey, 

2016; Rea et al., 2011; Tremlett et al., 2017).  

Interestingly, antibiotic-induced disruption of the microbiome may be influenced by the 

metabolic environment of the gut. A large body of in vitro data indicates that the rate of metabolic 

activity for bacteria correlates positively with antimicrobial susceptibility, such that metabolically 

active, ATP-producing processes such as respiration promote toxicity, whereas less efficient or 

quiescent metabolism induces tolerance (Belenky et al., 2015; Dwyer et al., 2014; Lobritz et al., 

2015). A similar trend is observed in the context of bacteria responding to antibiotics in the gut 

microbiome, where nutrient availability and bacterial metabolism are closely linked to host diet. 

Recent work has demonstrated that antibiotic exposure changes both the composition of the gut 

microbiome and its metabolic capacity, such that the surviving microbiome is overall less 

metabolically active (Cabral et al., 2019). Further, amoxicillin treatment was shown to increase 

the expression of polysaccharide utilization genes, while simultaneously decreasing the abundance 

of transcripts involved in simple sugar utilization (Cabral et al., 2019). Reflecting these changes, 

amoxicillin also decreased the total concentration of glucose within the ceca of mice (Cabral et al., 

2019). These transcriptional changes have significant impacts on the response of specific bacteria 

to the treatment. In the case of Bacteroides thetaiotaomicron, polysaccharide utilization promoted 

tolerance to amoxicillin, and simple sugar utilization increased toxicity. Accordingly, the response 

of the microbiota to antibiotics can be impacted by dietary nutrient modulation (Schnizlein et al., 

2020). For example, Cabral et al. found that glucose supplementation impacts the response of the 

total community and reduces the absolute abundance of bacteria, particularly B. thetaiotaomicron, 

following amoxicillin treatment in mice (Cabral et al., 2019). Together these findings suggest that 
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dietary composition may act as an additional perturbation that drives the severity of the 

microbiome’s response to antibiotic treatment.  

Dietary composition is known to have a profound impact on microbiome diversity and 

overall gut health (Argueta and DiPatrizio, 2017; Bisanz et al., 2019; Kanoski et al., 2014; Ley et 

al., 2005; Smits et al., 2017; Turnbaugh et al., 2009; Xu and Knight, 2015). Diets high in fat and 

simple sugars, typically referred to as “Western” diets, have been associated with a number of 

negative health states including obesity, diabetes mellitus, allergies, and inflammatory bowel 

disease (Argueta and DiPatrizio, 2017; Arpaia et al., 2013; Cotillard et al., 2013; Kanoski et al., 

2014; Qi et al., 2009; Sami et al., 2017; E. D. Sonnenburg and J. L. Sonnenburg, 2019; 2014; J. L. 

Sonnenburg et al., 2005; Trompette et al., 2014; Turnbaugh, 2017). Such diets have very low levels 

of microbiota-accessible carbohydrates (MACs), which are typically found in complex plant 

polysaccharides and are indigestible and unabsorbable by the host (Fischbach and J. L. 

Sonnenburg, 2011; Kashyap et al., 2013; E. D. Sonnenburg and J. L. Sonnenburg, 2014; Trompette 

et al., 2014; Walker et al., 2011). MACs are typically fermented by the colonic microbiota to 

produce short-chain fatty acids (SCFAs), which play important roles in regulating energy 

homeostasis and inflammation within the host (Arpaia et al., 2013; E. D. Sonnenburg and J. L. 

Sonnenburg, 2014; Topping and Clifton, 2001; J. M. W. Wong et al., 2006; Yatsunenko et al., 

2012) (Cani et al., 2019; Chambers et al., 2018; S. Macfarlane and G. T. Macfarlane, 2003). High-

MAC diets have also been shown to increase microbial diversity, a classic bench- mark for gut 

microbiota health. Conversely, low-MAC diets are known to reduce both microbiome diversity 

and SCFA production (Cotillard et al., 2013; David et al., 2014; Kashyap et al., 2013; Trompette 

et al., 2014). MAC starvation enriches for muciniphilic microbes that are capable of degrading the 

mucosal lining of the gut, such as Akkermansia muciniphila (Desai et al., 2016; Fischbach and J. 
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L. Sonnenburg, 2011; E. D. Sonnenburg and J. L. Sonnenburg, 2014; J. L. Sonnenburg et al., 

2005). Degradation of the mucosal layer over time may result in compromised gut barrier function 

and lead to increased inflammation, colitis, and susceptibility to infection by enteric pathogens 

(Schoeler and Caesar, 2019).  

Individually, antibiotic usage and the consumption of Western-style diets are known to 

negatively impact the microbiota, impacting host health. Despite this, little work has explored the 

impact of diet on the response of the microbiota to antibiotics. Previous work has suggested that 

dietary composition may play an important role in determining the extent of antibiotic-induced 

microbiome disruption (Cabral et al., 2019). Thus, we hypothesize that the consumption of a 

Western-style diet will significantly modify the metabolic activity of the microbiome toward 

simple sugar and mucus glycoprotein degradation rather than dietary polysaccharide utilization. 

This will be characterized by differential utilization of carbohydrate-active enzymes (CAZymes) 

along with changes in respiratory activity and central carbon metabolism. Given that respiratory 

activity plays a key role in drug susceptibility in vitro, when this community is treated with a 

bactericidal antibiotic like ciprofloxacin, its compositional and functional responses to the drug 

would be different due to the altered metabolic state. Overall, we anticipate that the diet-related 

metabolic state of the microbiome before treatment will have a larger impact on drug disruption 

than the metabolic changes that are induced during the drug exposure. In this study, we use a 

combined metagenomic and metatranscriptomic approach to characterize the impact of a Western-

style diet on the taxonomic and functional disruption of the microbiome during ciprofloxacin 

treatment. Using shotgun metagenomics, we found that ciprofloxacin elicited differential impacts 

on community composition in mice at both the phylum and species level in a diet-dependent 

manner. Using metatranscriptomics, we observed that consumption of a Western diet induced 
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profound transcriptional changes within the gut microbiomes of mice. Furthermore, consumption 

of this diet modulated the transcriptional response of these communities to antibiotic treatment. 

Specifically, dietary composition had a major impact on the abundance of transcripts containing 

key metabolic genes. Lastly, we were able to detect unique species-specific transcriptional changes 

in response to both diet and ciprofloxacin treatment in two important commensal bacteria, A. 

muciniphila and B. thetaiotaomicron.  

 

Results 

To determine the impact of dietary composition and antibiotic exposure on the structure 

and function of the murine gut microbiome, female C57BL/6J mice were randomly assigned to 

either a high-fat, high-sugar “Western”-style (Western) diet or a low-fat control diet for 7 days in 

multiple cages (Table 1). At this point, mice from each diet were again randomly split between 

ciprofloxacin and vehicle control groups and treated for 24 h in multiple cages (n = 8 to 12 per 

group). Previously it has been shown that 24 h of ciprofloxacin treatment was sufficient to induce 

changes in community structure and transcriptional activity (Cabral et al., 2019). This time frame 

also allowed for profiling the acute response of the microbiota to ciprofloxacin exposure, rather 

than characterizing a post-antibiotic state of equilibrium. Following treatment, the mice were 

sacrificed to harvest their cecal contents for taxonomic profiling and transcriptional analysis 

(Figure 1A). Overall, we found that diet and ciprofloxacin treatment had a significant impact on 

gut microbiome structure (Figure 1B-1D; see also Figure S1 in the supplemental material).  

We first assessed the effects that diet and ciprofloxacin have on the diversity of the gut 

microbiome using 16S rRNA sequencing. Mice consuming the Western diet had significantly less 

diverse gut microbiomes than those fed the control diet (Figure S1A). Interestingly, we also 
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observed that the Western diet was associated with a reduction in α-diversity during ciprofloxacin 

treatment (Figure S1A). Next, we performed Principal Coordinates Analysis (PCoA) using Bray-

Curtis dissimilarity paired with permutational multivariate analysis of variance (PERMANOVA) 

to profile the degree of dissimilarity between our samples and the significance of this distance. 

Our samples formed four distinct clusters driven by both diet and ciprofloxacin treatment (Figure 

1B). 

Due to the limited phylogenetic resolution provided by 16S rRNA sequencing and inability 

to provide functional information about sequenced communities, we opted to perform shotgun 

metagenomic and metatranscriptomic analyses on a subset of our samples, representing mice from 

multiple cages (n = 4 per treatment group) (Cabral et al., 2019; Clooney et al., 2016; Poretsky et 

al., 2014; Ranjan et al., 2016; Tessler et al., 2017). Interestingly, we observed that Western diet 

consumption reduced community diversity while ciprofloxacin did not have a statistically 

significant impact on the α-diversity of the community (Figure 1C). However, the metagenomic 

data exhibited a similar trend in unique taxonomic structures being associated with each treatment 

group, supporting a model wherein diet and antibiotic treatment are distinct perturbations (Figure 

1D). However, to evaluate if diet modifies the response to ciprofloxacin, we had to untangle diet-

induced changes from antibiotic-induced changes. First, we characterized the impact of the 

Western diet consumption.  

 

Consumption of a Western diet modifies the metabolic activity of the microbiome. Mice fed 

a Western diet displayed elevated levels of the phyla Verrucomicrobia and Bacteroidetes and a 

reduction of Firmicutes (Figure 1D). At the species level, these shifts appear to be largely driven 

by an expansion of members of the Bacteroides genus (Figure 2A, Figure S1B, Data Set S1). 
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Additionally, the Western diet-fed mice displayed an elevated abundance of several species from 

the Proteobacteria phylum, suggestive of dysbiosis (Shin et al., 2015). Two important bacterial 

species found in the gut microbiomes of both mice and humans, B. thetaiotaomicron and A. 

muciniphila, were observed at significantly elevated levels in the mice fed a Western diet (Figure 

2A, Figure S1B). Notably, both species are known to utilize host-produced mucins; thus, this 

observation is consistent with earlier studies suggesting that the consumption of a low-MAC 

Western diet enriches for muciniphilic bacteria (Fischbach and J. L. Sonnenburg, 2011; E. D. 

Sonnenburg and J. L. Sonnenburg, 2014; J. L. Sonnenburg et al., 2005).  

Given this expansion, we anticipated that the transcriptional activity of these communities 

would exhibit an increased capacity for mucus degradation and simple sugar utilization. Due to 

the potential limitations of using a single pipeline, we analyzed our metatranscriptomic data set 

with SAMSA2 in parallel with HUMAnN2 (Franzosa et al., 2018; Westreich et al., 2018). The 

SAMSA2 pipeline generates unnormalized transcript abundances and thus is representative of 

overall transcript levels (Westreich et al., 2018). SAMSA2 is advantageous in its capacity for 

annotation against multiple databases and enables differential abundance testing of individual 

transcripts in addition to pathway- and subsystem-level analysis (Westreich et al., 2018). 

Conversely, the HUMAnN2 pipeline normalizes the abundance of RNA transcripts against their 

corresponding gene abundance in the metagenomic data set, thus normalizing for differences in 

community composition between experimental groups and facilitating comparisons of metabolic 

pathway expression at the whole-community level (Franzosa et al., 2018). When paired, these 

pipelines facilitate a more robust examination of microbiome transcriptional activity.  

We observed an increased abundance of transcripts related to respiration at the SEED 

subsystem level in the microbiota of the mice consuming the Western diet, which was mirrored in 
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our HUMAnN2 data set as increased tricarboxylic acid (TCA) cycle expression (Figure 2B, Figure 

S2A, Data Sets S2 and S3). The Western diet-fed mouse microbiota also displayed increased 

abundance of transcripts involving fatty acid metabolism and terpenoid biosynthesis, likely 

reflecting altered nutrient availability and increased respiratory activity, respectively (Figure 2B, 

Data Set S3) (Gill et al., 2006; Odom, 2011). Interestingly, we also detected large increases in the 

abundance of two different sialidase transcripts, which play a key role in the utilization of host-

produced mucins (Figure S2B, Data Set S4) (Corfield et al., 1992). While other studies have shown 

that the consumption of a Western diet enriches for muciniphilic taxa, this observation suggests 

that this diet also increases transcriptional activity related to mucin degradation within the micro- 

biome (E. D. Sonnenburg and J. L. Sonnenburg, 2014; J. L. Sonnenburg et al., 2005). 

Additionally, the Western diet-fed mouse microbiota had reduced expression of nucleotide 

biosynthesis, glycolysis, gluconeogenesis, starch degradation, and pyruvate fermentation 

compared to control diet-fed mice (Figure S2A, Data Set S2). We also observed relative reduction 

in the expression of the Bifidobacterium shunt, which is known to play a role in SCFA production 

and may provide mechanistic insight into the reduced SCFA levels observed on the Western diet 

in other studies (Figure S2A, Data Set S2) (E. D. Sonnenburg and J. L. Sonnenburg, 2014; J. M. 

W. Wong et al., 2006). Examination of CAZyme activity provided further evidence of significant 

transcriptional reprogramming in response to diet. Specifically, we observed that Western diet 

consumption decreased transcript abundances of multiple enzymes involved in poly- saccharide 

breakdown (Figure 2C, Data Set S5) (Eckardt, 2008; Hii et al., 2012; Kaur et al., 2020; Knoch et 

al., 2014). Simultaneously, there was a significant increase in α-amylases, lysozyme C, and α-

lactalbumin breakdown (Figure 2C, Data Set S5) (Layman et al., 2018; Zhou et al., 2019). Given 

the content of the Western diet, a shift toward utilization of these carbon sources was not 
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unexpected. However, the robust loss of complex polysaccharide breakdown was surprising and 

complements the SEED and HUMAnN2 data sets. Together these data suggest that Western diet 

alone is sufficient to restructure the metabolic activity of the gut microbiome, due to significant 

changes in nutrient availability.  

 

Ciprofloxacin elicits unique shifts in gene expression on Western and control diets. Given the 

significant body of literature that links microbial metabolism with antimicrobial susceptibility both 

in vitro and within the microbiome, we hypothesized that the metabolic restructuring induced by 

the Western diet would result in differential susceptibility to ciprofloxacin (Belenky et al., 2015; 

Cabral et al., 2019; Dwyer et al., 2014; Lobritz et al., 2015). Although ciprofloxacin did not induce 

a significant reduction in α-diversity in the time frame tested, we found that diet drove differential 

community composition following antibiotic exposure (Figure 1C, Figure 1D). At the phylum 

level, we observed a significant expansion in the relative abundance of Firmicutes following 

ciprofloxacin treatment on the Western diet (adjusted P value = 0.0388) but not on the control diet 

(adjusted P value = 0.8718) (Figure 1D, Figure S1B). To determine which species displayed a 

differential response to ciprofloxacin on the Western and control diets, we utilized DESeq2 to 

analyze the interaction between diet and antibiotic treatment to determine which species displayed 

differential responses to ciprofloxacin between the diets (Love et al., 2014). While most species 

responded similarly to ciprofloxacin therapy on both diets, there were several notable exceptions. 

For example, the expansion of several Clostridium species (such as Clostridium saccharolyticum, 

Clostridium sphenoides, and Clostridium scindens) following ciprofloxacin was higher on the 

Western diet than the control (positive interaction values, Figure 3A, Data Set S1). Conversely, 
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the reduction of several Bacteroides species following antibiotic treatment tended to be 

exacerbated on the Western diet (negative interaction values, Figure 3A, Data Set S1).  

We detected clear differences in ciprofloxacin susceptibility between the two diets and 

hypothesized that diet-induced differences in metabolism would both alter susceptibility and be 

reflected in unique transcriptional signatures. An all-by-all comparison of experimental groups 

demonstrated that the microbiota of Western diet- consuming mice displayed elevated expression 

of TCA cycle and fatty acid degradation pathways in both vehicle and ciprofloxacin treatments, 

likely reflective of the increased fat and sugar content of this diet (Figure 3B, Data Set S2). 

Additionally, we found elevated expression of glycogen degradation genes that was specific to 

Western diet-fed mice receiving ciprofloxacin (Figure 3B, Data Set S2). Conversely, the micro- 

biota of control diet-consuming mice had elevated expression of amino acid biosynthesis pathways 

(isoleucine, aspartate, asparagine, lysine, and histidine) regardless of antibiotic treatment (Figure 

3B, Data Set S2). We also observed elevated levels of several different nucleotide biosynthesis 

pathways in the vehicle-treated control diet mice while the Western diet mice displayed elevated 

levels of adenosine and guanosine nucleotide degradation (Figure 3B, Data Set S2). Overall, these 

data support that our experimental groups could be characterized by unique transcriptional 

signatures.  

We found key differences in the overall transcriptional profiles in response to ciprofloxacin 

on each diet. On the Western diet, ciprofloxacin treatment was associated with an increased 

abundance of transcripts from glycogen and starch degradation, glycolysis, and pyruvate 

fermentation (Figure S3C, Data Set S2). Notably, the expression of glycogen degradation was 

elevated in vehicle-treated samples on the control diet, suggesting that the utilization of this 

pathway during ciprofloxacin treatment is diet dependent (Figure S3C, Data Set S2). We observed 
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that TCA cycle expression was reduced in ciprofloxacin-treated mice compared to the vehicle 

treatment—the lone commonality between diets (Figure S3C, Data Set 2). Previous work has 

demonstrated that TCA cycle elevation increases sensitivity to bactericidal antibiotics (Belenky et 

al., 2015; Lobritz et al., 2015; Meylan et al., 2017). Thus, this result suggests that TCA cycle 

activity may play a key role in the response of the microbiota to ciprofloxacin treatment in vivo, 

though more work is required to understand its impact.  

Interestingly, comparatively few subsystems were changed following ciprofloxacin 

treatment on either diet (Figure 3C, Figure 3D, Data Set S3), suggesting that the pretreatment 

metabolic state affects the antibiotic response more than the drug-induced transcriptional changes. 

Most notably, we observed a decrease in transcripts related to dormancy and sporulation in 

response to ciprofloxacin on both diets (Figure 3C, Figure 3D, Data Set S3). A similar finding was 

observed in a recent study, suggesting that these transcripts may play a key role in the response of 

the microbiota to this antibiotic (Cabral et al., 2019). Furthermore, ciprofloxacin increased the 

abundance of sialidase transcripts in mice on the control diet, suggesting that this effect may be 

exacerbated by antibiotic treatment (Figure S3A, Data Set S4). Reflecting the overall reduction in 

sporulation seen at the subsystem level, we found that several sporulation-related transcripts were 

reduced on the control diet following ciprofloxacin treatment (Figure S3A, Data Set S4).  

We also examined the interaction of diet and antibiotic treatment on transcript abundance 

within the microbiome. Notably, we found that several sporulation genes were significantly higher 

on the Western diet than the control following ciprofloxacin treatment (Data Set S4), which was 

reflected in the SEED subsystem level (Figure 3C, Figure 3D). Additionally, transcripts encoding 

phosphotransferase system (PTS) transporters of various substrates were also found to be higher 

on the Western diet following ciprofloxacin treatment (Data Set S4). Conversely, Western diet 
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consumption significantly reduced the change in transcript abundance of both pectate lyase and a 

hemin receptor following ciprofloxacin therapy. Together, these findings demonstrate that dietary 

composition significantly impacts the transcriptional response of the micro- biome to 

ciprofloxacin.  

Recent studies have shown CAZyme activity to be a significant component of the 

microbiome’s response to antibiotic stress (Cabral et al., 2019). In our study, over 75 CAZymes 

exhibited differential abundance during ciprofloxacin treatment (Data Set S5). Interestingly, these 

changes were exclusive to the control diet-fed microbiota, as the Western diet-fed communities 

displayed no significant difference in CAZyme abundance (Data Set S5). The microbiota of mice 

on the control diet exhibited increases in CAZymes involved in starch, glycogen, xylose, pectin, 

rhamnogalacturonan, and arabinofuranose degradation (Data Set S5) (Lapébie et al., 2019; Mäkelä 

et al., 2018). Additionally, these communities exhibited a significant increase in trehalose 

phosphorylase and synthase activity, both of which have been associated with transient antibiotic 

tolerance in pathogenic species (Data Set S5) (Collins et al., 2018; Lee et al., 2019). Loss of these 

CAZyme shifts may be directly involved in the increased toxicity of ciprofloxacin on the Western 

diet; however, more work is required to elucidate the mechanism. These data, in conjunction with 

our SEED and HUMAnN2 data sets, provide evidence for unique transcriptional signatures during 

ciprofloxacin challenge that are diet dependent. Overall, this supports a model in which diet-driven 

differences in baseline metabolism directly impact taxonomic and functional responses to 

ciprofloxacin treatment.  

 

Diet and ciprofloxacin alter gene expression within B. thetaiotaomicron and A. muciniphila. 

Next, we sought to profile how diet and drug treatment impacted the transcriptional response of 
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individual species within the microbiota. In order to have sufficient genome coverage and 

sequencing depth, we ranked all taxa that were differentially abundant in the Western diet by 

average RNA reads, further analyzing only those with 500,000 or greater (Data Set S6). With this 

criterion, we used a previously published pipeline to interrogate the impact of diet and antibiotic 

treatment on three individual species: B. thetaiotaomicron, A. muciniphila, and C. scindens (Cabral 

et al., 2019; Deng et al., 2018). We focused on these bacteria because they are known human gut 

commensals, were found at relatively high levels in all samples analyzed and were differentially 

abundant in a diet-dependent manner. Unfortunately, C. scindens had relatively few transcriptional 

changes across all comparisons, and those genes that were differentially regulated were almost 

exclusively hypothetical proteins (Data Set S6).  

The Western diet significantly elevated the relative abundance of A. muciniphila (Figure 

4A). Interestingly, on this diet A. muciniphila displayed increased expression of several known 

stress response genes: catalase HPII, ATP-dependent chaperone ClpB, a universal stress protein, 

superoxide dismutase, and a UvrB/UvrC protein (Figure 4B, Data Set S7). Additionally, we 

observed numerous changes in respiration and central carbon metabolism, including increased 

terminal oxidases, TCA cycle, glycolysis, and pyruvate metabolism, suggesting broad metabolic 

changes in response to the Western diet (Figure 4B, Data Set 7). No CAZymes were differentially 

expressed on this diet, suggesting that the changes in A. muciniphila that facilitate its expansion 

are not driven by CAZyme activity (Data Set S7).  

Ciprofloxacin treatment had a relatively minor impact on A. muciniphila gene expression 

(Data Set S7), likely due to the relatively low impact on the relative abundance of A. muciniphila 

(Figure 4A). In total, ciprofloxacin significantly altered the expression of 2 and 17 genes on the 

control and Western diets, respectively (Data Set S7). On the control diet, A. muciniphila increased 
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the expression of the molecular chaperone protein DnaK, which is known to play a role in stress 

responses (Anglès et al., 2017; Ogata et al., 1996; Susin et al., 2006; K. S. Wong and Houry, 2012). 

On the Western diet, several genes related to tryptophan biosynthesis and metabolism were 

elevated following ciprofloxacin treatment; however, their biological significance is unclear at this 

time (Data Set S7). Additionally, ciprofloxacin induced the differential expression of a sole chitin 

or lysozyme glycoside hydrolase, and only on the control diet (Figure S3F, Data Set S7). Lastly, 

an examination of the interaction between diet and ciprofloxacin treatment indicated that only three 

genes were significantly altered. Overall, these data suggest that diet does not have a major impact 

on the response of this bacterium to ciprofloxacin within the microbiome (Data Set 7).  

In contrast to A. muciniphila, diet had a relatively minor impact on B. thetaiotaomicron 

gene expression while ciprofloxacin induced extensive changes. Of note, B. thetaiotaomicron 

bloomed in response to the Western diet and was significantly perturbed by ciprofloxacin on this 

diet but not on the control (Figure 4C). In total, 42 genes were altered in B. thetaiotaomicron in 

response to Western diet consumption (Data Set S7). Of note, this diet increased the expression of 

an aminoglycoside efflux pump and a hemin receptor. However, more than half of the genes 

(52.4%) that changed in response to diet are of unknown function and are classified as 

“hypothetical proteins;” making interpretation difficult. Interestingly, B. thetaiotaomicron did not 

exhibit robust changes in CAZyme transcription in response to the Western diet. Like A. 

muciniphila, B. thetaiotaomicron did not exhibit any differentially abundant CAZymes, suggesting 

that carbohydrate utilization does not drive the diet-induced changes in B. thetaiotaomicron 

abundance (Data Set S7). Ultimately, a description of this change will be dependent on improved 

functional annotations going forward.  
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On the control diet, we observed an increased abundance of transcripts encoding proteins 

involved in capsular polysaccharide (CPS) biosynthesis and export (Figure 4D, Data Set S7). 

Within B. thetaiotaomicron, CPS production is encoded by a total of 182 genes distributed among 

eight loci (typically termed cps1 to -8) (Coyne and Comstock, 2008; Porter et al., 2017). It is 

hypothesized that an individual bacterium expresses one of these CPS configurations at any given 

time and that these structures play key roles in processes such as nutrient acquisition and immune 

evasion (Porter et al., 2017). Additionally, the two genes with the greatest increase in expression 

during ciprofloxacin treatment encoded UDP-glucose 6-dehydrogenase, which plays a key role in 

the biosynthesis of glycan precursors that are essential for capsule production in other bacteria 

(Dougherty and van de Rijn, 1993; Petit et al., 1995; van Selm et al., 2002). Together, these 

findings may suggest a role for CPS state as a determinant of ciprofloxacin susceptibility in vivo. 

On the Western diet, ciprofloxacin elicited profound changes in transcriptional activity, 

altering the expression of 278 different genes (Figure 4E, Data Set S7), and this robust response 

may be related to the reduction in B. thetaiotaomicron under this condition (Figure 4C). 

Interestingly, expression of many genes involved in the utilization of host-derived carbohydrates 

(sialic acid-specific 9-O-acetylesterase, endo-β-N-acetylglucosaminidase F1, β-hexosaminidase) 

and stress responses (universal stress protein UspA, thioredoxin) was reduced, mirroring changes 

seen at the whole- community level (Figure 4E, Data Set S7) in response to ciprofloxacin. 

Conversely, we observed increased expression of several genes that encode molecular chaperones 

or are involved in DNA replication or damage repair (Figure 4E, Data Set S7). Ciprofloxacin 

triggers DNA damage via inhibition of DNA gyrase and topoisomerase IV. Thus, these changes 

in gene expression may be reflective of the primary mechanism of action of this antibiotic, are 



 57 

consistent with previously published data, and serve as a validation for our analysis (Cabral et al., 

2019).  

Diet appears to have a significant impact on ciprofloxacin-induced transcriptional changes 

in B. thetaiotaomicron, modulating the response of 71 genes (Data Set S7). Of note, Western diet 

consumption in the context of ciprofloxacin treatment had a negative impact on several genes 

involved in the acquisition of nutrients, such as vitamin B12 and hemin receptors, and transporters 

of glucose/galactose, hexuronate, arabinose, and Na+ (Data Set S7). Thus, it is likely that the 

availability of nutrients within the gut plays a role in the response of these bacteria to antibiotics. 

Lastly, we examined the impact that nutrient availability has on the response of B. 

thetaiotaomicron CAZyme abundance to ciprofloxacin. We observed notable differences in 

CAZyme levels be- tween the diets as well as differences in substrate targets (Figure S3DE, Data 

Set S7). On the control diet, B. thetaiotaomicron exhibits an increase in polysaccharide CAZymes, 

including those targeting pectin, rhamnogalacturonan, α-glucans, and hemi- celluloses, with a 

simultaneous decrease in β-fucosidases (Figure S3D, Data Set S7). On the Western diet, B. 

thetaiotaomicron exhibits an increase in lipopolysaccharide (LPS) biosynthesis and heparan 

degradation (Figure S3E, Data Set S7). While interesting, more work will be required to elucidate 

mechanisms driving these phenotypes.  

 

Discussion 

Previous work has demonstrated that host diet, particularly with respect to sugar and fiber 

content, plays a major role in antibiotic-induced microbiome disruption (Cabral et al., 2019; 

Schnizlein et al., 2020). In Western societies, many people consume a diet high in added sugars 

and fat but low in host-indigestible fiber. Such a composition is thought to promote the 



 58 

development of metabolic syndrome, heart disease, diabetes, and a number of other chronic 

conditions (Argueta and DiPatrizio, 2017; Arpaia et al., 2013; Cotillard et al., 2013; Kanoski et 

al., 2014; Qi et al., 2009; Sami et al., 2017; E. D. Sonnenburg and J. L. Sonnenburg, 2019; 2014; 

J. L. Sonnenburg et al., 2005; Trompette et al., 2014; Turnbaugh, 2017). Furthermore, broad-

spectrum antibiotic use and resulting micro- biome dysbiosis have been associated with a number 

of similar comorbidities along with increased susceptibility to opportunistic infections (Blaser, 

2011; Chang et al., 2008; Lessa et al., 2015; Mukherjee et al., 2014; Peleg et al., 2010; Preidis and 

Versalovic, 2009; Rafii et al., 2008; Rowan-Nash et al., 2019; Theriot et al., 2016). Despite this 

connection, little work has been done examining how host dietary com- position impacts the 

response of the microbiota to antibiotic perturbation. Nutrient availability and metabolic state are 

known to be major determinants of antibiotic susceptibility of bacteria in vitro (Adolfsen and 

Brynildsen, 2015; Allison et al., 2011; Belenky et al., 2015; Cabral et al., 2019; 2018; Cho et al., 

2014; Dwyer et al., 2014; Kohanski et al., 2007; Lobritz et al., 2015; Meylan et al., 2017; Thomas 

et al., 2013). Thus, modulating diet and subsequently nutrient availability to the microbiota would 

likely alter the sensitivity of bacteria in these communities to antibiotic therapy.  

Using a combined metagenomic and metatranscriptomic approach, we demonstrate that 

diet composition has a major impact on the response of the murine gut microbiome to ciprofloxacin 

therapy. By utilizing these tools in parallel, we are able to link transcriptional changes to observed 

shifts in community structure on each diet. Using metagenomics, we observed that ciprofloxacin 

had a differential impact on community composition in a diet-dependent manner. Specifically, we 

observed a significant expansion of the Firmicutes phylum following ciprofloxacin treatment only 

on the Western diet. Metatranscriptomic data showed decreased abundance of transcripts from the 

TCA cycle after antibiotic treatment in both diets, suggesting that this response is diet independent, 
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which is consistent with previous in vitro findings that demonstrate a key role for bacterial 

respiration as a determinant of fluoroquinolone susceptibility (Adolfsen and Brynildsen, 2015; 

Belenky et al., 2015; Elderman et al., 2018; Johnson et al., 2019; Lapébie et al., 2019; Lobritz et 

al., 2015; Singh et al., 2017). Conversely, the impact of ciprofloxacin on the abundance of various 

iron and mucin utilization transcripts differed between diets. Lastly, we detected species-specific 

transcriptional changes in two important commensal bacteria, B. thetaiotaomicron and A. 

muciniphila. In addition to detecting changes in transcript levels that were reflective of stress 

responses, we also observed differential expression in transcripts involved in diverse cellular 

processes such as nutrient acquisition, carbon metabolism, and CPS biosynthesis. Together, our 

findings supported our hypothesis that the Western diet would modify the metabolic capacity of 

the gut microbiome and that this change would directly translate to differential activity in response 

to ciprofloxacin treatment.  

Despite the advantages of a multi-omic approach, there are several drawbacks to these 

techniques that complicate interpretation of the results. First, our study was performed only in 

female mice. It is now understood that sex-dependent differences exist in diet metabolism, mucosal 

immunity, and gut microbiome antibiotic responses, and as such our findings may not be 

generalizable to males (Elderman et al., 2018; Gao et al., 2019; Ingvorsen et al., 2017). Another 

critical drawback is that the analytical pipelines used to analyze microbiome data are reliant on 

existing databases that are largely incomplete: approximately half of all genes within the human 

gut microbiome are hypothesized to have no functional annotation, limiting the ability to 

accurately profile the transcriptional activity of these communities (The Human Microbiome 

Project Consortium, 2012). Additionally, inferring biological significance of taxonomic changes 

is often difficult in many microbiome analyses. 16S amplicon sequencing and shotgun 
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metagenomics are inherently limited to reporting relative abundances and thus may fail to fully 

characterize changes in absolute abundance. Thus, we cannot comment on how diet or antibiotics 

change the total number of bacteria found in the gut, nor can we determine if the bloom in 

Firmicutes is a result of an increase in colony-forming units or a reduction of other bacteria relative 

to Firmicutes. Due to the complex nature of these communities, it is challenging to ascertain if the 

observed transcriptional changes are the result of the direct action of the antibiotic or the indirect 

effect of changes in host physiology, nutrient availability, or the disruption of ecological networks 

within the microbiome. For example, our transcriptional analysis of B. thetaiotaomicron showed 

that this bacterium differentially expressed receptors for both hemin and vitamin B12, which may 

suggest that these nutrients play a role in ciprofloxacin toxicity. Alternatively, it is possible that 

these transcriptional changes are reflective of increased availability of these nutrients due to 

decreased competition from other members of the microbiota. Further, dietary composition could 

play a significant role in antibiotic absorption or sequestration in the gut, which in turn would 

impact the extent of the damage caused to the microbiota.  

