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Exogenous Ligand Assisted Rare-earth Complexes: Catalyst Design, 

Applications in Ring-Opening Polymerization and Reaction Kinetics 

Xiang Dong 

Jerome R. Robinson 

Abstract 

Complexes of rare-earth elements (REs, Sc, Y, La-Lu) are among the most successful 

catalysts for ring-opening polymerization (ROP) of lactones. However, there are gaps in 

synthesizing the polymers with both high efficiency and good steric selectivity. Our studies 

provided a novel way of constructing RE catalyst and tuning its catalytic performance by 

introducing exogenous ligands [phosphine oxides or lutidine-oxides (LO)]. We applied this 

catalytic system on the ROP of rac-β-butyrolactone (rac-BBL), which usually displays 

relatively low reactivity among lactone monomers and challenges in polymerization with 

high iso-tacticity (Pm ≥ 0.80) and got unprecedent success in both high reactivity (TOF up to 

1,900 /h) and good iso-selectivity (Pm up to 0.82). Furthermore, the critical side reaction were 

systematically examined that significantly affected distribution of molecular weights of 

macromolecular product and reaction rate. In the study of raction kinetics, a method of track 

evolution of active catalytic species was developed and applied to quantatively determine 

kinetic parameters of the primary propagation and the coupling side reaction. These results 

may direct further developments of this exogenous ligand assisted RE catalytic system. 
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Chapter 1: Introduction to Rare-earth Catalyzed 

Polymerization of β-Butyrolactone 

 

Plastics derived from polyolefins enable many applications and provide incredible benefits to 

society; however, there is growing environmental concern for the immense amount of 

polymer waste entering landfills and waterways and its unfavorable environmental 

persistence.1-4. Poly-3-hydroxybutyrate (P3HB), the most common poly(hydroxyalkanoate) 

(PHA), is a biodegradable aliphatic polyester which can have properties similar to isotactic 

polypropylene and applications ranging from packaging to bio-medical applications.5-13 The 

polymer’s relative stereochemistry (tacticity) plays a critical role in the observed properties 

(thermal, mechanical, degradation).5, 10, 12, 14-17 Several microorganisms can produce perfectly 

isotactic P3HB through fermentation; however, production costs remain high, the highly 

crystalline material is brittle, and the material’s decomposition temperature is close to its 

melting temperature.5, 18-21 
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Scheme 1.1. Access to P3HBs with different microstructures from BBL 
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Alternatively, a variety of synthetic catalysts can produce P3HB with various microstructures 

through stereoselective ring-opening polymerization (ROP) of β-butyrolactone (BBL) 

(Scheme 1.1),22-42. The ratio between racemic and meso diads manipulates physical, chemical 

and biological properties of the material, and thus tuning this ratio makes P3HB and ideal 

candidate that fulfills a wide range of applications. However, stereocontrol has been 

challenging.35, 43-46 Intensive labors in catalyst design16, 26, 31-32, 36, 47-58 have led to highly 

syndiotactic P3HB (Pr ≥ 0.9; Pr: percent racemic diads),16, 35-36, 50-51 yet despite numerous 

efforts,38-39, 45-47, 59-66 a single system39. has managed to produce isotactic P3HB with Pm ≥ 

0.80 (Pm: percent meso diads). Chen and coworkers developed an elegant alternative to 

access perfectly isotactic P3HB from a designer 8-membered cyclic diolide. Although this 

avoids selectivity challenges associated with rac-BBL, it requires multi-step monomer 

synthesis (14–60% yield).12, 66-67 

 

Scheme 1.2. Syndioselective ROP of rac-BBL promoted by amido and alkyl Y(ONXOR1,R2) 
complexes (R2 = tBu or CMe2Ph) 
 

Of all the catalyst platforms, rare-earth (RE) complexes supported by tetradentate tripodal 

amino-bisphenolate ligands developed by Carpentier and coworkers (Scheme 1.2) stand out 

as “privileged” structures due to their exceptional activity and syndioselectivity.16, 35-36 
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Numerous modifications have been explored (e.g. aryloxide substitution, donor identity, 

tether/linker, initiator, and REIII); however, none have led to isotactic P3HB.68-70 

Conventional catalyst design and reaction optimization have focused on systematic covalent 

modifications of ancillary ligand frameworks; however, labile, exogenous neutral donor 

ligands have emerged as an important class of additives that can rapidly modify catalyst 

properties to access new, mechanistically distinct pathways in an inexpensive and 

operationally simple manner. These neutral donors can dynamically tune the stereoelectronics 

of catalyst active-sites and attenuate reactivity and selectivity by modulating position(s) of 

critical catalyst equilibria. Improved mechanistic-level understanding of these additives has 

enabled exciting advances in  the fields of homogeneous71-72 and heterogeneous73 catalysis, 

including an increasing number in polymerization methodologies.74-81 Unfortunately, with the 

exception of ligands which promote Lewis-pair polymerization (LPP)82-83 and introduction of 

neutral N-donor ligands to catalysts for the ROP of lactide84 the effects of added neutral 

donors in the ROP of cyclic esters are scattered throughout the literature. 
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Scheme 1.3. Motivation of the design of neutral donor supported rare-earth catalyst 

Instead of extensive covalent modification of catalyst frameworks, which can be costly and 

time-intensive, it would be highly desirable to access new selectivity preferences through 
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choice of simple external neutral donor ligand(s). We envisioned replacing the tethered donor 

in Carpentier’s catalysts with a non-coordinating substituent to generate more accessible 

catalyst active sites that could be further shaped by neutral donor ligands. (Scheme 1.3) 
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Chapter 2: OPPh3 Assisted Rare-earth Catalyst of Iso-selective 

Ring-Opening Polymerization of rac-β-BBL 
 

Abstract 

Isoenriched poly-3-hydroxybutyrate (P3HB) is a biodegradable material with properties 

similar to isotactic polypropylene, yet efficient routes to this material are lacking after 50+ 

years of extensive efforts in catalyst design. In this contribution, a novel lanthanum 

aminobisphenolate catalyst (1-La) can access isoenriched P3HB through the stereospecific 

ring-opening polymerization (ROP) of rac-β-butyrolactone (rac-BBL). Replacing the tethered 

donor group of a privileged supporting ligand with a non-coordinating benzyl substituent 

generates a catalyst whose reactivity and selectivity can be tuned with inexpensive achiral 

neutral donor ligands (e.g. phosphine oxides, OPR3). The 1-La/OPR3 (R = n-octyl, Ph) systems 

display high activity and are the most isoselective homogeneous catalysts for the ROP of rac-

BBL to date (0 °C: Pm = 0.80, TOF ~190 h-1). Combine d reactivity and spectroscopic studies 

provide insight into the active catalyst structure and ROP mechanism. Both 1-La(TPPO)2 and 

a structurally related catalyst with a tethered donor group (2-Y) operate under chain-end 

stereocontrol; however, 2-RE favors formation of P3HB with opposite tacticity 

(syndioenriched) and its ROP activity and selectivity are totally unaffected by added neutral 

donor ligands. Our studies uncover new roles for neutral donor ligands in stereospecific ROP, 

including supression of chain-scission events, and point to new opportunities for catalyst design. 
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2.1. Introduction 

Since Carpentier’s tetradentate tripodal amino-bisphenolate rare-earth catalyst is so effective 

and isoselective in ROP of BBL,1-3 We were curious about the role and effect of the tethered 

donors in those catalysts and, consequently, how the reactivity would change if the tethered 

donor was removed from structure. However, the later question had not been well answered 

yet in previous works, except some comparison done by Mountford and coworkers in 2010. 

They compared SmIII borohydrides supported by amino-bisphenolate with different tethered 

donors and non-coordinating propyl in ROPs of ε-caprolactone and lactide, which are more 

prone to polymerize, and found the one with propyl was less active than those with tethered 

donors (Scheme 2.1.)4. 
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Scheme 2.1. ROP reactivities of SmIII amino-bisphenolates with coordinating and non-
coordinating arms. 

 

According to Mountford’s results, when the tethered donor is replaced by a less coordinating 

solvent molecule (tetrahydrofuran, THF), the activity drops. It can be accounted to that the lack 

of the chelate feature reduce the affinity of the dative group, which seems crucial to the 

reactivity. We then asked if it was a stronger monodentate ligand that filled the space left by 

the absence of the tethered donor rather than a THF, would the reactivity be affected. 
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Driven by this question, we report the synthesis, characterization, and catalytic activity of REIII 

benzyl-substituted amino-bisphenolate complexes for the isoselective ROP of rac-BBL. 

Replacing the tethered donor fragment of a tetradentate aminobisphenolate ligand with a non-

coordinating benzyl substituent leads to a La catalyst whose reactivity and selectivity are 

amplified by the addition of inexpensive neutral achiral donor ligands (e.g. phosphine oxides, 

OPR3). The LaIII/OPR3/iPrOH (R: Ph, n-octyl) species display high activity and are the most 

isoselective homogeneous catalysts for the ROP of rac-BBL to date (Pm = 0.8 at 0 °C, TOF = 

~190 h-1). Despite the prevalence of such ligands in the coordination chemistry of RE’s5 and 

other metal-ions,6 this is the first report of added phosphine oxides enhancing catalyst reactivity 

or selectivity in ROP. Evidence that strong neutral donors can suppress unwanted side-reactions 

such as chain-scission through base-promoted elimination are also presented for the first time. 

Statistical analysis of P3HB microstructure confirms that 1-La(TPPO)2 is the first catalyst to 

access isoenriched P3HB through chain-end stereocontrol. While a structurally related catalyst 

with a tethered donor (2-Y) also operates under chain-end stereocontrol, 2-RE favor the 

opposite polymer tacticity (syndioenriched P3HB) and their performance in ROP are 

unaffected by added neutral donor ligands. Our studies uncover the effects of neutral donors 

on catalyst structure and function, and provide new opportunities for the design of catalysts for 

stereospecific ROP. 
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2.2. Results and Discussion 

2.2.1. Synthesis and Structures of Catalysts 

The white crystalline benzyl-amino-bisphenol ligand was synthesized in one step by a Mannich 

condensation of benzyl amine, 2,4-ditertbutylphenol and paraformaldehyde in 47% yield 

(Scheme 2.2.). H21L was then treated with one equivalent of REIII amide (REIII: La, Y), 

REIII[N(SiHMe2)2]3(THF)2, to afford the corresponding REIII complexes, 

LaIII(1L)[N(SiHMe2)2](THF)2 (1-La) and {YIII(1L)[N(SiHMe2)2]}2 (1-Y2), in nearly 

quantitative yields (Scheme 2.2.). 
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Scheme 2.2. Synthesis of 1L and REIII complexes (1-La and 1-Y2). 
 

1-La is a monomer in both the solid- and solution-state as determined by single-crystal X-ray 

diffraction (Figure 2.1.) and Diffusion Ordered NMR Spectroscopy (DOSY, Table 2.1.). While 

X-ray quality crystals could not be grown of the THF adduct, slow evaporation of Et2O 

solutions enabled the structural determination of the mixed THF/Et2O adduct (Figure 2.1.). The 

geometry of the six-coordinate LaIII center in the solid-state is best described as a distorted 

trigonal prism comprised of tridentate 1L, -N(SiHMe2)2, and two coordinated solvent 

molecules (THF and Et2O). 1L adopts a propeller-like conformation at nitrogen and enforces 
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fac-coordination. Agostic β-H–Si interactions (La↼H–Si) were observed in the solid-state as 

supported by the smaller angle ∠La(1)–N(2)–Si(1) compared to ∠La(1)–N(2)–Si(2) (~15°), 

close La(1)–Si(1)–H contact (3.3497(13) Å), and lower energy Si-H stretch in the IR spectrum 

(non-agostic: 2075 cm-1, agostic: 2011 cm-1).7-11 Unlike 1-La, the yttrium derivative (1-Y2) 

exists as a dimer in solution as determined by 1H-DOSY NMR (Table 2.1.). 

 
Figure 2.1. Thermal ellipsoid plot of 1-La (THF, Et2O adduct) displayed at 50% probability. 
Crystallographic data are available on Cambridge Crystallographic Data Centre. CCDC ID: 
LUSFUD. 
 
Table 2.1. Diffusion coefficients, D, and estimated hydrodynamic radii, rH, measured by 1H 
DOSY NMR of 1-La and 1-Y2 

Species DFc (10-10 m2/s)a D (10-10 m2/s) DFc/D rH(DOSY)b (Å) rH(theo.)c (Å) 

Fcd - - - - 2.166 

1-La 13.2 5.10 2.59 5.61 6.011 

1-Y2 11.8 3.56 3.31 7.18 7.361e 

a – DOSY measured diffusion coefficient of ferrocene (Fc) in the experiment 

of the corresponding complex. DOSY measured diffusion coefficient of the 

sample b – rH = DFc/Dsample∙rH(Fc, theo.). c – rH(theo.) is the average of half 

lengths of the principal axes of the homogeneous ellipsoid with the same 

densities and principal moments of inertia of the molecule, which are 

determined from the crystal structure. d – Fc was added to each sample as 

an internal standard to cancel the fluctuation of temperature and viscosity, of 

which the diffusion coefficient varies. e – Estimated according to structure of 

3-Y2,12 due to the lack of X-ray structure of 1-Y2. 
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2.2.2. Reaction Optimization and Neutral Donor Ligand Effects. 

1-La and 1-Y2 were evaluated as catalysts for the ROP of rac-BBL (Table 2.2). Amide initiators 

displayed low efficiency for the ROP of rac-BBL, where 1-Y2 was completely inactive and 1-

La formed 35% P3HB in 48 h at RT (Table 2.2, entries 1 and 3). While 1-La was sluggish 

compared to Carpentier’s 2-Y,3, 13 formation of P3HB was encouraging as the related SmIII 

borohydride complex supported by the propyl-amino-bisphenolate ligand reported by 

Mountford and coworkers was inactive for ROP of an arguably easier substrate, rac-lactide.4 

 
Table 2.2. ROP of rac-BBL catalyzed by 1-La and 1-Y2. 

O

O n
Sol., 25 °C, Time

O

O

rac-BBL P3HB

1-La or 1-Y2_ iPrOH
[BBL]
[BBL] = 200

= 2.4 M

[RE]
 

Entry Cat. [BBL]/[RE]//[iPrOH] Solvent 
Time 

(h)a 

Conv. 

(%)b 

Mn, calcc 

(kg/mol) 

Mn, expd 

(kg/mol) 
Đd,e Pmf 

1 1-Y2 200/1/0 Tol 1 0 -- n.d. n.d. n.d. 

2 1-Y2 200/1/1 Tol 1 5 0.9 n.d. n.d. n.d. 

3 1-La 200/1/0 Tol 48 35 5.9 2.1 1.46 0.54 

4 1-La 200/1/1 Tol 1 21 3.6 2.9 1.04 0.57 

a – Reaction times not optimized. b – Determined by 1H-NMR integration of BBL and PHB methine resonances 

in the crude reaction mixture. c – [BBL]/[RE]/[iPrOH] × Conv. × 0.08609 kg•mol-1. When [iPrOH] = 0, [BBL]/[La] 

× Conv. × 0.08609 kg•mol-1.  d – Determined by gel permeation chromatography (GPC) at 30 °C in THF using 

polystyrene standards and corrected by Mark-Houwink factor of 0.54.18 e – Mw/Mn. f – Probability of meso-

linkages between repeat units. Determined by integration of P3HB C=O resonances using inverse gated (IG) 
13C-NMR. 

 

Similar to other REIII catalysts,3, 13-14 in situ generation of alkoxide initiators by adding one 

equiv iPrOH with respect to REIII (Table 2.2, entries 1 and 3 vs entries 2 and 4) increased 

reactivity and furnished polymers with narrow Mw/Mn (Đ). Microstructural analysis of P3HB 

determined by integration of polymer C=O resonances by inverse-gated 13C-NMR revealed a 

slight isotactic preference (Pm = 0.57) using 1-La. While modest, the polymer tacticity was 
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opposite that generated by 2-Y and other amino-bisphenolate catalysts with tethered donors.1, 

3, 15 Given the increased degree of coordinative unsaturation of 1-RE compared to 2-RE and 

the attributed importance of steric congestion to selectivity for other stereospecific ROP,13, 16-

17 we posited that added neutral donor ligands could improve catalyst reactivity and selectivity 

through enhanced steric pressure. 

 
Table 2.3. Influence of neutral donor ligand in the ROP of (rac)-BBL catalyzed by 1-RE 

O

O nTol, Temp, TimeO

O

rac-BBL
2.4 M

P3HB

1 iPrOH
1 Cat.

2 Ligand

 

Entry Cat. 
[BBL]/ 

[RE] 
Ligand 

Temp 

(°C) 

Time 

(h)a 

Conv. 