 This study builds on recent work that demonstrates that the availability of metabolites plays 

an important role in determining the extent of antibiotic-induced micro- biome disruption (Cabral 

et al., 2019). Taken together, these results demonstrate the need to consider dietary composition 

in the design and interpretation of experiments focused on understanding the impact of antibiotics 

on the microbiota. Previous studies have demonstrated that dietary changes induce rapid shifts in 

gut microbiome composition (Bisanz et al., 2019; David et al., 2014; Johnson et al., 2019; Singh 

et al., 2017; Turnbaugh, 2017; Turnbaugh et al., 2009; 2008; 2006). Therefore, in the long term, 

dietary modulation could represent an attractive strategy to reduce the collateral damage to 

commensal bacteria and the resulting complications from dysbiosis caused by clinical therapy. 
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Despite these promising applications, considerable work is required before these findings have 

direct clinical relevance. In particular, the considerable differences in physiology, microbiome 

composition, and diet between humans and rodents complicate the direct clinical relevance of these 

findings. Furthermore, it is unclear whether short-term dietary modulation has any long-term 

consequences on either the host or the microbiome. Thus, additional research is warranted to fully 

elucidate how host diet impacts antibiotic-induced microbiome disruption in humans and how 

specific dietary formulation will impact these disruptions.  
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Materials and Methods 

 

Resource Availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Peter Belenky (peter_belenky@brown.edu).  

 

Materials Availability 

This study did not generate new, unique reagents 

 

Data and Code Availability 

• The data sets generated and analyzed during this study are available from the NCBI 

Sequence Read Archive (SRA) under BioProject accession numbers PRJNA563913 

(metagenomics and metatranscriptomics) and PRJNA594642 (16S rRNA amplicon 

sequences). Data are publicly available as of the date of publication.  

• This paper does not report original code 

• Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request 

 

Method Details 

Animal Procedures 

All animal work was approved by Brown University’s Institutional Animal Care and Use 

Committee (IACUC) under protocol number 1706000283. Four-week-old female C57BL/6J mice 
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were purchased from Jackson Laboratories (Bar Harbor, ME, USA) and given a 2-week 

habituation period immediately following arrival at Brown University’s Animal Care Facility. 

After habituation, mice were switched from standard chow (Laboratory Rodent Diet 5001; St. 

Louis, MO, USA) to either a Western diet (D12079B; Research Diets Inc., New Brunswick, NJ, 

USA) or a macronutrient-defined control diet (D12450B; Research Diets Inc., New Brunswick, 

NJ, USA) for 1 week (see Table 1 and Data Set S7:Sheet 41, in the supplemental material). On the 

8th day of dietary intervention, mice were given acidified ciprofloxacin (12.5 mg/kg of body 

weight/day), or a pH-adjusted vehicle, via filter-sterilized drinking water ad libitum for 24 h (n = 

8 to 12 per treatment group). Water consumption was monitored to ensure equal consumption 

across cages. Mice were then sacrificed and dissected in order to collect cecal contents. Cecal 

contents were immediately transferred to ZymoBIOMICS DNA/RNA Miniprep kit (Zymo 

Research, Irvine, CA, USA) collection tubes containing DNA/RNA Shield. Tubes were processed 

via vortex at maximum speed for 5 min to homogenize cecal contents and then placed on ice until 

permanent storage at -80°C.  

 

Nucleic Acid Extraction & Purification  

Total nucleic acids (DNA and RNA) were extracted from samples using the ZymoBIOMICS 

DNA/RNA Miniprep kit from Zymo Research (R2002; Irvine, CA, USA) using the parallel 

extraction protocol per the manufacturer’s instructions. Total RNA and DNA were eluted in 

nuclease-free water and quantified using the dsDNA-HS and RNA-HS kits on a Qubit 3.0 

fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) before use in library preparations.  

 

16S rRNA Amplicon Preparation & Sequencing 



 65 

The 16S rRNA V4 hypervariable region was amplified from total DNA using the barcoded 518F 

forward primer and the 816Rb reverse primers from the Earth Microbiome Project (Thompson et 

al., 2017). Amplicons were generated using 5X Phusion high-fidelity DNA polymerase under the 

following cycling conditions: initial denaturation at 98°C for 30 s, followed by 25 cycles of 98°C 

for 10 s, 57°C for 30 s, and 72°C for 30 s, and then a final extension at 72°C for 5 min. After 

amplification, samples were pooled in equimolar amounts and visualized via gel electrophoresis. 

The pooled amplicon library was submitted to the Rhode Island Genomics and Sequencing Center 

at the University of Rhode Island (Kingston, RI, USA) for sequencing on the Illumina MiSeq 

platform. Amplicons were pair-end sequenced (2 X 250 bp) using the 500-cycle kit with standard 

protocols. We obtained an average of 106,135 + 49,789 reads per sample.  

 

Analysis of 16S rRNA Sequencing Reads  

Raw 16S rRNA reads were subjected to quality filtering, trimming, denoising, and merging using 

the DADA2 package (version 1.8.0) in R (version 3.5.0). Ribosomal sequence variants were 

assigned taxonomy using the RDP Classifier algorithm with RDP Training set 16 using the 

assignTaxonomy function in DADA2 (Wang et al., 2007). α-diversity (Shannon) and β-diversity 

(Bray-Curtis dissimilarity) were calculated using the phyloseq package (version 1.24.2) in R 

(version 3.5.0).  

 

Metagenomic & Metatranscriptomic Library Preparation 

Metagenomic libraries were prepared from DNA (100 ng) using the NEBNext Ultra II FS DNA 

library prep kit (New England BioLabs, Ipswich, MA, USA) >100-ng input protocol per the 

manufacturer’s instructions. This yielded a pool of 200- to 1,000-bp fragments where the average 
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library was 250 to 500 bp. Metatranscriptomic libraries were prepared from total RNA using the 

NEBNext Ultra II Directional RNA sequencing prep kit (New England BioLabs, Ipswich, MA, 

USA) in conjunction with the NEBNext rRNA depletion kit for human/mouse/rat (New England 

BioLabs, Ipswich, MA, USA) and the MICROBExpress kit (Invitrogen, Carlsbad, CA, USA). 

First, up to 1 µg of total RNA was treated with recombinant DNase I (rDNase I) and subsequently 

depleted of bacterial rRNAs using MICROBExpress per the manufacturer’s instructions. This 

depleted RNA was then used to prepare libraries with the NEBNext Ultra II Directional RNA 

sequencing prep and rRNA depletion kits per the manufacturer’s instructions. This yielded 

libraries that averaged between 200 and 450 bp. Once library preparation was complete, both 

metagenomic and metatranscriptomic libraries were sequenced as paired-end 150-bp reads on an 

Illumina HiSeq X Ten. We sequenced an average of 2,278,948,631 (+ 2,309,494,556) bases per 

metagenomic sample and 14,751,606,319 (+ 3,089,205,166) bases per metatranscriptomic sample. 

One metagenomic sample from the Western diet + vehicle group had an abnormally low number 

of bases sequenced (165,000 bp) and was excluded from all subsequent analyses. Following the 

removal of this sample, we obtained an average of 2,430,867,540 (+ 2,306,317,898) bases per 

metagenomic sample.  

 

Processing of Raw Metagenomic and Metatranscriptomic Reads 

Raw metagenomic reads were trimmed and decontaminated using the kneaddata utility (version 

0.6.1) (McIver et al., 2018). In brief, reads were first trimmed to remove low-quality bases and 

Illumina TruSeq3 adapter sequences using Trimmomatic (version 0.36) using a 

SLIDINGWINDOW value of 4:20 and an ILLUMINACLIP value of 2:20:10, respectively (Bolger 

et al., 2014). Trimmed reads shorter than 75 bases were discarded. Reads passing quality control 
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were subsequently decontaminated by removing those that mapped to the genome of C57BL/6J 

mice using bowtie2 (version 2.2) (Langmead and Salzberg, 2012). Additionally, preliminary work 

by our group detected high levels of reads mapping to two murine retroviruses found in our animal 

facility: murine mammary tumor virus (MMTV, accession NC_001503) and murine osteosarcoma 

viruses (MOV, accession NC_001506.1) (Cabral et al., 2019). Raw metatranscriptomic reads were 

trimmed and decontaminated using the same parameters. However, in addition to removing reads 

that mapped to the C57BL/6J, MMTV, and MOV genomes, we also decontaminated sequences 

that aligned to the SILVA 128 LSU and SSU Parc rRNA databases (Pruesse et al., 2007).  

 

Taxonomic Classification of Metagenomic Reads 

Trimmed and decontaminated metagenomic reads were taxonomically classified against a 

database containing all bacterial and archaeal genomes found in NCBI RefSeq using Kraken2 

(version 2.0.7-beta) with a default k-mer length of 35 (Wood and Salzberg, 2014). Phylum- and 

species-level abundances were subsequently calculated from Kraken2 reports using Bracken 

(version 2.0.0) with default settings (Lu et al., 2017). The phyloseq package (version 1.28.0) in R 

(version 3.6.0) was used to calculate α-diversity using the Shannon diversity index (McMurdie 

and Holmes, 2013). Metagenomic data were not sub-sampled prior to analysis.  

To perform differential abundance testing, species-level taxonomic output was first filtered to 

remove taxa that were not observed in >1,000 reads (corresponding to approximately 0.1% of all 

reads) in at least 20% of all samples using phyloseq in R. Differential abundance testing was 

subsequently performed on filtered counts using the DESeq2 package (version 1.24.0) using 

default parameters (Love et al., 2014). All P values were corrected for multiple hypothesis testing 

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).  
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Annotation of Metatranscriptomic Reads Using SAMSA2 

Trimmed and decontaminated meta- transcriptomic reads were annotated using a modified version 

of the Simple Annotation of Metatranscriptomes by Sequence Analysis 2 (SAMSA2) pipeline as 

described previously (Cabral et al., 2019; Westreich et al., 2018; 2016). First, the Paired-End Read 

Merger (PEAR) utility was used to merge forward and reverse reads (Zhang et al., 2014). Merged 

reads were then aligned to databases containing entries from the RefSeq, SEED Subsystems, and 

CAZyme databases using DIAMOND (version 0.9.12) (Buchfink et al., 2014; Cantarel et al., 2009; 

Overbeek et al., 2014). The resulting alignment counts were subsequently analyzed using DESeq2 

(version 1.24.0) using the Benjamini-Hochberg method to perform multiple hypothesis testing 

correction (Benjamini and Hochberg, 1995; Cabral et al., 2019; Westreich et al., 2018). Features 

with an adjusted P value of less than 0.05 were considered to be statistically significant.  

 

Metatranscriptomic Analysis using HUMAnN2 

To determine the impact of dietary modulation and ciprofloxacin treatment on gene expression 

within the gut microbiome, we used the HMP Unified Metabolic Analysis Network 2 (HUMAnN2, 

version 0.11.1) pipeline (Franzosa et al., 2018). First, metagenomic reads were taxonomically 

annotated using MetaPhlan2 (version 2.6.0) and functionally annotated against the UniRef90 

database to generate gene family and MetaCyc pathway-level abundances. To ensure consistent 

assignment between paired samples, the taxonomic profile generated from the metagenomic reads 

was supplied to the HUMAnN2 algorithm during the analysis of the corresponding 

metatranscriptomic reads. Metatranscriptomic reads were subsequently annotated as done for 

metagenomic reads. The resulting gene family and pathway-level abundance data from the 
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metatranscriptomic reads were normalized against the metagenomic data from the corresponding 

sample and smoothed using the Witten-Bell method (Witten and Bell, 1991). Lastly, the resulting 

RPKM (reads per kilobase per million) values were unstratified to obtain whole-community level 

data, converted into relative abundances, and analyzed using LEfSe (version 1) hosted on the 

Galaxy web server (Segata et al., 2011).  

 

Transcriptional Analysis of A. muciniphila and B. thetaiotaomicron 

A modified version of a previously published pipeline from Deng et al. was utilized to perform 

transcriptional analysis of individual species within the murine microbiome during dietary 

modulation and antibiotic treatment (Cabral et al., 2019; Deng et al., 2018). First, Kraken2 (version 

2.0.7-beta) was used to identify the 50 most prevalent bacterial species present within the 

metatranscriptomic samples (Wood and Salzberg, 2014). Next, the BBSplit utility within the 

BBMap package (version 37.96) was used to extract reads within our metatranscriptomic data set 

that mapped to these 50 most abundant species (Bushnell, 2014). Reads from B. thetaiotaomicron, 

A. muciniphila, and C. scindens were subsequently aligned to their corresponding reference 

genomes using the BWA-MEM algorithm (version 0.7.15) (Li and Durbin, 2010). Lastly, the 

featureCounts command within the subread program (version 1.6.2) was used to analyze the 

resulting alignment files to generate a count table for differential expression analysis with DESeq2 

(Love et al., 2014). All P values were corrected for multiple hypothesis testing with the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted P value of less than 

0.05 were considered to be statistically significant.  
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Main Figures, Titles, Tables, and Legends 
 
 
Table 1. Diet formulation used in this study. Diets were purchased from Research Diets 
Incorporated (New Brunswick, New Jersey, USA) 
 

Formulation Gram % 
(Control Diet) 

Kcal % 
(Control Diet) 

Gram (Western 
Diet) 

Kcal (Western 
Diet) 

Proteins 19.2 20 20 17 
Carbohydrates 67.3 70 50 43 

Fats 4.3 10 21 40 
     

Formulation Gram % 
(Control Diet) 

Kcal % 
(Control Diet) 

Gram (Western 
Diet) 

Kcal (Western 
Diet) 

Casein (30 mesh) 200 800 - - 
Casein (80 mesh) - - 195 780 

L-cystine 3 12 - - 
D/L-Methionine - - 3 12 

Corn Starch 315 2160 50 200 
Maltodextrin 35 140 100 400 

Sucrose 350 1400 341 1364 
Cellulose BW200 50 0 50 0 
Anhydrous Milk 

Fat 
- - 200 1800 

Corn Oil - - 10 90 
Soybean Oil 25 225 - - 

Lard 20 180 - - 
Mineral Mix 

S10026 
10 0 - - 

Mineral Mix 
S10001 

- - 35 0 

DiCalcium 
Phosphate 

13 0 - - 

Calcium 
Carbonate 

5.5 0 4 0 

Potassium Citrate 16.5 0 - - 
Vitamin Mix 

V10001 
10 40 10 40 

Choline 
Bicarbonate 

2 0 2 0 

Cholesterol USP - - 1.5 0 
Ethoxyquin - - 0.04 0 

FD&C Yellow 
Dye No. 5 

0.05 0 - - 

Total 1055.5 4057 1001.54 4686 
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Figure 1: Impact of diet and ciprofloxacin administration on murine gut microbiome 
composition 

A. Experimental workflow used in this study. Figure was created with Biorender.com.   
B. Principle Coordinates Analysis of experimental groups as measured by Bray-Curtis 

dissimilarity of 16S rRNA amplicons. Dashed lines indicate 95% confidence intervals 
(**p<0.01, ***p<0.001, Permutational ANOVA).  

C. α-diversity of experimental groups as measured by the Shannon Diversity Index. Data 
are represented as mean ± standard error of the mean (SEM). (**p<0.01, Welch 
ANOVA with Dunnett T3 test for multiple hypothesis testing). 

D. Stacked barplot of the five most abundant bacterial phyla in our dataset. Data are 
represented as mean + SEM for each phylum.  

For all analyses, n = 4.  
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Figure 2: Consumption of a Western diet induces broad taxonomic and transcriptional 
changes at the community level 

A. Differentially abundant (Benjamini-Hochberg adjusted p-value < 0.05) bacterial species 
(within the 45-most abundant taxa) as detected in mice consuming the Western diet (WD). 
Data are represented as log2 fold change relative to control diet ± standard error. Bar color 
and left legend denotes phylum level taxonomic classification (yellow – Verrucomicrobia, 
green – Firmicutes, teal – Bacteroidetes, blue – Proteobacteria, navy – Actinobacteria). 
See Additional File 1 for full results. 

B. Differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) level 1 SEED 
subsystems in the murine cecal metatranscriptome in mice consuming the Western diet. 
Data are represented as log2 fold change relative to control diet  ± standard error. Only 
features with a base mean ³ 100 were plotted. See Additional File 3 for full results. 

C. Differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) CAZyme 
transcripts in the murine cecal metatranscriptome in mice consuming the Western diet. 
Data are represented as log2 fold change relative to control diet  ± standard error. CAZyme 
class (yellow – glycoside hydrolase, lime – glycosyl transferase, green – polysaccharide 
lyase, teal – carbohydrate binding modules, blue – carbohydrate esterase, purple – auxillary 
activity), source of the target substrate (blue – plant derived, magenta – animal derived, 
peach – microbially derived), and linkages targeted by the CAZyme (dark grey – α, light 
grey – β) are listed below the data and color-coded. White values represent either a lack of 
singular substrate/linkage or a lack of enough information available to make a definitive 
call. See Additional File 5 for full results.  

For all analyses, n = 4.  
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Figure 3: Ciprofloxacin elicits unique shifts in gene expression on Western and control diets 
at the community level 

A. Heatmap of the change in abundance of the top 45 bacterial species in response to 
ciprofloxacin on control and Western diets. The Interaction column represents the 
interaction term generated by DESeq2, denoting the impact of diet on the change in 
abundance of each species to ciprofloxacin. Cell color denotes log2 fold change of a 
particular species in response to ciprofloxacin (white represents failure to meet statistical 
significance: Benjamini-Hochberg adjusted p-value < 0.05). Heatmap rows were sorted by 
interaction term value from highest to lowest, and taxa with no differential abundance 
(failure to meet statistical significance) in either group were removed. See Additional File 
1 for full DESeq2 results.  

B. Linear discriminant analysis (LDA) of MetaCyc pathways that were differentially 
associated with each experimental group. Bar size indicates LDA score and color indicates 
the experimental group that a MetaCyc pathway was significantly associated with. All 
LDA scores were generated using LEfSe on unstratified pathway outputs from 
HUMAnN2. For full pathway names and statistics, see Additional File 2. 

C. Differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) level 1 SEED 
subsystems in the murine cecal metatranscriptome after ciprofloxacin treatment in mice 
consuming the control diet. Data are represented as log2 fold change relative to vehicle 
controls ± standard error. Only features with a base mean ³ 100 were plotted. See 
Additional File 3 for full results. 

D. Differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) level 1 SEED 
subsystems in the murine cecal metatranscriptome after ciprofloxacin treatment in mice 
consuming the Western diet. Data are represented as log2 fold change relative to vehicle 
controls ± standard error. Only features with a base mean ³ 100 were plotted. See 
Additional File 3 for full results. 

For all analyses, n = 4.  
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Figure 4: Diet and ciprofloxacin alter gene expression within B. thetaiotaomicron and A. 
muciniphila 

A. Normalized counts of A. muciniphila in each experimental group. Data are represented as 
mean ± SEM. Normalized counts were generated with DESeq2 and subsequently used to 
perform differential abundance testing. (*p<0.05, ****p<0.0001, Wald test with 
Benjamini and Hochberg correction). See Additional File 1 for full results.  

B. Select differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) genes of 
interest in A. muciniphila within the cecum of vehicle-treated mice consuming the Western 
diet. Data are represented as log2 fold change relative to control diet ± standard error. See 
Additional File 7 for full results.  

C. Normalized counts of B. thetaiotaomicron in each experimental group. Data are 
represented as mean ± SEM. Normalized counts were generated with DESeq2 and 
subsequently used to perform differential abundance testing. (*p<0.05, ****p<0.0001, 
Wald test with Benjamini and Hochberg correction). See Additional File 1 for full results. 

D. Select differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) genes of 
interest in B. thetaiotaomicron within the cecum of ciprofloxacin-treated mice consuming 
the control diet. Data are represented as log2 fold change relative to control diet ± standard 
error. See Additional File 7 for full results.  

E. Select differentially expressed (Benjamini-Hochberg adjusted p-value < 0.05) genes of 
interest in B. thetaiotaomicron within the cecum of vehicle-treated mice consuming the 
Western diet. Data are represented as log2 fold change relative to control diet ± standard 
error. See Additional File 7 for full results.  

For all analyses, n  = 4. 
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Supplemental Figures, Titles, and Legends 
 

 
Figure S1: Dietary composition and antibiotic treatment impact the diversity of the gut 
microbiome 

A. α-diversity of experimental groups as measured by the Shannon Diversity Index of 16S 
rRNA amplicons. Data are represented as mean ± standard error of the mean (SEM). 
(*p<0.05, **p<0.01, ***p<0.001, Welch ANOVA with Dunnett T3 test for multiple 
hypothesis testing).  

B. Stacked bar plot of the ten most abundant bacterial species in our dataset. Data are 
represented as mean + SEM for each species. 

For 16S rRNA amplicons, n = 8-12. For metagenomics, n = 4.  
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Figure S2: Consumption of a Western diet induces broad taxonomic and transcriptional 
changes at the community and species level 

A. Linear discriminant analysis (LDA) of MetaCyc pathways that were differentially 
associated with either the control or Western diet. Bar size indicates LDA score and color 
indicates the experimental group (blue – Western diet, yellow – control diet) that a 
MetaCyc pathway was significantly associated with. All LDA scores were generated using 
LEfSe on unstratified pathway outputs from HUMAnN2. For full pathway names and 
statistics, see Additional File 2. 

B. Volcano plot of the metatranscriptomic profile of the murine cecal microbiome in vehicle-
treated mice consuming Western diet. Data was generated by aligning metatranscriptomic 
reads to RefSeq using SAMSA2 and analyzing using DESeq2. Points in purple represent 
transcripts for which a statistically significant change in expression was detected 
(Benjamini-Hochberg adjusted p-value < 0.05). Select genes of interest are labeled. See 
Additional File 4 for full results.  

For all analyses, n = 4.  
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Figure S3: Ciprofloxacin elicits unique shifts in gene expression on Western and control diets 
at the community and species level 

A. Volcano plot of the metatranscriptomic profile of the murine cecal microbiome in 
ciprofloxacin-treated mice on the control diet. Data was generated by aligning 
metatranscriptomic reads to RefSeq using SAMSA2 and analyzing using DESeq2. Points 
in purple represent transcripts for which a statistically significant change in expression was 
detected (Benjamini-Hochberg adjusted p-value < 0.05). Select genes of interest are 
labeled. See Additional File 4 for full results.  

B. Volcano plot of the metatranscriptomic profile of the murine cecal microbiome in 
ciprofloxacin-treated mice on the Western diet. Data generation, point labeling, and 
statistical cutoffs are the same as (A). See Additional File 4 for full results.  

C. Linear discriminant analysis (LDA) of MetaCyc pathways that were differentially 
associated with either the control or Western diet during ciprofloxacin treatment. LDA 
score indicates the experimental group that a MetaCyc pathway was significantly 
associated with (negative values – vehicle treatment, positive values –ciprofloxacin 
treatment). All LDA scores were generated using LEfSe on unstratified pathway outputs 
from HUMAnN2. (White represents failure to meet statistical significance). For full 
pathway names and statistics, see Additional File 2. 

D. Differentially expressed. Differentially expressed (Benjamini-Hochberg adjusted p-value 
< 0.05) CAZyme transcripts in B. thetaiotaomicron within mice consuming the control diet 
during ciprofloxacin treatment. Data are represented as log2 fold change relative to control 
diet  ± standard error. CAZyme class (yellow – glycoside hydrolase, lime – glycosyl 
transferase, green – polysaccharide lyase, teal – carbohydrate binding modules, blue – 
carbohydrate esterase, purple – auxillary activity), source of the target substrate (blue – 
plant derived, magenta – animal derived, peach – microbially derived), and linkages 
targeted by the CAZyme (dark grey – α, light grey – β) are listed to the left of the data and 
color-coded. White values represent either a lack of singular substrate/linkage or a lack of 
enough information available to make a definitive call.  See Additional File 7 for full 
results.  

E. Differentially expressed. Differentially expressed (Benjamini-Hochberg adjusted p-value 
< 0.05) CAZyme transcripts in B. thetaiotaomicron within mice consuming the Western 
diet during ciprofloxacin treatment. Data are represented as log2 fold change relative to 
control diet  ± standard error. CAZyme class, source of target substrate, and linkages 
targeted by the CAZyme are listed below the data and color-coded as described in (D). See 
Additional File 7 for full results.  

F. Differentially expressed. Differentially expressed (Benjamini-Hochberg adjusted p-value 
< 0.05) CAZyme transcripts in A. muciniphila within mice consuming either diet during 
ciprofloxacin treatment. Data are represented as log2 fold change relative to control diet  ± 
standard error. CAZyme class, source of target substrate, and linkages targeted by the 
CAZyme are listed below the data and color-coded as described in (D). See Additional File 
7 for full results.  

For all analyses, n = 4.  
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Supplemental Files 
 
Data Set 1: Full DESeq2 results of differential abundance testing of top 45 species detected by 
shotgun metagenomics 
Sheet 1 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of the top 45 bacterial species detected in our dataset. Log2 fold change values were 
calculated relative to control diet samples.  
Sheet 2 – Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of the top 45 bacterial species in mice consuming the Western diet (WD). Log2 fold change values 
were calculated relative to vehicle-treated samples on the WD. 
Sheet 3 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of the top 45 bacterial species in mice consuming the control diet (NC). Log2 fold change values 
were calculated relative to vehicle-treated samples on the NC. 
Sheet 4 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in species abundance following ciprofloxacin therapy. Log2 fold change values were 
calculated relative to vehicle-treated samples on the NC. 
 
Data Set 2: Full LEfSe results from the analysis of MetaCyc pathway abundance generated by 
HUMAnN2. “Class” denotes the experimental group a particular pathway was associated with. 
Sheet 5 – LEfSe analysis of all experimental groups.  
Sheet 6 – Pairwise LEfSe analysis of vehicle-treated samples from mice consuming either the 
Western (WD) or control (NC) diet. 
Sheet 7– Pairwise LEfSe analysis of ciprofloxacin- and vehicle-treated samples from mice 
consuming the control diet (NC) 
Sheet 8 – Pairwise LEfSe analysis of ciprofloxacin- and vehicle-treated samples from mice 
consuming the Western diet (WD)  
 
Data Set 3: Full DESeq2 results of SEED subsystem abundance generated by SAMSA2 
Sheet 9 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of SEED subsystems in the murine cecal metatranscriptome. Log2 fold change values 
were calculated relative to control diet samples.  
Sheet 10 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of SEED subsystems in the murine cecal metatranscriptome in animals consuming the 
Western diet (WD). Log2 fold change values were calculated relative to vehicle-treated samples 
on the WD. 
Sheet 11 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of SEED subsystems in the murine cecal metatranscriptome in animals consuming the control diet 
(NC). Log2 fold change values were calculated relative to vehicle-treated samples on the NC. 
 
Data Set 4: Full DESeq2 results of RefSeq transcript abundance generated by SAMSA2 
Sheet 12 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of RefSeq transcripts in the murine cecal metatranscriptome. Log2 fold change values 
were calculated relative to control diet samples.  
Sheet 13 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of RefSeq transcripts in the murine cecal metatranscriptome in animals consuming the 
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Western diet (WD). Log2 fold change values were calculated relative to vehicle-treated samples 
on the WD. 
Sheet 14 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of RefSeq transcripts in the murine cecal metatranscriptome in animals consuming the control diet 
(NC). Log2 fold change values were calculated relative to vehicle-treated samples on the NC. 
Sheet 15 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in RefSeq transcripts abundance following ciprofloxacin therapy. Log2 fold change 
values were calculated relative to vehicle-treated samples on the NC. 
 
Data Set 5: Full DESeq2 results of CAZyme transcript abundance generated by SAMSA2 
Sheet 16 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of CAZyme transcripts in the murine cecal metatranscriptome. Log2 fold change values 
were calculated relative to control diet samples 
Sheet 17 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of CAZyme transcripts in the murine cecal metatranscriptome in animals consuming 
the Western diet (WD). Log2 fold change values were calculated relative to vehicle-treated samples 
on the WD.Table  
Sheet 18 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of CAZyme transcripts in the murine cecal metatranscriptome in animals consuming 
the control diet (NC). Log2 fold change values were calculated relative to vehicle-treated samples 
on the NC. 
Sheet 19 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in CAZyme transcripts abundance following ciprofloxacin therapy. Log2 fold change 
values were calculated relative to vehicle-treated samples on the NC.  
 
Data Set 6: Selection criteria for single species sequencing and full DESeq2 results of transcript 
abundance analysis of C. scindens during dietary intervention and ciprofloxacin treatment 
Sheet 20 – Total and average counts for metagenomic and metatranscriptomic read assignments 
generated via Kraken2. 
Sheet 21 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of C. scindens transcripts within the murine cecal metatranscriptome. Log2 fold change 
values were calculated relative to control diet samples. 
Sheet 22 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of C. scindens transcripts within the murine cecal metatranscriptome in animals consuming the 
Western diet (WD). Log2 fold change values were calculated relative to vehicle-treated samples 
on the WD. 
Sheet 23 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of C. scindens transcripts within the murine cecal metatranscriptome in animals consuming the 
control diet (NC). Log2 fold change values were calculated relative to vehicle-treated samples on 
the NC. 
Sheet 24 - Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in C. scindens transcript abundance following ciprofloxacin therapy. Log2 fold change 
values were calculated relative to vehicle-treated samples on the NC. 
 
Data Set 7: Full DESeq2 results of transcript abundance analysis of A. muciniphila and B. 
thetaiotaomicron during dietary intervention and ciprofloxacin treatment and dietary formulation. 
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Sheet 25 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of A. muciniphila transcripts within the murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to control diet samples.  
Sheet 26 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of A. muciniphila transcripts within the murine cecal metatranscriptome in animals 
consuming the Western diet (WD). Log2 fold change values were calculated relative to vehicle-
treated samples on the WD. 
Sheet 27 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of A. muciniphila transcripts within the murine cecal metatranscriptome in animals consuming the 
control diet (NC). Log2 fold change values were calculated relative to vehicle-treated samples on 
the NC. 
Sheet 28 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in A. muciniphila transcript abundance following ciprofloxacin therapy. Log2 fold 
change values were calculated relative to vehicle-treated samples on the NC. 
Sheet 29 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of A. muciniphila CAZyme transcripts within the murine cecal metatranscriptome. Log2 
fold change values were calculated relative to control diet samples. 
Sheet 30 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of A. muciniphila CAZyme transcripts within the murine cecal metatranscriptome in 
animals consuming the Western diet (WD). Log2 fold change values were calculated relative to 
vehicle-treated samples on the WD. 
Sheet 31 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of A. muciniphila CAZyme transcripts within the murine cecal metatranscriptome in 
animals consuming the control diet (NC). Log2 fold change values were calculated relative to 
vehicle-treated samples on the NC. 
Sheet 32 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in A. muciniphila CAZyme transcript abundance following ciprofloxacin therapy. Log2 
fold change values were calculated relative to vehicle-treated samples on the NC. 
Sheet 33 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of B. thetaiotaomicron transcripts within the murine cecal metatranscriptome. Log2 
fold change values were calculated relative to control diet samples.  
Sheet 34 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of B. thetaiotaomicron transcripts within the murine cecal metatranscriptome in 
animals consuming the Western diet (WD). Log2 fold change values were calculated relative to 
vehicle-treated samples on the WD. 
Sheet 35 - Differential abundance testing of the impact of ciprofloxacin treatment on the abundance 
of B. thetaiotaomicron transcripts within the murine cecal metatranscriptome in animals 
consuming the control diet (NC). Log2 fold change values were calculated relative to vehicle-
treated samples on the NC. 
Sheet 36 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in B. thetaiotaomicron transcript abundance following ciprofloxacin therapy. Log2 fold 
change values were calculated relative to vehicle-treated samples on the NC. 
Sheet 37 – Differential abundance testing of the impact of Western diet (WD) consumption on the 
abundance of B. thetaiotaomicron CAZyme transcripts within the murine cecal metatranscriptome. 
Log2 fold change values were calculated relative to control diet samples. 
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Sheet 38 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of B. thetaiotaomicron CAZyme transcripts within the murine cecal metatranscriptome 
in animals consuming the Western diet (WD). Log2 fold change values were calculated relative to 
vehicle-treated samples on the WD. 
Sheet 39 – Differential abundance testing of the impact of ciprofloxacin treatment on the 
abundance of B. thetaiotaomicron CAZyme transcripts within the murine cecal metatranscriptome 
in animals consuming the control diet (NC). Log2 fold change values were calculated relative to 
vehicle-treated samples on the NC. 
Sheet 40 – Interaction term analysis generated by DESeq2 for the impact of host diet consumption 
on changes in B. thetaiotaomicron CAZyme transcript abundance following ciprofloxacin therapy. 
Log2 fold change values were calculated relative to vehicle-treated samples on the NC. 
Sheet 41 – Catalog number, macronutrient breakdown, and ingredient formulation of both the 
Control Diet and Western Diet (Research Diets, Inc., New Brunswick, NJ) used in this study.  
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Abstract 

It is well established in the microbiome field that antibiotic (ATB) use and metabolic disease both 
impact the structure and function of the gut microbiome. But how host and microbial metabolism 
interacts with ATB susceptibility to affect the resulting dysbiosis remains poorly understood. In a 
streptozotocin-induced model of hyperglycemia (HG), we use a combined metagenomic, 
metatranscriptomic, and metabolomic approach to profile changes in microbiome taxonomic 
composition, transcriptional activity, and metabolite abundance both pre- and post-ATB challenge. 
We find that HG impacts both microbiome structure and metabolism, ultimately increasing 
susceptibility to amoxicillin. HG exacerbates drug-induced dysbiosis and increases both 
phosphotransferase system activity and energy catabolism compared to controls. Finally, HG and 
ATB co-treatment increases pathogen susceptibility and reduces survival in a Salmonella enterica 
infection model. Our data demonstrate that induced HG is sufficient to modify the cecal metabolite 
pool, worsen the severity of ATB dysbiosis, and decrease colonization resistance. 
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Introduction 

Exposure to antibiotics (ATB) is one of the most significant known microbiome 

perturbations. Drug-induced dysbiosis occurs within hours of treatment, and is characterized by 

loss of total bacterial load, taxonomic diversity, and significant transcriptional changes (Cabral et 

al., 2019; 2020; Dethlefsen and Relman, 2011). This alters the intestinal metabolome, placing the 

host at a higher risk for opportunistic infection (Bäumler and Sperandio, 2016; Buffie et al., 2012; 

Chang et al., 2008; Croswell et al., 2009; Kaiko and Stappenbeck, 2014; Rivera-Chávez et al., 

2016; Theriot et al., 2016; Theriot and Young, 2015). Given the severity of ATBs on the 

microbiome and the near ubiquitous use of these drugs, it is critical to mechanistically understand 

ATB activity within the gut and the external factors that dictate susceptibility.  

Microbial metabolism is a key determinant of ATB susceptibility (Stokes et al., 2019). 

Microbes performing ATP-generating processes like aerobic respiration have increased 

bactericidal drug sensitivity and experience a lethal respiratory burst during in vitro exposure 

(Adolfsen and Brynildsen, 2015; Belenky et al., 2015; Dwyer et al., 2014; Kohanski et al., 2007; 

Lam et al., 2020; Lobritz et al., 2015). Meanwhile, fermentation, diversion away from the 

tricarboxylic acid (TCA) cycle, or overall reduction in metabolism can confer drug tolerance in 

some species (Ahn et al., 2016; Conlon et al., 2016; Lobritz et al., 2015; Meylan et al., 2017; 

Thomas et al., 2013). We demonstrated that this trend holds true within the context of the 

microbiome, where ATB exposure dramatically reduces community metabolic capacity (Cabral et 

al., 2019). Surviving taxa like Bacteroides thetaiotaomicron  (B. theta) can endure amoxicillin 

(AMX) exposure by transcriptional adaptation that prioritizes fiber fermentation over the 

utilization of simple sugars (Cabral et al., 2019). When considering mechanisms of in vivo 

susceptibility, it is important to consider the role of local nutrients on microbial metabolism. Host 
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diet is likely one of the largest factors shaping the cecal nutrient pool; dietary changes can perturb 

microbiome diversity and activity, and thus may impact ATB susceptibility (Albenberg and Wu, 

2014; Bisanz et al., 2019; Collins et al., 2018; David et al., 2014; Ley, 2014; Smits et al., 2017; 

Tanes et al., 2021). Congruently, we showed that added dietary glucose potentiates AMX toxicity 

within the cecum, reducing total bacterial load and B. theta‘s drug tolerance phenotype (Cabral et 

al., 2019). This also occurs with the bactericidal drug ciprofloxacin, where consumption of a high 

fat/sugar diet increases mucus and simple sugar breakdown, increases gut glycolysis, and enhances 

microbiome drug susceptibility (Cabral et al., 2020). This suggests that the local nutrient pool can 

drive the severity of ATB activity in the microbiome by altering the metabolic rate of resident taxa.  

 Diet composition is not the sole determinant of nutrient availability within the gut. 

Normally, a small fraction of digested material reaches the dense communities of the lower 

gastrointestinal tract (GI). The composition of dietary molecules presented to the lower GI is 

impacted by multiple small intestinal digestive gradients and pancreaticobiliary secretions (Reese 

and Carmody, 2019; Shin et al., 2019). For example, the host controls colonic sugar concentrations 

via a combination of small intestinal transporter expression, gastric emptying rate, and 

enteroendocrine function (L. Chen et al., 2016; Holst et al., 2016; Koepsell, 2020; Holst et al., 

2016; Ussar et al., 2017). Disruptions of host metabolism, like digestive and metabolic disorders, 

are correlated with microbial dysbiosis, highlighting the connection between host and microbial 

systems in the GI (Brestoff and Artis, 2013; Westfall et al., 2015; Qin et al., 2012; Sabatino et al., 

2017). For example, dysglycemic patients demonstrate bacterial infiltration of the intestinal 

epithelial mucosa, suggesting that dysglycemia triggers an inflammatory intestinal phenotype by 

prompting microbial breakdown of mucus glycoproteins (Chassaing et al., 2017). 
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Host hyperglycemia (HG) may cause potent modulation of the lower GI metabolic 

environment. Currently, the relationship between dysregulated host metabolism, the local 

metabolite environment of the GI, and the severity of ATB-induced dysbiosis remains relatively 

understudied. We hypothesize that changes in host metabolism associated with induced HG will 

alter the microbiota-accessible cecal metabolite pool and place the community in a metabolically 

permissive state that increases susceptibility to bactericidal ATBs. To test this, we used the single-

dose streptozotocin (STZ) model rather than a diet- or genetically-based model of glucose 

dysregulation (Deeds et al., 2011; Kobayashi et al., 2000; C.-Y. Wang and Liao, 2012). STZ is a 

glucosamine nitrosourea compound that induces HG via the selective and irreversible destruction 

of insulin-producing pancreatic β cells; (Eleazu et al., 2013; Wu and Yan, 2015). STZ is quickly 

metabolized by the host, with a serum clearance time of about 15 minutes (Lee et al., 2010; Eleazu 

et al., 2013). Thus, STZ provides the benefit of rapidly-induced and irreversible HG without 

potentially microbiome-confounding factors like diet and host genetics (Deeds et al., 2011; Xiao 

et al., 2017; Yang et al., 2019). Existing research on glucose dysregulation and the microbiome is 

impacted by the use of dietary metabolic animal models like the high-fat diet-induced diabetes 

mouse (Fujisaka et al., 2016). In this study we used a multi-omic approach that profiled the 

taxonomic composition, transcriptional activity, and small molecule repertoire of the cecum to 

characterize the impact of STZ-induced HG on microbiome disruption during AMX treatment. We 

then profiled the effects of HG on AMX-induced pathogen susceptibility by challenging mice with 

Salmonella enterica. Our data show that HG is sufficient to modulate the cecal metabolite pool, 

and that these changes both potentiate ATB-induced dysbiosis and worsen the dysbiosis-related 

complication of opportunistic infection.  
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Results 

To examine the combined effect of HG and ATBs on microbiome structure and function, 

male C57BL/6J mice were given an intraperitoneal injection of either STZ or a sham (control). 

Mice were assessed for HG 48 hours post-injection then randomized. The next day, animals were 

given AMX or a sham (vehicle) for 24 hours ad libitum, which is sufficient to profile acute 

microbiome ATB responses without encountering significant extinction events (Cabral et al., 

2020; 2019). After AMX delivery, mice were sacrificed and cecal contents were harvested for 

multi-omic profiling (Figure 1A).  

 STZ caused significant and sustained HG (Figure 1B, Figure S1A). Because STZ’s 

mechanism of action involves organ cytotoxicity, we quantified plasma cytokines to evaluate 

systemic inflammation (Eleazu et al., 2013). We found no statistical difference in cytokine levels 

prior to ATB administration (Figure S1B, Figure S1C), but did observe an increase in IFN-γ 24 

hours later (Figure S1D) that is likely correlated with the early stages of disease progression in this 

model (Hanafusa and Imagawa, 2008). We then assessed GI histopathology and quantified GI 

lipocalin-2 to profile for localized inflammation. STZ-treated mice had minimal to no edema or 

inflammation compared to controls (Figure S1E), and no difference in lipocalin-2 levels (Figure 

S1F). Together these data show minimal differences in inflammatory phenotypes between STZ-

treated and control mice during the time frame used in this study.  

We profiled the effect of HG and AMX on microbiome structure using 16S rRNA 

sequencing. STZ treatment did not reduce diversity (Figure S1G) but did alter community 

composition when combined with AMX (Figure 1C, Figure S1H, Figure S1I). Because 16S 

sequencing has limited phylogenetic resolution, we conducted the remaining analyses with whole 

metagenomic sequencing (WMGS) (Cabral et al., 2020; 2019; Clooney et al., 2016; Poretsky et 
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al., 2014; Ranjan et al., 2016). WMGS showed that STZ alone did not impact α-diversity but 

bolstered the reduction in diversity and taxonomic shifts caused by AMX (Figure 1D, Figure 1E).  

Since STZ ablates insulin synthesis, and insulin helps regulate intestinal glucose absorption 

(Ussar et al., 2017), we asked if GI-localized glucose levels were altered by HG. However, we 

found that STZ-treated mice and controls had no significant difference in cecal glucose levels 

(Figure 1F). Therefore, glucose availability cannot explain the changes in community composition 

between experimental groups. Thus, we profiled the metabolome using quadrupole time-of-flight 

mass spectrometry (Q-TOF-MS) and liquid chromatography tandem mass spectrometry (LC-

MS/MS) (Table S1, Table S2). By assessing cecal metabolite diversity using Principal Coordinates 

Analysis, we found that both STZ and AMX significantly impacted the cecal metabolome’s 

composition (Figure 2A). We hypothesized that STZ-induced HG establishes a transcriptional and 

metabolic environment that alters the microbiome’s response to ATB exposure. To confirm this, 

we assessed the impact of HG on microbiome function both pre- and post-AMX treatment. 

 

Hyperglycemia Significantly Modifies the Cecal Metabolome and Metatranscriptome. 

Unlike diet-induced models of HG, STZ was associated with a single significant phylum-level 

change: the expansion of Verrucomicrobia (Figure 1E, Figure S1I) (Xiao et al., 2017; Yang et al., 

2019). We confirmed that this expansion was driven by Akkermansia muciniphila  using 

differential abundance testing (Figure 2B) (Love et al., 2014). A. muciniphila forages carbon from 

epithelial mucins and has been proposed to breakdown gut lining integrity, which may contribute 

to cecal metabolome divergence via imbalances in the local carbon pool that impact microbial 

cross-feeding networks (Belzer et al., 2017; Cabral et al., 2020; Desai et al., 2016; T. Zhang et al., 

2019). For example, we observed a reduction in the abundance of Blautia sp. YL58 after STZ 
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(Figure 2B). Members of this genus are short-chain fatty acid (SCFA) producers that use mucin as 

a carbon substrate (Bui et al., 2019; Oliphant and Allen-Vercoe, 2019; Rey et al., 2010; Vacca et 

al., 2020). A. muciniphila may outcompete Blautia for mucins in the HG host, which would disrupt 

any syntropic reactions Blautia participates in. Because the pre-AMX community structure was 

similar between hosts, we felt that the disparity in ATB susceptibility was due to modified 

metabolic and transcriptional activity, rather than baseline taxonomic differences.  

 We paired differential abundance testing (Love et al., 2014) and pathway-level projection 

(Aggio et al., 2010) of our Q-TOF-MS data with random forest classification of LC-MS/MS 

features to identify distinctive metabolites between HG mice and controls (Figure S2A-C, Table 

S1-S3). We then paired these findings with community- and species-level transcriptomics to better 

profile the microbiome’s functional capacity prior to ATB exposure. Despite consuming identical 

diets, HG and normoglycemic (NG) mice had varied levels of metabolites related to 

polysaccharide processing. We saw STZ-specific enrichment of the flavones apigenin, schaftoside, 

and daidzein, and significant reduction of major metabolites from apigenin breakdown such as 3-

3-hydroxyphenyl propanoate (Figure 2C, Table S1). These metabolites can generate either 

hydroxyphenylacetic acids or phenolic intermediates that are converted to SCFAs by Firmicutes 

(Braune and Blaut, 2016), and their accumulation may indicate diminished SCFA generation. To 

that end, STZ-treatment reduced valerate levels (Figure 2C). HG also lowered phytate degradation 

and multiple polysaccharide-targeted carbohydrate-active enzymes (CAZymes) (Figure 2C, 

Figure 2D, Figure S2D, Table S1, Table S4, Table S6).  Polysaccharide-fermenting taxa like B. 

theta (Martens et al., 2008; Sonnenburg et al., 2005) had reduced expression of targeted fiber 

import loci (Figure S2E: BT3086, BT3087, BT3090, and BT4581, Table S5). These data suggest 
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that STZ may impair microbial fiber fermentation and alter the level of polysaccharide-derived 

carbon sources. 

Amino acids (AA) are another significant bacterial carbon source (X. Wang et al., 2019) 

that was impacted by STZ treatment. Multiple metabolites related to aromatic amino acid (AAA) 

generation, like 3-(3-hydroxyphenyl)propanoic acid and phenylethyl alcohol, were reduced by 

STZ (Figure 2C, Table S1). We saw enrichment of metabolites involved in AA catabolism like 6-

methylnicotinamide, 2-ketoisocaproate and α-ketovaline, as well as pathway enrichment of AAA 

degradation and protein digestion, suggesting a shift towards AA catabolism rather than de novo 

synthesis (Figure S2A, Figure S2B, Table S1, Table S3). Shikimate pathway intermediates like 3-

dehydroquinate, 3-dehydroshikimate, and shikimate were enriched after STZ treatment, and likely 

caused by a block in a terminal component of the pathway, as transcription of both AAA and 

chorismate synthesis were reduced (Figure 2C, Figure 2D, Table S1, Table S6). The shikimate 

pathway feeds directly into AAA generation via chorismate; thus, reduced transcription and 

accumulation of metabolic intermediates suggests a shift from anabolic to catabolic AA 

metabolism.  

The shikimate pathway is also involved in B-vitamin generation and impacts the 

availability of energy carriers like coenzyme A (CoA) (Tzin and Galili, 2010). We observed 

enrichment of metabolites involved in pantothenate and CoA biosynthesis coupled with reduced 

pathway transcription (Figure 2D, Figure S2B, Table S3, Table S6). STZ increased expression of 

thiazole biosynthesis, which is critical for generating vitamin B1- and thus key metabolic enzymes 

like pyruvate dehydrogenase, pyruvate decarboxylase, and α-ketoglutarate dehydrogenase 

(Andersen et al., 2015; Allaway et al., 2020; Yoshii et al., 2019) (Figure 2D, Table S6). We 

observed increased pyruvate, glycolysis, and gluconeogenesis-related metabolites, including 
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glutamine and glycerol-3-phosphate (Figure S2A, Figure S2B). This enrichment was coupled with 

elevated ATPase, phosphoenolpyruvate hydratase, and succinate dehydrogenase transcription 

(Figure 2E, Table S8), that, when considered in tandem with increased inosine and tRNA 

processing (Figure 2D, Table S1, Table S6), suggests that STZ bolsters respiration within the 

microbiome.  

These data describe community-level changes to microbiome function. To identify species-

specific contributors to metabolome variation, we taxon stratified of our Q-TOF-MS data using 

MIMOSA (Figure 2F) (Noecker et al., 2016).  A. muciniphila had the largest contribution to 

community metabolism, followed by B. theta (Figure 2F, Table S9). A. muciniphila significantly 

contributed to acetate variation between hosts, speaking to STZ-related difference in SCFAs. 

Metabolic signatures of increased metabolism, including glutamine, inosine, and glycerol-3-

phosphate accumulation, could be explained by synthesis and degradation from A. muciniphila 

(glutamate & inosine) and synthesis from B. theta (inosine and glycerol-3-phosphate). Finally, 

variation in phosphatidylethanolamine, a major component of microbial cell walls, could be 

somewhat explained by A. muciniphila (Figure 2F), suggesting increased cell wall synthesis by 

this taxon. These data highlight that these two taxa are key in HG-specific changes to microbiome 

function.  STZ has robust impacts on cecal microbiome function. While A. muciniphila and B. 

theta are involved in this phenotype, it is important to consider that there is redundancy in species 

function and in substrate utilization across biochemical pathways (Tian et al., 2020). Thus, it is 

likely that the cumulative effect of multiple metabolic disruptions incurred from STZ increases 

metabolic demand on the community and leads to increased AMX susceptibility. 
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Hyperglycemia Modifies the Composition of Bacteroidetes and Firmicutes after Amoxicillin 

Exposure. Given the connection between microbial metabolism and ATB susceptibility (Belenky 

et al., 2015; Cabral et al., 2019; Lobritz et al., 2015; Stokes et al., 2019),  we hypothesized that 

STZ-induced metabolic disruption bolstered AMX susceptibility. HG mice had a highly divergent 

microbial composition after ATB exposure compared to controls (Figure 3A, Figure S3). 

Specifically, HG exacerbated the AMX-related reduction in α-diversity (Figure 1D). Only HG 

mice had a reduction in Verrucomicrobia, although this may be due to the pre-AMX expansion of 

A. muciniphila (Figure 1E, Figure 3B).  Interestingly, the loss of Actinobacteria, Firmicutes, and 

Proteobacteria, and the bloom in Bacteroidetes that was expected after AMX were greater in HG 

mice (Figure 3C-F) (Cabral et al., 2019). Consistent with our previous work (Cabral et al., 2019), 

the Bacteroidetes bloom was driven by the expansion of B. theta in both hosts (Figure 3G). 

 We calculated the interaction of HG and AMX to examine host-specific changes in species 

abundance (Love et al., 2014). In addition to B. theta, many members of the Bacteroides genus 

increased after AMX, with significantly elevated abundance in HG mice (Figure 3H, Figure S3A). 

Meanwhile, the species with reduced abundance in HG mice after AMX treatment were primarily 

within the order Clostridiales (Figure 3H, Figure S3B-I). These taxa are key starch degraders and 

SCFA producers, and their reduction suggests an increased dysbiotic state in STZ and AMX co-

treated mice (Bui et al., 2016; Iino et al., 2007; Kazemian et al., 2020; Newman et al., 2018). 

Overall, these data show that STZ-induced metabolic shifts can exacerbate the post-AMX bloom 

of Bacteroides and significantly worsen the loss of key SCFA-producing Firmicutes. This likely 

impacts the local metabolome and metatranscriptome, and thus AMX susceptibility, given the 

syntrophic nature of Bacteroides and Firmicutes metabolism (Fischbach and Sonnenburg, 2011).  
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Hyperglycemia Exacerbates Antibiotic-Induced Dysbiosis and Shifts Microbial Metabolism. 

As with taxonomic changes, the majority of detected functional AMX responses were highly host 

dependent. We used the same interaction calculation to profile host-specific changes in CAZyme 

and SEED subsystem transcript abundances (Figure 4A, Figure 4B). Interestingly, HG animals 

lack the reduction in glycoside hydrolase (GH) 43 seen in controls, suggesting modified processing 

of hemicelluloses, pectins, xylans, and arabinose (Figure 4A, Table S4) (Mewis et al., 2016). Given 

the reduced polysaccharide foraging in the STZ baseline, it is likely that the HG microbiota is 

unable to adapt its CAZyme expression in response to AMX. HG communities had overall fewer 

GH transcripts at the SEED subsystem level, and a greater loss of GH abundance relative to 

controls (Figure S4A, Figure S4B, Table S4, Table S7). We saw STZ-specific accumulation of 

polyphenols and polysaccharides, providing further support for host-dependent modifications in 

polysaccharide metabolism (Figure 5A, Table S1). HG mice had accumulation of multiple 

phenylpropanoids, phenylacetic acids, polyphenols, alkaloids, flavonoids, and isoprenoids (Figure 

5A, Table S1) and pathway-level enrichment of metabolites related to flavonoid/isoflavonoid 

synthesis after AMX treatment (Table S3). Because fiber metabolism can confer a protective 

phenotype to select gut microbes (Cabral et al., 2019) we anticipated that reduced fiber and 

polyphenol metabolism may directly contribute to the severity of AMX-induced dysbiosis in HG 

mice. 

Mucus foraging by the microbiota after AMX was also perturbed. In our CAZyme dataset, 

HG mice had a loss of GHs that target the chitobiose core of mucins (GH115), and did not 

upregulate GH84, GH129, and GH89 which target N-acetylglucosamine, class-III mucins, and 

mucus glycoproteins, respectively (Figure 4A, value, Table S4). Simultaneously, STZ and AMX 

co-treatment downregulated expression of multiple pathways involved in mucin-derived carbon 
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metabolism, including the Leloir pathway (foraging of mucus galactose residues), 4-deoxy-L-theo-

hex-4-enopyranuronate degradation (breakdown of heparin and hyaluron into pyruvate), and D-

galacturonate degradation (Figure 4C, Figure 4D, Table S6) (Tang et al., 2016). The sialic acid 

residue N-acetylneuraminic acid (NANA) was enriched in NG but not HG animals after AMX 

(Table S1). Because NANA is liberated by mucus breakdown (Crost et al., 2016), this suggested 

reduced muciniphilic activity by STZ and AMX co-treated communities. Ultimately, HG-related 

modifications in glycan foraging occur both before and after AMX, indicating that STZ-induced 

HG impacts the composition of the cecal carbon pool.  

Further evidence of perturbed carbon foraging in the HG AMX-treated microbiome arose 

from examination of host and ATB interaction for SEED subsystem transcript abundances (Figure 

4B, Table S7). We found a STZ-specific increase in phosphotransferase system (PTS) transcripts 

(Figure 4B, Table S7) as well as enrichment of PTS metabolites like mannitol 1-phosphate (Figure 

5A, Table S1). PTS systems function to rapidly import target saccharides into bacterial cells, and 

increased PTS activity may be the result of higher environmental sugar concentrations (McCoy, 

Levin, and Zhou, 2015). Although AMX reduced cecal glucose concentrations in both hosts, HG 

mice had significantly higher glucose levels than controls (Figure 1F) and we observed STZ-

specific enrichment of sugars like acetylated maltose (Figure 5A, Table S1).  

Elevated sugars and PTS likely also increased catabolism. To that end, we observed 

significant HG-specific increases in glycolysis and gluconeogenesis (Figure 4B, Table S7) and 

pyruvate fermentation transcripts compared to controls (Figure S4A, Figure S4B Table S7). The 

metabolome of HG AMX-treated mice was specifically enriched in catabolism and catabolism-

supporting pathways like 2-oxocarboxylic acid metabolism, glycolysis, starch/sucrose utilization, 

nicotinate/nicotinamide, and propanoate generation (Figure 5B, Table S3). The abundance of 
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vitamin co-factors was also impacted; in our LC-MS/MS dataset we saw HG-specific enrichment 

in riboflavin (Figure S4C: Cluster 699, Figure S4D, Table S2) (Steinert et al., 2020). The 

enrichment of nicotinate/nicotinamide, propanoate generation, and cofactor-related metabolites 

may impact the abundance of energy carriers (Belenky et al., 2007). Together these data suggest 

that carbon metabolism is disturbed in the HG AMX-treated microbiome, in part due to higher 

environmental concentrations of readily metabolized sugars.  

We stratified our metabolomics and transcriptional data with MIMOSA to identify 

taxonomic drivers of community behavior during AMX treatment (Figure 5C, Figure 5D, Table 

S9). Regardless of host, B. theta was the major metabolome-contributing taxa, which is congruent 

with its dominance of the microbiome during AMX perturbation (Figure 3A, Figure 3G, Figure 

5C, Figure 5D, Table S9). Of the metabolites correlated with differential community activity in 

HG mice, B. theta was responsible for enrichment of B-vitamins like riboflavin (via synthesis) and 

pantothenate (via synthesis and degradation). Additionally, sucrose and glycerol-3-phosphate 

levels could be partially explained by synthetic reactions from B. theta (Figure 5D, Table S9).  

The fact that B. theta significantly shapes the metabolic function of the microbiome after 

AMX in both hosts prompted us to compare the post-ATB transcriptome and metabolome (Figure 

6). We found that HG AMX-treated metabolomes were significantly enriched for metabolites 

involved in multiple AA generation pathways, nucleotide biosynthesis, and linoleic acids (Figure 

6A, Table S3). Additionally, we saw significant enrichment of metabolites related to carbon 

processing (fructose/mannose metabolism, ABC transporters, PTS) and metabolic homeostasis 

(pyruvate metabolism, ubiquinone/terpenoid-quinone biosynthesis, and glutathione metabolism) 

(Figure 6A). At the MetaCyc pathway level, we observed HG-related increases in pyruvate 

fermentation and nucleotide biosynthesis (Figure 6B, Table S6). Unsurprisingly, B. theta was the 
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major contributing taxon to this variation (Figure 6C, Table S9). Thus, we performed single-

species transcriptomics on B. theta during AMX challenge in HG and NG mice. Interestingly, B. 

theta downregulated the expression of multiple polysaccharide utilization loci (BT4293-BT4299, 

BT4296-4298, BT3025, BT1761, and BT1762) and sugar import systems for fructose (BT1759-

1763, and BT1759), ribose (BT2804), and fucose (BT3665) (Figure 6D, Table S5) only in HG 

mice (Figure 6D, Table S5) (Lynch and Sonnenburg, 2012; Mardo et al., 2017; Mimee et al., 2015; 

Townsend et al., 2020). The combination of STZ and AMX treatment also coincided with 

significant upregulation of the NADH dehydrogenase complex (BT4058-4067) which is a primary 

redox balance locus (Fischbach and Sonnenburg, 2011). We also saw elevation of another NADH 

ubiquinone reductase operon (BT0616) (Goodman et al., 2009), and ATPase (BT1746) (Figure 

6D, Table S5). Our community-level metabolomics indicated HG-specific loss of 

phosphoenolpyruvate (Table S1), which may be related to the differential regulation of respiration-

related complexes in B. theta. Together these data show that HG, and the resultant changes in 

environmental metabolites, are sufficient to dramatically modify the transcriptional and metabolic 

behavior of B. theta during AMX treatment. This change ultimately impacts the AMX 

susceptibility of other taxa within the community and greatly perturbs the functional response of 

the larger community to ATB pressure. 

 

Streptozotocin and Amoxicillin Co-treatment Increases Susceptibility to Salmonella enterica 

Infection.  We noticed that fatty acid metabolism was differentially impacted by STZ and AMX 

treatment. Specifically, co-treated communities were enriched for multiple N-acylethanolamines 

(Figure 5A, Table S1) and the precursor phosphatidylethanolamine (Table S1). Higher 

ethanolamine concentrations may suggest more fatty acid epoxidation and dysbiosis-associated 
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inflammation within the GI (Ormsby et al., 2019; Thiennimitr et al., 2011). Ethanolamines are 

naturally generated by phosphatidylethanolamine breakdown during cell turnover, however, most 

of the microbiota is unable to ferment ethanolamines, and these compounds can increase the 

colonization and virulence of multiple enteric pathogens (Anderson et al., 2018; 2015; Nawrocki 

et al., 2018; Rowley et al., 2018; Garsin, 2010). Specifically, some Enterobacteriaceae are 

enriched for the genetic machinery required to use ethanolamines, and can funnel their breakdown 

products into both nitrogen metabolism and respiration (Anderson et al., 2015; Garsin, 2010; 

Srikumar and Fuchs, 2011; Thiennimitr et al., 2011). In Salmonella, exogenous ethanolamine 

signals a cascade of metabolic and virulence genes that promote intestinal colonization (Anderson 

and Kendall, 2016). ATB-induced dysbiosis is also associated with increased S. enterica 

colonization, likely through the induction of a respiratory-favorable environment and disruption 

of the endogenous microbiota (M. Y. Yoon and S. S. Yoon, 2018; Zeng et al., 2017). The 

transcriptional changes we observed in B. theta are highly indicative of a respiratory-favorable 

environment in the HG AMX-treated GI (Figure 6D). Thus, we asked if  the microbiome 

modifications in HG AMX-treated mice would increase infection susceptibility to S. enterica 

(Figure 7A).  

 We found that co-treatment with STZ and AMX lowered the infective dose required to 

establish S. enterica colonization and significantly increased intestinal, hepatic, and splenic 

pathogen burden (Figure 7B, Figure S5A). Host HG increased lethality by day 7 of infection 

(Figure 7C, Figure 7D). In the control group, all vehicle-treated mice survived, and AMX-treated 

mice in the high dosage groups (1x104 and 1x105) experienced 75 and 50 percent survival 

respectively (Figure 7C). In the STZ group, vehicle-treated mice in the highest dosage groups 
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(1x105 and 1x106) had 75 and 40 percent survival, while the AMX-treated mice experienced 

between 25 to 80 percent survival with lethality events starting as early as 24 hours (Figure 7D). 

To check for any significant differences in GI physiology or immunocompetence, we 

assessed GI edema and inflammation between HG and control mice (Figure S5B). We saw no 

differences in GI physiology, but we noticed slight differences in some serum cytokines (Figure 

S5C-I). For IL-1α, IL-6, and IL-12p70, variation was between vehicle-treated mice and may 

represent progression of the STZ model rather than responses to infection. For GM-CSF, IFN-β, 

IL-10, and IL-17A, plasma concentrations are only elevated in HG AMX-treated mice after 

infection and thus may be the result of differential susceptibility (Figure S5C-I).  

 Infection with S. enterica represents another form of microbiome dysbiosis in conjunction 

with ATBs. Thus, we profiled the fecal microbiome during the first 4 days of infection to assess if 

HG worsened infection-related dysbiosis (Figure 7E-G, Figure S5J-L). The initial infection 

significantly impacted microbiome β-diversity (Figure S5). However, diversity remained 

divergent in accordance with pre-infection experimental treatment (Figure 7E). This indicates that 

regardless of infective dose, the microbiome changes induced by STZ or AMX remain the drivers 

of β-diversity.  Interestingly, we noticed that only HG mice experienced a significant reduction in 

α-diversity (Figure S5K). During the 4-day period following infection, Salmonella expansion was 

only detected in AMX-treated animals (Figure 7F). We then quantified the difference in 

Salmonella- reads between control and HG mice after AMX and found that HG mice had notably 

higher levels of Salmonella (Figure 7G). Together, these data suggest that the combination of STZ 

and AMX severely reduces the probability of survival after S. enterica challenge and increases 

pathogen burden and microbiome dysbiosis relative to NG controls. It is possible that the 

enrichment of favorable metabolites or change in respiratory potential in HG AMX-treated 
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communities promotes the expansion and virulence of S. enterica, although more work is required 

to confirm this hypothesis.  

 

Discussion  

Recent estimates of HG global prevalence suggest that metabolic disruption occurs in 

approximately ten percent of all people, with incidence increasing annually (Saeedi et al., 2019). 

Thus, understanding how host metabolism impacts ATB-induced dysbiosis is key to the 

development of microbiome-protective therapeutic strategies. To address this knowledge gap, we 

used an integrated multi-omic strategy to examine how HG modifies the microbiome’s response 

to AMX. Specifically, we combined WMGS, metatranscriptomics, and untargeted metabolomics 

to examine differences in microbiome composition and function both pre- and post-ATB treatment 

and characterized the severity of dysbiosis-related complications like enteric infection.  

A key goal of this study was to profile the impact of altered host metabolism, and the 

microbiota-accessible metabolite pool, on microbiome function during ATB treatment. Since 

dietary modulation has inherent limitations involved in restructuring microbiome composition, we 

opted for a rapid-chemotherapeutic method to perturb the GI metabolite pool. We chose STZ, in 

part, due to its widespread use and quick onset of changes. However, it is critical to address 

limitations of the model as it does not perfectly replicate the pathology of clinical HG. STZ has 

been used to replicate both type-I and type-II diabetic phenotypes in animals since the mid-1960s 

(Deeds et al., 2011; Eleazu et al., 2013). Models of STZ administration vary widely in their dosage 

concentration, injection frequency, and inclusion or exclusion of high-fat feed typically due to 

differences in research goals (Deeds et al., 2011; Furman, 2021). Because STZ does not perfectly 

mimic type-II diabetes, the inclusion of a high-fat feeding period before injection was recently 
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proposed as a method to induce hyperinsulinemia and insulin resistance in STZ-treated animals 

(Furman, 2021; Chao et al., 2018). Regardless, STZ consistently induces the characteristic 

symptoms of HG, insulin deficiency, polydipsia and polyurea (Furman, 2021; Kolb, 1987). 

Although there is conservation of immunological responses to  β cell ablation (Eleazu et al., 2013), 

one must consider that microbiome-related phenotypes derived from STZ-induced HG are likely 

specific to the sub-model and may not readily translate across studies. For example, the only 

taxonomic changes we found after STZ treatment were the expansion of A. muciniphila and 

collapse of Blautia sp YL58. This contrasts with the many taxonomic shifts seen in existing work 

examining STZ-treated rats, but this may be due to inherent differences between mice and rats, 

use of multiple STZ doses, sample collection, sequencing depth, use of a diet in combination with 

STZ, or the time-frame of weeks rather than days (S. Liu et al., 2019; Ma et al., 2020; Patterson et 

al., 2015; Yin et al., 2020).  

Interestingly, serum metabolomics in multiple low-dose STZ treated mice found 

enrichment of AAAs, bile acids, dipeptides, fatty acids, nucleotides, sphingolipids, and vitamins 

(Ugarte et al., 2012). These results are congruent with our pre-AMX metabolomics data and may 

represent true HG-related changes. Metabolomic studies focused on pre-diabetic patients have 

found shifts in AA catabolism as a potential biomarker of progression to type-I diabetes, and spikes 

in both aromatic and branched-chain AA as predictive of type-II diabetes (T. Wang, et al., 2011; 

Neis et al., 2015), supporting our observed AA changes as a true HG phenotype. A potential 

explanation for this enrichment is that fiber use within the GI impacts the production of several 

AA-based metabolites by members of the Firmicutes phylum (Neis et al., 2015; Tanes et al., 2021), 

suggesting an intrinsic link between metabolic dysregulation and shifts in gut AA metabolism.   
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We found that STZ initiated a cascade of changes related to fiber and SCFA generation. 