(%)b 

Mn, calcc 

(kg/mol) 

Mn, expd 

(kg/mol) 
Đd, e Pmf 

1 1-Y2 200 - 25 1 5 0.9 n.d. n.d. n.d. 

2 1-La 200 - 25 1 21 3.6 2.9 1.04 0.57 

3 1-La 200 DMAP 25 1 22 3.8 3.6 1.07 0.59 

4 1-La 200 DABCO 25 1 7 1.2 n.d. n.d. n.d. 

5 1-La 200 PPh3 25 1 25 4.3 1.7 1.38 n.d.g 

6 1-La 200 TPPO 25 1 97 16.7 9.6 1.18 0.71 

7 1-La 200 HMPA 25 1 99 17.0 9.4 1.29 0.73 

8 1-La 200 TOPO 25 1 99 17.0 9.5 1.23 0.75 

9 1-La 200 OP(OPh)3 25 1 25 4.3 1.6 1.35 0.63 

a – Reaction times not optimized. b – Determined by 1H-NMR integration of BBL and PHB methine resonances 

in the crude reaction mixture. c – [BBL]/[RE]/[iPrOH] × Conv. × 0.08609 + 0.0601 kg•mol-1. d – Determined by 

gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-

Houwink factor of 0.54.18 e – Mw/Mn. f – Probability of meso-linkages between repeat units. Determined by 

integration of P3HB C=O resonances using inverse gated (IG) 13C-NMR. g – 0.52 at 6 h (36% conversion). 

 

We initially tested this hypothesis by screening 1-La with two equiv of neutral monodentate 

ligands. Representative classes included ethers (THF), tertiary amines (1,4-diazabicyclo-

[2.2.2]octane, DABCO), pyridines (4-dimethylaminopyridine, DMAP), phosphines, (PPh3), 

and phosphine oxides (OPPh3, TPPO). Unlike some literature reports for group 13, 14, and 

REIII-based systems,19-28 weaker neutral ligands had a minor impact on ROP reactivity and 
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stereoselectivity (Table 2.3, entries 2–5). In contrast, the harder phosphine oxide ligand, TPPO 

(entry 6), led to nearly quantitative conversion in 1 h (97%) and improved isoselectivity (Pm = 

0.71). Notably, [1-La]:[TPPO] ratios of at least 1:2 were needed to achieve maximum reactivity 

and selectivity, where a 1:1 ratio only led to 71% conversion and a Pm of 0.67 after 6 h (Table 

2.4). While simple monodentate phosphine oxides have been reported as additives in 

asymmetric catalysis with hard metal-ions,29-33 this is the first time they have been used to 

enhance reactivity and/or selectivity in ROP. 

 

Given the unprecedented and dramatic enhancement in catalyst performance, we evaluated 

representative classes of phosphine oxides (aromatic, aliphatic, phosphoramide, and phosphate; 

Table 2.3, entries 6–9). Electron-rich donors, such as hexamethylphosphoramide (HMPA, entry 

7) and trioctylphosphine oxide (TOPO, entry 8) increased reactivity and isoselectivity (Pm = 

0.73 and 0.75 respectively). In contrast, triphenylphosphate (OP(OPh)3, entry 9), a weaker 

donor, didn’t increase reactivity and showed small improvements in selectivity (Pm = 0.63). 

Our results suggest both electronic and steric contributions to catalyst reactivity and selectivity, 

and a more comprehensive evaluation is warranted in future studies. This is affirmed by reports 

of stereospecific ROP of (rac)-Lactide by REIII and group 13 complexes supported by chelating 

alkoxides,34-36 amides,37-38 and pyrazolyl scorpionates39-40 with tethered phosphine-oxides, 

which display varied catalyst response depending on ligand substituents. Given the diverse 

array of phosphine oxides that can be derived from commercially available phosphines, this 

represents an exciting untapped opportunity to optimize catalyst performance in stereoselective 

ROP.  
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Table 2.4. Impact of TPPO equivalents on the ROP of rac-BBL catalyzed by 1-La. 
O

O n
Sol., 25 °C, Time

O

O

rac-BBL P3HB

1-La
1 iPrOH
_ TPPO

[BBL]
[BBL] = 200

= 2.4 M

[La]
 

Entry [TPPO]/[RE] Time (h)a Conv. (%)b Mn, calcc(kg/mol) Mn, expd(kg/mol) Đd,e Pmf 

1 0 1 21 3.6 2.9 1.04 0.57 

2 1 6 71 12.2 4.7 1.04 0.67 

3 2 1 97 16.7 9.6 1.18 0.71 

4 3 1 97 16.7 9.1 1.27 0.71 

a – Reaction times not optimized. b – Determined by 1H-NMR integration of BBL and PHB methine resonances 

in the crude reaction mixture. c – [BBL]/[RE]/[iPrOH] × Conv. × 0.08609 kg•mol-1. When [iPrOH] = 0, [BBL]/[La] 

× Conv. × 0.08609 kg•mol-1. d – Determined by gel permeation chromatography (GPC) at 30 °C in THF using 

polystyrene standards and corrected by Mark-Houwink factor of 0.54.18 e – Mw/Mn. f – Probability of meso-

linkages between repeat units. Determined by integration of P3HB C=O resonances using inverse gated (IG) 
13C-NMR. 

 
 
Table 2.5. Further optimization of the ROP of (rac)-BBL catalyzed by 1-RE in the presence of 
TPPO or TOPO 

O

O nTol, Temp, TimeO

O

rac-BBL
2.4 M

P3HB

1 iPrOH
1 Cat.

2 Ligand

 

Entry [BBL]/ 

[RE] Ligand Temp 

(°C) 
Time 

(h)a 
Conv. 

(%)b 
Mn, calcc 

(kg/mol) 
Mn, expd 

(kg/mol) Đd, e Pmf 

1 200 TPPO 25 1 97 16.7 9.6 1.18 0.71 
2 200 TPPO 0 1 96 16.5 11.2 1.15 0.76 
3 400 TPPO 0 4 77 26.5 15.3 1.20 0.75 
4 200 TPPO –30 24 99 17.0 11.5 1.12 0.80 
5 200 TOPO 25 1 99 17.0 9.5 1.23 0.75 
6 200 TOPO 0 1 99 17.0 12.9 1.20 0.80 
7 400 TOPO 0 4 96 33.1 19.2 1.09 0.80 
8 200 TOPO –30 6 99 17.0 13.0 1.09 0.80 

a – Reaction times not optimized. b – Determined by 1H-NMR integration of BBL and PHB methine resonances 

in the crude reaction mixture. c – [BBL]/[RE]/[iPrOH] × Conv. × 0.08609 + 0.0601 kg•mol-1. d – Determined by 

gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-

Houwink factor of 0.54.18 e – Mw/Mn. f – Probability of meso-linkages between repeat units. Determined by 

integration of P3HB C=O resonances using inverse gated (IG) 13C-NMR. 
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Key polymer attributes could be tuned by adjusting reaction temperature, catalyst loading, and 

chain-transfer agent. Lowering the reaction temperature from RT to 0 and –30 °C with TPPO 

and TOPO (Table 2.5) increased catalyst isoselectivity to a maximum (Pm = 0.80). This 

represents the highest values achieved for the ROP of rac-BBL by a homogeneous catalyst to 

date.17 Furthermore, increased [rac-BBL]/[RE] ratios (400) lead to higher molecular weight 

P3HB with reasonable rates, identical selectivities, and narrow Ð (entries 3 and 7). Overall, 1-

La/OPR3/iPrOH systems display excellent reactivity (TOF up to 200 h-1) and selectivity (Pm 

up to 0.80) with respect to the state-of-the-art for isoselective ROP of rac-BBL (Pm up to 0.7717 

and 0.85,41 TOF ~5-6 h-1). 

 
Table 2.6. Impact of alcohol equivalents on the ROP of rac-BBL catalyzed by 1-La(TPPO)2. 

O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

_ iPrOH
1-La(TPPO)2 [BBL]

[BBL] = 200

= 2.4 M

[La]
 

Entry [iPrOH]/[RE] Time (h)a Conv. (%)b Mn, calcc(kg/mol) Mn, expd(kg/mol) Đd,e Pmf 

1 0 5 87 15.0 13.5 1.45 0.71 

2 1 1 93 16.0 9.4 1.16 0.71 

3 2 1 95 8.2 6.6 1.14 n.d. 

4 4 1 93 4.0 3.3 1.07 0.70 

a – Reaction times not optimized. b – Determined by 1H-NMR integration of BBL and PHB methine resonances 

in the crude reaction mixture. c – [BBL]/[La]/[iPrOH] × Conv. × 0.08609 kg•mol-1. When [iPrOH] = 0, [BBL]/[La] 

× Conv. × 0.08609 kg•mol-1. d – Determined by gel permeation chromatography (GPC) at 30 °C in THF using 

polystyrene standards and corrected by Mark-Houwink factor of 0.54.18 e – Mw/Mn. f – Probability of meso-

linkages between repeat units. Determined by integration of P3HB C=O resonances using inverse gated (IG) 
13C-NMR. 

 

Alcohols can serve as chain-transfer agents in living polymerizations to access “immortal” 

polymerization conditions,42 offering further opportunities to control polymer molecular 

weight.14, 43-44 A La catalyst was isolated from a toluene solution of 1-La and TPPO in a 1:2 

molar ratio (vide infra), which displays similar reactivity in the ROP of rac-BBL as the in situ 
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generated catalyst from adding 2 equivalents of TPPO to 1-La (Table 2.6, entry 2 and Table 

2.3, entry 6). Adding iPrOH (0–4 equiv) to 1-La(TPPO)2 maintained high catalyst activity and 

Pm, while producing P3HB with the expected changes in molecular weight (Table 2.6). 

 
Figure 2.2. Calculated Mn (blue circle), Experimental Mn (blue dot) and Ð (orange squares) as 
functions of conversion of BBL. Reaction was performed in toluene at ambient temperature 
with [BBL]/[1-La(TPPO)2]/[iPrOH] = 200/1/1 and [BBL] = 2.4 M. 
 
Table 2.7. ROP of rac-BBL with 1-La(TPPO)2 + iPrOH quenched at different time points. 
 

O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

1-La(TPPO)2 [BBL]
[BBL] = 200

= 2.4 M

[La]

iPrOH (1 equiv)

 

Entry Time (min) Conv. (%)a Mn, calcc(kg/mol) Mn, expc(kg/mol) Đc,d 

1 0.25 22 3.9 3.2 1.054 

2 0.50 28 4.9 4.0 1.042 

3 0.75 34 5.9 4.6 1.050 

4 1.0 39 6.7 5.1 1.050 

5 1.5 46 7.9 5.8 1.056 

6 2.0 50 8.7 6.3 1.069 

7 5.0 62 10.6 7.6 1.056 

8 15 74 12.7 8.7 1.074 

9 30 82 14.1 8.9 1.116 

10 60 88 15.1 9.2 1.145 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. b – 

[BBL]/[La]/[iPrOH] × Conv. × 0.08609 kg•mol-1. c – Determined by gel permeation chromatography (GPC) at 

30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54.18 d – Mw/Mn. 
 

The ROP of rac-BBL (200 equiv) catalyzed by 1-La(TPPO)2 (1 equiv) with iPrOH (1 equiv) 
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displayed characteristics of a living polymerization, such as narrow Ð throughout the reaction 

and reasonable agreement between experimental and calculated Mn (Table 2.7 and Figure 2.2a). 

 

2.2.3. Binding and Characterization of RE-TPPO Species 

 
Figure 2.3. Selected spectral regions of (Left) 1H- and (Right) 31P{1H}-NMR studies in C6D6 
at RT of: (a) 1-La(TPPO)2 (27 mM) (b) + 1 TPPO (c) + 2 TPPO (d) + 3 TPPO. 
 

We set out to isolate discrete REIII–TPPO species to better understand the isoselectivity for 1-

La/OPR3. Adding one and two equiv. of TPPO to 1-La led to distinct mono- and bis-TPPO 

adducts (Figure 2.3; 31P-NMR: mono: 37.5 ppm, bis: 33.3 ppm). Addition of TPPO also 

resulted in a downfield shift of the Si–H resonances, consistent with weakening and 

displacement of the β-H–Si interactions (La↼H–Si) and TPPO coordination (Figure 2.3, left).10 

The bis-TPPO adduct displays a single significantly broadened 31P signal, indicative of 

exchange on the NMR timescale. Isolation of crystalline bis-TPPO adducts, 

REIII(1L)(N(SiHMe2)2)(TPPO)2 (1-RE(TPPO)2; REIII: Y, La), was accomplished in high yields 

by adding two equiv. TPPO per REIII (1-La or 1-Y2) in toluene followed by layering with 
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hexanes (Scheme 2.3). Although under active investigation, attempts to crystallize the mono-

TPPO adduct, 1-La(TPPO), have only led to isolation of crystalline 1-La(TPPO)2. 

1-La

N
O

O
tBu

tButBu

tBu

1-Y2

N

O

O

tBu

tBu tBu

tBuNR2

R2N
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N

O

O
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R = Si(HMe2)2

 
Scheme 2.3. Synthesis of 1-RE(TPPO)2 
 

The solid-state structures of 1-RE(TPPO)2 were determined unambiguously by single crystal 

X-ray diffraction experiments (Figures 2.4). In the solid-state, 1L coordinates in a mer-

arrangement for 1-RE(TPPO)2 rather than the fac-arrangement for 1-La. The isostructural 

compounds contain six-coordinate REIII centers in a distorted octahedron with equatorial sites 

occupied by 1L and -N(SiHMe2)2 and axial sites occupied by TPPO. Comparison of 1-

RE(TPPO)2 and tethered donor system, 2-Y,45 revealed largely conserved equatorial sites and 

significantly perturbed axial sites (Figure 2.4). In 2-Y, the geometrically constrained tethered 

donor leads to a small N2L–Y–OMe angle (68°) and a large OOMe–Y–OTHF angle (203°) 

compared to 1-La(TPPO)2 (Figure 2.4, ∠N1L–La–OTPPO: 86°, ∠OTPPO–La–OTPPO: 169°). 

The differences in bond angles reflect increasing steric pressure from the axial donors, and 

suggest a plausible structural origin for the selectivity in 1-La/OPR3. 
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Figure 2.4. Partial space-filling diagrams comparing 1-La(TPPO)2 and 2-Y. Fragment color 
coding: phenolate (red), amine (blue), labile neutral donors (gold). N(SiHMe2)2 shown as 
ellipsoids (50% probability). 
 

2.2.4. Insight into the Catalyst Resting State and Active Specie(s). 

With 1-La(TPPO)2 in hand, we pursued further spectroscopic studies to determine relevant 

catalyst speciation and resting states. Variable temperature NMR experiments performed in 

toluene-d8 over the range of –30 to +30 °C allowed for an estimation of TPPO exchange at the 

two axial sites (ΔG‡ ~58 kJ/mol; Figure 2.5),46 which is consistent with other REIII–TPPO 

exchange processes reported in the literature.47-48 At –30 °C, 1-La(TPPO)2 displays two well-

resolved 31P resonances indicating slow-exchange of the two-bound TPPO at this temperature 

(Figure 2.5). Adding one equiv iPrOH to 1-La(TPPO)2 led to generation of HN(SiHMe2)2 and 

a La isopropoxide species as determined by 1H-NMR (Figure 2.6). Bound TPPO exchanges 

much faster as evidenced by the nearly coalesced 31P resonances at –30 °C (Figure 2.7), while 

a small amount of free TPPO was generated alongside another minor species (tentatively 

assigned as a mono-phosphine oxide species, 1-La(TPPO)). 
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Figure 2.5. 1H-NMR (600 MHz, toluene-d8) and 31P{1H}-NMR (243 MHz, toluene-d8) of 1-
La(TPPO)2 at –30, –15, 0, 15 and 30 oC. 
 

 
Figure 2.6. 1H-NMR (600 MHz, toluene-d8, –30 oC) of 1-La(TPPO)2 (25 mM, blue, bottom), 
1-La(TPPO)2 + iPrOH (red, middle), and 1-La(TPPO)2 + iPrOH + 100 BBL at 4 min (green, 
top). 
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Figure 2.7. 31P{1H}-NMR (600 MHz, toluene-d8, –30 oC) of 1-La(TPPO)2 (25 mM, blue, 
bottom), 1-La(TPPO)2 + iPrOH (red, middle), and 1-La(TPPO)2 + iPrOH + 100 BBL at 4 min 
(green, top). 