Specifically, the loss of SCFA-producing Firmicutes may perturb syntropic reactions involved in 

fiber-fermentation (Bui et al., 2016; Oliphant and Allen-Vercoe, 2019; Rey et al., 2010; Vacca et 

al., 2020). Because the microbiome is responsible for this fermentation (Holscher, 2017), we 

anticipate that disturbances in polysaccharide processing are microbially-driven rather than host-

derived.  In the case of polyphenol substrates and metabolites, bacteria can coopt and liberate 

sugars from these compounds for use in their own metabolism (Fraser and Chapple, 2011; Braune 

and Blaut, 2016; Moore et al., 2002; M. Wang et al., 2019; Lundgren and Thaiss, 2020; Vollmer 

et al., 2018) For example, some taxa can directly utilize flavones as a carbon source, fueling them 

into their respiratory cycle (Burlingame and Chapman, 1983). Thus, shifts in the abundance of 

dietary-derived polyphenols could modify microbial metabolism in GI.  

Reduced fiber use by the microbiota may be partially explained by a side-effect of STZ 

treatment. Rodents receiving a multiple low-dose regime (i.e. 50 mg/kg/day for 5 days) of STZ 

exhibit an initial reduction in food consumption (Motyl and McCabe, 2009). However animals 

exhibit hyperphagia one week post-injection (Motyl and McCabe, 2009; M. Zhang et al., 2008). It 

is possible that our experimental time point for AMX administration and sample collection (3 and 

4 days-post injection, respectively) is associated with reduced food intake, which would lower the 

availability of fiber. Regardless, reduced fiber and polyphenol intake has been recognized as a 

form of dysbiosis, increasing susceptibility to bactericidal ATBs via modification of microbial 

metabolism (Cabral et al., 2020; 2019; Makki et al., 2018; Ng et al., 2019), and we propose that a 

similar disruption of the microbiome occurs here.  

  We observed that the HG microbiome was enriched for transcripts and metabolites 

involved in pyruvate metabolism and glycolysis. It is likely that the overall enrichment of AA 
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catabolism directly contributes to increased community respiration because many of the observed 

AAs are glucogenic (Berg, 2002). A key consideration of any ecological network is its taxonomic 

composition (Coyte and Rakoff-Nahoum, 2019). Polymicrobial interactions are a significant 

component of the microbiome’s ecology and changes to taxonomic structure or function will 

directly impact the overall activity (Coyte and Rakoff-Nahoum, 2019; Layeghifard et al., 2017; 

Boon et al., 2014). Because Firmicutes have been characterized to perform a bulk of AA, nitrogen, 

and sulfur metabolism reactions within the GI, it is possible that these taxa are driving the increased 

metabolic rate. This may prime the microbiome as a whole for increased AMX susceptibility, but 

more work is needed to confirm this hypothesis (Bernal et al., 2007; Böttcher et al., 2014; Gao et 

al., 2018; Meadows and Wargo, 2015). Overall, these data make a strong argument for the degree 

of control that changes in the baseline function of the microbiome have on compositional 

restructuring after ATB perturbation.  

When comparing HG and NG communities during and after AMX treatment, the increased 

dysbiosis in HG mice was expected given both the increased basal metabolic rate and the elevation 

of simple sugars and PTS activity during AMX exposure. Increased sugar availability and 

decreased polysaccharide utilization have been demonstrated to potentiate ATB toxicity within the 

GI (Cabral et al., 2019; 2020). The most striking finding to us was how divergent the 

transcriptional behavior of B. theta was between hosts. We previously identified that 

polysaccharide fermentation by B. theta functions as an amoxicillin tolerance response in NG 

animals (Cabral et al., 2019). However, this study complicates that understanding, as STZ-specific 

reductions in B. theta’s polysaccharide and mucus foraging suggests that these may not be 

universal amoxicillin tolerance responses. There may be non-mucosal or non-polysaccharide 

metabolite species that induce a protective phenotype to members of the Bacteroides genus. 
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Alternatively, members of this genus possess β-lactamases, and differences in the expression of 

these resistance genes may be involved in the observed enrichment of Bacteroides in HG AMX-

treated mice (Edwards, 1997). Regardless, reduction in fiber fermentation by Bacteroides disrupts 

the balance of nutrients available for syntrophic metabolism with Firmicutes and Actinobacteria 

(Fischbach and Sonnenburg, 2011). These changes may induce a proinflammatory state and 

contribute to the increased dysbiosis experienced by HG mice during ATB exposure. Given the 

total ecological complexity of the gut microbiome, a more robust understanding of cross-feeding 

networks will be integral to the full characterization of a given perturbation’s impact on the 

microbiome.  

Lastly, we examined if the increased severity of AMX toxicity in HG mice would increase 

susceptibility to enteric infection. Overall, HG AMX-treated animals had both increased 

susceptibility to S. enterica and reduced overall survival after one-week of infection (Figure 7). 

Recent work by Thaiss et al. has shown that decreased barrier function caused by STZ increases 

S. enterica susceptibility (Thaiss et al., 2018). However, this study used a multiple-dose STZ 

model and did not infect mice until a few weeks after STZ treatment, thus these results may not 

translate to our study. For example, we found that, at low infective doses, STZ treatment had no 

impact on susceptibility in the absence of ATBs. Thus, it is possible that the HG ATB co-treated 

microbiome is structurally, functionally, and metabolically perturbed in a way that promotes 

pathogen colonization and expansion. For example, we found enrichment of multiple 

ethanolamines, which are a carbon source that cannot be used by the microbiota but can be utilized 

by Salmonella (Anderson et al. 2015; Srikumar and Fuchs, 2011; Thiennimitr et al., 2011). S. 

enterica has flexible metabolism compared to the bulk of the microbiota (Taylor and Winter, 

2020), and can use non-accessible carbon sources like ethanolamines to promote colonization and 
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niche adaptation in mammals (Anderson et al. 2015). Other metabolites that may have impacted 

S. enterica infection severity include acetyl-maltose, as Salmonella are equipped with tightly 

controlled maltose import systems and readily fuel this carbon source into their respiratory cycle 

(Erhardt and Dersch, 2015; Jain et al., 2020; Miller et al., 2013). Another metabolite of interest 

was pantetheine, which Salmonella can shunt into its CoA synthesis, potentially providing a fitness 

advantage through competitor exclusion (Ernst and Downs, 2015) (Table S1). An alternate 

explanation for the increased expansion of Salmonella is an overall increase in ATB-induced 

intestinal oxygenation. Salmonella are facultative anaerobes and can readily switch to aerobic 

respiration when needed (Rhen, 2019). Additionally, Salmonella can use inflammation-related 

metabolites like tetrathionate as terminal electron acceptors, and can coopt the oxygenated and 

inflamed gut for growth (Winter et al., 2010). Although more work is required to parse what 

components of the HG microbiome provide a competitive advantage to Salmonella after AMX 

treatment, our data provides strong preliminary evidence that STZ-induced HG can directly impact 

the acute consequences of ATB dysbiosis. Ultimately, our study shows that host-related 

physiology and metabolic state must be a key consideration of any current and future therapeutic 

strategy aimed at mitigating ATB-induced microbiome damage. 

 

Limitations of the Study. While our multi-omic approach robustly characterizes the cecal 

microbiome during dysglycemia and ATB perturbation, there are limitations in the study design 

and methodology that complicate the interpretation of the results. First, our study exclusively uses 

male mice. Female mice are partially resistant to STZ-induced HG and require significantly higher 

doses and (or) repetitive dosing regimens compared to males to induce a metabolic phenotype 

(Deeds et al., 2011; Goyal et al., 2016). An additional consideration is that STZ’s mechanism of 
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action involves organ cytotoxicity (Deeds et al., 2011). Although STZ is rapidly eliminated from 

the host, it is nearly impossible to guarantee that off-target effects of pancreatic toxicity are not 

contributing to some microbiome phenotypes.  

A key consideration of our metagenomic and metatranscriptomic-reliant analyses is the 

dependence on existing databases that possess annotation-based limitations and the need for 

imperfect alignment algorithms (Consortium, 2012). While WMGS provides increased resolution 

over 16S rRNA sequencing, the taxonomic classification of sequencing reads is still subject to 

currently available reference genomes, which are biased towards some taxa over others 

(Consortium, 2012; McLaren et al., 2019). Further, WMGS data is complicated by the fact that 

taxonomic levels are reported as relative abundances. Even metabolomic-focused pipelines like 

MIMOSA are limited by their reference databases. Specifically, full reaction annotations within 

the KEGG database are required for this pipeline (Noecker et al., 2016). 

For untargeted metabolomics, ion annotation is still considered the primary bottleneck of 

analysis (Gertsman and Barshop, 2018; Schrimpe-Rutledge et al., 2016). The diversity in chemical 

modification, polarity, solubility, and ionization of chemical structures from complex biological 

samples often requires multiple analytical modes (i.e. positive versus negative ion mode) to be run 

in order to characterize all structures, and that can subsequently complicate ion identification 

(Gertsman and Barshop, 2018; Lei et al., 2011; Luan et al., 2019). While metabolomics offers a 

powerful examination of the small molecule repertoire of the cecum, it does not distinguish 

between bacterially-derived, fungal-derived and host-derived metabolites (Gertsman and Barshop, 

2018). While pairing these data with metatranscriptomics and using networking models like 

MIMOSA helps improve inference of metabolite origin it does not eliminate the possibility of 

host-derived metabolites being mistaken for bacterially derived compounds and vice versa. 
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Additionally, our metabolomics preparation is unable to separate intracellular from extracellular-

derived metabolites, potentially complicating biological interpretations. Ultimately, further work 

will be required to correlate STZ and AMX-induced metabolomic changes with individual taxa, 

and greater annotation of metabolic syntrophy in the gut will aid in the biological interpretation of 

subsequent metabolomic analyses.   
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Materials and Methods 

Resource Availability 

Lead Contact  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Peter Belenky (peter_belenky@brown.edu).  

 

Materials Availability 

This study did not generate new, unique reagents. 

 

Data and Code Availability 

• Illumina sequencing read data have been deposited at the NCBI Short Read Archive (SRA) 

under the BioProject Accession numbers PRJNA720755 (16S rRNA reads) and 

PRJNA72012 (WMGS and metatranscriptomic reads), and are publicly available as of the 

date of publication. LC-MS/MS and GNPS data have been deposited to massive.ucsd.edu 

(MSV000087093) and gnps.ucsd.edu 

(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e4efce0c33fb4ada96e373d53460f2d5) 

and are publicly available as of the date of publication.  

• This paper does not report original code. 

• Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request. 

 

Experimental Model And Subject Details 

Animal Housing 
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Experimental procedures involving mice were conducted in accordance with protocols  approved 

by the Institutional Animal Care and Use Committee (IACUC) of Brown University. Five-week-

old male C57BL/6J mice were purchased from the Jackson Laboratories (Bar Harbor, ME, USA) 

and given a two-week habituation period immediately following their arrival at Brown University. 

All animals were cohoused together in specific-pathogen-free (SPF), temperature controlled 

(21+1.1 °C), and 12-hour light/dark cycling conditions within Brown University’s animal care 

facility, while being fed a standard chow (Laboratory Rodent Diet 5001, LabDiet, St. Louis, MO, 

USA). After habituation, mice were randomized into new cages to reduce potential cage effects.  

 

Bacterial Strains 

S. enterica Typhimurium SL1344 (GFP+, AmpR) was generously donated by Dr. Venessa 

Sperandio (University of Texas, Southwestern). Cells were grown at 37°C under shaking aerobic 

conditions in Luria-Bertani (LB) broth containing ampicillin (100 µg/mL). Colony forming units 

(CFU) were quantified on LB agar plates containing ampicillin (100 µg/mL). Because S. enterica 

Typhimurium SL1344 constitutively expresses green-fluorescent protein, CFU counts were 

confirmed by UV-imaging using the ChemiDoc Imaging System (Bio-Rad, Hercules, CA, USA).  

 

Method Details 

Animal Experiments 

All animal work was conducted in accordance with protocols approved by the Institutional Animal 

Care and Use Committee (IACUC) of Brown University. To induce HG, 7-week-old male 

C57BL/6J mice were fasted for 4-6 hours, then given an intraperitoneal injection of either Na-

Citrate buffered streptozotocin (STZ) (150 mg/kg, pH 4.5) or a Na-Citrate sham (pH 4.5). All mice 
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were given overnight supplementation of 10% sucrose water to avoid post-procedural 

hypoglycemia. Sucrose water was then replaced with standard filter-sterilized water the following 

morning. Two days post-injection, fasting blood glucose was assessed in all mice using the 

CONTOUR®NEXT blood glucose monitoring system (Bayer AG, Whippany, NJ, USA). Mice 

with HG (fasting blood glucose > 250 mg/dL) were selected for subsequent ATB treatment along 

with NG controls. 24-hours after glycemic assessment, all mice were randomized again to reduced 

potential cage effects and given either amoxicillin (25 mg/kg/day) or a pH-adjusted vehicle via 

filter-sterilized drinking water ad libitum for 24 hours (Cabral et al., 2019). Mice were 

subsequently sacrificed and dissected to collect blood, tissues, and cecal contents. Cecal contents 

were weighed then divided to be processed according to their downstream application (nucleic 

acid extraction, Q-TOF-MS, or LC-MS/MS). Exact processing methods are described in each 

application section below. 

The 16S ribosomal RNA sequencing, whole metagenome sequencing, metatranscriptomic 

sequencing, metabolomics, and infection studies are the result of independent biological replicates 

conducted several months apart from one another. The 16S rRNA sequencing results were derived 

from two independent animal experiments performed in 2017 and 2018. Whole metagenomic 

sequencing results were derived from two independent animal experiments performed in 2018 and 

2019. Metatranscriptomic results were paired from respective metagenomic samples. 

Metabolomics data were acquired from a separate animal experiment performed in 2020. Finally, 

infection data were acquired from two independent animal experiments performed in 2020 and 

2021. 

 

Multi-omic Analysis: Pipelines/Purpose/Scope 
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Our multi-omic approach to microbiome analysis features the combinatory usage of the Kraken2 

and Bracken annotation pipelines for whole metagenomic sequencing (Lu et al., 2017; Wood et 

al., 2019), and the HMP Unified Metabolic Analysis Network (HUMAnN2) (Franzosa et al., 2018) 

and Simple Annotation of Metatranscriptomes by Sequencing Analysis (SAMSA2) pipelines for 

metatranscriptomics (Westreich et al., 2018).  Combined utilization of these pipelines facilitates 

examination of species-level taxonomic shifts (Kraken2/Bracken), community-level changes in 

transcript abundances (SAMSA2) and community-level gene expression that is normalized to the 

abundance of each taxon (HUMAnN2). We also used the pipeline developed by Deng et al. (Deng 

et al., 2018) to examine species-level transcriptional responses to STZ and amoxicillin challenge 

for high-abundance and transcriptionally active members of the microbiota.  

Sequencing pipelines were used in conjunction with both quadrupole flow injection 

electrospray time-of-flight mass spectrometry (Q-TOF-MS) (Fuhrer et al., 2011) and liquid 

chromatography tandem mass spectrometry (LC-MS/MS) paired with spectral annotation and 

networking analysis via the Global Natural Products Social Metabolic Network (GNPS; 

http://gnps.ucsd.edu) (M. Wang et al., 2016). While recent advances in mass spectrometry methods 

have vastly increased the range and accuracy of metabolite detection, no single analytical method 

is currently capable of capturing the entirety of small molecules in a complex biological sample 

(Luan et al., 2019). Thus, we opted to increase our metabolite coverage through the combinatory 

use of a tandem (LC-MS/MS) and a high-resolution (Q-TOF-MS) method (M. X. Chen et al., 

2019). The Q-TOF-MS data is presented at the metabolite level where unknown features are 

ignored. For pathway-level comparisons, available Kyoto Encyclopedia of Genes and Genomes 

compound identifiers were used to perform Pathway Activity Profiling (Aggio et al., 2010) of 

known features (Figure S1E, Table S3). A deeper metabolome analysis including unknown 
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molecules or related metabolites to known compounds is presented with the and data originating 

from our LC-MS/MS dataset using GNPS cluster identification.  

Finally, integration of transcriptomic (HUMAnN2) and metabolomic (Q-TOF-MS) data 

was performed using the R implementation of Model-based Integration of Metabolite 

Observations and Species Abundances (Noecker et al. 2019). This software calculates the potential 

metabolic capacity of a microbiome by examining which enzymatic reactions are present in a 

community (i.e., the sum of all synthetic and degradation machinery present). This output is then 

compared against observed metabolite variations from KEGG-annotated metabolomics data.  

 

Nucleic Acid Extraction & Purification 

For nucleic acid extraction, cecal contents were transferred to ZymoBIOMICS DNA/RNA 

Miniprep Kit (Zymo Research, Irvine, CA, USA) Collection Tubes containing DNA/RNA Shield. 

These tubes were then processed via vortex at maximum speed for 5 minutes to homogenize cecal 

contents, which were subsequently placed on ice until permanent storage at -80°C. Using the 

parallel extraction protocol as per the manufacturer’s instructions, the ZymoBIOMICS DNA/RNA 

Miniprep Kit was used to isolate total nucleic acids (DNA and RNA) from cecal slurry. Total 

DNA/RNA were eluted in nuclease-free water and quantified using the dsDNA-HS and RNA-HS 

kits on the Qubit™ 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).   

 

16S rRNA Amplicon Generation and Sequencing 

The V4 hypervariable region of the 16S ribosomal RNA was amplified from extracted total DNA 

using the 515F and 806R barcoded primers published under the Earth Microbiome Project 

(Caporaso et al. 2012; Thompson et al., 2017). Amplicons were generated using Phusion high-
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fidelity polymerase and the following cycling protocol: 98°C for 30 seconds initial denaturation, 

then 25 cycles of 98°C for 10 seconds (denaturation), 57°C for 30 seconds (annealing), and 72°C 

for 30 seconds (extension). This was followed by a final extension of 72°C for 5 minutes. 

Amplicon libraries were submitted to the Rhode Island Genomics and Sequencing Center at the 

University of Rhode Island (Kingston, RI, USA) for pair-end sequencing (2x250 bp) on the 

Illumina MiSeq platform using the 500-cycle kit with standard protocols. We obtained an average 

of 11,511 + 10,632 reads per sample for sequences related to Figure 1 and Figure S1, and an 

average of 6,167 + 3,498 reads per sample for sequences related to Figures 7 and S5.  

 

16S rRNA Read Processing & Analysis 

Raw reads underwent quality filtering, trimming, de-noising and merging using the R (version 

3.5.0) package implementation of DADA2 (version 1.8.0) (Cabral et al., 2020; 2019; Callahan et 

al., 2016). The resulting ribosomal sequence variants underwent taxonomic assignment by using 

the assignTaxonomy function in DADA2 with the RDP Classifier algorithm with RDP training set 

18 (Wang, Q., 2007). Both α (Shannon) and β (Bray-Curtis Dissimilarity) diversity were calculated 

using the R package phyloseq (version 1.24.2) (McMurdie and Holmes, 2013). 

 

Metagenomic/transcriptomic Library Preparation 

Libraries for metagenomics and metatranscriptomics were prepared as described in our recent 

work (Cabral et al., 2020). We prepared metagenomic libraries from DNA (100 ng) using the 

NEBNext® Ultra II FS DNA Library Prep Kit (New England BioLabs, Ipswich, MA, USA) and 

the > 100 ng input protocol as per the manufacturer’s instructions, which generated a pool of 

fragments whose average size was between 250 and 500 bp. Meanwhile, we prepared 



 129 

metatranscriptomic libraries from total RNA (< 1 ug) using a combination of the MICROBExpress 

kit (Invitrogen, Carlsbad, CA, USA), NEBNext® rRNA Depletion Kit for Human/Mouse/Rat 

(New England BioLabs, Ipswich, MA, USA), and the NEBNext® Ultra II Direction RNA 

Sequencing Prep Kit as per the manufacturers’ instructions. This generated a pool of fragments 

with an average size between 200 and 450 bp. Both metagenomic and metatranscriptomic libraries 

were pair-end sequenced (2x150 bp) on the Illumina HiSeq X Ten platform, yielding an average 

of 1,464,061 + 728,330 reads per metagenomic sample and 35,884,874 + 27,059,402 reads per 

metatranscriptomic sample.  

 

Metagenomic/transcriptomic Read Processing 

Raw metagenomic and metatranscriptomic reads underwent trimming and decontamination using 

KneadData (version 0.6.1) as previously described (Cabral et al., 2020; 2019; McIver et al., 2018). 

Illumina adapter sequences were removed using Trimmomatic (version 0.36), then depleted of 

reads that mapped to C57BL/6J, murine mammary tumor virus (MMTV, accession NC_001503) 

and murine osteosarcoma virus (MOV, accession NC_001506.1) using Bowtie2 (version 2.2) 

(Bolger et al., 2014; Cabral et al., 2020; Langmead and Salzberg, 2012). Metatranscriptomic reads 

were additionally depleted of sequences that aligned to the SILVA 128 LSU and SSU Parc 

ribosomal RNA databases as previously described (Cabral et al., 2020; 2019; Pruesse et al., 2007).  

 

Taxonomic Classification of Reads 

We taxonomically classified trimmed and decontaminated metagenomic reads against a database 

of all completed bacterial, archaeal, and viral genomes contained within NCBI RefSeq using 

Kraken2 (version 2.0.7-beta, “Kraken2 Standard Database”) with a k-mer length of 35 (Wood et 
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al., 2019). Bracken (version 2.0.0) was then used to calculate phylum- and species-level 

abundances from Kraken2 reports, and the R package phyloseq (version 1.28.0) was used to 

calculate α- and β-diversity metrics (Lu et al., 2017; McMurdie and Holmes, 2013).  

 We then performed differential abundance testing on species-level taxonomic assignments 

(Cabral et al., 2020; 2019). First, low-abundance taxa (< 1,000 reads in > 20% of samples) were 

removed, then differential abundance testing of filtered counts was performed with the DESeq2 

package (version 1.24.0) using default parameters (Love et al., 2014). All p-values were corrected 

for multiple hypothesis testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 

1995). Features with an adjusted p-value of less than 0.05 were considered statistically significant.  

 

Metatranscriptomic Analysis: SAMSA2 

We used a modified version of the Simple Annotation of Metatranscriptomes by Sequences 

Analysis 2 (SAMSA2) pipeline to annotate trimmed and decontaminated metatranscriptomics 

reads as previously described (Cabral et al., 2020; 2019; Westreich et al., 2018). This modified 

pipeline involves implementation of the Paired-End Read Merger (PEAR) utility to generate 

merged reads and DIAMOND (version 0.9.12) aligner algorithm (Buchfink et al., 2014; J. Zhang 

et al., 2014) to generate alignments against RefSeq, SEED Subsystem, and CAZyme databases 

(Cantarel et al., 2009; Overbeek et al., 2014). The resulting alignments were subjected to 

differential abundance testing using DESeq2 (version 1.24.0) with standard parameters and 

Benjamini-Hochberg multiple hypothesis testing correction (Benjamini and Hochberg, 1995; Love 

et al., 2014). Features with an adjusted p-value of less than 0.05 were considered statistically 

significant. 
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Metatranscriptomic Analysis: HUMAnN2 

We used the HMP Unified Metabolic Analysis Network 2 (HUMAnN2, version 0.11.1) pipeline 

to assess the impact of STZ-based HG and amoxicillin treatment on gene expression within the 

gut microbiome (Franzosa et al., 2018). We supplied the taxonomic profiles generated for each 

sample into the HUMAnN2 algorithm in order to assure consistent taxonomic assignment between 

paired samples (Segata et al., 2012; Cabral et al., 2020; 2019). Then, using HUMAnN2, we 

generated MetaCyc pathway abundances and used these to estimate community-level gene 

expression and normalized this to metagenomic abundance using the Witten-Bell method (Witten 

and Bell, 1991). Unstratified smoothed RPKM values were converted to relative abundances then 

analyzed using linear discriminant analysis as described (Cabral et al., 2020; 2019). This was 

performed with the LEfSe (version 1) toolkit hosted on the Huttenhower Galaxy server (Segata et 

al., 2011).  

 

Single-species Transcriptomics 

We performed transcriptional analysis at the individual species level using a modified version of 

the pipeline developed by Deng et al. (Deng et al., 2018). First, species whose metagenomic 

abundance was subjected to an interaction between host glycemia and ATB usage were selected. 

We then calculated to total RNA read abundance for each of these species and performed 

transcriptional analysis only on those with 500,000 or greater reads per sample (Table S5). First, 

reads that mapped to candidate taxa were extracted from our metatranscriptomes using the BBSplit 

utility within BBMap (version 37.96) (Bushnell, 2014). Reads from B. theta, O. valericigenes, and 

O. spp. PEA192 were aligned to their corresponding reference genomes using BWA-MEM 

(version 0.7.15) (Cabral et al., 2020; H. Li and Durbin, 2010). Then, we used subread program 
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(version 1.6.2) command featureCounts was used to generate a count table from alignments, and 

this count table was assessed for differential abundance using DESeq2 (Liao et al., 2014; Love et 

al., 2014). All p-values were corrected for multiple hypothesis testing using the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted p-value of less than 

0.05 were considered statistically significant.  

 

Metabolite Extraction & Annotation: Q-TOF-MS 

For untargeted Q-TOF-MS metabolomics, cecal samples were flash frozen upon collection and 

stored at -80°C until extraction. To extract metabolites, flash-frozen samples were removed from 

-80°C and placed on ice. A 10-20 mg sample was taken and submerged in 300 µl of fresh-made 

LC/MS-grade acetone:isopropanol (2:1) extraction solvent, then homogenized via vortex two 

times for 15 seconds each at 4°C. Supernatant extraction solvent was transferred to a new tube and 

was placed at -80°C temporarily. The 300 µl wash and homogenization was repeated, and this 

supernatant was then added to the original aliquot. Combined samples underwent centrifugation 

at 4°C for 10 minutes at 13,500 x G. After centrifugation, supernatant was moved to a fresh 

microcentrifuge tube, sealed with parafilm, and placed on dry ice before immediate delivery to 

General Metabolics Inc. (Boston, MA, USA) where samples were stored at -80°C.  

 Extracted metabolites were quantified as described in Fuhrer et al. (Fuhrer et al., 2011) 

using flow injection Time-of-Flight mass spectrometry on the Agilent G6550A iFunnel 

Quadrupole Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA, USA) equipped with a 

dual AJS electrospray ionization source operated in negative ion mode. Samples were injected at 

a flowrate of 0.15 mL/minute in a mobile phase containing isopropanol and water (60%:40% ratio) 

buffered in 1mM Ammonium Fluoride, 15nM HP-0921, and 5µM homotaurine. Mass spectra data 
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was recorded in 4 GHz high-resolution Ms mode at a rate of 1.4 spectra/second. We detected 714.3 

ms/spectra and 9652 transients/spectra between 50 and 1000 m/z. Source operating parameters 

included a temperature of 225°C, drying gas rate of 11 L/min, nebulizer pressure of 20 psi, sheath 

gas temperature of 350°C and flow of 10 L/min. The source Vcap and Nozzle voltage were 3500V 

and 2000V. The ms TOF operating parameters include fragmentor, collision, RF peak-to-peak 

voltages of 350V, 0V, and 750V, respectively and the Skimmer was disabled.  

Data processing and analysis was performed as described by Fuhrer et al. in Matlab (The 

Mathworks, Natick, MA, USA) using functions from the following toolkits: Bioinformatics, 

Statistics, Database, and Parallel Computing (Fuhrer et al., 2011). Ions were additionally 

referenced against the Human Metabolome Database in addition to KEGG. Data analyses were 

run on an automated embedded platform by General Metabolics Inc. then delivered upon run 

completion. Finally, Principal Coordinate Analysis was performed on ion intensities by using 

Bray-Curtis dissimilarity paired with PERMANOVA analysis using the phyloseq (version 1.26.1) 

R package and subsequently visualized in Prism GraphPad (version 9.0.2) (McMurdie and 

Holmes, 2013). 

 

Metabolite Extraction & Annotation: LC-MS/MS 

For untargeted LC-MS/MS metabolomics, cecal samples were placed into 300 µl of LMCS-grade 

methanol then supplemented with 600 µl of 70% cold LC-MS-grade methanol. Samples were 

homogenized via vortex for 5 minutes, then placed at 4°C for an overnight incubation. Following 

incubation, samples were subjected to centrifugation at 1000 x G for 3 minutes. 500 µl of the 

supernatant was moved to a sterile microcentrifuge tube and stored at -80°C for long-term 

preservation.  
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Samples were thawed and diluted 1:1 (v/v) in 50% methanol prior to LC-MS/MS. Liquid 

chromatography was performed using a Vanquish Autosampler (Thermo Scientific, Waltham, 

MA, USA) and an Acquity UPLC column (Waters, Milford, MA, USA). Mass spectrometry was 

performed using a Q Exactive® Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo 

Scientific, Waltham, MA, USA) in positive ion mode. All analysis used a 5 µL injection volume. 

Samples were eluted via water-acetonitrile gradient (98:2 to 2:98) containing 0.1% formic acid at 

a 0.4 mL min-1 flow rate. RAW files were converted via GNPS Vendor Conversion and mined 

with MZmine (ver. 2.52) prior to submission for feature based molecular networking (Pluskal et 

al., 2010; Nothias et al., 2020). Briefly, MS1 and MS2 feature extraction was performed for a 

centroid mass detector with a signal threshold of 5.0 x 105 and 5.0 x 104 respectively. 

Chromatogram builder was run with an m/z tolerance of 0.02 Da or 7 ppm and a minimum height 

of 1.0 x 105. Then, chromatograms were deconvoluted utilizing a baseline cut-off algorithm of 1.0 

x 105 and a peak duration range of 0 to 1.00 minutes. Following this, isotopic peaks were then 

grouped with an m/z tolerance of 0.02 Da or 7 ppm and a retention time percentage of 0.1. The 

Join Aligner Module was then utilized with a 0.02 Da or 7 ppm m/z tolerance and a retention time 

tolerance of 0.1 minutes. Feature-based molecular networking on GNPS was performed with the 

following parameters: precursor and fragment ion mass tolerance 0.02 Da; minimum cosine of 0.7 

and minimum matched peaks of 4, all others were defaults. Library searching was performed with 

the same parameters as described above.  

 

Analysis of Q-TOF-MS Metabolite Data 

Differentially abundant metabolites were identified using the DESeq2 package (version 1.22.2) 

with standard parameters (Love et al., 2014). All p-values were corrected for multiple hypothesis 
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testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Features with an 

adjusted p-value of less than 0.05 were considered statistically significant. KEGG compound 

identifiers that were feature-matched by the Bioinformatics MATLAB toolkit were used to create 

a list of all KEGG IDs associated with differentially abundant metabolites. This list (and associated 

ion intensities) were used to perform KEGG pathway enrichment analysis using the PAPi R 

package (version 1.22.1) with standard parameters (Aggio et al., 2010). Pathways with an adjusted 

p-value of less than 0.05 were considered statistically significant.  

 To link our transcriptional data and metabolomics data, we used the R package 

implementation of Mimosa (version 2.0.0) and the publicly availably KEGG reaction database 

(circa 2010) (Noecker et al 2016). The configuration table settings were as follows: File1) taxon-

stratified output from HUMAnN2 based of KEGG Orthology annotation. File2) per-sample ion 

counts of differentially abundant Q-TOF-MS metabolites. File1_type) “taxon stratified KO 

abundance (HUMAnN2 or PICRUSt/PICRUSt2”. Ref_choices) PICRUSt KO genomes and 

KEGG metabolic model. metType) KEGG compound ID. data_prefix) complete file path to the 

KEGG reaction database. Vsearch_path) complete file path to the vsearch executable 

(https://github.com/torognes/vsearch). The run_mimosa2 function was used with standard 

parameters to calculate the community metabolic potential within each sample, score this against 

the input metabolite table, and calculate the level of metabolic variation attributable to individual 

taxa using a linear rank regression as described (Noecker, et al., 2016). All data tables produced 

by the run_mimosa2 function were then exported and data visualization was performed in Prism 

GraphPad (version 9.0.2). “Positive” metabolites have observed abundances that match the 

predictive model. “Negative” metabolites are those whose observed abundance diverges from the 

predictive model. 
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Analysis of LC-MS/MS Metabolite Data 

First, principal coordinate analysis was performed on ion intensities by using Bray-Curtis 

dissimilarity paired with PERMANOVA analysis. These analyses were performed using the 

phyloseq (version 1.26.1) R package and subsequently visualized in Prism GraphPad (version 

9.0.2) (McMurdie and Holmes, 2013). Random forest classification models on treatment mouse 

treatment group were then generated using the randomForest (version 4.6-16) R package 

(Breiman, 2001). Variable importance plots from the models were used to identify metabolites that 

best contributed to group classification. Each metabolite feature of interest was then checked for 

annotation in GNPS, if not directly annotated from MS/MS library searching, the node of interest 

was identified in the molecular network and assessed for spectral similarity to other annotated 

nodes. This provided a molecular family annotation of each unknown cluster. Models classifying 

HG mice treated with amoxicillin and not treated with amoxicillin resulted in out-of-bag prediction 

error of 2.7%. Classification of nonHG treated with amoxicillin and not treated with amoxicillin 

resulted in out-of-bag prediction error of 6.25%. Classification of HG mice and nonHG mice, both 

treated with ATBs, resulted in out-of-bag prediction error of 7.96%. Classification of HG mice 

and nonHG mice, neither treated with ATBs, resulted in out-of-bag prediction error of 16.67%. 

 

Cecal Glucose Assessment 

Cecal glucose levels were assessed using the Abcam Glucose Detection Kit (Abcam, Cambridge, 

United Kingdom). First, cecal material was weighed out and resuspended in glucose assay buffer 

at a concentration of 100 mg/mL, then homogenized via vortex until no visible clumps were 

present. Samples were spun at maximum speed for 1 minute to pellet any residual debris, and 500 
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µl of supernatant was transferred to a Corning Costar Spin-X 0.22 µM centrifuge tube filter 

(Corning Brand, Corning, New York, USA). The costar tubes containing supernatant were spun 

via centrifugation at 15,000 x G for 10 minutes, after which up to 500 µl of flow-through was 

transferred to an abcam 10kD spin column to deproteinize the samples. Samples were again spun 

at 15,000 x G for 10 minutes and flow-through was quantified using the Abcam Glucose Assay kit 

as per the manufacturer’s instructions.  

 

Plasma Cytokine Profiling 

Upon animal sacrifice, whole blood was collected via cardiac puncture and placed in a 

microcentrifuge tube containing up to 15µl of 1X heparin.  Collection tubes were then spun via 

centrifugation at 13,000 x G for 10 minutes to isolate plasma. The plasma-containing supernatant 

was transferred to a new microcentrifuge tube and frozen at -80°C until ready to process. Once 

ready, samples were thawed on ice, split into a working aliquot and a re-frozen stock aliquot. The 

working aliquot was assessed for signatures of inflammation in mice using the LEGENDplex 

Mouse Inflammation Panel (13-plex) (BioLegend, San Diego, CA) flow cytometry kit as per the 

manufacturer’s instructions. Samples were processed on the Attune NxT Flow Cytometer 

(ThermoFisher, Waltham, MA) and subsequently analyzed using the LegendPlex cloud software 

cool (BioLegened, San Diego, CA). This panel allows for simultaneous profiling of IL-1α, IL-1β, 

IL-6, IL-10, IL-12p70, IL-17A, IL-23, MCP-1, IFN-β, IFN-γ, TNF-α, and GM-CSF. Cytokine 

concentrations were compared across samples using Welch’s ANOVA with Dunnet T3 test for 

multiple hypothesis testing.  Only cytokines with a p-value < 0.05 were included in the manuscript 

discussion.  
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Lipocalin-2 Quantification 

Cecal lipocalin-2 levels were assessed using the Mouse Lipocalin-2/NGAL DuoSet ELISA kit 

(R&D Systems, Minneapolis, MN). First, flash-frozen cecal contents were weighed and 

reconstituted into a freshly made working solution of 1X phosphate buffered saline (PBS) and 

0.1% Tween 20 at a concentration of 100 mg/mL. This working solution was vigorously pipetted 

to aid in resuspension. Samples were mixed by vortex at max speed for at 5 minutes until fully 

homogenized, then spun via centrifugation at 12,000 rpm for 10 minutes. The supernatant was 

transferred to sterile microcentrifuge tubes and used as input for the DuoSet kit. Lipocalin-2 was 

quantified from these samples as per the manufacturer’s instructions. Concentrations were 

compared across samples using Welch’s ANOVA with Dunnet T3 test for multiple hypothesis 

testing.   

 

GI Histopathology Assessment 

During animal necropsy an approximate 1-inch section of the distal colon was collected and fixed 

in methacarn. Fixed tissues were incubated at room temperature for 24 hours, then washed twice 

with a 70% ethanol solution. Samples were placed in 70% ethanol and stored in a light-safe box at 

4°C until ready to process. To process, tissues were transferred to histology cassettes, submerged 

in 70% ethanol, and submitted to the Molecular Pathology Core at Brown University. Core staff 

embedded the sample cassettes in paraffin, then sectioned the blocks at 4-5 µM thickness. Tissues 

sections were mounted on microscopy slides and stained with hematoxylin and eosin. Stained 

slides were dried for 24 hours before being shipped to the University of Texas MD Anderson 

Cancer Center for pathology scoring.   
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Enteric Pathogen Challenge  

Salmonella enterica serovar Typhimurium SL1344 was grown overnight in 5 mL Luria-Bertani 

(LB) broth supplemented with fresh-made ampicillin (100 µg/mL) and grown at 37°C. This culture 

was diluted 1:1000 into fresh LB+ampicillin (100 µg/mL) the morning of infections and grown 

until cells were approximately at mid-log phase (OD600 = 0.3-0.4).   

 Rather than sacrificing animals after the 24-hours of amoxicillin treatment as outlined 

above (See Animal Procedures), animals were given an additional 48 hours of ad libitum 

amoxicillin within their drinking water followed by ATB-free filter-sterilized water for 24 hours. 

Subsequently, animals were moved to clean cages and placed under a 4-hour fast, at which point 

they were infected with an inoculum between 102 and 106 cells/dose via oral gavage (volume < 

200 µl). Animals were transferred to clean cages and weighed daily throughout the course of 

pathogen challenge. Fecal samples were collected daily then resuspended in 1 mL of 1X PBS and 

homogenized via vortex at maximum speed for at least 5 minutes. Fecal slurry was then serially 

diluted and plated onto ampicillin-supplemented (100 µg/mL) LB agar plates and grown at 37°C 

for 24 hours. After growth, colonies were counted and the total colony forming units (CFU) were 

quantified per gram of feces to assess pathogen burden. To quantify non-intestinal S. enterica 

burden, fresh liver and spleen were collected during post-sacrifice necropsy, weighed, then placed 

into 1mL of 1X PBS, mixed via vortex for 5 minutes, serially diluted, and plated onto LB agar 

plates supplemented with ampicillin (100 mg/mL). CFUs were quantified 24 hours later.   

 During the course of infection, any animal that experienced a loss of > 20 percent of total 

body weight was sacrificed as per our IACUC protocol. These qualified as “lethality events” and 

were logged accordingly.  
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Quantification and Statistical Analysis 

Specific details of the statistical analyses for all experiments are outlined in the figure legends and 

Results section. Sample numbers represent biological replicates, and instances of technical 

replicates are specifically stated in corresponding figure legends. LEfSe (version 1.0) was used to 

analyze MetaCyc pathway abundance data generated by HUMAnN2 on the Galaxy web server 

using default settings (http://huttenhower.sph.harvard.edu/galaxy). Metatranscriptomic outputs 

generated by SAMSA2 and single-species sequencing, along with Q-TOF-MS abundances were 

subjected to differential abundance testing using the DESeq2 package (1.24.0) in R (version 3.5.2) 

under default parameters and included contrast:interaction comparisons (Love et al., 2014). All 

DESeq2 results were corrected using the Benjamini-Hochberg method (Benjamini and Hochberg, 

1995) to account for multiple hypothesis testing and significance was considered when the adjusted 

p-value was below 0.05. LC-MS/MS Random Forest testing was conducted using the R package 

implementation (Breiman, 2001). Permutational ANOVA calculations were made using the vegan 

R package (version 2.5.2). ANOVA, unpaired T tests, and Mann-Whitney U tests were performed 

in Prism Graphpad (version 9.0) without sample size estimation.  
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Main Figures, Titles, and Legends 

 
 
Figure 1. Streptozotocin modifies glucose levels and impacts microbiome composition after 
amoxicillin.  

A. Experimental design of this study. Figure was created with BioRender.com 
(BioRender, Toronto, Canada). 

B. Murine fasting blood glucose pre-STZ injection (Day 0), 2, and 5 days post-injection.  
C. Bray-Curtis Dissimilarity between 16S rRNA amplicons. 
D. α-diversity of WMGS experimental groups. Data represent mean + SEM. 
E. Relative abundance of the five most-prominent bacterial phyla. Data represent mean + 

SEM. 
F. Quantification of cecal glucose concentrations from experimental groups. Data 

represent mean + SEM. 
(*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001) 
For B: N = 44 control and 44 STZ-treated samples per time point 
For C: N = 8 to 11 per group; permutational ANOVA 
For D-F: N = 5 to 8 per group; Welch’s ANOVA with Dunnet T3 test for multiple hypothesis 
testing  
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Figure 2. Streptozotocin modifies the cecal metabolome and metatranscriptome 
A. Bray-Curtis Dissimilarity of Q-TOF-MS extracts from experimental groups. 
B. Differentially abundant bacterial species following STZ treatment. Data represent log2 fold 

change + SEM versus NG controls. 
C. Differentially abundant Q-TOF-MS metabolites following STZ treatment. Data represent 

log2 fold change + SEM. See Table S1 for full results. 
D. Linear discriminant analysis of MetaCyc pathways following STZ treatment. See Table S6 

for full results. 
E. Volcano plot of the cecal metatranscriptome following STZ treatment. Purple points 

represent differentially abundant transcripts. See Table S8 for full results. 
F. Taxon Stratified Community Metabolic Potential as calculated by MIMOSA.  See Table 

S9 for full results.  
(*, P < 0.05; **, P < 0.01; ***, P < 0.001) 
For A & C: N = 6 per group, 2 replicates per sample 
For B: N = 5 to 8 per group 
For D-F: N = 4 per group 
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Figure 3. Streptozotocin and amoxicillin treatment modify the composition of the cecal 
microbiome.  

A. Relative abundance of the 25 most-abundant species in our data set. Data are represented 
as mean + SEM for each species. 

B. Relative abundance of Bacteroidetes. 
C. Relative abundance of Actinobacteria.  
D. Relative abundance of Firmicutes.  
E. Relative abundance of Proteobacteria. 
F. Relative abundance of Verrucomicrobia.  
G. Relative abundance of B. theta. 
H. Differentially abundant bacterial species following AMX treatment in control and STZ 

mice, with interaction value. Data represent log2 fold change + SEM versus vehicle-treated 
controls. 

For all panels: N = 5 to 8 per group.  
For B-G: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch’s ANOVA with 
Dunnet T3 test for multiple hypothesis testing).  
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Figure 4. Amoxicillin differentially alters the cecal metatranscriptome.  
A. Differentially abundant CAZyme transcripts in control and STZ mice after AMX, with 

interaction values. See Table S4 for full results. 
B. Differentially abundant level 3 SEED Subsystem transcripts in control and STZ mice after 

AMX, with interaction values. See Table S7 for full results. 
C. Linear discriminant analysis of MetaCyc pathways following AMX treatment in STZ mice. 

See Table S6 for full results. 
D. Linear discriminant analysis of MetaCyc pathways following AMX treatment in control 

mice. See Table S6 for full results. 
For all panels: N = 4 per group 
For A & B: Data represent log2 fold change + SEM versus vehicle-treated controls. Blank panels 
are non-significant.  
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Figure 5. Amoxicillin differentially alters the cecal metabolome.  
A. Differentially abundant Q-TOF-MS metabolite features in control and STZ mice after 

AMX treatment with interaction value. Data represent log2 fold change + SEM versus 
vehicle controls. See Table S1 for full results. 

B. KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ 
mice after AMX treatment versus the enrichment score in control and AMX-treated mice. 
Blank panels represent a lack of statistical significance. See Table S3 for full results.   

C. Taxon Stratified Community Metabolic Potential of control mice after AMX treatment as 
calculated by MIMOSA. See Table S9 for full results. 

D. Taxon Stratified Community Metabolic Potential of STZ-treated mice after AMX 
treatment as calculated by MIMOSA. See Table S9 for full results. 

For A & B: N = 6 per group, 2 replicates per sample 
For C & D: N = 4 per group 
For B: Significant = p < 0.05  
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Figure 6. Streptozotocin treatment modifies transcriptomic and metabolomic responses of 
the microbiome to AMX. 

A. KEGG pathway enrichment of differentially abundant Q-TOF-MS features in STZ AMX 
(+) mice compared to control AMX (+) mice. See Table S3 for full results.  

B. Linear discriminant analysis score of MetaCyc pathways in STZ AMX (+) mice 
compared to control AMX (+) mice. See Table S6 for full results. 

C. Taxon Stratified Community Metabolic Potential of STZ AMX (+) mice compared to 
control AMX (+) mice as calculated by MIMOSA. See Table S9 for full results. 

D. Differentially abundant B. theta transcripts after AMX treatment in STZ mice. Data 
represent log2 fold change + SEM of STZ AMX (+) mice versus vehicle controls. See Table 
S5 for full results. 

For A: N = 6 per group with 2 technical replicates per sample; Significant = p < 0.05 
For B – D: N = 4 per group  
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Figure 7. Streptozotocin and Amoxicillin increase susceptibility to Salmonella enterica 
infection.  

A. Experimental design of pathogen challenge study. Figure was created with 
BioRender.com (BioRender, Toronto, Canada).  

B. S. enterica colony forming units (CFU) per gram of feces in control AMX(+/-), and 
STZ AMX(+/-) mice after infection with 1x103 cells. Data represent mean CFU + SEM.  

C. Kaplan Meier survival curve of NG mice. 
D. Kaplan Meier survival curve of STZ mice. 
E. Bray-Curtis Dissimilarity between 16S rRNA amplicons from experimental groups. 
F. Taxonomic composition of the fecal microbiome based of genus-level 16S rRNA 

identity between 1 and 4 days post-infection with 1x103 cells. Data represented mean 
+ SEM. 

G. Contribution of Salmonella assigned reads in STZ AMX(+) and control AMX(+) mice 
4 days post-infection. Data represent mean + SEM.  
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(*, P < 0.05; **, P < 0.01; ***, P < 0.001) 
For B: N = 8 to 10 per group , Mann-Whitney U test of STZ AMX(+) vs Control AMX(+) 
For C & D: N = 4 to 5 per group 
For E – G: N = 8 to 10 per group 
For E: permutational ANOVA 
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Supplemental Results 

In addition to the results presented in the main-body text, we found that STZ treatment 

modified other significant macronutrient processing pathways that we will discuss here. Our LC-

MS/MS dataset showed STZ-specific enrichment of dipeptides containing either aliphatic or 

AAAs (Figure S2C: Cluster 713, Cluster 676, Figure S2, Table S2). STZ treatment reduced the 

abundance of AA-related SEED transcripts, specifically sarcosine oxidase (the generation of N-

methylglycine from choline) and selenoprotein processing which are involved in glycine 

metabolism (Sliwkowski and Stadtman, 1988) (Table S7). We also observed changes in sulfated 

AA metabolism, specifically reduced sulfur assimilation transcripts (Table S7) and pathway-level 

reductions in homoserine and methionine biosynthesis (Figure 2D, Table S6). Together, the 

enrichment of aliphatic AA catabolites and dipeptides, aromatic dipeptides, and arginine synthetic 

intermediates, coupled with reductions in transcripts related to glycine and sulfated AAs suggests 

that STZ treatment shifts branched-chain AA metabolism by the gut microbiota (H. Zhang et al., 

2018).  

STZ treatment was also induced significant dyslipidemia, as characterized by reductions 

in multiple fatty acid synthetic pathways including sphingolipids (Figure S2C: Clusters 1703, 30, 

and 2184, Table S2), linoleic, α-linoleic, arachidonic, and unsaturated fatty acids (Figure S2A, 

Figure S2B, Table S1, Table S3). Our LC-MS/MS data indicated STZ-related enrichment for long-

chain fatty acid alcohols, phospholipids, and epoxide derivatives of linoleic acid (Figure S2C: 

Clusters 2803, 2721, 2851, 2759, Table S2). Coupled with transcriptional reductions in the 

expression of unsaturated fatty acid biosynthesis pathways like cis-vaccenate (Figure 2D, Table 

S6), these data suggest that STZ hampers both host and microbial fatty acid processing, likely 
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enriching for esterification reactions, although we are unable to distinguish between dysregulation 

of fatty acid uptake and fatty acid storage based off our results (Johnson et al., 2020).  

Metabolites involved in primary bile acid biosynthesis and secretion, as well as steroid 

metabolism (cholesterol sulfate), were depressed in STZ-treated communities (Figure S2A, Figure 

S2B, Table S1, Table S3). We observed a stark decrease in multiple bile acids including 

chenodeoxycholate, 7-sulfocholate, and sulfodeoxycholate (Figure S2A, Table S1). Overall, this 

paints a picture of reduced primary bile acid availability without a detectable change in secondary 

bile acids in the STZ-treated microbiome. At the species level we noticed that B. theta had reduced 

expression of bile salt efflux systems (Figure S2E: BT2793-2795, Table S5) (H. Liu et al., 2019), 

perhaps due to overall systemic reductions in the bile acid pool. Both the concentration and 

composition of the bile acid pool has been demonstrated to exhibit control on the function of the 

colonic microbiome; bile acid transformations are executed by select community members, and 

primary bile acids can trigger spore induction in certain Clostridia (Quinn et al., 2020; Staley et 

al., 2016; Zheng et al., 2017). Thus, reductions in the overall bile acid pool may place the 

microbiota in a more susceptible state to ATB challenge by reducing sporulation capacity (Cabral 

et al., 2019). As with fatty acids, changes in bile acid metabolism have been reported in STZ-

treated rodent models and are likely a major contributing factor to the larger set of metabolite 

changes in the cecum, given their involvement in both postprandial nutrient absorption and gut 

transit time (T. Li et al., 2012; Ugarte et al., 2012).  

 STZ and AMX co-treatment increased the abundance of multiple Bacteroides species 

relative to normoglycemic controls. This abundance change was also true for other Bacteroidetes 

including Odoribacter splanchnicus, Parabacteroides sp. CT06, and Prevotella intermedia. We 

observed a 2-fold and 4-fold increase in the abundances of the Bacteroidetes Alistipes finegoldii 
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and Alistipes shahii, respectively, that were unique to STZ-treated mice (Figure S3). Interestingly, 

these species are heavily enriched for polysaccharide utilization loci, so it is currently unclear how 

they are involved in community-level polysaccharide foraging (Grondin et al., 2017; Terrapon et 

al., 2015). Interestingly, in our WMGS dataset,  we noticed that the taxa that were more reduced 

in STZ-treated mice have been correlated with lipid intake, cholesterol, and cholesterol metabolite 

abundance in other works (Clarke et al., 2014; Wohlgemuth et al., 2011). For example, some 

species of Erysipelotrichaceae are auxotrophic for lipid biosynthesis; thus, the combination of 

STZ- and AMX-induced dyslipidemia may provide an explanation for the differential abundance 

of these taxa under HG conditions (Figure 3H) (Kaakoush, 2015; Martínez et al., 2012).  

Despite significant host-dependent differences in the impact of AMX, we observed some 

common ATB responses from the gut microbiota. First, we observed that drug treatment caused 

enrichment of numerous monosaccharides including deoxyribose, hexose, triose, and pentoses, 

regardless of host phenotype (Table S1).  The availability of these monosaccharides resulted in 

respiratory microbial metabolism, as indicated by increases in fructose bisphosphate aldolase, 

succinate dehydrogenase, and ATP synthase transcripts (Table S8). To that end, GNPS Clusters 

1020, 883, and 886 which are related to valeryl, palmitoyl, and lauroyl-conjugated carnitine 

species were elevated (Figure S4C, Figure S4D, Table S3). Carnitines have been identified as 

possible alternative final electron acceptors in obligate anaerobes (including the 

Enterobacteriaceae), suggesting an increased capacity for anaerobic respiratory activity as a 

common response to drug challenge (Bernal et al., 2007; Meadows and Wargo, 2015). This 

respiratory increase is consistent with the model of bactericidal ATB toxicity in which a lethal 

respiratory burst is a significant contribution to drug susceptibility (Belenky et al., 2015; Cabral et 

al., 2019; Lobritz et al., 2015).  
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ATB-induced dysbiosis has been associated with changes in bile acids (Theriot et al., 

2015), as well as dyslipidemia in multiple animal models (Sato et al., 2016; Yan et al., 2020) and 

microbes (Belenky et al., 2015). Thus, we anticipated that signatures of dyslipidemia and bile acid 

dysregulation would occur in our datasets. AMX reduced the abundance of metabolites involved 

in primary and secondary bile acid synthesis as well as bile secretion pathways irrespective of host 

glycemia (Table S3). Specifically, the primary bile acid metabolites 3α,7α-dihydroxycoprostanic 

acid, cholate, chenodeoxycholate (Figure S4C, Figure S4D: Cluster 376, Table S2), the related 

GNPS Clusters 915 and 380 (Figure S4C, Figure S4D, Table S2), as well as bile acid alcohols like 

6-deoxodolichosterone, 5ß-Cholestane-3α,7α,12α,23S,25-pentol, and 27-norcholestanehexol were 

all reduced after ATB administration (Table S1).  We also observed that STZ-treated communities 

exhibited typical signatures of ATB stress including increased transcripts related to stress 

responses, iron metabolism, translation, and quorum sensing/biofilms (Table S7) (Cabral et al., 

2020; 2019). Together these data suggest that AMX-induced bile acid dysregulation is not host 

dependent, while dyslipidemia is, and that STZ-treatment increases the abundance of pro-

inflammatory intestinal metabolites and ATB-stress related transcripts.   

 

Supplemental Discussion 

When evaluating data that examine host-microbe interactions it is important to 

acknowledge the influence of host physiology on the system. STZ-mediated insulin dysfunction 

has been shown to directly modulate intestinal glucose absorption by rapidly increased expression 

of small intestinal glucose transporters (Koepsell, 2020). Some have suggested that genetic 

disruption of intestinal insulin signaling increases glucose release from enteroendocrine cells 

(Ussar et al., 2017). A common clinical feature of metabolic disturbances is delayed gastric transit 
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time, which is intrinsically linked with proper intestinal glucose absorption (Rayner and Horowitz, 

2006). This phenotype has been recapitulated in multiple rodent models, including STZ-treated 

rats that have significant delays in stomach-to-cecal transit time (Chesta et al., 1990). Delays in 

gut transit and altered expression of intestinal glucose uptake likely impacts the carbohydrate pool 

that reaches the cecum, and might explain some of the microbiome disturbances seen in metabolic 

diseases (Dabke et al., 2019).  

We found that a hallmark feature of STZ-induced HG was significant dysregulation of 

cecal lipid metabolism in both the pre- and post-ATB treatment groups. This finding is in line with 

existing studies on serum metabolomics in rats, which find perturbation in fatty acid metabolism 

as a reliable biomarker of STZ-treatment (Fernández-Ochoa et al., 2020; Ugarte et al., 2012). 

While the host executes significant control of lipid processing via pancreaticobiliary secretions, 

there is evidence from germ-free animal studies that implicates the gut microbiome as an integral 

component of fatty acid metabolism, and suggests that microbial dyslipidemia results in negative 

metabolic phenotypes (Schoeler and Caesar, 2019). Microbial lipid processing (for example the 

conjugation of linoleic acid) has also been implicated in the generation of metabolite intermediates 

that increase the integrity of gut epithelial barrier function (Schoeler and Caesar, 2019) . Thus, it 

stands to reason that disruption of lipid homeostasis within the gut, as observed in our datasets, 

has downstream consequences to gut barrier function and places the cecal microbiota in a more 

delicate state prior to ATB challenge. Decreases in gut barrier function have also been directly 

implicated in the susceptibility of the microbiome to enteric pathogen challenge (Christopher A 

Thaiss et al., 2018), and we observed that the enteric pathogen S. enterica was able to infect HG 

drug-treated animals more readily and caused more lethal disease. These data indicate a potential 
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link between perturbed lipid metabolism and pathogen colonization, but more work is required to 

elucidate specific mechanisms.  

Beyond disruption to lipid homeostasis, a novel finding in our datasets was that both STZ 

and AMX treatment reduced the abundance of primary bile acids within the cecum. The microbiota 

executes a large portion of bile acid conjugation reactions and cross-talks with the host to regulate 

primary bile acid secretion (Ridlon et al., 2014). Thus, ATB-induced changes were anticipated and 

were in agreeance with an existing body of work that indicates ATB administration modifies the 

abundance and composition of the bile acid pool (Ridlon et al., 2014; Sayin et al., 2013; Vrieze et 

al., 2014). Interestingly, other beta-lactam ATBs have been shown to increase the total bile acid 

abundance within the colon (Kuribayashi et al., 2012). Meanwhile, vancomycin, clindamycin, 

cefoperazone, polymyxin B, and the combinatory cocktail of 

vancomycin/metronidazole/kanamycin/clindamycin reduce the abundance of secondary bile acids 

but do not modify the primary bile acid pool (Kuno et al., 2018; Theriot et al., 2015). Thus, our 

data may represent a novel, STZ- and AMX-specific bile acid dysregulation.  
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Supplemental Figures, Titles, and Legends 
 

 
Figure S1. The impact of streptozotocin treatment on host physiology and microbiome 
composition without additional. (Related to Figure 1) 

A. Fasting blood glucose of individual mice before STZ injection (Day 0) and on 2 days 
intervals for up to 14 days post-injection. The Day 14 time-point is representative of the 
final day of experiments described in Figure 7.  

B. Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. 
Data represent averaged concentrations + SEM for cytokines whose concentration falls 
between 0 and 23 pg/mL. 

C. Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. 
Data represent averaged concentrations + SEM for cytokines whose concentration falls 
between 12 and 160 pg/mL. 

D. Plasma concentration of IFN-γ in STZ-treated and control mice +/- AMX 4 days after STZ 
injection.  

E. Pathological assessment of fixed, H&E-stained colon sections 3 days after STZ injection.  
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F. Cecal lipocalin-2 concentrations. Data represent average concentrations + SEM. 
G. Alpha diversity as measured by the Shannon diversity index for STZ-treated and control 

animals 3 days post-injection. Data represent average + SEM.  
H. Phylum-level taxonomic composition of the cecal microbiome 3 days post STZ-injection. 

Data represent average abundance + SEM. 
I. Phylum-level taxonomic composition of the cecal microbiome in STZ and control mice +/- 

AMX treatment. Data represent average abundance + SEM. 
For A: N = 5 or 6 per group 
For B & C: N = 4 per group; *, P < 0.05; unpaired T-test with Welch’s correction 
For D & F: N = 4 or 5 per group; *, P < 0.05; Welch’s ANOVA with Dunnet T3 test for multiple 
hypothesis testing 
For E: N = 4 to 6 per group. Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and 
sub-mucosa, 3: moderate affecting mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 
3: 50%-75%, 4: over 75%).  
For G -I: N = 3 to 5 per group; ; *, P < 0.05; unpaired T-test with Welch’s correction 
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Figure S2. Streptozotocin-induced hyperglycemia modifies both the cecal metabolome and 
metatranscriptome. (Related to Figure 2) 

A. Volcano plot of the cecal metabolome in STZ-treated mice relative to normoglycemic 
controls. Purple points represent differentially abundant metabolite features. Metabolites 
of interest are labeled. See Table S1 for full results (N = 6 per group, 2 technical replicates 
per mouse) 

B. KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ-
treated mice compared to controls. Colors indicate whether the metabolites contributing to 
pathway scoring were enriched (red) or depleted (blue) in STZ-treated animals compared 
to controls. See Table S3 for full results.  

C. Differentially abundant GNPS-annotated clusters that contain known metabolites within 
the cluster. Clusters were selected from the top-50 most relevant features via Random 
Forest Testing. Comparison is between STZ-treated mice and controls. See Table S2 for 
full results. 
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D. Differentially abundant CAZyme transcripts in STZ-treated mice. Data represent log2 fold 
change relative to controls + SEM. See Table S4 for full results.  

E. Differentially abundant B. thetaiotaomicron transcripts after STZ treatment. Data represent 
log2 fold change versus controls + SEM See Table S5 for full results. 

For A – C: N = 6 per group, 2 technical replicates per sample 
For D & E : N = 4 per group 
For A, D, & E: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 
For B: Significance = unpaired T-test p value < 0.05 
For C: *, P < 0.05; **, P < 0.01; ***, P < 0.001, **** P < 0.0001; unpaired T-test with Welch’s 
correction 
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Figure S3. Streptozotocin impacts taxonomic composition after amoxicillin treatment. 
(Related to Figure 3)  

A. Average relative abundance of species from A after the removal of reads assigned to B. 
thetaiotaomicron. Data are represented as mean + SEM for each species 

B. Average relative abundance of reads assigned to Clostridiales bacterium CCNA10. 
C. Average relative abundance of reads assigned to Muribaculum intestinale. 
D. Average relative abundance of reads assigned to Acutalibacter muris. 
E. Average relative abundance of reads assigned to Flavonifractor plautii. 
F. Average relative abundance of reads assigned to Hungateiclostrideaceae bacterium KB18. 
G. Average relative abundance of reads assigned to Intestinimonas butyriciproducens. 
H. Average relative abundance of reads assigned to Oscillibacter species PEA192. 
I. Average relative abundance of reads assigned to Oscillibacter valericigenes 
J. Average relative abundance of reads assigned to Akkermansia muciniphila. 

For all panels: N = 5 to 8 per group 
For panels B-J, (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001, Welch’s ANOVA 
with Dunnet T3 test for multiple hypothesis testing). 
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Figure S4: Streptozotocin modifies the metatranscriptomic and metabolomic responses of 
the gut microbiome to amoxicillin. (Related to Figures 4 & 5) 

A. Differentially abundant level 2 SEED Subsystem transcripts in normoglycemic control 
mice after AMX treatment. Data represent log2 fold change relative to vehicle controls + 
SEM. See Table S7 for full results. 

B.  Differentially abundant level 2 SEED Subsystem transcripts in STZ-treated mice after 
AMX treatment. Data represent log2 fold change relative to vehicle controls + SEM. See 
Table S7 for full results. 

C. Differentially abundant GNPS-annotated clusters that contain known metabolites within 
the cluster. Clusters were selected from the top-50 most relevant features via Random 
Forest Testing. Comparison is between AMX-treated mice and vehicle-treated mice for 
normoglycemic controls. See Table S2 for full results. 

D. Differentially abundant GNPS-annotated clusters that contain known metabolites within 
the cluster. Clusters were selected from the top-50 most relevant features via Random 
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Forest Testing. Comparison is between AMX-treated mice and vehicle-treated mice for 
STZ-treated mice. See Table S2 for full results. 

For A & B: N = 4 per group; Differentially abundant = Benjamini-Hochberg adjusted p value 
< 0.05 
For C & D: N = 6 per group, 2 technical replicates per sample; (*, P < 0.05; **, P < 0.01; ***, 
P < 0.001, **** P < 0.0001); unpaired T-test with Welch’s correction 
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Figure S5: Streptozotocin and amoxicillin dual treatment worsens outcomes during 
Salmonella enterica infection. (Related to Figure 7)  

A. Salmonella enterica Typhimurium colony forming units (CFU) per gram of hepatic and 
splenic tissue in control AMX(+/-), and hyperglycemic AMX(+/-) mice over the course of 
infection with an inoculum of 1x103 cells. Data represent mean CFU + SEM. 

B. Pathological assessment of fixed, H&E-stained colon sections 4 days after infection with 
an inoculum of 1x103 cells.  

C. Plasma concentration of IL-1α in STZ-treated and control mice +/- AMX 
D. Plasma concentration of IL-6 in STZ-treated and control mice +/- AMX 
E. Plasma concentration of GM-CSF in STZ-treated and control mice +/- AMX 
F. Plasma concentration of IL-12p70 in STZ-treated and control mice +/- AMX 
G. Plasma concentration of IFN-β in STZ-treated and control mice +/- AMX  
H. Plasma concentration of IL-10in STZ-treated and control mice +/- AMX 
I. Plasma concentration of IL-17A in STZ-treated and control mice +/- AMX  
J. Principal Coordinates Analysis of Bray-Curtis Dissimilarity between uninfected controls 

and mice infected with an inoculum of 1x103 cells 24 hours post-infection. 
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K. Alpha diversity as measured by the Shannon diversity index of fecal 16S rRNA reads. Data 
represent average score + SEM during infection time course after dosage with an inoculum 
of 1x103 cells. 

L. Phylum-level taxonomic composition of the fecal microbiome during infection time course 
after dosage with an inoculum of 1x103 cells. Data represent average abundance + SEM.  

For A - I: N = 4 to 7 per group 
For J: N = 3 to 10 per group 
For B: Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3: moderate 
affecting mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 
75%). 
For C – I: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch’s ANOVA with 
Dunnet T3 test for multiple hypothesis testing). 
For J: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; permutational ANOVA) 
For K: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch’s ANOVA with Dunnet 
T3 test for multiple hypothesis testing) 
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Supplemental Files 

Table S1: Raw Q-TOF-MS Ion Intensities, annotation guide, and full DESEq2 results of Q-TOF-
MS data. Related to Figure 2A, Figure 5A, and Figure S2A. 

A. Raw Q-TOF-MS ion intensities generated by General Metabolics Inc. (Boston, MA, USA) 
B. Annotation guide for Q-TOF-MS ion intensites generated by General Metabolics Inc. 

(Boston, MA, USA) 
C. Differential abundance testing of the impact of streptozotocin treatment on the abundance 

of Q-TOF-MS metabolites in the murine cecal microbiome prior to ATB administration. 
Log2 fold change values were calculated relative to NG controls samples (STZ AMX - vs 
Control AMX -) 

D. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
Q-TOF-MS metabolites in the NG murine cecal microbiome. Log2 fold change values were 
calculated relative to NG vehicle-treated controls samples (Control AMX - vs Control 
AMX +) 

E. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
Q-TOF-MS metabolites in the HG murine cecal microbiome. Log2 fold change values were 
calculated relative to HG vehicle-treated controls samples (STZ AMX - vs STZ AMX +) 

F. Differential abundance testing of the impact of streptozotocin treatment on the abundance 
of Q-TOF-MS metabolites in the murine cecal microbiome after amoxicillin treatment. 
Log2 fold change values were calculated relative to NG amoxicillin-treated controls 
samples (Control AMX + vs STZ AMX +) 

G. Interaction term analysis generated by DESeq2 for the impact of host glycemia on 
changes in metabolite abundance following amoxicillin therapy. Log2 fold change values 
were calculated relative to NG vehicle-treated samples (Control AMX -) 
 

Table S2: Random Forest Classification of GNPS-annotated LC-MS/MS Clusters. Related to 
Figure S2C, Figure S4C, and Figure S4D.  