 
Figure 2.8. 31P{1H}-NMR (600 MHz, toluene-d8, –30 oC – 0 oC) of the ROP of BBL by 1-
La(TPPO)2 and iPrOH initially performed at –30 oC (38% conversion), followed by warming 
to –15 oC (55% conversion) and 0 oC (67% conversion). 
 

Addition of rac-BBL (100 equiv) increases the signal for free TPPO signficantly, while 

resonances associated with La(TPPO)n (n = 1, 2) were dramatically broadened (Figure 2.7). 

Warming the reaction mixture from –30 °C to –15 °C and 0 °C (Figure 2.8) increased exchange 
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of free and bound TPPO as evidenced by the increasing line-width of free TPPO (half-width at 

half-maximum, HWHM; 25, 80, and 150 Hz respectively), and RT experiments produced 

similar species (Figure 2.9b). Reactions performed at RT with one equiv TPPO formed similar 

species without generation of free TPPO (Figure 2.9a); however, optimal catalyst reactivity 

and selectivity required at least two equiv of TPPO (Table 2.4). Taken together, our reaction 

optimization and in situ spectroscopic studies support dissociation of one equiv TPPO from the 

pre-catalyst, 1-La(TPPO)2, and dynamic phosphine oxide exchange during catalysis. While 

La(TPPO) was identified as a catalyst resting state, the observed TPPO-dependent reactivity 

and observed speciation implicates both La(TPPO)n (n = 1, 2) as catalytically relevant species. 

 

 
Figure 2.9. 31P{1H}-NMR (243 MHz, toluene, 298 K) of: 1-La + n TPPO (bottom, blue), 1-
La + n TPPO + iPrOH (middle, red), and 1-La + n TPPO + iPrOH + 200 BBL (top, green), 
where n = 1 (a), 2 (b). 
 

2.2.5. Stereocontrol and Polymerization Mechanism. 

Insights into the polymerization mechanism were made possible through evaluation of isolated 

P3HB samples (Mn, Ð, end-groups, statistical analysis of microstructure) and reactivity studies 
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aimed at establishing the viability of relevant side-reactions during the ROP of rac-BBL using 

the small molecule, (R)-3-acetoxybutyric acid methylester [(R)-3-OAcBMe]. 

 

Stereocontrol: As described by Thomas and Carpentier,3 diad and triad distribution can 

provide insight into the mechanism of stereocontrol for the ROP of rac-BBL. Two types of 

stereocontrol may contribute to the tacticity of BBL polymerization: (1) enantiomorphic site 

control, under which the selectivity of incoming monomer is determined by the asymmetric 

environment of catalyst, and (2) chain-end control, in which the asymmetric nature of the active 

end of growing polymer differentiates the two enantiomers of the monomer. 

 

In the context that the isotactic diad (meso diad) is dominant, one can consider a mis-insertion 

(e.g. …RRRRS, where S is the mis-insertion) is immediately corrected and followed by 

insertions that are favored. For site control, error correction leads to propagation with the 

favored enantiomer (e.g., …RRRSRRR, where S is the mis-insertion). For chain-end control, 

it will continue to propagate the meso diad and propagate the enantiomer that was mis-inserted 

(e.g. …RRRSSSS). Therefore, the resulting minor triads for site control are 1 mr, 1 rr and 1 

rm, while the minor triads for chain-end control are 1 mr and 1 rm. Therefore, the two methods 

of stereocontrol can be differentiated by their triad distribution.  

 

The triad distribution was obtained from the CH2 signals of P3HB using IG-13C-NMR. We fit 

the signals in the form of a Cauchy-Lorentz distribution. The result contains 4 components, 

each of which represents a triad ratio with its area (Figure 2.10). A representative example is 
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P3HB obtained from Table 2.3, entry 6 (1-La + 2 TPPO + 1 iPrOH; Pm = 0.71). 

 
triad δ0, Chemical Shift/ppm γ, Width/ppm I0, Intensity rel. Area (%) 

rm 40.864(1) 0.025(4) 0.59(6) 20.38 

mm 40.809(1) 0.026(2) 1.38(6) 51.01 

rr 40.727(2) 0.019(6) 0.32(7) 8.46 

mr 40.662(1) 0.021(3) 0.68(7) 20.15 

 
Figure 2.10. Experimental and fitted IG-13C-NMR (152 MHz, CDCl3) signal of P3HB (Table 
2.3, entry 6; 1-La + 2 TPPO + 1 iPrOH, Pm = 0.71) 
 

For chain-end control, the triad distribution obeys a binominal distribution, i.e.: P (mm) = Pm2, 

P(rr) = (1-Pm)2, P (mr) = P (rm) = Pm(1-Pm). Applying the Bernoulli model triad test, B = 

4P(mm)P(rr)/[P(mr)+P(rm)]2, where B = 1 for a purely chain-end controlled process. For P3HB 

obtained from entry 6 in Table 2.3, B = (4*51.01*8.46)/(20.38+20.15)2 = 1.05. This is close to 

the theoretical value and confirms chain-end control as the mechanism for stereocontrol. While 

chain-end stereocontrol is operative for several syndioselective catalysts,13, 49-52 this is the first 

example with an isoselective catalyst. Other catalysts which produce isoenriched P3HB 

proceed through enantiomorphic site-control53-55 or their mechanism of stereocontrol have not 

yet been determined. 
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End group analysis: Additional insights into the polymerization mechanism were facilitated 

by end-group analyses using 1H-NMR and MALDI-TOF techniques. ROP of rac-BBL and 

other β-lactones catalyzed by neutral metal alkoxides commonly proceed through coordination-

insertion or anionic pathways.56 The coordination-insertion mechanism proceeds through acyl 

cleavage (ester and alcohol end-groups), while the anionic mechanism proceeds through alkyl 

cleavage (ether and carboxylate end-groups). The iPr methine of 2-isopropoxyl butyrate, if any, 

should appear at ~3.6 ppm, analogous to that of 4-isopropoxypentan-2-one (3.60-3.66, m, 

CDCl3)57. 1H-NMR spectra of isolated P3HB samples revealed the presence of an isopropyl 

ester end-group (Figure 2.11 and 2.12), while signals for an isopropyl ether were notably absent. 

These observations are consistent with a coordination-insertion mechanism for ROP with 

inititation occurring from a metal-isopropoxide. 

 

Following a coordination-insertion mechanism, the other end-group should be a terminal 

secondary alcohol, which would be obtained upon hydrolysis of the propagating metal-

alkoxide. As expected, the secondary alcohol end-group (-CHOHCH3) was observed in a ~1:1 

molar ratio with respect to the ester end-group (COOiPr). However, additional C–H resonances 

which correspond to a crotyl end-group were observed by 1H-NMR spectroscopy 

(crotyl:CHOHCH3:COOiPr; ~1:1:1). 
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Figure 2.11. (a) 1H-NMR (600 MHz, CDCl3), (b) 13C-NMR (152 MHz, CDCl3) spectra of 
P3HB (Table 2.3, entry 6). Reaction was performed in toluene at ambient temperature with 
[BBL]/[1-La]/[TPPO]/[iPrOH] = 200/1/2/1 and [BBL] = 2.4 M within 1 h. Conversion = 97%, 
Mn = 9.6 kg/mol (corrected by Mark-Houwink factor of 0.54), Đ = 1.18. 
 

 
Figure 2.12. 1H-NMR (400 MHz, CDCl3) of the P3HB for MALDI analysis. 
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Further evidence of the crotyl end-group was established by MALDI-TOF measurements of 

P3HB obtained from ROP of 40 equiv rac-BBL using the 1-La(TPPO)2 / iPrOH catalyst 

system. MALDI-TOF spectra corroborated 1H-NMR end-group assignments, and clearly 

supported crotyl end-group formation during the reaction (Figure 2.12, 2.13). 

 

 
Figure 2.13. MALDI-TOF spectrum of P3HB, produced in toluene at ambient temperature 
with [BBL]/[1-La]/[TPPO]/[iPrOH] = 40/1/2/1 and [BBL] = 2.4 M within 1 h. Conversion = 
99%.  Mn = 3.8 kg/mol (corrected by Mark-Houwink factor of 0.54), Đ = 1.30. 
 

Elimination studies: Generation of crotyl end-groups after polymerization could proceed 

through several possible pathways : (i) elimination of water, hydroxide, or oxide from the 

alcohol end-group under acidic or basic conditions respectively,44, 58-60 (ii) thermal scission,61-

64 or (iii) base-induced elimination of internal ester units,65-67 (iv) terminal elimination from a 

metal alkoxide. While pathway (i) has been proposed to explain generation of crotyl end-groups 

after quenching polymerizations with weak acids,44, 53 this stands in contrast to the stability of 

such 3-hydroxybutanoate monomer and oligomers under strong-acid conditions.68 Furthermore, 
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elimination from a metal alkoxide during the reaction would convert the secondary alcohol 

end-group to an inactive crotyl end-group and broaden Ð. The relative amounts of crotyl, 

secondary alcohol, and isopropyl ester end groups observed (~1:1:1, vide supra) and narrow Ð 

are inconsistent with expectations for this pathway. Pathway (ii) can be excluded due to the 

reaction temperatures evaluated in our studies (ambient or below). 

 

Side-reactions such as deprotonation, transesterification, and elimination were proposed in 

early reports for the ROP of rac-BBL; 59, 69-71 however, detailed examination of the elimination 

pathway (iii) under mild temperatures (< 100 °C) has been limited to the independent studies 

of Kricheldorf (K catalysts) and Coates (Zn beta-diketiminate catalysts).65-66 Reactivity of 

internal P3HB linkages were established by the use of small molecule models, which enabled 

detailed identification of the resulting organic products. Despite the superior performance of 

many RE-based catalysts and the observation of crotyl formation in several reports,15, 17, 53, 72-

76 investigations into elimination pathways for RE-based catalysts are notably absent. 

Therefore, we examined the reactivity of 1-La and 1-La(TPPO)2 with a new small molecule 

model, (R)-3-acetoxybutyric acid methylester [(R)-3-OAcBMe], to establish the viability of 

such side-reactions [e.g. pathway (iii)] during ROP. 

 

Addition of one equiv iPrOH at RT to 1-La and 1-La(TPPO)2 cleanly generated the La 

isopropoxide species, 1‘-La and 1‘-La(TPPO)2, and one equiv HN(SiHMe2)2 (▲). 15 equiv 

of (R)-3-OAcBMe was added, and reactivity was monitored by 1H-NMR after 0.5 and 7 h 

(Figure 2.14 and 2.15). Our initial expectations were that (R)-3-OAcBMe would react with 1‘-
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La and 1‘-La(TPPO)2 through base-promoted elimination to form crotonate (trans-CrotMe), 

iPrOH, and a La acetate species. 

 

 
Figure 2.14. Reactivity studies of 1-La and 1-La(TPPO)2 in the presence of one equiv iPrOH 
and 15 equiv (R)-3-OAcBMe followed by 1H-NMR after 0.5 h (a, d), 7 h (b, e). Dashed lines 
provided to help track the formation of H21L (c, f) during the reaction time course. * = Toluene 
(from iPrOH stock solution), ** = TPPO. Detailed assignments of full spectra provided as 
Figure 2.15. 
 

1‘-La readily produced crotonate (0.5 h: 0.6 equiv; 7 h: 1.2 equiv); however, free iPrOH was 

not observed. Instead, the transesterification products, isopropyl butyrate/crotonate [(R)-3-

OAcBiPr/trans-CrotiPr] and methyl acetate (MeOAc)77, were readily identified (Figure 2.15 

for detailed assignments). Transesterification between the La isopropoxide and (R)-3-OAcBMe 

/trans-CrotMe would lead to a La methoxide and (R)-3-OAcBiPr/trans-CrotiPr, while 

transesterification between the La methoxide and  the 3-acetoxy group of (R)-3-OAcBiPr 

would generate MeOAc and a La 3-alkoxybutyrate species. The observed reactivity is 

40



consistent with reports of neutral La alkoxides as extremely efficient transesterification 

catalysts under mild conditions.78-80 In addition to the aforementioned products, quantifiable 

amounts of free ligand (H21L; 0.5 h: 0.1 equiv, 7 h: 0.6 equiv) were also detected. The formation 

of crotonate and the direct (conjugate acids) or indirect (transesterification) products of base-

promoted elimination provide clear evidence for pathway (iii) occuring readily at RT with 1‘-

La. 

 

In contrast to 1‘-La, 1‘-La(TPPO)2 generated less crotonate (0.5 h: 0.14 equiv, 7 h: 0.73 equiv) 

and only trace amounts of H21L after 7 h. These results highlight two additional and beneficial 

roles that strong neutral donor ligands (e.g. TPPO) can play in the ROP of rac-BBL. First, 

strong neutral donors can suppress elimination, as evidenced by the significantly decreased 

amount of crotonate formed with 1‘-La(TPPO)2 compared to 1‘-La. Supressing this side-

reaction is critical, as the resulting La carboxylates would be inactive towards coordination-

insertion ROP at RT (ie - dormant chains), while chain-scission would also broaden Ð and 

lower Mn. Second, strong neutral donors can effectively supress the kinetic basicity of the 

supporting ligand, as evidenced by significant amounts of H21L generated with 1‘-La. While  

RE aryloxides have been leveraged as efficient multi-functional catalysts through cooperative 

Lewis-Acid/Lewis-base reactions (e.g. Michael, aldol, hydrophosphination),81-83 RE aryloxides 

have been considered as innocent supporting ligands for the ROP of rac-BBL. Although rapid 

transesterification was observed for 1-La and 1-La(TPPO)2, the low Ð and high Pm support 

that this side-reaction is less significant under catalytic conditions. The pronounced tendency 

towards transesterification should correspond to the lower steric-bulk of the methyl ester found 
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in (R)-3-OAcBMe compared to the more hindered ester linkages in P3HB. 
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Figure 2.15. Reactivity studies of (a) 1-La and (b) 1-La(TPPO)2 in the presence of 1 equiv 
iPrOH and 15 equiv (R)-3-OAcBMe in C6D6 followed by 1H-NMR after 0.5 h, 7 h. (There are 
minor singlets, other than (R)-3-OAcBMe and (R)-3-OAcBiPr, from 1.6-1.7 ppm, representing 
La acetate species and other transesterification products, but cannot be unambiguously 
assigned) 
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The Effect of Neutral Donors on ROP Catalyzed by 1-RE and 2-RE: Given the observed 

benefits of adding strong neutral donor ligands to 1-RE (vide supra), we set out to evaluate 

whether similar enhancements would occur in structurally related catalysts with a tethered 

donor group (2-Y and 2-La). This was motivated by reports of solvent-dependent3 and 

tethered-donor dependent15, 84 ROP reactivity for 2-RE and its derivatives. 

 

 
Figure 2.16. 1H-NMR (400 MHz, C6D6, 298 K), 31P{1H}-NMR (162 MHz, C6D6, 298 K) of 
adding 0, 1 and 2 equiv. of OPPh3 to 2-Y. 
 
1H- and 31P{1H}-NMR studies indicate that TPPO readily binds to 2-RE in solution (Figure 

2.16); however, unlike 1-RE, rates and selectivity for the ROP of rac-BBL were totally 

unaffected by added TPPO (Table 2.8, entries 3 – 5 and 8 – 10). While initially unanticipated, 

we suspect this is due to the much high concentrations of the weaker donor ligands (solvent) 

compared to our studies (two equiv).3, 13 Under our experimental conditions, the tethered donor 

of 2-RE dominates the observed reactivity and stereoselectivity, indicating that propagation 

from the corresponding TPPO adducts of 2-RE is a higher energy pathway. 

  

43



Table 2.8. Effects of TPPO on 1-RE and 2-RE ROP activity with rac-BBL 

O

O
nTol, RT, TimeO

O

rac-BBL P3HB

200
[BBL]
[BBL] = 200
[RE]

= 2.4 M1 iPrOH
1 Cat.

_ TPPO
N

O

O
tBu

tButBu

tBu

N(SiHMe2)2

O

O

2-RE

REIII

 
Entry Cat. [TPPO]/[RE] Time (h)a Conv. (%)b Mn, expc (kg/mol) Đc,d Pme 

1 1-La 0 24 40 2.2 1.23 0.57 
2 1-La 2 1 97 9.6 1.18 0.71 
3 2-La 0 24 22 1.4 1.17 0.45 
4 2-La 1 24 21 1.6 1.14 0.49 
5 2-La 2 24 21 1.7 1.16 0.48 
6 1-Y2 0 24 33 5.9 1.15 0.55 
7 1-Y2 2 3 95 14.0 1.18 0.50 
8 2-Y 0 1 91 14.2 1.16 0.22 
9 2-Y 1 1 99 17.6 1.12 0.22 

10 2-Y 2 1 99 15.9 1.14 0.22 

a – Reaction times not optimized. b – Determined by 1H-NMR integration of BBL and PHB methine 

resonances in the crude reaction mixture. c –Determined by gel permeation chromatography (GPC) at 

30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54.18 d – Mw/Mn. e –

Probability of meso-linkages between repeat units. Determined by integration of P3HB C=O resonances 

using inverse gated (IG) 13C-NMR. 

 

The presence or absence of a tethered donor also manifests opposite size-dependent reactivity 

and selectivity trends for 1-RE and 2-RE. Smaller ions are more reactive and selective for 2-

RE,13, 16, 50 while larger ions are more reactive for 1-RE/OPR3. While both catalysts display 

chain-end stereocontrol and feature labile coordination sites cis to an initiator (two for 1-RE, 

one for 2-RE), amplified selectivity is only observed with the largest and most coordinatively 

unsaturated catalyst, 1-La. Furthermore, the presence (2-RE) or absence (1-RE/OPR3) of a 

tethered donor group favors opposite polymer tacticities (2-RE: syndio, 1-RE: iso). 
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Proposed Mechanism: Given the results of our catalytic and mechanistic studies, we propose 

the following mechanism for the ROP of rac-BBL catalyzed by 1-La & 1-La(TPPO)2 (Figure 

2.17; L‘ = THF or TPPO). 
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Figure 2.17. Proposed mechanism for the ROP of rac-BBL catalyzed by 1-La or 1-La(TPPO)2. 
 

Addition of iPrOH to 1-La or 1-La(TPPO)2 leads to a highly reactive initiator, 1′-La or 1′-

La(TPPO)2. Ligand exchange of L′ for rac-BBL generates A, which can then undergo insertion 

of the La alkoxide to generate B. Ring-opening would lead to C, which is involved in two 

competing ligand-exchange equilibria that gates productive (propagation) and unproductive 

(elimination) pathways. Upon binding of one equiv L‘ to C, the catalytic cycle is successfully 

completed with the regeneration of 1‘-La. Our low-temperature NMR studies of 1-La(TPPO)2 

support a mono-TPPO resting state during ROP, while our catalytic studies indicate that more 

than one equiv of TPPO is required to achieve maximum rate and selectivity enhancements 

(Table 2.4). While we have depicted A, B, and C as mono-L’ adducts, we cannot exclude the 
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possibility that one or more of these intermediates may be bis-L’ adducts. 

 

Alternatively, at high reaction conversions or with weaker donor ligands, binding of ester 

linkages to C may become competitive with L‘ to form the key intermediate for base-promoted 

elimination, D. Chain cleavage through elimination would generate two polymer fragments 

that are inactive for further ROP at RT: (i) a terminated polymer with ester and crotyl end-

groups, and (ii) a dormant polyester chain terminated by rare-earth carboxylate and secondary 

alcohol end-groups. With weak and sterically unencumbered donors (e.g. L‘ = THF), both the 

propagating alkoxide chain and 1L could act as competent bases, while the kinetic basicity of 

1L is supressed with strong and bulky neutral donors (e.g. L‘ = TPPO). While intermediate D 

is depicted with coordination of a neighbouring polyester chain, we expect that both intra- and 

inter-molecular pathways are viable. 

 

While the exact origin of the unique isoselectivity remains unresolved, we hypothesize that 

strong neutral donors such as TPPO lead to a sterically crowded axial environment in 1-

La(TPPO)2 compared to 1-La and 2-RE (Figure 2.17). Non-covalent C–H∙∙∙π (arene) 

interactions between ligand and substrate have been proposed to explain the high 

syndioselectivity for the ROP of rac-BBL with a Yttrium catalyst supported by a cumyl-

substituted tetradentate amino-bisphenolate ligand.50 In contrast, we observed similar reactivity 

and selectivity with phosphine oxides containing aromatic (TPPO) or aliphatic (TOPO) 

substituents, which suggests other origins for the unique isoselective chain-end stereocontrol. 

Rieger and coworkers recently carried out an extensive computational study investigating the 
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ROP of rac-BBL catalyzed by 2-Y.16 The syndioselective pathway is favored kinetically and 

thermodynamically by the propagating P3HB chain adopting a κ3 binding mode. The authors 

suggest that alternative P3HB binding modes (e.g. κ1 or κ2) may lead to iso-enriched P3HB. 

Such intermediates (Figure 2.17: A or B) could be favored by the stronger binding and 

enhanced steric bulk of phosphine oxides, opening up new pathways that are disfavored for 2-

Y.  

 

Finally, our mechanistic studies uncover new roles for neutral donor ligands in ROP. Previous 

studies have provided evidence for decreased transesterification19-20, 23, 85-86 and control of 

catalyst aggregation state26, 85, 87-89 with added neutral donor ligands; however, their role in 

suppressing base-promoted elimination (i.e. crotyl end-group) was previously unknown. Our 

results suggest that neutral donor groups play a critical role in suppressing or shifting ligand-

exchange equilibria for both productive and non-productive pathways in the ROP of rac-BBL, 

and addition of these simple ligands provide a facile and inexpensive way to further modulate 

catalyst performance. 
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2.3. Conclusions 

In summary, we have synthesized, characterized, and evaluated the reactivity of novel benzyl-

substituted amino-bisphenolate rare-earth complexes, 1-RE, as catalysts for the isoselective 

ROP of rac-BBL. 1-RE display ROP rates and selectivities that are tuned by the identity of 

exogenous neutral donor ligands (e.g. OPR3). 1-La/OPR3/iPrOH display excellent reactivity 

and selectivity (Pm = 0.8 at 0 °C, TOF = ~190 h-1), and are the most isoselective homogeneous 

catalysts for ROP of rac-BBL (R: n-octyl, Ph). The use of simple monodentate OPR3 to enhance 

catalyst performance in stereoselective ROP is unprecedented, and the relative ease and 

accessibility to a diverse array of phosphine oxides makes this an attractive and operationally 

simple strategy to further optimize catalyst performance. 

 

Our preliminary mechanistic studies indicate that (i) 1-La(TPPO)2 is a precatalyst for the 

isoselective ROP of rac-BBL, (ii) La(TPPO)n (n = 1,2) are implicated as catalytically relevant 

species, (iii) isoselective ROP proceeds with chain-end stereocontrol through a coordination-

insertion mechanism, and (iv) addition of neutral donor ligands can suppress elimination side-

reactions. This is the first investigation into elimination pathways of RE-based catalysts in the 

ROP of rac-BBL, and 1-La(TPPO)2 is the first catalyst to access isoenriched P3HB with chain-

end stereocontrol. While structurally related catalysts with a tethered donor group (2-RE) also 

operate under chain-end stereocontrol, ROP activity and selectivity of 2-RE (i) are unaffected 

by added neutral donor ligands and (ii) display opposite stereoselectivity (syndioselective) 

compared to 1-La/OPR3. Our study uncovers new roles for neutral donor ligands in 

stereospecific ROP, and begins to connect their effect on catalyst structure and function. 
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Removing the tethered donor fragment and increasing axial steric bulk with strong neutral 

donor ligands favors isoenriched P3HB. Similar donor-related enhancements may require 

catalysts with enhanced metal accessibility (i.e. several labile coordination sites), and highlight 

new opportunities in catalyst design and optimization. 
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2.4. Experimental Section 

2.4.1. General Methods. 

Instruments and measurements: Unless specified, all reactions were performed under inert 

conditions (N2) using standard Schlenk techniques or in a MBraun drybox equipped with a 

standard catalyst purifier and solvent trap. Glassware was oven-dried for at least 2 h at 150 °C 

prior to use. Celite and 3 Å molecular sieves were heated under reduced pressure at 300 °C for 

at least 24 h and then cooled under vacuum prior to use. The following spectrometers were 

used for NMR characterization: Bruker Avance III HD Ascend (1H: 600 MHz, 13C: 152 MHz, 

31P: 243 MHz) and a Bruker DRX (1H: 400 MHz, 13C: 101 MHz, 31P: 162 MHz). 1H- and 13C-

NMR shifts are referenced relative to the solvent signal (CDCl3: 1H: 7.26 ppm, 13C: 77.16 ppm; 

C6D6: 1H: 7.16 ppm, 13C: 128.06 ppm), while 31P-NMR shifts are referenced relative to external 

solution standards (H3PO4, 0 ppm). Both instruments were equipped with Z-gradient BBFO 

probes. Probe temperatures were calibrated using ethylene glycol and methanol as previously 

described.90 Polymer tacticity (Pm, percentage of meso diads) was measured using a 13C 

inverse-gated pulse sequence, followed by integration of the C=O resonances (Figure 2.30). 

The mechanism for stereocontrol was determined by statistical analysis of stereochemical 

triads in P3HB (rr, mm, and rm/mr; integration of CH2 resonances from 13C-NMR using an 

inverse-gated pulse sequence) as described by Thomas and Carpentier.3 

 

Gel permeation chromatography (GPC) measurements were performed using an Agilent 1260 

equipped with two Poroshell 120 EC-C18 columns heated at 35 °C (4.6 x 100 mm, 2.7 μm) 

and a UV-vis diode-array detector and refractive detector. The eluent was inhibitor-free THF, 
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and the system was calibrated with standard polystyrene standards ranging from 580 to 

1,500,000 Da. Reported molecular weights are those obtained from GPC corrected by a Mark-

Houwink factor of 0.54.18 Unless stated otherwise, all GPC samples were of the quenched crude 

reaction mixtures (not precipitated or purified polymers). P3HB samples (10 mg/mL in THF) 

using a DCTB/NaTFA matrix (v/v, 10:1) were analysed using MALDI TOF MS under positive-

ion reflectron mode on a Bruker Ultraflex III ToF/ToF mass spectrometer at the University of 

Akron. IR spectra were recorded on Jasco 4100 FTIR spectrometers using Nujol mulls 

sandwiched between KBr plates. Elemental analyses were performed by Robertson Microlit 

Laboratories (Ledgewood, NJ) and Midwest Microlab, LLC (Indianapolis, IN) for bench-stable 

(1L) and air-sensitive compounds (1-RE and 1-RE(TPPO)2) respectively. Samples were 

shipped in a sealed 2 mL vial that was placed in a 20 mL scintillation vial and sealed, which 

were then placed in a vacuum-sealed plastic bag. 

 

Materials: Tetrahydrofuran, diethyl ether, toluene, hexanes, and pentane were purchased from 

Fisher Scientific. Solvents were sparged for 20 min with dry Ar and dried using a commercial 

two-column solvent purification system (LC Technologies). Solvents were further dried by 

storing them over 3 Å molecular sieves for at least 48 h prior to use. Ultrapure, deionized water 

(18.2 MΩ) was obtained from a Millipore Direct-Q 3 UV Water Purification System. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. C6D6 was 

degassed with 3 freeze-pump-thaw cycles and stored over 3 Å molecular sieves for at least 48 

h prior to use. Qualitative assessment of moisture-content in these solvents was performed by 

adding 1 drop of a concentrated solution of a sodium benzophenone radical anion (purple) to 
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10 mL of solvent where maintenance of a dark blue color for at least 5 minutes was sufficient 

for use. 

 

2,6-ditertbutyl phenol (Oakwood Chemical; 99% purity), para-formaldehyde (Alfa Aesar; 97% 

purity), benzylamine (TCI; 99% purity), 2-methoxyethylamine (Sigma-Aldrich; 99% purity), 

triphenylphosphine oxide (Acros; 99% purity), trioctylphosphine oxide (Sigma-Aldrich; 99% 

purity), hexamethylphosphoramide (TCI; 98% purity), triphenylphosphate (Sigma-Aldrich; 99% 

purity ), triphenyl phosphine (Sigma-Aldrich; 99% purity), 4-dimethylaminopyridine (Chem-

Impex; 99% purity), 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich; 99% purity), potassium 

hexamethyldisilazide (Sigma-Aldrich; 95% purity), 1,1,3,3-tetramethyldisilazane (TCI, 97% 

purity), RECl3 (Strem; RE = La, Y; 99.9% purity), (R)-methyl 3-hydroxybutanoate (Oakwood; 

99% purity), acetyl chloride (Acros; 99% purity) 2-propanol (Alfa-Aesar, anhydrous, 99.5% 

purity) and pyridine (Sigma-Aldrich; 99% purity) were purchased and used as received. 

Racemic butyrolactone (Sigma-Aldrich; 98% purity) was freshly distilled from CaH2 under 

nitrogen and degassed by freeze-pump-thaw cycles prior to use. RE[N(SiMe3)2]3 (RE = La and 

Y),91 RE[N(SiHMe2)2]3(THF)2 (RE = La and Y),92 6,6'-(((2-methoxyethyl)azanediyl)bis-

(methylene))bis(2,4-di-tert-butylphenol) (2L),93 RE(2L)THF (RE = La93 and Y94) were prepared 

according to reported procedures. 

 

X-ray Crystallography: Samples were collected in Paraton™ oil on a petri dish in a glovebox 

and then quickly evaluated and mounted with the assistance of an optical microcope. X-ray 

reflection intensity data were collected on a Bruker D8 Quest with a Photon 100 CMOS 
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detector employing graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) at a 

temperature of 173(1) K. Rotation frames were integrated using SAINT,95 producing a listing 

of unaveraged F2 and σ(F2) values which were then passed to the SHELXT96 program package 

for further processing and structure solution. The intensity data were corrected for Lorentz and 

polarization effects and for absorption using SADABS.97 The structures were solved by direct 

methods (SHELXT).96 Refinement was by full-matrix least squares based on F2 using 

SHELXL.96 All reflections were used during refinements. Non-hydrogen atoms were refined 

anisotropically and hydrogen atoms were refined using a riding model. Two tert-butyl groups 

and one of the Si(HMe2) groups were found to be disordered over two positions in 

[La(1L)(N(SiHMe2)2)(TPPO)2] (1-La(TPPO)2). Two tert-butyl groups were found to be 

disordered over two positions in [Y(1L)(N(SiHMe2)2)(TPPO)2] (1-Y(TPPO)2). Disorders were 

refined with the help of similarity restraints using standard/default values on 1,2 and 1,3 

distances (SADI) and rigid bond restraints (RIGU) of the disordered groups.98-99 For the 

structures [La(1L)(N(SiHMe2)2)(TPPO)2] (1-La(TPPO)2) and [Y(1L)(N(SiHMe2)2)(TPPO)2] 

(1-Y(TPPO)2) there were areas of disordered solvent (toluene, 2 molecules in the asymmetric 

unit) for which reliable disorder models could not be devised; the X-ray data were corrected 

for the presence of disordered solvent using SQUEEZE.100 Crystallographic parameters are 

summarized in Table 2.10, and thermal ellipsoid plots (50 % probability) are shown in Figures 

2.31-2.33. 
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2.4.2. Synthetic Details and Characterization. 
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Scheme 2.4. Synthesis of benzyl-amino bisphenol and corresponding rare-earth complexes 
 

6,6'-((benzylazanediyl)bis(methylene))bis(2,4-di-tert-butylphenol), (1L) 
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A 250 mL round-bottomed flask was charged with benzyl amine (3.27 g, 30.5 mmol, 1.0 equiv.; 

MW: 107.16 g•mol-1), DI water (50 mL), a Teflon-coated stir bar, and paraformaldehyde (1.83 

g; 30.5 mmol; 2.0 equiv.; MW: 30.03 g•mol-1) paraformaldehyde, resulting in a colorless 

solution. To the stirring mixture, 2,6-ditertbutyl phenol (12.59 g, 30.5 mmol, 2.0 equiv.; MW: 

206.33 g•mol-1) was added and floated on the top of the solution. The reaction was heated in 

an oil bath at 110 °C for 20 h. The mixture became a yellow emulsion during heating. After 

cooling to RT, a solid was formed out of the cooled liquid. The aqueous layer was decanted. 

The residual solid was dissolved in EtOH (20 mL) at 60 °C and then cooled to RT, affording a 

colorless crystalline solid after standing overnight. The solid was isolated by vacuum filtration 

over a course porosity fritted filter, washed with EtOH (2 × 10 mL), and dried under reduced 

pressure to furnish compound 1L as a white solid. Yield: 7.8 g (14.3 mmol, 47% yield; MW: 
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543.84 g•mol-1). 