A. Full Random Forest results of feature importance distinguishing NG and HG cecal 
metabolomes before ATB treatment (i.e. STZ AMX - vs. Control AMX -) 

B. Full Random Forest results of feature importance distinguishing vehicle-treated and 
amoxicillin-treated cecal metabolomes in NG mice (i.e. Control AMX - vs. Control AMX 
+) 

C. Full Random Forest results of feature importance distinguishing vehicle-treated and 
amoxicillin-treated cecal metabolomes in HG mice (i.e. STZ AMX - vs. STZ AMX +) 

D. Full Random Forest results of feature importance distinguishing NG and HG cecal 
metabolomes after ATB treatment (i.e. STZ AMX + vs. Control AMX +) 

 
Table S3: Full KEGG-based Pathway Activity Profiling of enriched and depleted cecal Q-TOF-
MS metabolites. Related to Figure 6A and Figure S2B. 

A. Combined results from Pathway Activity Profiling of metabolites that are differentially 
abundant during streptozotocin treatment (Table S1C).  

B. Combined results from Pathway Activity Profiling of metabolites that are differentially 
abundant during amoxicillin treatment in NG mice (Table S1D).  

C. Combined results from Pathway Activity Profiling of metabolites that are differentially 
abundant during amoxicillin treatment in HG mice (Table S1E).  
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D. Combined results from Pathway Activity Profiling of metabolites that are differentially 
abundant after amoxicillin treatment between normo- and HG mice (Table S1F).  

 
Table S4: Full DESeq2 results of CAZyme transcript abundance generated by SAMSA2. Related 
to Figure 4A and Figure S2D. 

A.  Differential abundance testing of the impact of streptozotocin treatment on the abundance 
of CAZyme transcripts in the murine cecal metatranscriptome. Log2 fold change values 
were calculated relative to NG controls (STZ AMX - vs Control AMX -) 

B.  Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
CAZyme transcripts in the murine cecal metatranscriptome in NG animals. Log2 fold 
change values were calculated relative to NG vehicle-treated samples (Control AMX - vs 
Control AMX +) 

C. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
CAZyme transcripts in the murine cecal metatranscriptome in HG animals. Log2 fold 
change values were calculated relative to HG vehicle-treated samples (STZ AMX - vs STZ 
AMX +) 

D. Interaction term analysis generated by DESeq2 for the impact of host glycemia on changes 
in CAZyme transcripts abundance after amoxicillin treatment. Log2 fold change values 
were calculated relative to NG vehicle-treated samples (Control AMX-).  

 
Table S5: Full DESeq2 results of transcript abundance analysis of A. muciniphila and B. theta 
during dietary intervention and ciprofloxacin treatment and dietary formulation. Related to Figure 
6D and Figure S2E.  

A. Total and average counts for Kraken2-generated metatranscriptomic read assignments.  
B.  Differential abundance testing of the impact of HG on the abundance of B. theta transcripts 

within the murine cecal metatranscriptome. Log2 fold change values were calculated 
relative to NG controls (STZ AMX - vs Control AMX -) 

C. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
B. theta transcripts within the NG murine cecal metatranscriptome. Log2 fold change 
values were calculated relative to NG vehicle-treated controls (Control AMX - vs Control 
AMX +) 

D.  Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
B. theta transcripts within the HG murine cecal metatranscriptome. Log2 fold change 
values were calculated relative to HG vehicle-treated controls (STZ AMX - vs STZ AMX 
+) 

E. Interaction term analysis generated by DESeq2 for the impact of host glycemia on changes 
in B. theta transcripts abundance after amoxicillin treatment. Log2 fold change values were 
calculated relative to NG vehicle-treated samples (Control AMX-).  

F. Differential abundance testing of the impact of HG on the abundance of O. valericigenes 
transcripts within the murine cecal metatranscriptome. Log2 fold change values were 
calculated relative to NG controls (STZ AMX - vs Control AMX -) 

G. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
O. valericigenes transcripts within the NG murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to NG vehicle-treated controls (Control AMX - vs 
Control AMX +) 
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H.  Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
O. valericigenes transcripts within the HG murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to HG vehicle-treated controls (STZ AMX - vs STZ 
AMX +) 

I. Interaction term analysis generated by DESeq2 for the impact of host glycemia on changes 
in O. valericigenes transcripts abundance after amoxicillin treatment. Log2 fold change 
values were calculated relative to NG vehicle-treated samples (Control AMX-).  

J. Differential abundance testing of the impact of HG on the abundance of O. sp. PEA192 
transcripts within the murine cecal metatranscriptome. Log2 fold change values were 
calculated relative to NG controls (STZ AMX - vs Control AMX -) 

K. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
O. sp. PEA192 transcripts within the NG murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to NG vehicle-treated controls (Control AMX - vs 
Control AMX +) 

L.  Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
O. sp. PEA192 transcripts within the HG murine cecal metatranscriptome. Log2 fold 
change values were calculated relative to HG vehicle-treated controls (STZ AMX - vs STZ 
AMX +) 

M. Interaction term analysis generated by DESeq2 for the impact of host glycemia on changes 
in O. sp. PEA192 transcripts abundance after amoxicillin treatment. Log2 fold change 
values were calculated relative to NG vehicle-treated samples (Control AMX-).  

 
Table S6: Full LEfSe results from the analysis of MetaCyc pathway abundance generated by 
HUMAnN2. “Class” denotes the experimental group a particular pathway was associated with. 
Related to Figure 2D, Figure 4C, and Figure 4D.  

A.  Pairwise LEfSe analysis of NG and HG samples prior to ATB treatment (STZ AMX - vs 
Control AMX -) 

B.  Pairwise LEfSe analysis of amoxicillin- and vehicle-treated samples from NG mice 
(Control AMX - vs Control AMX +) 

C.  Pairwise LEfSe analysis of amoxicillin- and vehicle-treated samples from HG mice (STZ 
AMX - vs STZ AMX +) 

 
Table S7: Full DESeq2 results of SEED subsystem abundance generated by SAMSA2. Related to 
Figure 4B, Figure S4A, and Figure S4D.  

A.  Differential abundance testing of the impact of streptozotocin treatment on the abundance 
of SEED subsystem transcripts in the murine cecal metatranscriptome. Log2 fold change 
values were calculated relative to NG controls (STZ AMX- vs Control AMX-) 

B.  Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
SEED subsystem transcripts in the murine cecal metatranscriptome in NG animals. Log2 
fold change values were calculated relative to NG vehicle-treated samples (Control AMX 
- vs Control AMX +) 

C. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
SEED subsystem transcripts in the murine cecal metatranscriptome in HG animals. Log2 
fold change values were calculated relative to HG vehicle-treated samples (STZ AMX - vs 
STZ AMX +) 
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D. Interaction term analysis generated by DESeq2 for the impact of host glycemia on changes 
in SEED subsystem transcript abundance after amoxicillin treatment. Log2 fold change 
values were calculated relative to NG vehicle-treated samples on the (Control AMX-).  

 
Table S8: Full DESeq2 results of RefSeq transcript abundance generated by SAMSA2. Related 
to Figure 2E.  

A. Differential abundance testing of the impact of streptozotocin treatment on the abundance 
of RefSeq transcripts in the murine cecal metatranscriptome. Log2 fold change values were 
calculated relative to NG controls (STZ AMX- vs Control AMX-) 

B.  Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
RefSeq transcripts in the murine cecal metatranscriptome in NG animals. Log2 fold change 
values were calculated relative to NG vehicle-treated samples (Control AMX - vs Control 
AMX +) 

C. Differential abundance testing of the impact of amoxicillin treatment on the abundance of 
RefSeq transcripts in the murine cecal metatranscriptome in HG animals. Log2 fold change 
values were calculated relative to HG vehicle-treated samples (STZ AMX - vs STZ AMX 
+) 

D. Interaction term analysis generated by DESeq2 for the impact of host glycemia on changes 
in RefSeq transcript abundance after amoxicillin treatment. Log2 fold change values were 
calculated relative to NG vehicle-treated samples on the (Control AMX-).  

 
Table S9: Full taxon stratification of community metabolic potential generated by MIMOSA. 
Related to Figure 2F, Figure 5C, Figure 5D, and 6C.  

A. Model Data and Taxon Contribution Results of MIMOSA (version 2.0.0). Data represent 
STZ-treated vs control mice without AMX.  

B. Model Data and Taxon Contribution Results of MIMOSA (version 2.0.0). Data represent 
Control AMX-treated vs vehicle-treated controls.  

C. Model Data and Taxon Contribution Results of MIMOSA (version 2.0.0). Data represent 
STZ- and AMX-treated vs vehicle-treated controls. 

D. Model Data and Taxon Contribution Results of MIMOSA (version 2.0.0). Data represent 
STZ- and AMX-treated vs Control AMX-treated mice. 
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Local Metabolic Environment as a Determinant of in vivo Antibiotic Susceptibility 

 The meteoric expansion of the microbiome field since in the 2010s has cemented our 

understanding of the intrinsic role that resident microbes play in the proper health and development 

of mammals (Bäckhed et al., 2012; Consortium, 2012; Stiemsma and Michels, 2018). With this 

comes a collective recognition that off-target antibiotic susceptibility within the microbiome is a 

particularly troublesome side effect that has serious impacts on host well-being (Blaser, 2011; 

Dethlefsen and Relman, 2011; Ferrer et al., 2017). Thus, a pressing area of research is the 

characterization of antibiotic susceptibility determinants within the microbiome, as understanding 

these mechanisms may inform the development of microbiome-protective therapeutic strategies. 

Recently, Cabral et al. demonstrated that the metabolic state of resident microbes is a key factor 

contributing to bactericidal antibiotic susceptibility within the microbiome (Cabral et al., 2019). 

Specifically, the preferential utilization of simple carbohydrate substrates over polysaccharide 

fermentation can impact antibiotic tolerance phenotypes in select members of the microbiome 

(Cabral et al., 2019). This dissertation expands upon this foundational study by addressing how 

real-world sources of macronutrient variation in the gut (via changes in host dietary intake and 

perturbation of host metabolic function) modify in vivo drug susceptibility. Chapter 2 demonstrates 

that high-sugar/high-fat Western diets potentiate antibiotic activity by impacting gut carbohydrate 

metabolism (Cabral et al., 2020). Chapter 3 shows that chemotherapeutic induction of 

hyperglycemia is sufficient to impact microbiome metabolic function in a manner that exacerbates 

antibiotic-induced dysbiosis. While this work makes significant progress in detailing how diet and 

host function can shape microbial metabolism in the microbiome, it has generated a body of 

subsequent research questions. This discussion will address some of these remaining research 

topics and present relevant preliminary data.  
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Specificity of Antibiotic Selection to Macronutrient and Metabolism-based Susceptibility: 

Dietary Composition 

 The studies presented in this dissertation focus on the bactericidal drugs ciprofloxacin 

(Chapter 2) and amoxicillin (Chapter 3) which are two of the most frequently prescribed 

fluoroquinolone and β-lactam antibiotics in the United States, respectively (Durkin et al., 2018). 

While both drugs elicit significant microbial dysbiosis, previous work demonstrates that the 

functional response of the microbiome is somewhat drug-dependent, likely due to species-level 

differences in susceptibility and inherent differences in drug mechanism of action (Cabral et al., 

2019). Thus, an immediate question raised from this dissertation is whether diet and host-related 

increases in antibiotic-induced dysbiosis are conserved across drug classes or are specific to the 

selected antibiotics. While the most straightforward means to test this would be to repeat these 

studies with a broader range of antimicrobial agents, the time, personnel, and cost required to do 

so would quickly become prohibitive, and there is existing complimentary literature to suggest the 

study observations may be conserved.  

 With respect dietary modification, the first of many supporting lines of evidence comes 

from Cabral et al. (Cabral et al., 2019). After identifying a carbohydrate substrate-dependent 

amoxicillin tolerance phenotype in Bacteroides thetaiotaomicron, Cabral et al. revealed that 

dietary glucose supplementation potentiates amoxicillin susceptibility in vivo (Cabral et al., 2019). 

Thus, increased monosaccharide abundance can enhance amoxicillin-based dysbiosis, which is 

akin to the high-sugar diet-based increase in ciprofloxacin susceptibility observed in Chapter 2 

(Cabral et al., 2020). Furthermore, consumption of Western-style diets has been shown to worsen 

both antibiotic-induced dysbiosis and dysbiosis-related complications in multiple studies that have 
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significant variation in choice of bactericidal drug class, candidate antibiotics within each class, 

route of administration, and treatment duration (An et al., 2021; Cabral et al., 2020; Hyoju et al., 

2019; Lee et al., 2020; Y. Liu et al., 2021). Across these works, Western diet intake is associated 

with increased expansion of Proteobacteria and pathobionts after administration of  cephalosporin-

type β-lactams, lincosamides, aminoglycosides, and mixed-class cocktails (Hyoju et al., 2019; Lee 

et al., 2020; Mefferd et al., 2020). Colonization resistance and infection outcomes also appear to 

be widely impacted, as Western diet consumption increases total pathogen burden in multiple 

infections models, represses pathogen clearance, and accelerates the incidence of lethality after 

antibiotic administration (An et al., 2021; Hyoju et al., 2019; Y. Liu et al., 2021; Mefferd et al., 

2020). Characterization of host tissues following streptomycin treatment suggests that Western 

diets may contribute to worsened dysbiosis by additionally impairing intestinal epithelium 

metabolism, which can increase inflammation and create a pathobiont-permissive environment in 

the gut (Lee et al., 2020). However, this hypothesis remains to be confirmed in other antibiotic 

treatments. Together with the findings presented in Chapter 2, these works suggest that Western 

diet consumption functions as a microbiome damaging force during bactericidal antibiotic 

treatment, regardless of drug class. A key consistency across these studies is that Western diets are 

deficient in dietary fibers and thus likely impact fiber metabolism within the microbiome. In fact, 

complementary research has shown that the addition of dietary fibers to mouse chow is sufficient 

to prevent both loss in microbiome diversity and enhance colonization resistance against 

Clostridioides difficile after antibiotic challenge (Mefferd et al., 2020; Schnizlein et al., 2020). 

Strikingly, this protection occurred in both a β-lactam and a mixed drug class cocktail model, 

suggesting that the protective capacity of dietary fibers is conserved across multiple bactericidal 

drug classes including β-lactams (penicillins and cephalosporins), aminoglycosides (kanamycin 
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and gentamicin), nitroimidazoles, polymyxins, and glycopeptides (Schnizlein et al., 2020). 

Overall, the data consistently highlight that dietary composition plays a critical role in determining 

the severity of antibiotic-induced dysbiosis across bactericidal antibiotic classes, although more 

work is required to fully characterize species-level susceptibility mechanisms. 

 

Specificity of Antibiotic Selection to Macronutrient and Metabolism-based Susceptibility: 

Host Metabolic Function 

 Chapter 3 demonstrates that streptozotocin (STZ)-induced hyperglycemia is associated 

with transcriptional and metabolic restructuring of the gut microbiome that ultimately exacerbates 

amoxicillin-induced dysbiosis. Unlike the growing consensus of the Western diet’s role in 

antibiotic toxicity, the literature surrounding the impact of STZ and antibiotic therapy on the 

microbiome is somewhat scant. Fortunately, to examine the role that antibiotic selection plays on 

STZ’s capacity to worsen dysbiosis, we can rely on previously collected data. When conducting 

the research described in Chapter 3, we originally included a ciprofloxacin-treated group for both 

hyperglycemic and normoglycemic mice at the 24-hour time point described. As such, we 

generated 16S ribosomal RNA (rRNA) sequencing and untargeted metabolomics data from STZ-

treated and control mice during ciprofloxacin exposure. These data were ultimately excluded from 

Chapter 3 due to spatial constraints and the robustness of the amoxicillin data, thus these findings 

will be discussed here. However, the discussion of these data will primarily focus on the 

differences between ciprofloxacin-treated hyperglycemic and normoglycemic mice, as the 

vehicle-treated control comparison has been discussed at length in Chapter 3.  

Following a two-week habituation period, 7-week-old male C57BL/6J mice were given a 

single intraperitoneal injection of either STZ or a sham vehicle. After 48 hours, animals were 
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assessed for hyperglycemia and subsequently randomized. The next day, ciprofloxacin (12.5 

mg/kg) or a vehicle control was administered ad libitum via the drinking water for 24 hours before 

animals were sacrificed and their cecal contents were collected for taxonomic profiling and 

untargeted metabolomics as described in Chapter 3 (Figure 1A). Using 16S rRNA sequencing, we 

observed that STZ-induced hyperglycemia was associated with a divergence in β-diversity both 

before and after ciprofloxacin (Figure 1B). Interestingly, hyperglycemia had no impact on the post-

antibiotic expansion of Firmicutes (Figure 1C, Figure 1D). Although hyperglycemia appeared to 

exaggerate the loss of Bacteroidetes (Figure 1C), the difference in abundance was not statistically 

significant (Figure 1E).  

To profile host-dependent differences in taxonomic composition after ciprofloxacin 

treatment, we performed differential abundance testing on genus-level amplicon sequence variants 

(ASV) (Love et al., 2014). Surprisingly, the abundance of very few taxa were host-dependent in 

response to ciprofloxacin. Hyperglycemic mice had a less severe reduction in true Clostridia and 

Parasutterella (Figure 2C: positive interaction) and did not experience the increase in Duncaniella 

exhibited by controls (Figure 2A: negative interaction) (Cruz-Morales et al., 2019; Lawson and 

Rainey, 2016). Interestingly, Parasutterella has been recently implicated in the regulation of both 

the colonic bile acid and cholesterol pools (Ju et al., 2019). It is possible that STZ-related depletion 

of the cecal bile pool as described in Chapter 3 may create a semi-protective environment for 

Parasutterella via nutrient limitation. Meanwhile, Duncaniella has been shown to possess an 

extensive carbohydrate focused gene repertoire, and the relative lack of carbohydrate breakdown 

in STZ-treated communities may be involved in its static abundance (Chung et al., 2020; 

Lagkouvardos et al., 2019). In both cases, however, this is purely speculative, as it is impossible 

to confirm the cause of these taxonomic shifts without functional profiling of the microbiome 
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through transcriptomics or proteomics. Regardless, these data lie in direct contrast with the 

findings presented in Chapter 3, where hyperglycemia-related microbiome function significantly 

impacted taxonomic restructuring after amoxicillin. Currently, we lack sufficient data to assert 

whether this disparity is due to (1) an inability to profile species-level taxonomic shifts because of 

the reduced resolution of 16S rRNA sequencing compared to metagenomics or (2) if the taxonomic 

restructuring phenotype is a specific response to β-lactam stress (Clooney et al., 2016; Poretsky et 

al., 2014; Ranjan et al., 2016). Analyzing ciprofloxacin-treated hyperglycemic and normoglycemic 

microbiomes using metagenomics should ultimately resolve this uncertainty. 

 To further profile the differences between STZ-treated and control communities after 

ciprofloxacin exposure, we again profiled genera-level differential ASV abundances. We found 

that STZ and ciprofloxacin co-treatment increased the abundance of Neglecta and significantly 

decreased the Kineothrix, Eisenbergiella, and Acutalibacter genera (Figure 2B). Because paired 

metagenomic and metatranscriptomic sequencing were not performed, it is impossible to make 

definitive claims about microbiome function in these samples. However, computational tools like 

PICRUSt can be implemented to predict metagenome content from 16S data, allowing for 

functional inference (Douglas et al., 2020; Y.-X. Liu et al., 2021). Using PICRUSt2, we predicted 

differences in MetaCyc pathway-related gene content that were uniquely affiliated with 

hyperglycemic or normoglycemic mice after ciprofloxacin (Figure 2C). Strikingly, despite their 

similar taxonomic compositions, the predicted functional metagenomic capacity of the STZ and 

ciprofloxacin cotreated microbiota was distinct from that of normoglycemic controls. Overall, 

hyperglycemic communities had a greater variety of associated MetaCyc pathways with notable 

enrichment in nucleotide metabolism, monosaccharide capture, menaquinone generation, aerobic 

respiration, and TCA cycle activity (Figure 2C). The increased capacity for monosaccharide 
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import and primary respiration is congruent with the amoxicillin-specific findings in Chapter 3, 

where elevated environmental sugar levels prompted increased phosphotransferase import and 

glycolysis within the hyperglycemic microbiota. Interestingly, in Chapter 2 we observed that both 

normal and Western diet-fed mice downregulated TCA cycle activity in response to ciprofloxacin, 

and Cabral et al. demonstrated community-wide reductions in nucleotide, nucleoside, and TCA 

function after ciprofloxacin treatment (Cabral et al., 2020; 2019). Thus, modifications in TCA 

activity appear to be a conserved microbiome response to this antibiotic, and differences in 

respiratory capacity between STZ-treated and control mice may be indicative of divergence in 

microbiome function, although this hypothesis cannot be confirmed without functional screening 

of the microbiome.  

 Next, we profiled the cecal metabolome in hyperglycemic and normoglycemic mice during 

ciprofloxacin treatment using both quadrupole flow injection electrospray time-of-flight mass 

spectrometry (Q-TOF-MS; Figure 3) and liquid chromatography tandem mass spectrometry (LC-

MS/MS; Figure 4). First, we performed Principal Coordinates Analysis on metabolite abundance, 

and found that, just like with amoxicillin, the cecal metabolome is divergent in a host-dependent 

manner after ciprofloxacin treatment (Figure 3A). We then performed differential abundance 

testing to examine which Q-TOF-MS metabolites and KEGG pathways were altered after 

ciprofloxacin exposure, and which had altered abundances during antibiotic treatment in a host-

dependent manner (Figure 3B-3D). After ciprofloxacin administration, hyperglycemic 

communities were enriched for metabolites involved in purine metabolism, peptidoglycan 

synthesis, and dietary-fiber components like isoflavonoids and phenylpropanoids (Figure 3B). 

Simultaneously, metabolites involved in nitrogen metabolism, carbon fixation, energy carrier 

generation, catabolism, pyruvate processing, and TCA activity were all depleted in STZ-treated 
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communities relative to normoglycemic controls (Figure 3B). It is likely that the reduction in 

central carbon metabolites (pyruvate, TCA, energy carrier generation, etc.) reflects diminished 

transcription of the affiliated pathways and represents a ciprofloxacin-specific response akin to 

what was identified in Chapter 2, although transcriptional analysis is required to confirm this 

(Cabral et al., 2020; 2019). The spike in purine and peptidoglycan metabolites may additionally 

indicate increased ciprofloxacin activity in STZ-treated animals, as ciprofloxacin causes lethal 

stalling of DNA replication that can induce bioaccumulation of nucleotides, nucleosides, and cell 

wall synthesis components (de Lastours and Fantin, 2015; Dorries et al., 2014; Falla and Chopra, 

1998). 

 Supporting evidence for host-dependent microbiome function during ciprofloxacin 

treatment can be seen in the differentially abundant metabolites that are subjected to host 

interaction (Figure 3C, Figure 3D). As with amoxicillin, STZ-treated communities exhibited an 

overall increase in multiple sugar and sugar alcohols, including hexonic acids, ribitol, and pentose 

during ciprofloxacin treatment (Figure 3C). This suggests that STZ-induced hyperglycemia results 

in increased cecal monosaccharide concentrations regardless of antibiotic drug class used. Multiple 

features involved central carbon metabolism showed host-specific regulation in response to 

ciprofloxacin, including carnitine electron acceptors, nicotinate, pyruvate oxime, isocitrate, and 

malate (Bernal et al., 2007; Meadows and Wargo, 2015) (Figure 3C). Furthermore, metabolites 

involved in nucleotide generation (conjugated and unconjugated uracil, inosine, deoxyuridine), 

cholesterol metabolism, tryptophan metabolism (indole-3-acetate), heme processing 

(dueteroporphyrin IX), amino acid generation (3-dehydroshikimate, 6-methylnicotinamide, 

ketovaline, etc.), and lipid processing are all differentially regulated between STZ-treated and 

normoglycemic mice during ciprofloxacin exposure (Figure 3C, Figure 3D) (Böttcher et al., 2014; 
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Roager and Licht, 2018; Sachar et al., 2016). While some LC-MS/MS based metabolite changes 

such as decreased bile acids and enrichment of 3-hydroxy-4-methoxycinnamic acid were 

conserved ciprofloxacin responses (Figure 4A, Figure 4B), the abundance of carnitine species were 

significantly elevated in STZ-treated samples compared to controls further supporting divergence 

in electron transport between hosts (Figure 4C). Together these data suggest that STZ-induced 

hyperglycemia is sufficient to significantly impact the cecal metabolome after ciprofloxacin, as it 

does during amoxicillin treatment. In Chapter 3, significant divergence in the cecal metabolome 

during antibiotic exposure was correlated with host-specific changes in microbiome function, and 

we anticipate that this trend holds true for ciprofloxacin treatment. Again, transcriptional 

assessment of the microbiota during drug challenge will be required to confirm this hypothesis and 

rule out any metabolite changes related to host secretions or activity of the intestinal epithelium.  

  Finally, we implemented the MIMOSA computational algorithm to try and identify 

PICRUSt2-predicted metagenomes that could explain the variation in metabolome composition 

between hyperglycemic and normoglycemic communities (Figure 5) (Noecker et al., 2016). In 

both hosts, Parasutterella, Turicibacter, and Bacteroides were the largest contributors to 

metabolome variation (Figure 5A, Figure 5B). Interestingly, the clostridial Firmicutes genus 

Oscillibacter had a significant contribution to fumarate levels in hyperglycemic communities, 

suggesting this taxon may help shape the metabolic function of the microbiome during 

ciprofloxacin treatment (Figure 5B). When comparing the antibiotic-treated metabolomes against 

one another, MIMOSA was able to identify 6 taxa that were positively correlated with a subset of 

metabolites, including the enriched Neglecta genus (Figure 5C). However, these data are reliant 

on in silico modeling and thus are insufficient to mechanistically describe how these candidate 

taxa contribute to metabolite variation. Use of species-level annotations derived from 
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metagenomics should improve the model generated by MIMOSA and increase the accuracy of 

metabolome taxon stratification (Noecker et al., 2016).  

 Although this preliminary examination of hyperglycemia’s impact on ciprofloxacin 

susceptibility does not include microbiome function, these data stand in agreeance with the model 

presented in Chapter 3. Specifically, STZ-induced hyperglycemia is correlated with significant 

restructuring of the cecal metabolome and modification of microbiome functional capacity after 

antibiotic treatment in both β-lactam and fluoroquinolone treatment regimens. A major caveat, 

however, is that the untargeted metabolomics protocol used here and in Chapter 3 cannot 

distinguish between host-derived and microbially-derived compounds, thus alternative strategies 

will need to be implemented to confirm if a metabolite shift is bacterial in origin (Gertsman and 

Barshop, 2018). One strategy, that we chose to implement in Chapter 3, is the inclusion of parallel 

metatranscriptomics which can provide orthogonal confirmation for some pathways. Recently, in 

silico algorithms like MIMOSA and MelonnPan have been developed to pair metagenomic and 

metabolomic data, by comparing metabolite abundances with total gene content (Mallick et al., 

2019; Noecker et al., 2016). Ideally, one could additionally perform RNA sequencing of the host 

epithelium and compare both microbiome and host transcriptional activity against the metabolome. 

However, some metabolites feed into shared reaction between host and microbiome and thus may 

not be able to be explicitly characterized as “host-derived” or “microbially-derived” using current 

computation tools (Gertsman and Barshop, 2018). Ultimately detangling host-microbiome 

interactions during antibiotic perturbation will require holistic examinations that implement 

multiple analytical strategies to overcome the inherent complexity of the gut ecosystem. 

 

Structural and Compositional Variation of Macronutrients Impacts Microbiome Function 
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 In Chapter 2, we demonstrated that feeding mice a Western diet worsens antibiotic-induced 

dysbiosis and perturbs carbohydrate metabolism in the gut (Cabral et al., 2020). An immediate 

question based off these data is whether the observed impacts on microbiome function were 

because of (1) a synergistic effect of elevated fats, sugars, and fiber starvation, or (2) the result of 

altering a single macronutrient component. An initial, albeit correlative, way to address this is to 

compare the diet formulation used in Chapter 2 against those in the other studies using Western 

diets, like those discussed earlier in this Chapter. Comparing formulation can facilitate the 

identification of shared and divergent ingredients which can be subsequently kept or eliminated 

from a working model of diet-induced antibiotic susceptibility. However, the moniker “Western 

diet” is a bit of a blanket term that describes any diet formulation that elevates fat and carbohydrate 

content relative to protein and fiber (Hintze et al., 2018). Even amongst open-source commercial 

vendors, Western diets can vary in fat and carbohydrate formulation which has obvious 

implications on the comparison of research findings. In our work and the studies discussed earlier, 

the selected diets were from different vendors, but all used a mixture of corn starch and 

maltodextrin as the carbohydrate source, and a lard and soybean oil mixture as the fat source, albeit 

at slightly different concentrations (approximately 10 percent fat and 40 percent carbohydrates in 

Chapter 2 versus 40 percent fat and 40 percent carbohydrates in the compared works) (An et al., 

2021; Cabral et al., 2020; Hyoju et al., 2019; Lee et al., 2020). Our work and that of Lee et al. used 

formulations that included low levels (less than 5%) of cellulose fibers, while An et al. used a 

cellulose and inulin mixture, and Hyoju et al. used a fiber-free formulation (An et al., 2021; Cabral 

et al., 2020; Hyoju et al., 2019; Lee et al., 2020). Given the vast difference in fat content between 

these studies, it is likely that carbohydrate elevation and fiber reduction are more important than 

fat in determining microbiome dysbiosis while consuming a Western diet (Morrison et al., 2020; 
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Satokari, 2020). Assuming this hypothesis is correct, the next logical questions are (1) how does 

the abundance of these two macronutrients impact host digestion and thus (2) microbiome 

metabolism, (3) is this unique to corn starch and maltodextrin, and (4) what are ways we can 

experimentally confirm this?  

 Host digestion and compound bioavailability should be one of the first considerations when 

evaluating the impact of dietary composition on microbiome function. The transport of 

monosaccharides in the small intestine is unique to the target substrate and subjected to differential 

regulatory loops (Merino et al., 2020). For example, small intestinal uptake of fructose is passively 

mediated while glucose uptake is an active process (Merino et al., 2020). Additionally, while both 

sugars are processed in the liver, only glucose has insulin-dependent hepatic processing (Merino 

et al., 2020). Recently, it was demonstrated that the bulk of host-related fructose and glucose 

metabolism occurs within the small intestine (Jang et al., 2018), suggesting that the intestinal 

demand for these compounds will be critical in determining the rate of metabolite overflow into 

the colon. Another key determinant of metabolite absorption rate is intestinal transit time, which 

itself is dependent on diet-dependent viscosity of chyme (Grundy et al., 2016; Müller et al., 2018). 

The obvious implication here is that the commercial formulation of Western diets may rely on 

different monosaccharide sources, and thus may elicit disparate changes to microbiome function 

due to differences in host sugar uptake. Furthermore, the heterogeneity of sugar intake in humans 

may help explain differences in results gleaned from rodent-based Western diet studies and those 

in patient populations (Hintze et al., 2018). Experimentally, host sugar uptake rates can be 

confirmed by monitoring the expression of these transporters or using isotopically labeled sugars 

that can be tracked as they are coupled to a transporter. An interesting avenue of future research 

would be to examine the activity of sugar transporters on different Western diet formulations and 
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then subsequently profile metabolite overflow to the colon and how that impacts microbial 

metabolism. These data would help create a more nuanced understanding of how host sugar 

regulates the behavior of the colonic microbiota which could in turn be leveraged to mitigate 

antibiotic-induced dysbiosis. Perhaps a sucrose formulated diet will worsen dysbiosis more 

severely than a fructose formulated diet. Additional research should also consider that 

cardiometabolic function is an additional host-related control mechanism for sugar transport. It is 

likely that metabolically perturbed hosts will have disparate responses to Western diet 

supplementation than normal hosts, which has significant implications on therapeutic 

development.  

 Variations in monosaccharide composition may also impact microbial function through 

differential regulation of carbon catabolite repression (CCR). CCR is a highly conserved metabolic 

regulatory mechanism by which bacteria can preferentially repress the utilization of secondary 

carbon sources when preferred substrates are available (Görke and Stülke, 2008; Warner and 

Lolkema, 2003). Ingested monosaccharides can suppress microbiome polysaccharide utilization 

via CCR in some species (Chen et al., 2018; Di Rienzi and Britton, 2020). Traditionally, only a 

minor fraction (less than 5 percent) of ingested sugars reaches the large intestine, thus the overall 

repression of fiber fermentation is likely low (Koepsell, 2020). To systemically profile how excess 

sugar intake dysregulates fiber fermentation, and thus drug susceptibility, animal models can be 

implemented. However, it is key that dietary alterations are limited to one sugar additive at a time, 

as this should prevent confounding metabolic phenotypes from occurring. Cabral et al. actually 

implemented this strategy when profiling glucose’s impact on amoxicillin-based dysbiosis (Cabral 

et al., 2019). Sugar-related changes in microbiome fermentative capacity can be examined by 

combining transcriptional quantification of carbohydrate-active enzymes (CAZymes) and targeted 
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metabolomics to quantify short-chain fatty acid abundance. Transcriptomic and proteomics can 

additionally quantify the activity of catabolite repression systems, as CCR homologs have been 

identified in a wide array of bacteria (Görke and Stülke, 2008). While this approach will not 

capture all syntrophic microbial interactions, small scale cross-feeding can be described for species 

of interest by performing the experiments in a consortium-colonized gnotobiotic animal. A 

systematic approach like this could ultimately generate a catalogue sugar-specific microbiome 

responses. These data would have far-reaching therapeutic potential, particularly within the field 

of personalized nutrition. Next steps would then leverage this catalog to examine antibiotic 

susceptibility as is relates to sugar-induced microbiome phenotypes.  