1H-NMR (400 MHz, CDCl3, 298 K): δ = 1.28 (s, 18H; 2-tBu), 1.42 (s, 18H; 4-tBu), 3.60 (s, 2H; 

NCH2Bn), 3.66 (s, 4H; NCH2ArOH), 6.94 (d, J = 2.4 Hz, 2H; 5-HAr), 7.22 (d, J = 2.4 Hz, 2H; 

3-HAr), 7.30-7.42 ppm (m, 7H; Bn, OH); 

13C{1H}-NMR (101 MHz, CDCl3, 298 K): δ = 29.8 (CMe3), 31.8 (CMe3), 34.3 (CMe3), 35.0 

(CMe3), 57.0 (NCH2ArOH), 58.6 (NCH2Bn), 121.5, 123.7, 125.3, 128.0, 129.1, 129.7, 136.1, 

137.6, 141.6, 152.3 ppm (CAr–OH); 

1H-NMR (400 MHz, C6D6, 298 K): δ = 1.34 (s, 18H; 2-tBu), 1.62 (s, 18H; 4-tBu), 3.29 (s, 2H; 

NCH2Bn), 3.39 (s, 4H; NCH2ArOH), 6.96 (d, J = 2.4 Hz, 2H; 5-HAr), 7.02 (t, J = 7.2 Hz, 1H; 

p-HBn), 7.11 (t, J = 7.2 Hz, 2H; m-HBn), 7.26 (d, J = 7.2 Hz, 2H; o-HBn), 7.49 (d, J = 2.4 Hz, 

2H; 3-HAr), 7.69 ppm (m, 2H; OH); 

Elemental Analysis calcd. (%) for C37H53NO2: C 81.72, H 9.82, N 2.58; found: C 81.94, H 9.78, 

N 2.56. 

 

La(1L)[N(SiHMe2)2](THF)2 (1-La) 

1-La

N

O

O
tBu

tButBu

tBu

N(SiHMe2)2

O

O

LaIII

 

A 20 mL scintillation vial was charged with 1L (335 mg, 0.62 mmol, 1.0 equiv.; MW: 543.84 

g•mol-1), a Teflon-coated stir-bar, and THF (2 mL). To the stirring, clear, and colorless solution, 

La[N(SiHMe2)2]3(THF)2 (419 mg, 0.62 mmol, 1.0 equiv.; MW: 680.12 g•mol-1) was added. 

55



The solution was heated at 60 °C for 2 h. All volatiles were removed under reduced pressure, 

affording 1-La as a white solid. Yield: 580 mg (0.61 mmol, 98% yield; MW: 957.27 g•mol-1). 

1H-NMR (600 MHz, C6D6, 298 K): δ = 0.42 (d, 3J = 3.0 Hz, 12H; SiHMe2), 1.23 (s, 8H; 3,4-

HTHF), 1.46 (s, 18H; 2-tBu), 1.74 (s, 18H; 4-tBu), 3.45 (d, 2J = 12.8 Hz, 2H; NCH2ArO), 3.65 

(s, 8H; 2,5-HTHF), 3.79 (s, 2H; NCH2Bn), 4.00 (d, 2J = 12.8 Hz, 2H; NCH2ArO), 5.21 (quint, 

3J = 3.0 Hz, 1JSi(29)-H = 167 Hz, 2H; Si-H), 7.04 (t, J = 7.2 Hz, 1H; p-HBn), 7.15 (t, J = 7.2 Hz, 

2H; m-HBn), 7.19 (d, J = 7.2 Hz, 2H; o-HBn), 7.20 (d, J = 2.4 Hz, 2H; 5-HArO), 7.62 ppm (d, J 

= 2.4 Hz, 2H; 3-HArO); 

13C{1H}-NMR (152 MHz, C6D6, 298 K): δ = 4.0 (SiHMe2), 25.3 (β-CTHF), 30.5 (CMe3), 32.3 

(CMe3), 34.3 (CMe3), 35.6 (CMe3), 52.0 (NCH2Bn), 61.6 (NCH2ArO), 69.7 (α-CTHF), 124.0, 

125.0, 127.8, 128.3, 128.7, 131.6, 135.7, 135.9, 136.9, 162.6 ppm (CAr–O); 

IR (Nujol): 2075 [m, ν(SiH)], 2011 [w, ν(La↼H–Si)], 1774 (w), 1602 (w), 1414 (m), 1305 (s), 

1279 (s), 1241 (s), 1232 (s), 1201 (m), 1165 (m), 1133 (m), 1051 (m), 1030 (m), 962 (m), 899 

(s), 883 (s), 835 (s), 802 (m), 787 (m), 762 (m), 700 (m), 644 (w), 629 (m), 598 (m), 528 (m), 

489 (w), 444 (m) cm-1; 

Elemental Analysis calcd. (%) for C49H81LaN2O4Si2: C 61.75, H 8.30, N 2.92; found: C 61.48, 

H 8.53, N 2.93. 
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{Y(1L)[N(SiHMe2)2]}2 (1-Y2) 

N
O

O
tBu

tButBu

tBu

1-Y2

N

O

O

tBu

tBu tBu

tBuNR2

R2N

YIII

YIII

R = SiHMe
2  

A 20 mL scintillation vial was charged with 1L (253 mg, 0.47 mmol, 1.0 equiv.; MW: 543.84 

g•mol-1), a Teflon-coated stir-bar, and hexanes (2 mL). To the stirring, clear, and colorless 

solution, Y[N(SiHMe2)2]3(THF)2 (294 mg, 0.47 mmol, 1.0 equiv.; MW: 630.12 g•mol-1) was 

added. The solution was stirred at ambient temperature for 24 h. All volatiles were removed 

under reduced pressure, affording 1-Y2 as a white solid. Yield: 345 mg (0.23 mmol, 97% yield; 

MW: 1526.12 g•mol-1). 

1H-NMR (600 MHz, C6D6, 298 K): δ = -0.09 (d, 3J = 2.9 Hz, 12H; SiHMe2), 0.18 (d, 3J = 2.9 

Hz, 12H; SiHMe2), 1.23 (s, 18H; 2-tBu), 1.32 (s, 18H; 4-tBu) , 1.37 (s, 18H; 4-tBu) , 1.62 (s, 

18H; 2-tBu), 3.79 (d, 2J = 13.2 Hz, 2H; NCH2ArO), 3.93 (d, 2J = 14.4 Hz, 2H; NCH2ArO), 

4.40 (d, 2J = 14.4 Hz, 2H; NCH2Bn), 4.55 (d, 2J = 14.4 Hz, 2H; NCH2Bn), 4.73 (d, 2J = 13.2 

Hz, 2H; NCH2ArO), 4.94 (d, 2J = 14.4 Hz, 2H; NCH2ArO), 5.00-5.03 (m, 4H; Si-H), 7.06 (d, 

J = 2.4 Hz, 2H; 5-HArO), 7.17 (t, J = 7.2 Hz, 2H; p-HBn), 7.22 (d, J = 2.4 Hz, 2H; 5-HArO), 7.27 

(t, J = 7.2 Hz, 4H; m-HBn), 7.38 (d, J = 2.4 Hz, 4H; 3-HArO), 7.47 (d, J = 2.4 Hz, 4H; 3-HArO), 

7.60 ppm (d, J = 7.2 Hz, 4H; o-HBn); 

13C{1H}-NMR (152 MHz, C6D6, 298 K): δ = 2.6 (SiHMe2), 3.1 (SiHMe2), 29.6 (CMe3), 31.6 

(CMe3), 32.0 (CMe3), 34.22 (CMe3), 34.26 (CMe3), 34.33 (CMe3), 35.1 (CMe3), 36.7 (CMe3), 

52.1 (NCH2Bn), 59.3 (NCH2ArO), 62.1 (NCH2ArO), 123.3, 123.8, 125.5, 126.7, 128.29, 
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128.31, 128.34, 129.4, 132.8, 133.4, 136.4, 137.7, 137.9, 142.6, 155.0 (CAr–O), 161.1 ppm 

(d, JY-C = 3.3 Hz, CAr–O); 

IR (Nujol): 2096 [m, ν(SiH)], 2054 [w, ν(SiH)], 1936 [br, m, ν(Y↼H–Si)], 1605 (w), 1415 (m), 

1307 (m), 1279 (m), 1248 (m), 1246 (m), 1225 (m), 1201 (m), 1165 (m), 1128 (m), 1086 (w), 

1012 (s), 964 (m), 901 (s), 877 (s), 834 (s), 802 (m), 768 (m), 746 (m), 704 (m), 648 (w), 631 

(m), 613 (m), 534 (m), 521 (w), 501 (w), 455 (m) cm-1; 

Elemental Analysis calcd. (%) for C82H130N4O4Si4Y2: C 64.76, H 8.63, N 3.63; found: C 64.54, 

H 8.59, N 3.67. 

The assignment of the 1H- and 13C{1H}-NMR spectrum for 1-Y2 was made by heteronuclear 

multiple bond correlation (HMBC) spectroscopy. Assignment for the bridging versus terminal 

phenolate in the 13C-NMR was made based on comparison of the mononuclear 1-La. The 

bridging phenolate CAr–O is significantly shifted up-field (155.0 ppm) in comparison to the 

corresponding terminal CAr–O (1-Y2: 161.1 ppm; 1-La: 162.6 ppm). The HMBC experiment 

was done at 600 MHz, with filtered 1J coupling constant (cnst2) = 145 Hz, long rang nJ coupling 

constant (cnst13) = 10 Hz. 

 

La(1L)[N(SiHMe2)2](TPPO)2 (1-La(TPPO)2) 

1-La(TPPO)2

N

O

O
tBu
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tBu
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LaIII

 

A 20 mL scintillation vial was charged with 1-La (173 mg, 0.18 mmol, 1.0 equiv.; MW: 957.27 
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g•mol-1), TPPO (101 mg, 0.36 mmol, 2.0 equiv.; MW: 278.29 g•mol-1) and toluene (0.5 mL). 

After all solids were dissolved, hexane (3 mL) was layered on top of the toluene solution. After 

the two layers mixed (~ 1 h), the vial was cooled in the glovebox freezer at –35 oC for 3 h, 

affording a white crystalline solid. The mother liquor was decanted and volatiles were removed 

under reduced pressure, affording 1-La(TPPO)2 as a white solid. Yield: 230 mg (0.17 mmol, 

93% yield; MW: 1369.64 g•mol-1). X-ray quality crystals were grown by layering hexane (2 

mL) on top of a solution of 1-La(TPPO)2 (200 mg / 0.5 mL toluene) and allowing the solution 

to stand and mix undisturbed at RT. 

1H-NMR (600 MHz, C6D6, 298 K): δ = 0.50 (d, J3 = 3.0 Hz, 12H; SiHMe2), 1.51 (s, 18H; 2-

tBu), 1.81 (s, 18H; 4-tBu), 2.95 (br, 2H; NCH2ArO), 3.74 (s, 2H; NCH2Bn), 3.78 (br, 2H; 

NCH2ArO), 5.63 (quint, 3J = 3.0 Hz, 1JSi(29)-H = 174 Hz, 2H; Si-H), 6.94 (d, J = 2.4 Hz, 2H; 5-

HArO), 6.96-7.04 (m, 19H; p-HBn, m,p-HTPPO), 7.12 (t, J = 7.5 Hz, 2H; m-HBn), 7.19 (d, J = 7.5 

Hz, 2H; o-HBn), 7.63 (d, J = 2.4 Hz, 2H; 3-HArO), 7.65 ppm (br, 12H; o-HTPPO); 

13C{1H}-NMR (152 MHz, C6D6, 298 K): δ = 5.0 (SiHMe2), 31.0 (CMe3), 32.5 (CMe3), 34.3 

(CMe3), 36.0 (CMe3), 51.2 (NCH2Bn), 61.0 (NCH2ArO), 123.1, 125.5, 127.0, 127.3, 128.3, 

128.5, 128.9 (d, JP(31)-C(13) = 12.5 Hz; m-CTPPO), 130.3 (d, JP(31)-C(13) = 107 Hz; C–P), 132.5 (p-

CTPPO), 133.0 (d, JP(31)-C(13) = 10.5 Hz; o-CTPPO), 134.2, 135.5, 135.8, 164.3 ppm (CAr–O); 

31P{1H}-NMR (243 MHz, C6D6, 298 K): δ = 33.3 (br) ppm; 

IR (Nujol): 2048 [m, ν(Si-H)], 1959 (w), 1593(w), 1414 (m), 1331 (m), 1298 (m), 1259 (w), 

1236 (m), 1200 (w), 1155 [s, ν(P=O)], 1120 (m), 1089(m), 1074 (w), 1043 (m), 1024 (m), 999 

(w), 937 (m), 883 (m), 741 (m), 694 (m), 673 (w), 648 (w), 625 (w), 606 (w), 542 [s, ν(P-C)], 
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461 (w), 440 (w), 426 (w) cm-1; 

Elemental Analysis calcd. (%) for C77H95LaN2O4P2Si2: C 66.98, H 6.77, N 1.86; found: C 67.52, 

H 6.99, N 2.05. 

 

Y(1L)[N(SiHMe2)2](TPPO)2 (1-Y(TPPO)2) 

1-Y(TPPO)2
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O

O
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A 20 mL scintillation vial was charged with 1-Y2 (129 mg, 0.085 mmol, 1.0 equiv.; MW: 

1526.12 g•mol-1), TPPO (94 mg, 0.34 mmol, 4.0 equiv.; MW: 278.29 g•mol-1) and toluene (0.5 

mL). After all solids were dissolved, hexane (3 mL) was layered on top of the toluene solution. 

After the two layers mixed (~ 1 h), the vial was cooled in the glovebox freezer at –35 oC for 3 

h, affording a white crystalline solid. The mother liquor was decanted, and volatiles were 

removed under reduced pressure, affording 1-Y(TPPO)2 as a white solid. Yield: 192 mg (0.15 

mmol, 86% yield; MW: 1319.64 g•mol-1). X-ray quality crystals were grown by layering 

hexanes (1 mL) on top of a solution of 1-Y(TPPO)2 (100 mg / 0.2 mL toluene) and allowing 

the solution to stand and mix undisturbed at RT. 

 

Note: The solution behaviour of 1-Y(TPPO)2 and 1-Y + 2 TPPO is complex and concentration-

dependent. Crystallized 1-Y(TPPO)2 has limited solubility in C6D6, and some TPPO 

dissociation was observed by 1H- and 31P-NMR. The major species observed at low 

concentration ([Y] = 25 mM) correspond to monomeric and dimeric Y-TPPO adducts (1:2). 

60



Concentrated ([Y] = 75 mM) C6D6 solutions of 1-Y(TPPO)2 were made by adding 4 equiv. 

TPPO to C6D6 solution of 1-Y2, in which 1-Y(TPPO)2, [1-Y(TPPO)2]2 and 1-Y(TPPO) was 

observed. The speciation is readily seen from DOSY NMR spectra (Figures 2.27 and 2.28). 

1H-NMR (400 MHz, C6D6, 298 K, 25 mM): δ = 0.10 (d, 3J = 2.9 Hz, 12H; SiHMe2 of [1-

Y(TPPO)2]2), 1.37-1.85 (m; tBu), 2.72 (d, J = 13.7 Hz, 2H; NCH2ArO of 1-Y(TPPO)), 2.95 

(br), 3.22 (d, J = 13.7 Hz, 2H; NCH2ArO of 1-Y(TPPO)), 3.50 (s, 2H; NCH2Bn of 1-

Y(TPPO)), 3.66 (br; 1-Y(TPPO)2), 3.76 (d, J = 15.3 Hz, 1H; NCH2ArO), 3.78 (d, J = 13.7 Hz, 

1H; NCH2ArO), 4.04 (br; 1-Y(TPPO)2), 4.64 (d, J = 14.1 Hz, 1H; NCH2Bn), 4.70 (br; 1-

Y(TPPO)2), 4.77 (d, J = 14.1 Hz, 1H; NCH2Bn), 4.99 (quint, 3J = 3.0 Hz, 2H; Si-H), 5.16 (d, 

J = 15.3 Hz, 1H; NCH2ArO), 5.17 (d, J = 13.7 Hz, 1H; NCH2ArO), 5.49 (br; Si-H of 1-

Y(TPPO)2), 6.62-6.68 (m), 7.01-7.16 (m), 7.29-7.36 (m), 7.44-7.82 (m),; 

31P{1H}-NMR (162 MHz, C6D6, 298 K, 15 mM): δ = 25.2 (br, free TPPO), 25.2 (br, 1-

Y(TPPO)2), 34.6 (d, JY-P(31) = 12.6 Hz; 1-Y(TPPO)), 38.4 (d, JY-P(31) = 11.1 Hz; [1-

Y(TPPO)2]2), 39.1 (d, JY-P(31) = 10.9 Hz; 1-Y(TPPO)) ppm; 

IR (Nujol): 2081 [m, ν(SiH)], 2015 (w), 1959 (w), 1591(w), 1416 (m), 1331 (m), 1300 (m), 

1259 (m), 1240 (m), 1201 (w), 1153 [s, ν(P=O)], 1120 (m), 1090 (m), 1018 (m), 997 (m), 933 

(m), 897 (m ), 885 (m), 835 (m), 802 (w), 789 (w), 744 (m), 694 (m), 671 (w), 646 (w), 629 

(w), 540 [s, ν(P-C)], 464 (m), 447 (m) cm-1; 

Elemental Analysis calcd. (%) for C77H95YN2O4P2Si2: C 69.75, H 7.59, N 1.65; found: C 70.08, 

H 7.26, N 2.12. 

1H-NMR (600 MHz, C6D6, 298 K, 75 mM, prepared in-situ): δ = 0.09 (d, 3J = 3.0 Hz, 12H; 
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SiHMe2), 1.45 (s, 9H; tBu), 1.49 (s, 9H; tBu), 1.58 (s, 9H; tBu), 1.69 (s, 9H; tBu), 3.76 (d, J = 

15.3 Hz, 1H; NCH2ArO), 3.78 (d, J = 13.7 Hz, 1H; NCH2ArO), 4.64 (d, J = 14.1 Hz, 1H; 

NCH2Bn), 4.77 (d, J = 14.1 Hz, 1H; NCH2Bn), 4.99 (quint, 3J = 3.0 Hz, 2H; Si-H), 5.16 (d, J 

= 15.3 Hz, 1H; NCH2ArO), 5.17 (d, J = 13.7 Hz, 1H; NCH2ArO), 6.86 (t, J = 6.0 Hz, 6H; p-

HTPPO), 6.99-7.09 (m, 12H), 7.13 (t, J = 7.5 Hz, 1H; p-HBn), 7.17-7.22 (m, 10H), 7.33 (t, J = 

7.5 Hz, 2H; m-HBn), 7.46 (d, J = 2.4 Hz, 1H; 3-HArO), 7.50 (d, J = 2.4 Hz, 1H; 3-HArO), 7.73 

(br, 4H), 7.79 ppm (d, J = 7.5 Hz, 2H; o-HBn); 

13C{1H}-NMR (152 MHz, C6D6, 298 K, 75 mM, prepared in-situ): δ = 3.7 (SiHMe2), 30.6 

(CMe3), 30.8 (CMe3), 32.6 (CMe3), 32.7 (CMe3), 34.2 (CMe3), 34.3 (CMe3), 35.6 (CMe3), 35.7 

(CMe3), 50.6 (NCH2Bn), 61.67 (NCH2ArO), 61.7 (NCH2ArO), 122.8, 122.9, 123.4, 124.3, 

127.2, 127.3, 127.4, 127.6, 128.3 (p-CTPPO), 128.9 (d, JP(31)-C(13) = 115 Hz; P-C), 129.1 (d, JP(31)-

C(13) = 12.6 Hz; m-CTPPO), 132.9 (d, JP(31)-C(13) = 10.9 Hz; o-CTPPO), 133.1, 133.4, 133.8, 135.7, 

136.0, 136.4, 164.3 (O-C),164.6 ppm (O-C); 

31P{1H}-NMR (243 MHz, C6D6, 298 K, 75 mM, prepared in-situ): δ = 25.0 (br, free TPPO), 

34.6 (d, JY-P(31) = 10.4 Hz; 1-Y(TPPO)), 38.3 (d, JY-P(31) = 12.8 Hz; [1-Y(TPPO)2]2), 38.9 (d, 

JY-P(31) = 10.3 Hz; 1-Y(TPPO)) ppm; 

(R)-3-acetoxybutyric acid methylester [(R)-3-OAcBMe] 

OAc

OMe

O

 

In a 50 mL flask, acetyl chloride (2.40 g, 30.6 mmol, 1.2 equiv.; MW = 78.50) was added to a 

solution of (R)-Methyl 3-hydroxybutanoate (3.01 g, 25.5 mmol, 1.0 equiv.) and pyridine (3.02 
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g, 38.2 mmol, 1.5 equiv.) in 15 mL CH2Cl2. The reaction was stirred at ambient temperature 

for 6 h. Saturated NH4Cl solution (15 mL) was added to the reaction, followed by deionized 

water (15 mL) to dissolve all solids. The organic phase was isolated and washed with saturated 

NH4Cl solution (3 x 10 mL). The combined organic layer was evaporated under reduced 

pressure and redissolved with Et2O (20 mL). The mixture was dried with Na2SO4, filtrated 

through activated carbon and Celite®, and dried under reduced pressure to yield (R)-3-

OAcBMe as a colorless oil. Yield: 3.25 g (20.3 mmol, 80% yield; MW: 160.17 g•mol-1). The 

1H-NMR spectrum is in agreement with the previous report.101 

1H-NMR (400 MHz, CDCl3, 298 K): δ = 1.29 (d, J = 6.3 Hz, 3H; CHMe), 2.02 (s, 3H; COMe), 

2.50 (dd, J = 15.6, 5.8 Hz, 1H; COCH2), 2.64 (dd, J = 15.6, 7.4 Hz, 1H; COCH2), 3.68 (s, 3H; 

OMe), 5.26 ppm (hex, J = 6.2 Hz, 1H; CH); 

1H-NMR (400 MHz, C6D6, 298 K): δ = 1.05 (d, J = 6.3 Hz, 3H; CHMe), 1.64 (s, 3H; COMe), 

2.14 (dd, J = 15.6, 5.6 Hz, 1H; COCH2), 2.40 (dd, J = 15.6, 7.4 Hz, 1H; COCH2), 3.30 (s, 3H; 

OMe), 5.33 ppm (hex, J = 6.2 Hz, 1H; CH). 
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2.4.3. Experimental Procedures 

Typical polymerization procedures 

Reactions at ambient temperature: 

In a glovebox, a 2 mL scintillation vial was charged with Rare-earth catalyst [e.g. 1-La(TPPO)2 

(5.7 mg, 0.0060 mmol, 1.0 equiv.; MW: 957.27 g•mol-1)], neutral ligand [if needed, e.g. TPPO 

(3.4 mg, 0.012 mmol, 2.0 equiv.; MW: 278.29 g•mol-1)] and toluene (0.382 mL). A toluene 

solution of iPrOH (2% m/m, 0.021 mL, ρ = 0.867 g/mL; 0.36 mg, 0.0060 mmol, 1.0 equiv.; 

MW: 60.10 g•mol-1) was then added to the clear colorless solution. After approximately one 

minute, rac-BBL (103 mg, 1.20 mmol, 200 equiv.; MW: 86.09 g•mol-1) was added to the 

catalyst solution. After 1 h, the reaction was quenched by a methanol solution of AcOH (10% 

v/v, ca. 0.1 mL), and volatiles were removed under reduced pressure. 

Analysis of reaction progress prior to quenching: 

An aliquot of the reaction is removed and dissolved in CDCl3 for NMR analysis without 

additional quenching. The CDCl3 solution is evaporated in vacuo for GPC analysis.  

Reactions at 0 and –30 °C: 

In a glovebox, a J-Young NMR tube was charged with 1-La(TPPO)2 (8.2 mg, 0.0060 mmol, 

1.0 equiv.; MW: 1369.64 g•mol-1) and toluene (0.382 mL). A toluene solution of iPrOH (2% 

m/m, 0.021 mL, ρ = 0.867 g/mL; 0.36 mg, 0.0060 mmol, 1.0 equiv.; MW: 60.10 g•mol-1) was 

then added to the clear colorless solution. After approximately one minute, the solution was 

then chilled to –30 °C in the glovebox freezer and pre-chilled (–30 °C) rac-BBL (103 mg, 1.20 

mmol, 200 equiv.; MW: 86.09 g•mol-1) was added to the catalyst solution. The tube was then 
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immediately removed from the glovebox and reacted in a 0 oC or –30 oC bath. After 1 h, the 

reaction was quenched by a methanol solution of AcOH (10% v/v, ca. 0.1 mL), and all volatiles 

were removed under reduced pressure. 

NMR studies of relevant catalyst species in the ROP of rac-BBL 

Room Temperature (1–La + 1 iPrOH + 1 or 2 equiv. TPPO) 

A screw-capped NMR tube was charged with 1-La (5.7 mg, 0.0060 mmol, 1.0 equiv.; MW: 

957.27 g•mol-1), TPPO (1.7 mg, 0.0060 mmol, 1.0 equiv.; 3.4 mg, 0.012 mmol, 2.0 equiv.; MW: 

278.29 g•mol-1), toluene (0.382 mL), and C6D6 (0.025 mL). The sample was removed from the 

glovebox and NMR spectra were taken. A toluene solution of iPrOH (2% m/m, 0.021 mL, ρ = 

0.867 g/mL; 0.36 mg, 0.0060 mmol, 1.0 equiv.; MW: 60.10 g•mol-1) was added inside the 

glovebox, and NMR spectra were recorded. rac-BBL (103 mg, 1.20 mmol, 200 equiv.; MW: 

86.09 g•mol-1) was then added to catalyst solution and NMR spectra were recorded at varying 

time points. Reaction conversion was determined by 1H-NMR taken immediately before and 

after the 31P{1H}-NMR spectra were taken. 

–30 oC (1-La(TPPO)2 + 1 iPrOH) 

A J-Young NMR tube was charged with 1-La(TPPO)2 (12.0 mg, 0.0088 mmol, 1.0 equiv.; 

MW: 1369.64 g•mol-1) and toluene-d8 (0.350 mL). PPh3 (1.0 mg, 0.0040 mmol, 0.45 equiv.; 

MW: 262.29 g•mol-1) was also added to calibrate line width in the 31P-NMR spectra. The 

sample was removed from the glovebox, cooled to –30 oC in the NMR spectrometer, and 

spectra were taken. The sample was then brought inside of the glovebox, and a toluene solution 

of iPrOH (2% m/m, 0.031 mL, ρ = 0.867 g/mL; 0.53 mg, 0.0088 mmol, 1.0 equiv; MW: 60.10 
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g•mol-1) was added to the tube. The sample was cooled to –30 oC in the NMR spectrometer, 

and spectra were recorded. The sample was then brought inside of the glovebox and chilled in 

the glovebox freezer to –30 oC. rac-BBL (75 mg, 0.88 mmol, 100 equiv.; MW: 86.09 g•mol-1) 

was chilled at –30 oC, and then added to the NMR tube. The tube was immediately removed 

from the glovebox and chilled to –78 oC (iPrOH-dry ice bath) for the brief period of time needed 

to transport the sample to the spectrometer. The sample was then loaded to the pre-cooled 

spectrometer (–30 oC) and spectra were taken immediately. 

After 25 min, the spectrometer was warmed to –15 oC and 0 oC and spectra were recorded after 

5 min of thermal equilibration. The total warming process was 30 min, and corresponded to an 

increase in reaction conversion from 48 to 67% during this time. 

Sample for end-group analysis (MALDI-TOF and NMR)  

In a glovebox, a 2 mL scintillation vial was charged with 1-La (37 mg, 0.031 mmol, 1.0 equiv.; 

MW: 1369.64 g•mol-1) and toluene (0.310 mL). A toluene solution of iPrOH (2% m/m, 0.109 

mL, ρ = 0.867 g/mL; 1.86 mg, 0.031 mmol, 1.0 equiv.; MW: 60.10 g•mol-1) was then added to 

the clear colorless solution. After approximately one minute, rac-BBL (108 mg, 1.25 mmol, 40 

equiv.; MW: 86.09 g•mol-1) was added to the catalyst solution. After 1 h, the reaction reached 

full conversion, was quenched by a drop of acetic acid, and all volatiles were removed under 

reduced pressure. iPrOH (1 mL) was added to the residual material precipitating the polymer 

and the liquid was decanted. The polymer was washed with iPrOH (1 mL) and dried under 

reduced pressure. This material was used for NMR, GPC and MALDI analysis. 

Measurement of Mn and Đ as a function of conversion 
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In a glovebox, a 20 mL scintillation vial was charged with 1-La(TPPO)2 (16.4 mg, 0.012 mmol, 

1.0 equiv.; MW: 1369.64 g•mol-1), a Teflon-coated stirbar and toluene (0.763 mL). A toluene 

solution of iPrOH (2.0% m/m, 0.042 mL, ρ = 0.867 g/mL; 0.72 mg, 0.012 mmol, 1.0 equiv.; 

MW: 60.10 g•mol-1) was added to the clear colorless solution. After approximately one minute, 

rac-BBL (207 mg, 2.40 mmol, 200 equiv.; MW: 86.09 g•mol-1) was added to the stirring 

catalyst solution. After various time, 0.050 mL reaction solution was added to 0.050 mL 

5%(m/m) benzoic acid solution in toluene to quench. The quenched mixture was dissolved in 

0.5 mL CDCl3 for NMR analysis. The NMR sample was evaporated under reduced pressure 

and dissolved in 1 mL THF for GPC analysis.  

Reactivity studies of 1-La and 1-La(TPPO)2 in the presence of 1 equiv iPrOH and 15 equiv. 

(R)-3-acetoxybutyric acid methylester [(R)-3-OAcBMe] 

A screw-capped NMR tube was charged with 1-La (6.9 mg, 0.0072 mmol, 1.0 equiv.; MW: 

957.27 g•mol-1) or 1-La(TPPO)2 (9.9 mg, 0.0072 mmol, 1.0 equiv.; MW: 1369.64 g•mol-1) 

and C6D6 (0.558 mL). A toluene solution of iPrOH (2% m/m, 0.025 mL, ρ = 0.867 g/mL; 0.43 

mg, 0.0072 mmol, 1.0 equiv.; MW: 60.10 g•mol-1) and (R)-3-OAcBMe (17.3 mg, 0.105 mmol, 

15 equiv.; MW: 160.17 g•mol-1) were added. NMR spectra were taken at 0.5 h and 7 h. 
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2.4.4. Supporting Data and Spectra 

 
Figure 2.18a. 1H-NMR (CDCl3, 400 MHz) spectra of H21L. 
 

 
Figure 2.18b. 13C-NMR (CDCl3, 101 MHz) spectra of H21L. 
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Figure 2.18c. 1H-NMR (C6D6, 400 MHz) spectra of H21L. 
 

 
Figure 2.19a. 1H-NMR (C6D6, 600 MHz) spectra of 1-La.  
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Figure 2.19b. 13C-NMR (C6D6, 152 MHz) spectra of 1-La. 
 

 
Figure 2.19c. IR (Nujol) spectra of 1-La. (*: Nujol). 
 

* 

N
O

O
t-Bu

t-But-Bu

t-Bu

La N(SiHMe2)2

THF

THF

* 
* 

* 
* 

70



 
Figure 2.20a. 1H-NMR (C6D6, 600 MHz) spectra of 1-Y2. (*: HN(SiHMe2)2).  
 

 
Figure 2.20b. 13C-NMR (C6D6, 152 MHz) spectra of 1-Y2. (*: HN(SiHMe2)2, **: toluene). 
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Figure 2.20c. Selected regions of 1H-13C HMBC (600 MHz for 1H in C6D6) of 1-Y2 

 

 
Figure 2.20d. IR (Nujol) spectra of 1-Y2. (*: Nujol). 
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Figure 2.21a. 1H-NMR (C6D6, 600 MHz) spectra of 1-La(TPPO)2.  
 

 
Figure 2.21b. 13C-NMR (C6D6, 152 MHz) spectra of 1-La(TPPO)2.  

N
O

O
t-Bu

t-But-Bu

t-Bu

La N(SiHMe2)2

OPPh3

OPPh3

N
O

O
t-Bu

t-But-Bu

t-Bu

La N(SiHMe2)2

OPPh3

OPPh3

73



Figure 2.21c. 31P{1H}-NMR (C6D6, 243 MHz) spectra of 1-La(TPPO)2. 

Figure 2.21d. IR (Nujol) spectra of 1-La(TPPO)2. (*: Nujol). 
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Figure 2.22a. 1H-NMR (C6D6, 400 MHz, 25 mM) spectra of crystallized 1-Y(TPPO)2. (*: 1-
Y(TPPO)2; **: [1-Y(TPPO)2]2; #: 1-Y(TPPO)). 
 

 
Figure 2.22b. 31P{1H}-NMR (C6D6, 162 MHz, 25 mM) spectra of crystallized 1-Y(TPPO)2. 
(*: 1-Y(TPPO)2; **: [1-Y(TPPO)2]2; #: 1-Y(TPPO)). 
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Figure 2.22c. 1H-NMR (C6D6, 600 MHz, 75 mM) spectra of in-situ prepared 1-Y(TPPO)2. 
(**: [1-Y(TPPO)2]2; #: 1-Y(TPPO)). 
 