If excessive sugar intake can potentiate antibiotic toxicity in the gut, can excessive dietary 

fiber intake be protective? Examination of high-fiber intake in human cohorts demonstrates that 

vegans and vegetarians have higher microbiome diversity and positive metabolic phenotypes 

compared to omnivores (Angelis et al., 2020; Bolte et al., 2021; Franco-de-Moraes et al., 2017). 

This has made fiber supplementation an attractive therapeutic strategy to mitigate dysbiosis, 

although attempts to generate a catch-all prebiotic have had mixed results in humans (Shah et al., 

2020). In mice, dietary fiber supplementation has been shown to be protective. Specifically, 

Schnizlein et al. showed that supplementing mouse chow with just 5 percent xanthan gum was 

sufficient to reduce antibiotic-induced dysbiosis and protect against post-treatment infection 

(Schnizlein et al., 2020). An important caveat to consider when discussing a fiber-based 

therapeutic is that dietary fiber is a blanket term for a chemically diverse set of compounds that 

are not uniformly metabolized by the microbiome. The microbiota’s capacity for fermentation and 

the rate of these reactions will ultimately be determined by fiber structure and microbiome 

composition. For example, branched and rigidly structured polysaccharides are less accessible and 
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have delayed in vivo fermentation (Rumpagaporn et al., 2015; Warren et al., 2018; Z. Zhou et al., 

2013). Concurrently, the microbiome exhibits extensive fiber-related niche adaptation, where 

some taxa are generalists with many polysaccharide utilization systems, and others are specialists 

that use a select subset of fibers (Cantu-Jungles and Hamaker, 2020; Coker et al., 2021; Payling et 

al., 2020). Preliminary work on fiber-based therapeutics in humans have shown high inter-

individual variation in microbiome responses to fibers like fructooligosaccharides, cellulose, and 

inulin (Cantu-Jungles and Hamaker, 2020). Interestingly, these polysaccharides are favored by 

generalist fiber degraders, while compounds like type-IV resistant starches and insoluble β-glucans 

elicit more consistent responses from specialist degraders (Cantu-Jungles and Hamaker, 2020; 

Deehan et al., 2020). This variation in fermentation phenotypes means that the development of 

individually tailored fiber prebiotics should be prioritized over a catch-all therapeutic.  

Extensive research will be required to generate these precision medicines. Like with sugars, 

a key first step will be the generation of an expansive library describing fiber-specific microbiome 

responses before and after antibiotic administration. Currently, some in silico algorithms like 

DRAM and SACCHARIS can be used to discover novel CAZymes and resolve ambiguous 

CAZyme annotations from metagenomic and metatranscriptomic data, which will aid in fiber-

related functional profiling (Jones et al., 2018; Klassen et al., 2021; Shaffer et al., 2020). To track 

species-specific metabolism during fiber supplementation, isotopic labeling strategies like 

bioorthongal non-canonical amino acid tagging or bioorthongal click chemistry can allow for real-

time tracking of microbiome-glycan interactions when paired with fluorescence in situ 

hybridization (Kalesh and Denny, 2019; Klassen et al., 2021; Kolb et al., 2001; Y. Wang et al., 

2020). Fully characterizing the diversity of polysaccharide-based microbiome metabolism may 

facilitate the creation of tailored fiber therapeutics. Hypothetically, an individual’s baseline 
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microbiome function may be assessed, and this data could dictate an appropriate fiber cocktail 

formulation to elicit desired functional responses. For example, fiber therapeutics could be tailored 

to diet intake and delivered prophylactically before antibiotic administration to prevent dysbiosis, 

although this type of individualized medicine is probably years away from development.  

 

Detangling the Complex Phenotypes of Metabolic Diseases and their Impact on Microbiome 

Function 

 The findings presented in Chapter 3 were reliant on the single-dose STZ model, which 

causes irreversible hyperglycemia via targeted ablation of pancreatic β-cells (Deeds et al., 2011; 

Goyal et al., 2016). This model causes glucose dysregulation by preventing insulin synthesis and 

has the advantage of triggering dysglycemia without microbiome-impactful dietary modifications, 

as discussed in Chapter 3. While our work described significant changes in microbiome function 

a few days after injection, these changes were ultimately associative. Thus, we can immediately 

ask if alterations in microbiome function were (1) a direct consequence of insulin deficiency or (2) 

due to secondary changes from dysglycemia.  

 It is possible that the metabolic restructuring observed in the STZ-treated microbiome is 

related to insulin’s role in protein metabolism. Insulin is a potent regulator of protein digestion and 

can trigger a shift from anabolic to catabolic amino acid metabolism in the host (Weber et al., 

1981; Brooks et al., 1986). Specifically, insulin simultaneously increased the ileal uptake of amino 

acids and regulates muscular amino acid demand (Weber et al., 1981; Hasselgren et al., 1987; 

Groen et al., 2016). To that end, type-I diabetes mellitus (DM) patients, who are insulin deficient, 

experience marked muscular atrophy, increased skeletal muscle protein degradation, and 

hyperaminoacidemia from said breakdown (Møller and Nair, 2008; Aquilani, 2004; Herbert and 
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Nair, 2010; Sala and Zorzano, 2015). Increases in amino acid fermentation have been detected in 

the gut microbiome of type-I and type-II DM patients, suggesting elevated colonic amino acid 

levels (Macías-Acosta et al., 2021; Winther et al., 2021). Thus, insulin disruption may prevent host 

amino acid uptake, which would increase the total load available to the colonic microbiota. In turn, 

this readily available carbon source could increase the metabolic rate of local microbes, which 

results in increased antibiotic susceptibility based off our findings. The amino acid elevation 

hypothesis could be quickly confirmed by performing a direct quantification of amino acid loads 

from cecal/fecal material using a Bradford assay or proteomic approach.  

A straightforward means to test the importance of insulin to perturbed microbiome 

metabolism would be to repeat the experiments described in Chapters 3 and 4 with the inclusion 

of a rescue group receiving exogenous insulin. Preliminary studies have demonstrated that in 

addition to improving cardiometabolic and intestinal phenotypes, insulin therapy can shift 

microbiome composition by reducing Bacteroides abundance (Pircalabioru et al., 2021; Tate et al., 

2017; H. Wang et al., 2020). For amoxicillin, reducing Bacteroides may be beneficial by 

preventing the total outgrowth of this taxa after antibiotic administration. Thus, insulin delivery 

may be sufficient to reverse hyperglycemia-related shifts in microbial metabolism and alter 

antibiotic activity within the gut. There is wide diversity in commercially available insulins that 

vary in their absorption rate and circulation time. For example, naturally derived insulins are 

metabolized on the scale of hours, while certain synthetic insulins remain in circulation for days 

(Warshauer et al., 2020). A possible therapeutic strategy could be the prophylactic delivery of 

long-circulating synthetic insulin to shift microbiome metabolism before and during antibiotic 

treatment, however significant mechanistic frameworks need to be developed before this type of 

therapeutic strategy is viable.  
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A key framework missing from Chapter 3 is the temporal dynamics of hyperglycemia-

related microbiome shifts. The microbiome responds to dietary and xenobiotic introduction within 

hours, thus the findings in Chapter 3 likely present a hyperglycemia steady state rather than 

transitory shifts in microbiome function. A quick fix would be to longitudinally characterize 

microbiome function using our multi-omic approach immediately after STZ administration. 

Incorporating RNA sequencing of host tissues would be a great addition in future works and could 

help resolve some ambiguity in host versus microbe-derived phenotypes. Future studies would 

also benefit from the implementation of spatially informed metabolomics using approaches like 

metaFISH (a combination of fluorescence in situ hybridization and MALDI-TOF mass 

spectrometry) to examine the diversity of metabolic shifts within the microbiome at species-scale  

during dysglycemic development (Geier et al., 2020).  

While temporally characterizing host-microbe interactions during chemotherapeutic 

hyperglycemia is intellectually interesting, it unfortunately may not inform the develop of viable 

therapeutics, as metabolic syndromes are phenotypically diverse and more complex in humans 

than in research animals (Bezirtzoglou et al., 2021). For example, pancreatogenic diabetes mellitus 

(DM) has unique etiology to type-I and type-II DM, which also have divergent pathologies and 

immune phenotypes (Siljander et al., 2019; Talukdar et al., 2021; Thaiss et al., 2018; H. Zhou et 

al., 2020). While insulin is the first line therapy for type-I DM, metformin is the choice antidiabetic 

for type-II DM, meaning that the considerations for microbiome-protective approaches during 

antibiotic administration will vary between these patient populations. Microbiome composition 

and function have been heavily implicated in the pathology of type-II DM and the efficacy of 

metformin, meaning that the severity of antibiotic-induced dysbiosis may be heavily 

individualized (Bezirtzoglou et al., 2021; Elbere et al., 2020). Notably, there is growing evidence 
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that pre-treatment microbiome compositions (especially Bacteroides abundance) can impact the 

success of metformin delivery and the severity of gastrointestinal side effects (Elbere et al., 2020; 

Silamiķele et al., 2021). Interestingly, metformin has been demonstrated to restore short-chain 

fatty acid production and shift bile acid processing within the microbiome, suggesting it has 

significant microbiome-modulatory properties (Pircalabioru et al., 2021; Silamiķele et al., 2021; 

Vila et al., 2020; Wu et al., 2017). Assuming metformin can restore fermentative metabolism in 

some patient microbiomes, antidiabetic therapy could be combined with antibiotic administration 

to fine tune the severity of dysbiosis. Alternatively, dietary modification could be combined with 

metformin to restore glucose regulation in dysglycemic patients before antibiotic administration 

in a stepwise fashion. However, a more complete mechanistic understanding of interactions 

between the microbiome and antidiabetic compounds will be required before personalized 

approaches that mitigate antibiotic dysbiosis can be implemented in patients with metabolic 

disease.   

 

Conclusions 

 The work presented in this dissertation builds upon an existing model of antibiotic 

susceptibility by which the metabolic activity of gut-resident microbes dictates their capacity to 

survive antibiotic exposure (Cabral et al., 2019). Specifically, we use a combination of high-

throughput ‘omics platforms to characterize the transcriptome and metabolome of the cecal 

microbiome during exposure to bactericidal antibiotics. These data highlight that host-related 

sources of nutrient variation, whether from changes in diet or induction of host dysglycemia, are 

sufficient to perturb metabolic homeostasis in the cecum and worsen antibiotic-induced dysbiosis. 

These data, while robust, describe early-stage examinations of how diet and host function shape 
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antibiotic susceptibility. Ultimately, more work is required to translate these findings into viable 

therapeutic targets, but hopefully these data can help inform the development of precision 

medicine approaches to mitigating microbiome dysbiosis.  
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Materials and Methods 

 The data described in this chapter were obtained using the same methods implemented in 

Chapter 3, with the except of antibiotic dosing. Ciprofloxacin was delivered via the drinking water 

to C57BL/6J mice at a concentration of 12.5 mg/kg. For the remaining materials and methods 

details, please refer to Chapter 3: Materials and Methods 

 

 16S and metabolomics data are available upon request. Please contact Peter Belenky at 

peter_belenky@brown.edu for all data inquiries related to this Chapter.  
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Main Figures, Titles, and Legends 

 

Figure 1: Impact of streptozotocin and ciprofloxacin on microbiome composition.  
A.  Experimental design of this study. Figure was created with BioRender.com  
B. Bray-Curtis Dissimilarity between 16S rRNA amplicons from experimental groups with 

permutational ANOVA.  
C. Relative abundance of the five-most prominent bacterial phyla. Data represent mean + 

SEM. 
D. Relative abundance of Firmicutes. Data represent mean + SEM 
E. Relative abundance of Bacteroidetes. Data represent mean + SEM  

N = 8 to 14 per group;  
For D & E: Welch’s ANOVA and Dunnet T3 test for multiple hypothesis correction 
(* p < 0.05, ** p < 0.01, *** p < 0.001)  
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Figure 2: Host hyperglycemia differentially impacts genus-level composition and 
metagenomic potential after ciprofloxacin.  

A. Differentially abundant genus-level 16S rRNA read. Data represent log2 fold of change of 
ciprofloxacin-treated samples versus vehicle controls + SEM.  

B. Differentially abundant genus-level 16S rRNA reads. Data represent log2 fold of change + 
SEM of normoglycemic ciprofloxacin-treated samples versus STZ and ciprofloxacin co-
treated samples.  

C. Linear discriminant analysis of PICRUSt2-predicted metagenome content. Data represent 
normoglycemic ciprofloxacin-treated samples versus STZ and ciprofloxacin co-treated 
samples.  

N = 8 to 14 per group.  
Differentially abundant = Benjamini Hochberg adjusted p < 0.05.  
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Figure 3: Hyperglycemia is associated with Q-TOF-MS metabolome divergence during 
ciprofloxacin treatment.  

A. Bray-Curtis Dissimilarity of Q-TOF-MS metabolite extracts from experimental groups 
with permutational ANOVA.  

B. KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ and 
ciprofloxacin treated mice versus normoglycemic ciprofloxacin-treated mice.  

C. Differentially abundant Q-TOF-MS metabolite features involved in carbohydrate, energy, 
and nucleotide metabolism. Data represent control and STZ-treated mice after 
ciprofloxacin treatment with interaction values versus vehicle-treated controls.  

D. Differentially abundant Q-TOF-MS metabolite features involved in amino acid and lipid 
metabolism. Data represent control and STZ-treated mice after ciprofloxacin treatment 
with interaction values versus vehicle-treated controls.  

N = 12 per group.  
Differentially abundant = Benjamini Hochberg adjusted p < 0.05.  
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Figure 4 Hyperglycemia is associated with LC-MS/MS metabolome divergence during 
ciprofloxacin treatment. Differentially abundant GNPS-annotated clusters between that contain 
known metabolites within the cluster. Clusters were selected from the top-50 most relevant 
features via Random Forest Testing. Comparison is between  

A. Normoglycemic ciprofloxacin-treated mice versus vehicle controls 
B. Hyperglycemic ciprofloxacin-treated mice versus vehicle controls 
C. Hyperglycemic ciprofloxacin-treated mice versus normoglycemic ciprofloxacin-treated 

controls.  
N = 12 per group.  
(* p < 0.05, ** p < 0.01, *** p < 0.001; Welch’s Unpaired T-test)
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Figure 5: Taxon-stratified community metabolic potential during STZ and ciprofloxacin 
treatment. Community metabolic potential was calculated using the MIMOSA (version 2.0) 
algorithm by comparing Q-TOF-MS metabolite abundances and PICRUSt2-predicted 
metagenomic content. Data represent: 

A. Normoglycemic ciprofloxacin-treated mice versus vehicle controls 
B. Hyperglycemic ciprofloxacin-treated mice versus vehicle controls 
C. Hyperglycemic ciprofloxacin-treated mice versus normoglycemic ciprofloxacin-treated 

controls.  
N = 8 to 14 per group 
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Abstract 
Persistence is a phenomenon during which a small fraction of a total bacterial population survives 
treatment with high concentrations of antibiotics for an extended period of time. In conjunction 
with biofilms, antibiotic persisters represent a major cause of recalcitrant and recurring infections, 
resulting in significant morbidity and mortality. In this review, we discuss the clinical significance 
of persister cells and the central role of bacterial metabolism in their formation, specifically with 
respect to carbon catabolite repression, sugar metabolism, and growth regulation. Additionally, we 
will examine persister formation as an evolutionary strategy used to tolerate extended periods of 
stress and discuss some of the response mechanisms implicated in their formation. To date, the 
vast majority of the mechanistic research examining persistence has been conducted in artificial in 
vitro environments that are unlikely to be representative of host conditions. Throughout this 
review, we contextualize the existing body of literature by discussing how in vivo conditions may 
create ecological niches that facilitate the development of persistence. Lastly, we identify how the 
development of next generation sequencing and other “big data” tools may enable researchers to 
examine persistence mechanisms within the host to expand our understanding of their clinical 
importance.  
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Introduction 

The discovery of antibiotics and their widespread use in the 20th century represent a 

significant milestone in human history. Commercial antibiotics have saved innumerable lives, but 

their efficacy has declined at an alarming rate due to the spread of antibiotic resistance. Within a 

decade of the first major utilization of penicillin therapy in soldiers during World War II (Michiels 

et al., 2016), penicillin resistance became a significant clinical burden and signaled the beginning 

of an “arms race” between pathogenic bacteria and pharmaceutical development (Ventola, 2015). 

In addition to resistance, physicians such as Joseph Bigger were vexed by a concerning 

phenomenon; although penicillin was frequently and successfully used to treat Staphylococcal 

wound infections, therapies often failed to completely sterilize the infection site, ultimately 

resulting in severe infection relapse and mortality (Bigger, 1944). Bigger coined the term 

“persisters” to describe a minority subpopulation of bacterial cells that could survive antibiotic 

challenge in the absence of resistance (Bigger, 1944; Ventola, 2015). Here, we define persisters as 

a small fraction of a total bacterial population that can survive long-term treatment with high 

concentrations of antibiotics. However, unlike resistant bacteria, most of these cells regain 

sensitivity after regrowth and new treatment typically results in the same small surviving fraction. 

Additionally, the phenomenon of tolerance is closely related to and often confused with 

persistence. Tolerance also enables bacterial cells to survive exposure to lethal concentrations of 

antibiotics; however, unlike persisters, tolerant cells make up a larger portion of the population 

and they are only temporarily protected from antibiotic exposure.  

Over the last 60 years, an expansive body of work has focused on characterizing the genetic 

determinants, molecular mechanisms, and epidemiology of antibiotic resistance. Although the 

breadth of research on antibiotic persistence is less robust, the past decade has seen burgeoning 
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interest in persistence as a cause of clinical therapeutic failure (Michiels et al., 2016). In recent 

years, the defining characteristics of persisters and their formation have been codified in primary 

literature and multiple reviews (Brauner et al., 2016; Harms et al., 2016; Lewis, 2010; 2007; 

Maisonneuve and Gerdes, 2014; Olive and Sassetti, 2016). In this review, we aim to link work 

from the distinct fields of systems biology and in vivo clinical microbiology. Although these fields 

have been operating somewhat independently, we feel they are intrinsically related and together 

can help to decipher the heterogeneous phenomenon of antibiotic persistence. We will discuss 

antibiotic persistence as it relates to bacterial metabolism, specifically focusing on how carbon 

catabolite repression, sugar metabolism, and growth regulation are involved in persister formation. 

We will contextualize these findings by discussing how in vivo conditions create ecological niches 

that facilitate persistence development. Finally, we will discuss how persister formation represents 

a unique evolutionary strategy to combat antibiotic stress as well as some of the response 

mechanisms implicated in persister formation.  

As we discuss this previous research, it is important to consider that a majority of 

mechanistic studies on persisters have been conducted under artificial conditions in vitro. In 

reality, antibiotics act on and induce persisters in complex polymicrobial communities that are 

themselves profoundly impacted by the host environment. Thus, the insight generated from this 

work may not be fully biologically relevant or clinically applicable. However, the development of 

new tools based on next-generation sequencing and “big data” analysis may allow us to study 

persistence and persistence-related processes in the host. Throughout this review, we will identify 

applications where these tools can be utilized to expand our understanding.  

 

Persistence as an Evolutionary Adaptation 
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The term persistence describes the ability of a bacterial subpopulation to survive antibiotic 

exposure due to non-heritable phenotypic variation that is distinct from the mechanisms that 

generate resistance (Michiels et al., 2016). Persisters represent a small fraction of the total cells, 

but their survival allows the population to survive times of high antibiotic exposure (Brauner et 

al., 2016). After stress subsides, persisters revert to an antibiotic-sensitive state, reinitiate growth, 

and repopulate the local environment. In fact, post-treatment sensitization towards antibiotics is a 

definitive characteristic of persister cells (Maisonneuve and Gerdes, 2014). This phenomenon is 

akin to ecological succession, where antibiotic pressure represents a bottleneck event and persisters 

are the first to subsequently utilize available nutrients and environmental niches. Like a wildfire 

that decimates a forest, antibiotic exposure wipes out 99 percent of a susceptible community while 

persister cells survive as a result of their transient antibiotic tolerance. As the sole survivors of 

antibiotic exposure, these persister cells then function as the pioneer “species” in a now-vacant 

ecological niche and subsequently lose their tolerant phenotype as they repopulate and grow 

towards a steady state community. In this manner, persistence can be viewed as an evolutionary 

strategy by which a population assures its survival through a few key members. 

As an adaptive trait, persistence is heterogeneous and emerges via multiple mechanisms. 

Persistence has thus been categorized into subtypes for clarification. First, time-dependent 

persistence is contingent on growth rate reductions within the persister subpopulation that reduce 

antibiotic uptake and target availability (Balaban et al., 2004). Time-dependent persistence can be 

further subdivided into Type I and Type II persistence, where Type I is triggered by a reduced lag 

time and Type II is triggered by growth rate reduction (Balaban et al., 2004; Brauner et al., 2016). 

Second, dose-dependent persistence is an adaptive response in which transient overexpression of 

efflux pumps and stress response pathways facilitate survival during antibiotic challenge (Balaban 
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et al., 2004; Brauner et al., 2016; Nandakumar et al., 2014). The PASH (Persistence As Stuff 

Happens) model has recently gained popularity and suggests that both time- and dose-dependent 

persistence are the result of stochastic errors in metabolism, cell division, and stress responses and 

is thus analogous to spontaneous mutations observed in antibiotic resistance (Grant and Hung, 

2013). PASH suggests that persistence is a form of bet-hedging or adaptive behavior in which a 

small subset of the population exhibits randomized phenotypic variation. The utilization of toxin-

antitoxin modules serves as one example of this bet-hedging strategy. Perhaps the best 

characterized of these systems is the hipAB module in Escherichia coli (Rotem et al., 2010). In 

this case, E. coli enters a dormant state once the levels of the hipA toxin exceed a certain threshold 

(Rotem et al., 2010). Overexpression of hipA increases the tolerance of E. coli to bactericidal 

antibiotics (Keren et al., 2004). However, these toxin levels fluctuate within a population in the 

absence of antibiotics, suggesting that they may represent a generalized response that allows 

bacterial populations to survive sudden stress (Keren et al., 2004; Levin and Rozen, 2006; Rotem 

et al., 2010). Compared to antibiotic resistance, this randomization confers a selective advantage 

with a significantly diminished fitness cost and reduced need for compensatory adaptations 

(MacLean and Vogwill, 2014).  

Vogwill et al. recently aimed to identify whether persistence and resistance represent 

complementary, albeit divergent, survival strategies that bacteria have co-opted to survive 

antibiotic and environmental stressors (Vogwill et al., 2016). After challenging various 

Pseudomonas species with ciprofloxacin and rifampin, they found that persistence and resistance 

generation were mechanistically unrelated but positively correlated, suggesting that they represent 

complementary, rather than competitive, evolutionary strategies (Vogwill et al., 2016). Persistence 

is a plastic trait, while resistance is genetically encoded. If antibiotic exposure is constant, there 
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would be no need for the evolution of plastic traits and selection would favor resistance. However, 

if antibiotic exposure is transient, selection should favor phenotypic plasticity due to the higher 

fitness costs of resistance relative to persistence. By maintaining a variant subpopulation, the 

bacterial population, as a whole, ensures its survival in times of transient stress (Vogwill et al., 

2016).  

Thanks to technological expansion in genomics during the last decade, persister research 

can capitalize on next-generation methods used in virulence and antibiotic resistance studies. 

Transposon-sequencing (Tn-seq) is an attractive, massively parallel means of identifying persister-

associated gene targets in vivo under various selective conditions (Figure 1A) (Powell et al., 2016; 

Santiago, 2015; Valentino et al., 2014). Tn-seq has the potential to confirm the importance of 

known persister genes under specific stress conditions as well as identify novel persistence 

mechanisms in the host. In addition to new in vivo work, retrospective genomic studies can be used 

to identify known persister genes with varying amounts of selective pressure. Specifically, it may 

be beneficial to analyze clinical isolates of common pathogenic bacteria taken over the last sixty 

years of antimicrobial availability to ascertain evolutionary pressure and conservation of key 

persister genes (Figure 1B) (Vogwill et al., 2016).  

 

Biofilms Can Promote Antibiotic Persistence in Clinical Settings.  

While persister development is an adaptive strategy at an individual level, bacteria can also 

exhibit community structure can aid in bacterial fitness and promote persister development, 

particularly if community-wide adaptations to survive antibiotic challenge. Committing to a 

biofilm community the biofilm is slow growing in nature (Lewis, 2001). Biofilms are an amalgam 

of one or more bacterial species structure can aid in bacterial fitness and promote persister 
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development, particularly if the biofilm is that colonize and adhere to physical surfaces in a 

density-dependent manner. The biofilm creates slow growing in nature (Lewis, 2001). Biofilms 

are an amalgam of one or more bacterial species that colonize heterogeneous gradients in signaling 

molecules, nutrients, and environmental exposures that and adhere to physical surfaces in a 

density-dependent manner. The biofilm creates heterogeneous gradients in signaling molecules, 

nutrients, and environmental exposures that generate diverse micro-niches (Michiels et al., 2016). 

Biofilm formation is found ubiquitously across microbial phyla and facilitates colonization of both 

abiotic and biotic surfaces with relative ease (Cohen et al., 2013).  

Biofilms are characteristically stress-resilient, and they are a great example of how 

population size and fitness are positively correlated through the Allee effect (Goswami et al., 

2017). The Allee effect describes scenarios in which biological characteristics correlate the 

population density of a given ecosystem with the fitness of individual species or the population 

within that ecosystem (Goswami et al., 2017). In microbial ecology, biofilms increase the total 

population density irrespective of whether they are mono- or polymicrobial. As the population 

becomes stabilized by density, intraspecies variation and thus fitness drastically increases due to 

cooperative interactions and reduced genetic drift (Davey and OToole, 2000; Roches et al., 2018). 

The biofilm as a total population exhibits antibiotic tolerance and increased cooperative 

interactions within the population might generate conditions that increase persister cell formation.  

Clinically, biofilms are associated with antibiotic recalcitrance, infection recurrence, and 

persister formation (Michiels et al., 2016). Biofilm formation has been documented in both Gram-

positive and Gram-negative pathogens and is clinically significant in various infection types, 

ranging from skin and soft tissue infections (SSTI), implanted device infections, urinary tract 

infections, endocarditis, otitis media, and more (Cohen et al., 2013; Goneau et al., 2014; Grant and 
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Hung, 2013; Lebeaux et al., 2014; Perez et al., 2014). Approximately 50 percent of all nosocomial 

infections originate from implanted medical devices such as prosthetic joints, catheters, and 

prosthetic heart valves, all of which provide abiotic surfaces for the development of biofilms 

(Grant and Hung, 2013). In patients, tissue location and biofilm progression can result in varied 

antibiotic exposure even in the presence of clinically appropriate dosing (MacLean and Vogwill, 

2014). Ultimately, this results in bacterial exposure to sub-inhibitory antibiotic concentrations, 

which can promote persister development (Dörr et al., 2010; Kudrin et al., 2017; MacLean and 

Vogwill, 2014; Shah et al., 2006).  

Biofilm formation appears to confer significant fitness advantages to pathogenic bacteria. 

As an environment subject to ecological drivers, biofilms promote intraspecies variation that 

encourages persister development. Lee et al. have suggested that heterogeneity promotes antibiotic 

tolerance through the altruistic behavior of a few variant subpopulations within the biofilm (Lee 

et al., 2010). This “bacterial charity” is analogous to kin selection, where a subset of cells obtains 

resistance- or persistence-conferring capacity and provides protection to others. Lee found that 

mutations in indole production were directly correlated to charity events in polymicrobial biofilms. 

By challenging E. coli strains to increasing concentrations of fluoroquinolones, they found that a 

highly resistant and high indole-producing subpopulation triggered overall biofilm tolerance via 

indole signaling (Lee et al., 2010). Biofilms are ultimately important to the study of persister 

formation because they represent the endogenous ecological structures that many bacteria will 

adopt within a host (Jefferson, 2004).  

Persister cells are implicated as a causative agent in a multitude of biofilm-related recurrent 

infections including urinary tract infections, where sub-inhibitory antibiotic concentrations 

promote persister development and multi-drug tolerance (Blango and Mulvey, 2010; Goneau et 
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al., 2014; Parsek and P. K. Singh, 2003). In otitis media (OM), a commonly chronic or recurrent 

infection, the formation of a polymicrobial biofilm is initiated by opportunistic members of the 

nasopharyngeal microbiota that migrate towards the inner ear and trigger infection (Perez et al., 

2014). In OM, the role of cooperative intraspecies interactions has been well documented. In 

polymicrobial biofilms, cooperation promotes multi-drug tolerance by persister cells (Perez et al., 

2014). Specifically, Moraxella catarrhalis provides passive β-lactam protection to Streptococcus 

pneumoniae and non-typable Haemophilus influenzae (NTHi), and in turn they provide tolerance 

towards fluoroquinolones by promoting M. catarrhalis persister cell formation (Perez et al., 2014). 

Here, as in periprosthetic joint implant infections, biofilm formation functions as a vehicle for 

persister cell development (Urish et al., 2016). In Staphylococcal infections, recurrent SSTIs have 

been associated with biofilms in response to prolonged antibiotic exposure, including last-line 

therapies such as vancomycin (Conlon et al., 2016). In catheter-related bloodstream infections, 

there is an effective relapse rate of approximately 20 percent, due to surviving persister populations 

within catheter-adhered biofilms (Lebeaux et al., 2014). Even extended antibiotic therapy at 1000-

fold inhibitory concentrations is insufficient to eliminate the biofilm (Lebeaux et al., 2014). Thus, 

the theme of a biofilm functioning as an environment that promotes tolerant infections and 

persister cell development is prominent in clinical settings.  

The question then becomes how can we study persister formation in host-related biofilms? 

As with persister gene evolution, Tn-seq is an attractive option in which a host-related biofilm 

infection model can be established with a high-density transposon insertion library (Figure 1A). 

Alternatively, persister-specific Fluorescence In-Situ Hybridization (FISH) could be used to 

isolate biofilms from in vivo contexts and identify persisters in their native environment by 

quantifying expression of persister elements such as toxin-antitoxin systems (Brileya et al., 2014; 
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Nistico et al., 2009). Laser-capture microdissection (LCMD) could then be coupled with 

transcriptomic analysis to isolate specific, persister-containing fragments of the biofilm, assess 

their transcriptional activity, and decouple it from culture-specific or in vitro-specific variation 

(Figure 1C). The great strength of LCMD coupled with FISH is that it allows the transcriptional 

analysis of populations enriched for persisters. A similar approach could and has been taken to 

analyze transcriptional response of persisters in liquid culture using flow cytometry sorting (Henry 

and Brynildsen, 2016; Orman and Brynildsen, 2013a). While these approaches enrich for 

persisters, clear challenges related to intrinsically low abundance of persisters still remain. 

However, as single-cell sequencing technologies advance, many of these challenges can be 

effectively solved by enabling analysis of rare persister cells (Avraham et al., 2015; Heacock-Kang 

et al., 2017; Hör et al., 2018; Kang et al., 2015; Saliba et al., 2016; 2017; Wang et al., 2015). The 

key to each of these approaches is that they allow monitoring of persister biology in biofilms 

generated within the host, providing additional translational impact.  

 

Growth, Metabolism, and ATP Production 

The formation of biofilms and persister cells represent two interrelated yet phenotypically 

distinct strategies utilized by bacteria to tolerate antibiotic treatment. Despite their differences, 

however, growth rate and the underlying metabolic state are crucial determinants of the antibiotic 

tolerance displayed by both biofilm and persister cells. As a complex ecological environment, 

biofilms exhibit heterogeneity in their population structure and metabolic activity. Cells proximal 

to the center of the biofilm can exhibit marked dormancy relative to cells in the periphery (Walters 

et al., 2003). As a result, antibiotic efficacy is highest at the air interface, where metabolic activity 

is highest (Walters et al., 2003). Additionally, the growth rate of biofilm cells has been shown to 
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be a major determinant of antibiotic susceptibility in both Pseudomonas aeruginosa and E. coli 

(Jõers et al., 2010; Tanaka et al., 1999). Similar dynamics have also been observed in non-biofilm 

persister cells. Tolerance and persistence are closely associated with the rate and phase of bacterial 

growth (Betts et al., 2002; Gutierrez et al., 2017; Lobritz et al., 2015; Nandakumar et al., 2014; R. 

Singh et al., 2009). For example, slow growth rates have been shown to permit stable tolerant 

phenotypes in E. coli (Fung et al., 2010), and both P. aeruginosa and S. aureus display an increase 

in persister formation in mid-exponential and stationary phase while remaining unchanged in early 

exponential phase (Keren et al., 2004). Conversely, maintaining bacterial cultures in early 

exponential phase has been found to completely eliminate persisters (Keren et al., 2004; Lewis, 

2010). Furthermore, E. coli has demonstrated an ability to modulate its lag time to match the 

duration of antibiotic exposure when subjected to repeated treatments (Fridman et al., 2014). 

Therefore, modulation of growth rate appears to be an adaptive and transient response to antibiotic 

exposure.  