 
Figure 2.22d. 13C-NMR (C6D6, 152 MHz, 75 mM) spectra of in-situ prepared 1-Y(TPPO)2. 
(*: THF; **: toluene; ***: HN(SiHMe2)2). 
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Figure 2.22e. 31P{1H}-NMR (C6D6, 243 MHz, 75 mM) spectra of in-situ prepared 1-
Y(TPPO)2. (**: [1-Y(TPPO)2]2; #: 1-Y(TPPO)). 
 

 
Figure 2.22f. IR (Nujol) spectra of 1-Y(TPPO)2. (*: Nujol). 
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Figure 2.23a. 1H-NMR (600 MHz, C6D6, 298 K) of 1-Y(TPPO)2 prepared in-situ from 1-Y2 
and TPPO (75 mM [Y], 2 equiv TPPO / [Y]; red, top) and re-dissolved crystalline 1-Y(TPPO)2 
(25 mM, blue, bottom). 

 
Figure 2.23b. 31P{1H}-NMR (243 MHz, C6D6, 298 K) of 1-Y(TPPO)2 prepared in-situ from 
1-Y2 and TPPO (75 mM [Y], 2 equiv TPPO / [Y]; red, top) and re-dissolved crystalline 1-
Y(TPPO)2 (25 mM, blue, bottom). 
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Table 2.9. Diffusion coefficients, D, and estimated hydrodynamic radii, rH, measured by 1H 
DOSY NMR of 1-RE complexes (1-La, 1-La(TPPO)2, 1-Y2, 1-Y(TPPO)2 and [1-
Y(TPPO)2]2) 

Species 
DFc 

(10-10 m2/s)a 

D 

(10-10 m2/s) 
DFc/D 

rH(DOSY)b 

(Å) 

rH(theo.)c 

(Å) 

Fcd - - - - 2.166 

1-La 13.2 5.10 2.59 5.61 6.011 

1-La(TPPO)2 12.8 4.13 3.10 6.71 6.764 

1-Y2 11.8 3.56 3.31 7.18 7.361e 

1-Y(TPPO)2f 11.1 3.54 3.14 6.79 6.791 

[1-Y(TPPO)2]2f 11.1 2.37 4.68 10.14 - 

a – DOSY measured diffusion coefficient of ferrocene (Fc) in the experiment 

of the corresponding complex. DOSY measured diffusion coefficient of the 

sample b – rH = DFc/Dsample∙rH(Fc, theo.). c – rH(theo.) is the average of half 

lengths of the principal axes of the homogeneous ellipsoid with the same 

principal moments of inertia of the molecule, which are determined from the 

crystal structure. d – Fc was added to each sample as an internal standard to 

cancel the fluctuation of temperature and viscosity, of which the diffusion 

coefficient varies. e – Estimated according to structure of 3-Y2,12 due to the 

lack of X-ray structure of 1-Y2. f – Prepared in-situ with 1-Y2 and addition of 

TPPO (2 equiv). 
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Figure 2.24. 1H DOSY NMR (400 MHz, C6D6) of a mixture of 1-La and ferrocene (Fc). In 0.5 
mL C6D6, 1-La (10 mg, 0.010 mmol, 1.0 equiv; MW: 957.27 g•mol-1) and Fc (3.2 mg, 0.017 
mmol, 1.7 equiv; MW: 186.04 g•mol-1) were dissolved. Diffusion time was (Δ, d20) 100 ms, 
and the rectangular gradient pulse duration (δ, p30) was 1200 µs. 
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Figure 2.25. 1H DOSY NMR (600 MHz, C6D6) of a mixture of 1-Y2 and Fc. In 0.5 mL C6D6, 
1-Y2 (10 mg, 0.007 mmol, 1.0 equiv; MW: 1526.12 g•mol-1) and Fc (0.4 mg, 0.002 mmol, 0.34 
equiv; MW: 186.04 g•mol-1) were dissolved. Diffusion time was (Δ, d20) 100 ms, and the 
rectangular gradient pulse duration (δ, p30) was 1000 µs. 
 

 
Figure 2.26. 1H DOSY NMR (400 MHz, C6D6) of a mixture of 1-La(TPPO)2 and Fc. In 0.5 
mL C6D6, 1-La (10 mg, 0.007 mmol, 1.0 equiv; MW: 1369.64 g•mol-1) and Fc (0.5 mg, 0.003 
mmol, 0.37 equiv; MW: 186.04 g•mol-1) were dissolved. Diffusion time was (Δ, d20) 100 ms, 
and the rectangular gradient pulse duration (δ, p30) was 1200 µs. 
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Figure 2.27. 1H DOSY NMR (600 MHz, C6D6) of a mixture of 1-Y(TPPO)2, and Fc. In 0.5 
mL C6D6, 1-Y(TPPO)2 (16 mg, 0.012 mmol, 1.0 equiv; MW: 1319.64 g•mol-1), and Fc (0.4 
mg, 0.002 mmol, 0.17 equiv; MW: 186.04 g•mol-1) were dissolved. 1 h later, DOSY was taken. 
Diffusion time was (Δ, d20) 100 ms, and the rectangular gradient pulse duration (δ, p30) was 
1400 µs.  

 
Figure 2.28. 1H DOSY NMR (600 MHz, C6D6) of a mixture of 1-Y2, Fc, and TPPO. In 0.5 mL 
C6D6, 1-Y2 (10 mg, 0.007 mmol, 1.0 equiv; MW: 1526.12 g•mol-1), Fc (0.4 mg, 0.002 mmol, 
0.34 equiv; MW: 186.04 g•mol-1) and TPPO (7.3 mg, 0.007 mmol, 4.0 equiv; MW: 278.29 
g•mol-1) were dissolved. 7 h later, DOSY was taken. Diffusion time was (Δ, d20) 100 ms, and 
the rectangular gradient pulse duration (δ, p30) was 1400 µs. Note: Spectrum was nearly 
identical to authentic 1-Y(TPPO)2 (Figure 2.27, nearly the same [Y] concentration). 
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Figure 2.29. GPC calibration curve using polystyrene standards (orange) and GPC trace (blue) 
of Table 2.3, entry 6. Reaction was performed in toluene at ambient temperature with [BBL]/[1-
La]/[TPPO]/[iPrOH] = 200/1/2/1 and [BBL] = 2.4 M within 1 h. Conversion = 97%, Mn = 9.6 
kg/mol (corrected by Mark-Houwink factor of 0.54), Đ = 1.18 
 

 

Figure 2.30. Carbonyl region of IG-13C-NMR (152 MHz, CDCl3) of P3HB with different Pm. 
(a) Table 2.5, entry 4 (1-La + 2 TPPO + iPrOH, –30 °C), (b) Table 2.8, entry 7 (0.5 1-Y2 + 2 
TPPO + iPrOH), (c) Table 2.8, entry 8 (2-Y + iPrOH). 
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Table 2.10. Crystallographic parameters for compounds 1-La, 1-La(TPPO)2, and 1-
Y(TPPO)2 

 1-La 1-La(TPPO)2 1-Y(TPPO)2 
Empirical formula C49H83LaN2O4Si2 C91H111LaN2O4P2Si2 C91H111N2O4P2Si2Y 
Formula weight 959.26 1553.84 1503.84 
Temperature/K 173.2 173.21 173.19 
Crystal system monoclinic monoclinic monoclinic 
Space group P21/c P21/n P21/n 
a/Å 17.0458(16) 15.355(2) 15.2210(16) 
b/Å 16.5877(16) 15.378(2) 15.3725(15) 
c/Å 19.5942(17) 35.734(5) 35.552(4) 
α/° 90 90 90 
β/° 112.851(3) 94.563(5) 93.759(3) 
γ/° 90 90 90 
Volume/Å3 5105.5(8) 8411(2) 8300.7(15) 
Z 4 4 4 
ρcalcg/cm3 1.248 1.227 1.203 
μ/mm-1 0.925 0.624 0.820 
F(000) 2032.0 3272.0 3200.0 
Crystal size/mm3 0.25 × 0.25 × 0.2 0.14 × 0.12 × 0.1 0.3 × 0.2 × 0.1 
Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 
collection/° 3.57 to 55.872 3.862 to 55.2 3.992 to 55.156 

Index ranges -22 ≤ h ≤ 22, -21 ≤ k ≤ 
21, -25 ≤ l ≤ 25 

-19 ≤ h ≤ 20, -20 ≤ k ≤ 
19, -46 ≤ l ≤ 44 

-19 ≤ h ≤ 19, -19 ≤ k 
≤ 19, -46 ≤ l ≤ 46 

Reflections 
collected 192582 152196 166733 

Independent 
reflections 

11709 [Rint = 0.1329, 
Rsigma = 0.0585] 

19424 [Rint = 0.1040, 
Rsigma = 0.0594] 

19123 [Rint = 0.0829, 
Rsigma = 0.0489] 

Data/restraints/para
meters 11709/0/549 19424/175/886 19123/164/875 

Goodness-of-fit on 
F2 1.022 1.046 1.018 

Final R indexes 
[I>=2σ (I)] 

R1 = 0.0527, wR2 = 
0.0906 

R1 = 0.0528, wR2 = 
0.1315 

R1 = 0.0477, wR2 = 
0.1238 

Final R indexes [all 
data] 

R1 = 0.0847, wR2 = 
0.1021 

R1 = 0.0659, wR2 = 
0.1399 

R1 = 0.0615, wR2 = 
0.1332 

Largest diff. 
peak/hole / e Å-3 1.17/-0.83 0.48/-0.89 0.94/-0.81 

CCDC Dep. # 1980000 1980001 1980002 
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Figure 2.31. Thermal ellipsoid plot of 1-La ([La(1L)(N(SiHMe2)2)(Et2O)(THF)]) shown at 50% 
probability. Hydrogen atoms other than those attached to Si(1) and Si(2) have been removed 
for clarity. Crystallographic data are available on Cambridge Crystallographic Data Centre. 
CCDC ID: LUSFUD. 
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Figure 2.32. Thermal ellipsoid plot of 1-La(TPPO)2 ([La(1L)(N(SiHMe2)2)(TPPO)2]) shown 
at 50% probability. Second components of the two disordered tert-butyl groups and the (Me2H) 
unit on Si(2) have been removed for clarity. Hydrogen atoms other than those attached to Si(1) 
and Si(2) have been removed for clarity. Crystallographic data are available on Cambridge 
Crystallographic Data Centre. CCDC ID: LUSGAK. 
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Figure 2.33. Thermal ellipsoid plot of 1-Y(TPPO)2 ([Y(1L)(N(SiHMe2)2)(TPPO)2]) shown at 
50% probability. Second components of the two disordered tert-butyl groups have been 
removed for clarity. Hydrogen atoms other than those attached to Si(1) and Si(2) have been 
removed for clarity. Crystallographic data are available on Cambridge Crystallographic Data 
Centre. CCDC ID: LUSGEO. 
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Chapter 3: N-Oxides Amplify Catalyst Reactivity and Iso-

selectivity in the Ring-Opening Polymerization of 

rac-β-BBL 

 

Abstract 

N-oxides can amplify the performance of a lanthanum aminobisphenolate catalyst in the ring-

opening polymerization (ROP) of rac-β-butyrolactone (rac-BBL) to unprecedented levels 

(TOF up to 1,900 h-1, Pm up to 0.82). Experiments and computations establish that donor 

electronics control catalyst activity, while donor steric bulk in the primary coordination-sphere 

is crucial to suppressing catalyst deactivation. 
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3.1. Introduction 

In Chapter 2, we have discovered that embedding increased coordinative unsaturation and 

ligand flexibility into rare-earth complexes can generate catalysts whose performance in the 

stereospecific ROP of rac-BBL can be amplified by addition of simple and inexpensive 

monodentate neutral donor ligands.1-2 In the case of a lanthanum N-benzyl aminobisphenolate 

catalyst, [La(BnL)(N(SiHMe2)2)(THF)2] (BnL: BnN(CH22,6-tBuArO)2), 1-La, addition of hard 

phosphine oxide donors (OPR3; R = nC8H17, Ph, NMe2) generated the most isoselective and 

reactive homogeneous catalysts for the ROP of rac-BBL reported to date (e.g. OP(nC8H17)3, 

0 °C: TOF = ~200 h-1, Pm = 0.80).1 Our initial mechanistic studies with OPPh3 revealed that 

these dynamic, strong neutral donors influenced several key catalyst equilibria associated with 

propagation, stereocontrol, and catalyst deactivation. We posited that each of these equilibria, 

and therefore catalyst performance, might be uniquely attenuated by donor structure and 

strength, and motivates our current study. 

 

Heteroaromatic N-oxides are a versatile class of neutral donor ligands with exceptional 

structural and electronic diversity,3-5 and can display donor strength comparable to phosphine-

oxides.6-7 Alkyl and heteroaromatic N-oxides have been employed with great success as 

additives and ligands in asymmetric catalysis,8-14 

 

Herein, we report that N-oxides can promote unprecedented catalyst activity (RT: TOF up to 

1,900 h-1) and isoselectivity (–30 °C: Pm = 0.82) for the ROP of rac-BBL catalyzed by 1-La. 

This marks their first use in ROP. Our combined experimental and computational studies 
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clearly establish that donor electronics control catalyst activity, while donor steric bulk in the 

primary coordination-sphere is crucial to suppressing catalyst deactivation. 
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3.2. Results and Discussion 

1-La was evaluated as a catalyst for the ROP of rac-BBL in the presence of diphenylmethanol 

(HOCHPh2) and pyridine N-oxide derivatives (Table 3.1).15In the absence of a strong neutral 

donor ligand, the lanthanum alkoxide formed in situ from 0.5 mol% 1-La and HOCHPh2 was 

modestly active with a slight preference towards formation of isoenriched P3HB (Entry 1, Pm 

= 0.57). Encouragingly, addition of pyridine N-oxide (PyO, 1 mol%) led to increased rates and 

isoselectivity (entry 3, Pm = 0.68), but performance fell short of monodentate phosphine-oxides 

such as OPPh3 (entry 2). 

 
Table 3.1. ROP of rac-BBL (2.4 M) catalyzed by 1-La (0.5 mol%) in the presence of HOCHPh2 
(0.5 mol%) and neutral donor ligands (1 mol%). 

O

OO
n

Tol, RTO

O
H

rac-BBL isotactic P3HB

200
1 HOCHPh2

1-La

2 Ligand

1-La

N

O

O
tBu

tButBu

tBu

N(SiHMe2)2

O

O

LaIII
N

O

PyO

N

R

O

RLO

O

OCHPh2

 
Entry Ligand Time (h)a Conv. (%)b Mn, calcc (kg/mol) Mn, expd (kg/mol) Đd (Mw/Mn) Pmf 

1 - 1 20 3.4 2.8 1.05 0.57 

2 OPPh3 1 95 16.3 9.4 1.19 0.71 

3 PyO 3 55 9.5 7.1 1.14 0.68 

4 NMe2LO 10 22 3.8 2.2 1.23 0.72 

5 OMeLO 0.1 95 16.3 12.5 1.16 0.73 

6 LO 0.3 92 15.8 11.4 1.18 0.73 

7 ClLO 0.5 93 16.0 11.7 1.16 0.73 

8 NO2LO 5 31 5.3 2.2 1.28 0.69 

9 OMeLOg  1 99 17.0 15.1 1.08 0.82 
a – Reaction times not optimized. b – Determined by 1H NMR integration of BBL and P3HB methine resonances 
in the crude reaction mixture. c – [BBL]/[RE] × Conv. × 0.08609 + 0.18323 kg/mol. d – Determined by gel 
permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by a Mark-
Houwink factor of 0.54.15 e – Mw/Mn. f – Probability of meso linkages between repeat units. Determined by 
integration of P3HB C=O resonances using inverse gated (IG) 13C{1H} NMR. g – At –30 °C. 
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We hypothesized this was due to electronic and steric effects. Electronically, PyO is a weaker 

donor than OPPh3 by the 4-fluorophenol hydrogen-bond basicity scale,16 while buried volume 

calculations (%Vbur) support a significantly reduced steric profile for PyO relative to OPPh3 

(%Vbur(PyO): 12.4%, %Vbur(OPPh3): 16.3%; Table 3.2 and 3.3). Alternatively, 4-substituted 

2,6-dimethylpyridine (lutidine) N-oxide derivatives, RLO (R = NO2, Cl, H, OMe, NMe2), were 

identified as attractive candidates. The steric profile of RLO (Table 3.2; %Vbur: 15.9%) are 

comparable to OPPh3, while experimental aqueous pKa values (pKaW(NO2LO): 1.01, 

pKaW(NMe2LO): 4.75)17-18 and calculated natural charges of the N-oxide oxygen (qO(NO2LO): –

0.541, qO(NMe2LO): –0.658; Figure 3.1 and Table 3.4) suggested that Lewis basicity could be 

systematically tuned within a sterically conserved environment. 