A major contributing factor to variations in growth rate is nutrient availability, with nutrient 

limitation having long been known to induce persistence. Glucose deprivation has been shown to 

increase the formation of persisters and increase biofilm tolerance to fluoroquinolone and β-lactam 

treatment (Amato et al., 2013; Bernier et al., 2013). Conversely, stationary phase E. coli cells can 

be sensitized to ciprofloxacin by supplementing oxygen and carbon sources (Gutierrez et al., 

2017). Furthermore, E. coli grown in minimal media with limited glucose availability have higher 

expression of the efflux pump acrB, suggesting that sugar metabolism may have wide-ranging 

effects that include drug efflux (Bailey et al., 2006). It appears that amino acid deprivation is 

prerequisite for tolerance; however, deprivation of glucose in addition to amino acids produces 
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bacteria that are highly tolerant of β-lactams, fluoroquinolones, and aminoglycosides (Fung et al., 

2010).  

Long-term starvation of Mycobacterium tuberculosis reduces susceptibility to rifampicin, 

isoniazid, and metronidazole and induces shifts in the expression of central metabolic pathways 

such as amino acid biosynthesis, energy metabolism, and lipid biosynthesis (Betts et al., 2002). 

Most notably, starvation down-regulates the expression of many glycolysis and TCA cycle 

enzymes. Additionally, the NADH dehydrogenase operon and most of the ATP synthase complex, 

both of which contribute to the production of ATP, are dramatically downregulated (Betts et al., 

2002). Conversely, starvation induced a significant upregulation of the fumarate reductase gene 

frdA, which is a component of a complex which serves as an anaerobic electron transport chain in 

similar bacteria (Betts et al., 2002). These changes allow M. tuberculosis to enter a tolerant state 

by decreasing growth rate while maintaining viability (Betts et al., 2002). Taken together, these 

findings further demonstrate that phenotypic plasticity in bacteria is critical to surviving antibiotic 

exposure events.  

Bacteria may also reduce their metabolic flux and enter a persistent state through the 

utilization of the glyoxylate shunt. The glyoxylate shunt is a variant of the TCA cycle that enables 

net carbon assimilation by bypassing steps that generate carbon dioxide (Dunn et al., 2009; 

Kornberg and Krebs, 1957; Kornberg and Madsen, 1957). In M. tuberculosis, treatment with three 

distinct antibiotics (rifampicin, isoniazid, and streptomycin) is known to induce the expression of 

isocitrate lyase (icl), a component of the glyoxylate shunt that converts isocitrate to glyoxylate and 

succinate (Dunn et al., 2009; Nandakumar et al., 2014). Furthermore, deletion of icl dramatically 

increases the susceptibility of M. tuberculosis to those drugs (Nandakumar et al., 2014). While 

nutrient starvation decreases the expression of most metabolic genes in M. tuberculosis, it has little 
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effect on genes within the glyoxylate shunt, such as icl (Betts et al., 2002). Utilization of the 

glyoxylate shunt decreases flux through the TCA cycle and reduces NADH and ATP production 

(Nandakumar et al., 2014; R. Singh et al., 2009). As a result, usage of the glyoxylate shunt is 

thought to result in reduced levels of reactive oxygen species (ROS), which may contribute to its 

protective effect (Lobritz et al., 2015; Nandakumar et al., 2014; R. Singh et al., 2009). Similar 

effects were seen in response to aluminum toxicity in Pseudomonas fluorescens, suggesting that 

metabolic tolerance mechanisms are utilized in other types of stress responses (R. Singh et al., 

2009). However, defects in the glyoxylate shunt have been shown to increase biofilm formation 

and tolerance of oxidative stress in P. aeruginosa, suggesting that this strategy is not universally 

employed, even amongst closely related bacteria (Ahn et al., 2016).  

Another stark example of metabolic modulation and persistence development is the 

phosphate metabolism gene phoU (Li and Y. Zhang, 2007). E. coli mutants lacking phoU are 

unable to resume growth following β-lactam exposure and are more susceptible to numerous 

antibiotics and stress conditions. While wild type persisters remain unsusceptible to all antibiotics 

tested, phoU mutants that survive initial antibiotic perturbation remain susceptible to β-lactams. 

Furthermore, loss of phoU sensitizes stationary phase E. coli to ampicillin, which requires active 

growth for effective killing of wild type cells (Li and Y. Zhang, 2007). Cells lacking phoU 

upregulate genes involved in energy production; for this reason, it has been suggested that phoU 

regulates persistence by reducing the expression of metabolic genes in response to stressors such 

as nutrient limitation or antibiotic exposure (Li and Y. Zhang, 2007).  

While persister cells, by definition, are not growing during antibiotic challenge, they can 

and do originate from actively dividing bacteria. Using fluorescent reporters for growth and 

metabolism, it was estimated that persisters constitute approximately 1 percent of stationary phase 
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cells within an exponentially growing E. coli culture (Orman and Brynildsen, 2013b). Within that 

same culture, only 0.01 percent of persisters originated from actively growing cells. However, 

because of the high prevalence of growing cells in an exponential culture, as many as 20 percent 

of persisters may originate from active cells (Orman and Brynildsen, 2013b). Within the growing 

populations, decreased reductase activity was found to be closely associated with persister 

formation. In fact, growing cells with low reductase activity were 40 times more likely to become 

persisters (Orman and Brynildsen, 2013b). Other studies have shown that bacterial cells with lower 

rates of protein synthesis were more likely to be persisters (Shah et al., 2006). Interestingly, the 

gene expression profile for these cells more closely resembled exponential- rather than stationary-

phase cells. Though energy metabolism was decreased in general, these cells also had increased 

expression of toxin-antitoxin systems (Shah et al., 2006). Therefore, this suggests that although 

decreased metabolism does greatly increase the likelihood of persister formation, it is not sufficient 

to explain the phenotype (Orman and Brynildsen, 2013b; Shah et al., 2006).  

It is clear that bacterial metabolic state is a major determinant of persister and biofilm 

formation in vitro. However, the metabolic conditions experienced in vitro are likely to differ 

dramatically from those encountered within the host. Therefore, it is likely that host metabolism 

plays a major role in bacterial functional potential (Yang et al., 2017). Within the microbiome, 

metagenomics and metatranscriptomics can be utilized to profile the prevalence and expression of 

well-known tolerance and persistence genes in a polymicrobial community (Figure 1A). However, 

such analyses will not exclusively profile persister cells due to their rarity but may identify factors 

that allow populations to survive antibiotic treatment and promote persistence.  

 

Carbon Catabolite Repression Systems Coordinate Antibiotic Persistence and Tolerance 
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Pathogenic microbes are heterotrophic and rely on a variety of carbon sources for growth 

(Carvalho et al., 2011). The ability to sense and efficiently utilize a diverse pool of carbon sources, 

which increases nutritional fitness, is contingent upon highly coordinated metabolite sensing 

coupled with rapid and appropriate responses. Bacterial growth and metabolism are intricately 

linked to the availability of carbon sources and cellular responses to this availability. Thus, 

persister formation is also closely linked to carbon flux within the cell.  

Perhaps one of the best described and most conserved metabolite response systems is the 

carbon catabolite repression (CCR) system. CCR is a global regulatory mechanism by which 

utilization of secondary carbon sources is dampened in the presence of preferred carbon sources 

such as glucose (Görke and Stülke, 2008). In Gram-negative species, CCR is activated by 

transcriptional repression of a pro-catabolic cyclic-AMP-CRP protein complex. In Gram-positive 

species, CCR is negatively regulated. Environmental glucose triggers phosphorylation of the 

histidine protein (HPr), which complexes with a pleiotropic transcription factor, carbon catabolite 

protein A (CcpA). This heterotropic complex binds to responsive DNA elements, thereby 

repressing catabolic gene expression (Görke and Stülke, 2008). CcpA has been demonstrated to 

regulate a massive proportion of glucose-responsive genes, almost 80 percent in Bacillus subtilis, 

and carbon sources have been implicated in E. coli persister formation, hinting at a possible 

connection between CCR and persisters (Bizzini et al., 2007).  

Nutrient transitions, starvation, and the CCR response have been recently implicated as 

important triggers of antibiotic tolerance (Michiels et al., 2016; Willenborg et al., 2014). 

Experimental inactivation of ccpA has been shown to decrease tolerance in various clinically 

relevant species (Fridman et al., 2014). In E. coli, CCR knockout increases sensitivity to penicillin 

due to ablation of metabolic flux (Willenborg et al., 2014). In Streptococcus gordonii, ccpA 
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knockout ablates tolerance to multiple drug classes, both in vitro and in a rat endocarditis model 

(Bizzini et al., 2007). Complementation with a functional ccpA copy is experimentally sufficient 

to restore tolerance in both clinical and laboratory strains (Bizzini et al., 2007). Streptococcus suis, 

a zoonotic pig pathogen, and Streptococcus pneumoniae lose tolerance to β-lactam antibiotics 

when ccpA is mutated or deleted (Bizzini et al., 2007). In methicillin-resistant S. aureus (MRSA), 

ccpA deletion results in severe reductions in β-lactam and glycopeptide resistance amongst highly 

resistant strains despite the presence of genetically encoded resistance determinants (Bizzini et al., 

2007; Sadykov et al., 2011).  

Staphylococcus epidermidis growth and tolerance is enhanced in vitro through ccpA. 

Recently, TCA cycle activity and CCR linkage have been identified as the connecting mechanisms 

(Thomas et al., 2013). Interestingly, this linkage seems conserved across Staphylococci. In S. 

aureus, ccpA represses TCA cycle genes, removing inhibition of intercellular adhesion and biofilm 

formation, which themselves have been implicated in increased antibiotic tolerance (Thomas et 

al., 2013). In a clinical context, many Staphylococcal infections cause abscess formation, where 

preferred carbon sources are limited (Mansour et al., 2016). Thus, catabolism of secondary carbon 

sources must be highly regulated in order to adopt an antibiotic-tolerant biofilm lifestyle. As 

previously discussed, the formation of these tolerant biofilms has the potential to increase persister 

formation. Clinically, the connection between CCR, tolerance, and persistence has many 

implications, particularly for hosts with metabolic disorders. In hyperglycemic patients, for 

example, it is possible that increased glucose bioavailability triggers CCR activity, protecting 

pathogenic microbes from therapeutic regimens while increasing virulence and infection burden.  

 

Sugar Metabolism and the Eradication of Persisters 
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Within carbon catabolism, sugar metabolism has been shown to be of particular importance 

in persister development. For this reason, several studies have explored the therapeutic potential 

of exploiting bacterial sugar metabolism to increase the efficacy of existing antibiotics against 

persisters (Allison et al., 2011; Barraud et al., 2013; Meylan et al., 2017). It has long been known 

that uptake of aminoglycoside antibiotics is driven by proton motive force (PMF) (Eswaran et al., 

2004; Taber et al., 1987). PMF is known to be significantly lower in metabolically quiescent 

persister cells, which significantly limits the uptake and effectiveness of aminoglycosides (Allison 

et al., 2011; Eswaran et al., 2004; Meylan et al., 2017; Taber et al., 1987). A study by Allison et 

al. demonstrated that supplementation with pyruvate or metabolites that enter upper glycolysis 

(namely glucose, mannitol, and fructose) increased PMF and the uptake of aminoglycosides in S. 

aureus and E. coli (Allison et al., 2011). As a result, they found that supplementation with these 

metabolites increased killing of persisters by three orders of magnitude. Conversely, metabolites 

that enter in lower glycolysis or the pentose phosphate and Entner–Doudoroff pathways showed 

little potentiation. Additionally, mannitol and fructose increased the efficacy of gentamicin against 

biofilms in vitro and in vivo by 4 and 1.5 orders of magnitude, respectively. However, the same 

potentiating effect was not observed with β-lactams. Because β-lactams require active bacterial 

growth for efficacy, this finding demonstrates that the persister cells have not been induced into 

an actively growing state by the addition of the metabolites. Additionally, treatment with the 

protonophore carbonyl cyanide m-chlorophenyl hydrazine (CCCP), an uncoupler of oxidative 

phosphorylation that reduces PMF, abolished the potentiating effect seen with aminoglycoside 

treatment. Taken together, these findings suggest that supplementation with central carbon 

metabolites induces PMF and facilitates uptake of aminoglycosides, thus potentiating their 

efficacy against persisters (Allison et al., 2011; Orman and Brynildsen, 2013b).  
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Similar work has been recently published using P. aeruginosa (Barraud et al., 2013; 

Meylan et al., 2017). In this case, metabolites from the lower TCA cycle and glycolysis, namely 

fumarate, succinate, pyruvate, and acetate, sensitized persister and biofilm cells to the 

aminoglycoside tobramycin (Meylan et al., 2017). Conversely, supplementation with the upper 

TCA cycle metabolite glyoxylate was found to have a protective effect. As demonstrated by 

Allison et al., these effects appear to be largely explained by the changes within central carbon 

metabolism (Allison et al., 2011; Meylan et al., 2017). Supplementation with fumarate stimulated 

the TCA cycle and electron transport chain activity, thus generating PMF and facilitating uptake 

of tobramycin. Conversely, glyoxylate decreased cellular respiration while having no significant 

impact on PMF. Interestingly, supplementing both fumarate and glyoxylate increases PMF and 

aminoglycoside uptake while decreasing respiration. These cells remain tolerant to 

aminoglycosides, indicating that decreased cellular respiration can reduce toxicity and compensate 

for increased uptake (Meylan et al., 2017).  

Based on these observations, it is clear that bacterial metabolism and nutrient availability, 

particularly of sugars and central carbon metabolites, are important determinants of antibiotic 

efficacy against persisters. Therefore, it is important to understand the availability of these 

nutrients within the host during infection and how they alter bacterial metabolism. The use of next-

generation tools will undoubtedly aid in addressing multi-faceted and complex questions such as 

this (Figure 1A). For example, metabolomic techniques can be utilized to characterize the 

metabolites present within a given niche inside the host (Yang et al., 2017). Pairing this 

metabolomic data with transcriptomic data from bacteria isolated from the microbiome or an 

infection may lend insights into the interplay between host and pathogen metabolism. Doing so 
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may also help identify conditions within the host that are likely to foster the development of 

tolerance and persistence.  

 

Cellular Permeability, Proton Motive Force, and Persistence 

Carbon metabolism, particularly of sugars, has been demonstrated to have direct and 

indirect effects on antibiotic uptake and efflux in persistent and tolerant bacteria. Therefore, 

increasing efflux or decreasing membrane permeability may represent a complementary strategy 

to tolerate antibiotics by preventing their intracellular accumulation. For example, the uptake of 

aminoglycoside antibiotics has been demonstrated to be highly PMF-dependent (Eswaran et al., 

2004; Taber et al., 1987). PMF is known to be significantly lower in metabolically quiescent 

persister cells, which significantly limits the uptake and effectiveness of this particular class of 

antibiotics (Allison et al., 2011; Fraimow et al., 1991; Meylan et al., 2017). As discussed 

previously, stimulating PMF through supplementation with TCA cycle metabolites has been 

shown to increase the uptake and efficacy of this class of antibiotics against persisters (Allison et 

al., 2011; Meylan et al., 2017). PMF also has an indirect effect on antibiotic uptake through the 

action of efflux proteins. In total, there are four major families of efflux proteins found in 

prokaryotes that utilize PMF as an energy source: major facilitator (MF), multidrug and toxic 

efflux (MATE), resistance-modulation-division (RND), and small multidrug resistance (SMR) 

(Eswaran et al., 2004; Jiafeng et al., 2015; Paulsen et al., 1996; Webber, 2003). P. aeruginosa has 

been found to overexpress various efflux pumps that provide protection against multiple classes 

of antibiotics during aminoglycoside exposure or biofilm growth (De Kievit et al., 2001; Hocquet 

et al., 2003; Soto, 2013; L. Zhang and Mah, 2008). This response appears to be dependent on dose 

and length of antibiotic exposure, suggesting that these are adaptive responses (Hocquet et al., 
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2003). Conversely, inhibiting efflux pumps in P. aeruginosa, E. coli, and M. tuberculosis have 

been found to sensitize those bacteria to various classes of antibiotics (Colangeli et al., 2005; 

Lomovskaya et al., 2001). Within P. aeruginosa biofilms, the expression pattern of the MexAB-

OprM efflux pump was found to be highest at the substratum, where oxygen and nutrient 

availability is lowest (De Kievit et al., 2001).  

Perhaps the most compelling evidence for the role of efflux in bacterial persistence can be 

found in a 2016 article by Pu et al. (Pu et al., 2016). In this work, E. coli persister cells were 

observed to have reduced levels of cytoplasmic β-lactam accumulation due to enhanced expression 

and activity of the central efflux component TolC (Pu et al., 2016). Eliminating the ompF and 

ompC channels (which allow for diffusion of β-lactams) did not significantly alter persister 

formation rates or change the intracellular antibiotic concentration relative to non-persister cells. 

However, knocking out or inhibiting TolC significantly attenuated persister formation and 

increased intracellular levels of antibiotics (Gerdes and Semsey, 2016; Pu et al., 2016). It should 

be noted that these persister cells were confirmed to be metabolically dormant, suggesting that the 

persistence phenotype encompasses both passive (reduced metabolism) and active (efflux) 

responses to antibiotics.  

Exploiting the permeability of persister cells without modulating bacterial metabolism may 

present an alternative strategy to treating infections (Toit, 2016). Early studies using daptomycin 

demonstrated that it was effective in a concentration-dependent manner against stationary phase 

and metabolically arrested MRSA (Mascio et al., 2007). Furthermore, daptomycin was found to 

be significantly more effective in these situations than β-lactams, which require active bacterial 

growth. Daptomycin increases cellular permeability by disrupting outer bacterial membranes, thus 

bypassing the requirement of active metabolism to be effective (Mascio et al., 2007).  
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Modulating cellular permeability of bacteria may also increase the efficacy and expand the 

spectrum of activity of existing antibiotics (Herisse et al., 2017; Morones-Ramirez et al., 2013). 

Supplementation with ionic silver has been shown to increase the membrane permeability of 

Gram-negative biofilm cells by stimulating production of hydroxyl radicals that disrupt disulfide 

bonds and result in misfolded membrane proteins (Morones-Ramirez et al., 2013). This disruption 

of membrane permeability was found to potentiate the activity of bactericidal antibiotics —

ampicillin, ofloxacin, and gentamicin— while sensitizing E. coli to vancomycin, a Gram-positive-

specific antibiotic. Furthermore, silver was able to enhance the activity of gentamicin in a mouse 

biofilm infection model (Morones-Ramirez et al., 2013). Silver was also observed to potentiate 

gentamicin in the presence of CCCP, suggesting that this effect is not PMF-dependent (Herisse et 

al., 2017). Taken together, these findings suggest that disrupting membrane permeability of 

metabolically dormant biofilm cells may be capable of expanding the spectrum of activity of 

current antibiotics (Herisse et al., 2017; Morones-Ramirez et al., 2013). Similar effects have also 

been observed when aminoglycosides are administered after a hypoionic shock; however, the exact 

mechanism and therapeutic potential of this strategy is currently unclear (Jiafeng et al., 2015).  

To date, most of the studies linking cellular permeability to antibiotic tolerance in biofilms 

and persisters have been performed in vitro. As a result, the clinical relevance of this phenomenon 

is currently unclear. However, utilization of next generation sequencing and its integration with 

older technologies may enable researchers to shed light on the role that cellular permeability and 

drug uptake play during antibiotic treatment of an infection. For example, fluorescently labeled 

antibiotics have been used in numerous studies to measure cellular drug uptake in vitro (Allison et 

al., 2011; Meylan et al., 2017; Pu et al., 2016). It may be possible to utilize these compounds to 

measure drug uptake within a population of bacteria isolated from an infection model in vivo. 
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Furthermore, their use could allow researchers to sort bacteria using fluorescence-activated cell 

sorting (FACS) based on their level of drug uptake and perform transcriptomic analysis on the 

resulting populations. Additionally, the use of animal models would enable researchers to 

manipulate host metabolism to determine its impact on bacterial drug uptake and efflux during 

infection and antibiotic therapy.  

 

Stress Responses and Persistence: The Stringent Response 

Nutrient limitation, metabolic flux, drug efflux, and growth rate are not the only 

mechanisms by which persisters can arise. As the PASH model states, active transcriptional 

responses can trigger persisters, and major transcriptional responses are undoubtedly coupled with 

metabolic shifts. Recently, links between CCR and antibiotic tolerance have implicated the 

involvement of the stringent response (Gaca et al., 2013). The stringent response is a stress 

response pathway that activates during amino acid deprivation, fatty acid limitation, and other 

stressors (Geiger et al., 2014; Strugeon et al., 2016). Stringent response pathways are activated via 

(p)ppGpp alarmone concentrations, which modulate subsequent cellular responses such as 

transcription, replication, and gyrase-mediated negative DNA supercoiling (Lebeaux et al., 2014). 

(p)ppGpp is synthesized and maintained by members of the RelA/SpoT Homolog (RSH) enzyme 

superfamily (Atkinson et al., 2011; Hauryliuk et al., 2015). When cellular concentrations of 

(p)ppGpp are high enough, the alarmone interacts with RNA polymerase and the DskA ribosome 

binding protein, ultimately reducing translational fidelity due to a reduction in the pool of filled 

aminoacyl-tRNAs (Lebeaux et al., 2014). Because the stringent response can modulate so many 

processes involved in direct targets of antibiotics, it has been implicated in tolerance development 
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and biofilm recalcitrance, which likely share mechanistic triggers with persister development 

(Lebeaux et al., 2014).  

Bacterial mutants lacking the stringent response, such as a relQ-rsh double knockout in 

Enterococcus faecalis, exhibit divergence in various metabolic operons, glycerol uptake, and 

glycerol metabolism (Gaca et al., 2013). These processes have been demonstrated to be under the 

control of CcpA in E. faecalis. This double knockout strain has significantly perturbed levels of 

ccpA transcription, indicating an inability to accurately sense metabolic cues and properly adapt. 

In S. aureus, double knockouts of rel-rsh have aberrant intracellular pools of (p)ppGpp, suggesting 

an inability to control the pace or directionality of carbon flux (Gaca et al., 2013). This inability to 

properly adapt to nutrient availability changes likely leads to nutrient starvation and limitation. 

This leads to dysbiosis of NAD+/NADH ratios, increased ROS generation, and unbalanced cellular 

homeostasis (Gaca et al., 2013).  

Ghosh et al. found that when Mycobacterium smegmatis populations were challenged with 

nutrient depletion, stringent response pathways were activated, representing a form of adaptive 

switching that generates persisters (Ghosh et al., 2011). In vitro deletion of relA in E. coli ablates 

(p)ppGpp synthesis, and experimental nutrient starvation fails to elicit penicillin tolerance in this 

mutant (Grant and Hung, 2013). Furthermore, the stringent response appears to be critical to 

persistence development in E. coli, as deletion of several pathway components inhibits persister 

formation in vitro (Maisonneuve et al., 2013). In P. aeruginosa, antibiotic tolerance in nutrient-

limited and biofilm contexts is mediated by active responses to starvation rather than by passive 

effects of growth and arrest, which closely resembles the PASH model of persistence (Nguyen et 

al., 2011). In Pseudomonads, the stringent response can be linked to tolerance via reduction of 

oxidative stress in cells. By inactivating protective mechanisms, biofilms become sensitized to 
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multiple antibiotic classes by several orders of magnitude. In experimental knockouts of relA and 

spoT, cells were unable to produce (p)ppGpp during serine starvation (Nguyen et al., 2011). When 

challenged with ofloxacin during starvation, wild type cells had a 2300-fold reduced killing, while 

knockout strains exhibited only a 34-fold reduction in antibiotic killing (Nguyen et al., 2011). 

Ultimately, stringent response inactivation appears to modulate antibiotic tolerance via relief of 

oxidant stress, and this stress response has likely conserved functionality in persister cell 

formation.  

The stringent response has also been linked to indole-mediated antibiotic tolerance. Vega 

et al. found that indole production in Salmonella enterica increased basal tolerance and that indole 

signaling could be induced in both monoculture and in co-culture with E. coli (Vega et al., 2012). 

Indole production during stationary phase coupled with nutrient limitation leads to increased levels 

of persisters. Indole production functions as a form of intraspecies signaling to promote 

transcriptional activation of efflux pumps and oxidative stress protection in neighboring cells 

(Grant and Hung, 2013). (p)ppGpp overexpression increases antibiotic tolerance and inhibits 

peptidoglycan and phospholipid synthesis, indicating a link between amino acid starvation, 

oxidative stress, the stringent response, and antibiotic tolerance (Lebeaux et al., 2014).  

As a generalized stress response with protective functionality against nutrient limitation 

and oxidative stress, it seems likely that stringent response activation is co-opted for an in-host 

lifestyle. Bacteria frequently encounter nutrient limitation within hosts and must subvert oxidative 

damage from the host immune system in order to colonize, establish infection, and persist  (Fisher 

et al., 2017; Mansour et al., 2016). Additionally, bacteria must be able to withstand nutrient 

limitation during host-to-host transmission events. Transcriptomics could be implemented to study 
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the role of the stringent response in in vivo persister formation during an induced infection. In a 

clinical setting, biopsy samples could be subjected to the same transcriptional profiling.  

 

Stress Responses and Persistence: The SOS Response 

The stringent response is not the sole stressor implicated in persistence development. Under 

biofilm conditions, stringent response activation increases basal expression of the SOS DNA repair 

regulon (Strugeon et al., 2016). The SOS response is a highly conserved gene pathway that allows 

cells to survive genotoxic stressors, including β-lactam and fluoroquinolone antibiotics, and is 

well-known to be involved in persistence development in a variety of clinically relevant species 

(Dörr et al., 2010; Grant and Hung, 2013).  

A pivotal study by Dorr et al. challenged the previous contention that persister formation 

was only due to stochastic dormancy (Dörr et al., 2010). Instead, they proposed that persister cells 

are actively able to survive antibiotic stress via an increase in efficient drug efflux and DNA lesion 

repair via either transient overexpression or environmental activation of the SOS pathway (Dörr 

et al., 2010). Experimental knockdown of recA and recBC, key players in the SOS response, caused 

complete ablation of persister formation after 6 hours of antibiotic exposure, suggesting that 

persisters experienced and were unable to mitigate antibiotic-induced DNA lesions. E. coli strains 

that constitutively express the SOS regulon had a 20-fold increase in persister formation upon 

ciprofloxacin challenge. When challenged with mitomycin C, these mutants demonstrated a 180-

fold increased induction of persistence, suggesting a functional SOS response is necessary for 

antibiotic persistence (Dörr et al., 2010). Bernier et al. expanded upon this work and found that 

SOS induction is necessary for ofloxacin tolerance and proposed that SOS induction might lead to 

persistence development in biofilms (Bernier et al., 2013). Their findings support the complex 
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interconnectedness between metabolic flux systems, the stringent response, and SOS repair 

pathways in promoting persistence development.  

A major trigger for persistence development is exposure to sub-inhibitory concentrations 

of antibiotics, which mimics in vivo drug accumulation after clinical administration (Michiels et 

al., 2016). Daily dosing of aminoglycosides selects for almost complete persister enrichment in 

Klebsiella pneumoniae and periodic daptomycin exposure leads to high persister enrichment in S. 

aureus (Mechler et al., 2015). When challenged to multi-antibiotic panels, E. coli persister 

formation was enhanced by both ciprofloxacin and gentamicin treatment while S. aureus 

persistence activity increased under ampicillin treatment. These findings suggest some interspecies 

variation or drug-specific variation in persistence mechanisms. Interestingly, ampicillin 

pretreatment increased the rate of cross-tolerance to non-related drug classes due to β-lactam 

activation of the SOS pathway in S. aureus (Goneau et al., 2014). SOS-deficient E. coli strains 

failed to produce persisters during ciprofloxacin challenge but were able to produce gentamicin 

persisters since gentamicin does not directly cause DNA lesions (Goneau et al., 2014). This 

suggests that persisters are actively synthesizing DNA and are sensitive to perturbations in DNA 

integrity.  

Sub-inhibitory drug concentrations are of high clinical relevance. Realistically, serum 

antibiotic levels are only at inhibitory concentrations for a short portion of the regimen (Odenholt, 

2000). As a result, bacteria spend most therapeutic time at sub-inhibitory concentrations while 

inside a host, and this is drastically exaggerated in biofilm antibiotic exposure. Interestingly, it is 

this transient concentration that elicits and selects for tolerance (Schultz et al., 2017). However, 

insufficient data is available regarding bacterial responses during these transient, sub-therapeutic 

concentrations. Significant insight can be gained by profiling physiological and transcriptional 
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responses of pathogens isolated from the site of infection as the effective antibiotic concentration 

is reduced by host metabolism.  

 

Future Directions 

The past decade has brought many advancements in the study of bacterial persistence. 

Despite these advances, persistent infections remain a major public health burden and work is 

needed to translate new discoveries to improved clinical outcomes. One potential area of research 

that could help bridge this gap is determining the role that host metabolism plays in bacterial 

persistence. To date, the vast majority of persistence research has been conducted in vitro under 

nutrient conditions that differ considerably from what is found in vivo. Human metabolism is a 

complex phenotypic trait that is dependent on a multitude of factors such as genetics, diet, and 

microbiome composition (Devaraj et al., 2013; Kastenmüller et al., 2015; Lam and Ravussin, 

2016; Wu et al., 2015). Further complicating the role of human metabolism is the fact that the 

human host comprises of a multitude of micro-niches that harbor vastly different nutrient 

conditions. A breadth of research has demonstrated that metabolic activity is a key factor in the 

development of bacterial persistence. Therefore, it is likely that nutrient availability in these micro-

niches may act as a determinant of bacterial metabolism and thus persister formation. If so, 

understanding the impact that human metabolism plays in bacterial persistence and treatment 

efficacy is crucial to improving patient outcomes. Furthermore, uncovering the links between host 

metabolism and bacterial persistence could open the door to new therapeutic strategies that 

improve the efficacy of treatment by modulating host metabolism. Such strategies could lay the 

foundation for personalized medicine by allowing medical professionals to tailor treatment based 

on infection site and the patient’s overall metabolic state.  
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Another untapped area of research is the potential link between persister formation and the 

microbiome. Most, if not all, pre-existing persister research has been conducted in vitro using 

human pathogens. However, it is unknown if persister formation occurs within the complex 

polymicrobial communities that comprise the microbiome. Though persistence is typically viewed 

negatively in the context of recurrent clinical infections, it is possible that it may serve a beneficial 

role in the context of the microbiome. Antibiotic treatment is known to decrease the diversity and 

count of bacteria in a number of niches within these communities, which, in turn are associated 

with dysbiosis and other negative health outcomes (Cabral et al., 2017; Ge et al., 2017; Rodrigues 

et al., 2017; Sommer and Dantas, 2011; Theriot et al., 2016; Zaura et al., 2015). However, a form 

of persistence may enable beneficial microbes to survive perturbations such as antibiotic treatment, 

infection, or dietary shifts, thus allowing them to replenish a healthy microbiota. Conversely, these 

strategies could also explain the bloom of opportunistic pathogens following antibiotic therapy. In 

either case, it is crucial to understand if and how persistence mechanisms are utilized in the context 

of the microbiome.  

Addressing these questions would have been logistically daunting in past decades due to 

the diversity of the microbiome and the inability to culture many of its resident microbes. However, 

the advance of next-generation sequencing technologies in the past decade has enabled new 

insights into the development of persistence. For example, experiments utilizing RNA-Seq 

demonstrated that persisters overexpress the TolC efflux pump, indicating a previously unknown 

role of drug efflux in this phenomenon (Pu et al., 2016). Additionally, Henry et al. recently 

developed a platform that integrated fluorescence-activated cell sorting (FACS), traditional 

antibiotic susceptibility assays, and next-generation sequencing to assay persister physiology 

(Henry and Brynildsen, 2016). The extreme rarity of persisters within polymicrobial communities 
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makes many in vivo analyses logistically difficult. The development of single-cell sequencing 

technologies, combined with persister enrichment protocols such as FACS and LCMD, present 

robust avenues for analysis in vitro and in vivo (Avraham et al., 2015; Heacock-Kang et al., 2017; 

Hör et al., 2018; Kang et al., 2015; Saliba et al., 2016; 2017; Wang et al., 2015). Critically, many 

of the methods that utilize these technologies are culture independent. Therefore, they may serve 

as powerful tools that will allow researchers to determine the mechanisms underlying persistence 

in complex microbial communities or during infection.  
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Main Figures, Titles, and Legends 

 

Figure 1. Utilization of next-generation technologies for studying persister cells. 
A. Both human patients and murine models provide an opportunity to study in vivo persister 

formation via 16S rRNA profiling, community metagenomics, and RNA-Seq of the 
intestinal flora following antibiotic exposure. Single-organisms persister formation can be 
studied in vivo through animal infection with high-density transposon insertion libraries 
and Tn-Seq. 

B. Metagenomic and RNA-Seq data can be used to study selective pressure on persister genes 
in either closely related or divergent taxa. This can be done in retrospective clinical cohort 
groupings or in animal model infections over the course of antibiotic therapy, identifying 
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how certain therapeutic regimens can select for the expression of specific (red) or 
ubiquitous (blue) persister elements. 

C. Persisters can be studied from either in vitro-generated biofilms or patient biopsy-derived 
biofilms. Persister-specific Fluorescence in-situ Hybridization (FISH) labeling can allow 
for visualization and study of persisters within the 3D context of the biofilm, and laser-
capture microdissection (LCMD) sectioning can facilitate labeled cell extraction for 
downstream transcriptomic analyses.  
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