 
Table 3.2. %Vbur(r3.5) of OPPh3 (CSD: TPEPHO) 
 

Quadrant Vfree Vbur Vtotal %Vfree %Vbur 

SW 36.2 8.7 44.9 80.7 19.3 

NW 36.4 8.4 44.9 81.2 18.8 

NE 38.5 6.3 44.9 85.9 14.1 

SE 39 5.9 44.9 86.9 13.1 

 %Vfree = 83.7% // %Vbur = 16.3% 
 
Table 3.3. %Vbur(r3.5) of PyO (CSD: ACOHAC) 
 

Quadrant Vfree Vbur Vtotal %Vfree %Vbur 

SW 39.3 5.5 44.9 87.7 12.3 

NW 39.2 5.6 44.9 87.4 12.6 

NE 39.3 5.5 44.9 87.7 12.3 

SE 39.2 5.6 44.9 87.4 12.6 

 %Vfree = 87.6% // %Vbur = 12.4% 
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Figure 3.1. Graphs illustrating N-O Bond length, vN-O, qN, and qO as a function of σp for 
lutidine N-oxide structures. 
 
Table 3.4. N-O Bond length, vN-O, qN, and qO as a function of σp for lutidine N-oxide structures. 
Frequency calculations were performed in Gaussian09 while natural charges were calculated 
using NBO 3.1 (see Section 3.5). 
 

R σp N-O Bond Length (Å) vN-O (cm-1) Natural Charge (qN) Natural Charge (qO) 

NMe2 -0.83 1.30116 1285.26 0.04481 -0.65764 

OMe -0.268 1.29356 1298.77 0.06075 -0.62840 

H 0 1.28346 1309.54 0.08642 -0.60003 

Cl 0.227 1.28273 1312.83 0.08406 -0.59850 

NO2 0.778 1.26381 1354.10 0.11326 -0.54126 

 

Although catalyst isoselectivity was largely invariant with respect to donor strength (Table 3.1, 

entries 4–8; Pm = 0.69–0.73), catalyst activity was extremely sensitive to the electronics of 

RLO. Catalyst turnover frequency varied ~430-fold, where peak values occurred with an N-

oxide of intermediate donor strength, OMeLO (Figure 3.2). The overall trend in activity was 

reminiscent of volcano plots19-20 following Sabatier’s principle.21 Such effects are frequently 
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encountered in heterogeneous systems, but have only recently been observed in homogeneous 

catalysis.22-24 At RT, exogenous OMeLO promoted a remarkable 10-fold increase in catalyst 

activity compared to the previous champion system (1-La / L; TOF(OMeLO) ~1,900 h-1 vs 

TOF(OPPh3) ~200 h-1). Lowering the reaction temperature to –30 °C led to significant 

improvements in isoselectivity, while maintaining high catalyst activity (entry 9: Pm = 0.82, 

TOF ~200 h-1). The 1-La / OMeLO system is the most active isoselective catalyst for the ROP 

of rac-BBL reported to date, and marks the first report of using N-oxides as ligands in ROP. 

 
Figure 3.2. Turnover frequencies (TOF, min-1) plotted versus σp (Hammett para-substituent 
constant) for the ROP of rac-BBL with 1-La + HOCHPh2 + RLO. Reactions were performed 
in toluene at ambient temperature with [BBL]:[1-La]:[RLO]:[HOCHPh2] = 200:1:2:1 and 
[BBL] = 2.4 M. 
 

 
Figure 3.3. 1H-NMR (600 MHz, CDCl3) of P3HB (Table 3.1, entry 5). Reaction was performed 
in toluene at ambient temperature with [BBL]:[1-La]:[OMeLO]:[Ph2CHOH] = 200:1:2:1 and 
[BBL] = 2.4 M within 0.1 h. The polymer was precipitated from and washed with MeOH. 
Peaks of Ph2CH and CH-OH are consistent with those of benzhydryl-3-oxobutanoate.25 
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Insight into the mechanism of catalyst initiation and propagation was provided by end-group 

analysis of P3HB generated from 1-La in the presence of HOCHPh2 and OMeLO at –30 °C ([1-

La]:[HOCHPh2]:[OMeLO]:[BBL], 1:1:2:200). 1H NMR spectroscopy revealed the presence of 

ester and alcohol end-groups in a ~1:1 ratio (Figure 3.3), which unambiguously established 

that the ROP of rac-BBL proceeded through a coordination-insertion mechanism (i.e. acyl 

cleavage).26-27 Following a coordination-insertion mechanism, formation of crotyl end-groups 

can be symptomatic of a common catalyst deactivation pathway for the ROP of BBL, polymer 

chain-scission via base-promoted elimination.1, 28-29 Gratifyingly, crotyl end-groups were 

nearly undetectable in these P3HB samples (< ~0.02 equiv / 1-La), indicative that N-oxide 

binding suppressed base-promoted elimination to a much greater extent than P-oxide donors 

(e.g. OPPh3: 1 equiv / 1-La).1 This was further corroborated by the excellent agreement 

between experimental and calculated Mn and narrow Đ maintained over the course of the 

reaction (Figure 3.4 and Table 3.5).  

 
Figure 3.4. Plot of P3HB Mn and molecular weight dispersity, Đ (Mw/Mn), as a function of 
conversion. 1-La = 0.5 mol%, HOCHPh2 = 0.5 mol%, OMeLO = 1 mol%. [rac-BBL] = 2.4 M, 
Tol, –30 °C. 
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Table 3.5. ROP of rac-BBL with 1-La + HOCHPh2 + 2 OMeLO quenched at different times. 

O

O n
Tol, -30 °C

O

O

rac-BBL P3HB

1-La
[BBL]
[BBL] = 200

= 2.4 M

[La]

1 HOCHPh2
2 OMeLO

 
Entry Time (min) Conv. (%)a Mn, calcc (kg/mol) Mn, expc (kg/mol) Đc,d 

1 1 1 0.17 n.d. n.d. 

2 2 3 0.51 n.d. n.d. 

3 3 6 1.0 n.d. n.d. 

4 5 13 2.3 2.3 1.04 

5 10 33 5.6 5.5 1.05 

6 15 51 8.8 8.3 1.05 

7 20 65 11.1 10.2 1.06 

8 25 76 13.1 12.4 1.07 

9 30 87 14.9 13.8 1.08 

10 40 95 16.3 15.0 1.08 
a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction 
mixture. b – [BBL]/[La]/[iPrOH] × Conv. × 0.08609 kg•mol-1. c – Determined by gel permeation 
chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-Houwink 
factor of 0.54. d – Mw/Mn. 

 

Previously, we discovered that strong neutral donor ligands could amplify catalyst performance 

in the ROP of rac-BBL by (i) suppressing catalyst deactivation and (ii) increasing propagation 

rates.1-2 These observations were largely qualitative in nature, and we were unable to fully 

decouple the influence of donors on each of these steps. Propagation rates (kp) devoid of 

contributions from catalyst deactivation and uncontrolled reaction exotherms were obtained 

from kinetic studies performed with 1-La (1 mol%) and RLO or OPPh3 (2 mol%) at RT under 

more dilute conditions (0.3 M vs 2.4 M; see Experiment Section). A Hammett plot of log(kp) 

values revealed a strong rate dependence on donor electronics, where kp varied by ~290-fold 

moving from NO2LO to OMeLO (Figure 3.5). A ρ value of ~–2.4 was obtained from the slope of 

log(kp) values containing NO2LO to OMeLO, and indicated a significant build-up of positive 

charge in the transition-state of the turnover limiting step. A dramatic drop-off in kp was 

observed moving to the most electron-rich RLO of the series, NMe2LO, implying donor strength 
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and ligand exchange play a crucial role in the turnover limiting step. 

 

 
Figure 3.5. Hammett plot of log(kp/kp,0) vs σp for the ROP of rac-BBL (0.3 M) catalyzed by 1-
La (1 mol%) in the presence of HOCHPh2 (1 mol%) and RLO (2 mol%) in toluene at RT. kp: 
propagation rate of RLO (calculated from Table 3.6 and Figure 3.6). kp,0: kp of LO. σp: Hammett 
para-substituent constant. 

 
Figure 3.6. Propagation rate constants (kp) for the ROP of rac-BBL with 1-La + Ph2CHOH + 
RLO. Reactions were performed in toluene at ambient temperature with [BBL]:[1-
La]:[RLO]:[HOCHPh2] = 100:1:2:1 and [BBL] = 0.3 M.  

 

  

RLO log(kpa) 
NMe2LO 0.83 
OMeLO 2.15 

LO 1.67 
ClLO 1.54 

NO2LO –0.30 

a – in min-1•M-1 
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Table 3.6. Conversions in early stage of ROP of rac-BBL with 1-La + HOCHPh2 + RLO 

O

O n
Tol, 25 °C

O

O

rac-BBL P3HB

1-La
[BBL]
[BBL] = 100

= 0.3 M

[La]

1 HOCHPh2
2 RLO

 
NMe2LO OMeLO LO ClLO NO2LO 

Time 
(min) 

Conv. 
(%)a 

Time 
(min) 

Conv. 
(%)a 

Time 
(min) 

Conv. 
(%)a 

Time 
(min) 

Conv. 
(%)a 

Time 
(min) 

Conv. 
(%)a 

2 3.4 0.12 3.7 0.17 4.7 0.17 3.6 5 1.8 
5 8.5 0.25 7.4 0.5 9.5 0.33 5.7 10 3.3 
9 16.8 0.5 14.7 1 15.2 0.5 7.3 25 5.7 

17 29.4 1 31.5 1.5 21.3 1 11.6 40 6.9 
25 38.8 2 57.1 2 26.4 2 20.5   

  3 70.6       

a – Determined by 1H-NMR integration of BBL and P3HB methine resonances in the crude reaction 
mixture.  

 

 
Figure 3.7. 1H-NMR (400 MHz, C6D6, 298 K) of 1-La (30 mM) in the presence of 0, 1, 2 and 
3 equiv. of OMeLO. 
 

Given the unprecedented reactivity of 1-La in the presence of HOCHPh2 and RLO, we set out 

to characterize the metal-ligand adducts to better understand the origin for the donor-amplified 

catalyst performance. A 1:2 binding stoichiometry between [La]:[OMeLO] was determined 
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following the titration of 1-La + HOCHPh2 with varying equivalents of OMeLO (0 – 3 equiv) 

using 1H NMR spectroscopy (Figure 3.7).  

HBnL

THF
60 °C, 2 h

1-La

LaIII[NR2]3(THF)2
N

O

O
tBu

tButBu

tBu

NR2

O

O

LaIIIN

OH

OH
tBu

tButBu

tBu -2 HNR2

THF
RT, 1 min

HOCHPh2
2 L'

4-La(L')2
L' = OPPh3

, 91% yield
L' = OMeLO, 88% yield

N

O

O
tBu

tButBu

tBu

OCHPh2

L'

L'

LaIII

R = Si(HMe2)2

 
Scheme 3.1. Synthesis of 4-La(OPPh3)2 and 4-La(OMeLO)2 
 

Isolation of the 1:2 adducts, [La(BnL)(OCHPh2)(OMeLO)2] (4-La(OMeLO)2) and 

[La(BnL)(OCHPh2)(OPPh3)2] (4-La(OPPh3)2), were achieved in 91% and 88% yield, 

respectively, from the protonolysis of HBnL by La[N(SiHMe2)2]3(THF)2 followed by two 

equivalents OMeLO or OPPh3 (Scheme 3.1). Similar to 1-La(OPPh3), 1H Diffusion-ordered 

NMR spectroscopy (DOSY)30-32 supported monomeric formulations of 4-La(OMeLO)2 and 4-

La(OPPh3)2 in C6D6 (Table 3.7).  

 
Table 3.7. Diffusion coefficients, D, and estimated hydrodynamic radii, rH, measured by 1H 
DOSY NMR of complexes (1-La(OPPh3)2, 4-La(OPPh3)2, and 4-La(OMeLO)2) 

Species DFc (10-10 m2/s)a D (10-10 m2/s) DFc/D rH(DOSY)b (Å) rH(theo.)c (Å) 

Fcd - - - - 2.166 

1-La(OPPh3)2e 12.8 4.13 3.10 6.71 6.764 

4-La(OPPh3)2 15.3 5.07 3.02 6.54 - 

4-La(OMeLO)2 13.5 4.83 2.80 6.05 - 

a – DOSY measured diffusion coefficient of ferrocene (Fc) in the experiment of the corresponding complex. DOSY 
measured diffusion coefficient of the sample b – rH = DFc/Dsample∙rH(Fc, theo.). c – rH(theo.) is the average of half 
lengths of the principal axes of the homogeneous ellipsoid with the same principal moments of inertia of the 
molecule, which are determined from the crystal structure. d – Fc was added to each sample as an internal 
standard to cancel the fluctuation of temperature and viscosity, of which the diffusion coefficient varies. e – From 
Chapter 2. Previously proven to be monomeric in the solid (X-ray diffraction) and solution (DOSY). 

 

At RT, both complexes displayed effective Cs symmetry in solution, which was indicative of 

free rotation about the La–OCHPh2 bond and rapid exchange of the axial neutral donor-ligands 

111



on the NMR timescale. Ligand competition studies performed with 4-La(OPPh3)2 (40 mM, 

C6D6) in the presence of 1 equiv RLO enabled a qualitative ranking of donor strength.  

 
Figure 3.8. 1H-NMR (400 MHz, C6D6, 298 K) and IG-31P-NMR (162 MHz, C6D6, 298 K) of 
4-La(OPPh3)2 (40 mM) and 4-La(OPPh3)2 (40 mM) in the presence of 1 equiv. of RLO. 
 
Table 3.8. Equivalents of free OPPh3 generated upon addition of 1 equiv RLO to 4-La(OPPh3)2 
(C6D6 solution, RT, 40 mM).  

C6D6, 25 °C

= 0.04 M

1 RLO

4-La(OPPh3)2

N

O

O
tBu

tButBu

tBu

OCHPh2

O=PPh3

O=PPh3

LaIII

[La]
4-La(OPPh3)2

N

O

O
tBu

tButBu

tBu

OCHPh2

O=PPh3

RLO

LaIII OPPh3+

 
RLO NMe2LO OMeLO LO ClLO NO2LO 

Equiv. of  
free OPPh3a 1.32b 0.89 0.47 0.37 n.d.c  

(< 0.05) 
a – Determined by integration of inverse-gated (IG) 31P-NMR of free (26 ppm) and coordinated (34 
ppm) OPPh3 resonances. b – The generation of more than one equiv OPPh3 from only one equiv 
NMe2LO suggests that a significant amount of another adduct, [La(BnL)(OCHPh2)(NMe2LO)], must 
also be formed with this strong donor.  c – Not determined; no signal for free OPPh3 was observed. 

Quantification of free- and bound-OPPh3 using inverse-gated 31P NMR generated the following 

series: NMe2LO > OMeLO > OPPh3 ~ LO > ClLO >> NO2LO (Figure 3.8, Table 3.8), where donor 
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order followed expectations based on pKa, σp, and natural charge of free RLO (vide supra). 

Furthermore, OPPh3 and LO displayed comparable binding affinities, which made these ideal 

pairs to delineate the effects of donor sterics on catalyst performance. 

 

Further insight into the structure of these adducts and the origins for enhanced reactivity and 

selectivity in the ROP of rac-BBL were provided by DFT modelling studies for the OPPh3 and 

LO adducts of amide and alkoxide precatalysts (1-La(L)2 and 4-La(L)2; L = OPPh3 and LO). 

For brevity, the discussion will focus on 1-La(L)2, as similar trends were observed for 1-La(L)2 

and 4-La(L)2 (see Computational Section). The optimized structure of 1-La(OPPh3)2 obtained 

at the rM06-L33 level of theory with Grimme’s D3 dispersion correction34 using Stuttgart-

Dresden effective core-potentials on La35-36 and 6-31G*37-39 as a basis set for all other atoms 

was in good agreement with the previously reported X-ray structure (mean unsigned error, 

MUE: 0.0465). Qualitatively, partial space-filling models of 1-La(L)2 revealed that LO and 

OPPh3 exert significant axial steric pressure at the catalyst reaction site (Figure 3.9), and 

perhaps unexpectedly, the planar LO donor can adopt similar conformations to the phenyl rings 

of OPPh3 positioned closest to the reaction site. Natural population analysis performed with 

NBO 3.140 revealed negligible differences in the natural charge of the amido nitrogens 

(qN(SiHMe2)2: 1-La(OPPh3)2 = –1.84, 1-La(LO)2 = –1.85), which implied steric origins for the 

differing performance of these pairs. 

 

Buried volumes calculated from radii drawn to 3.5 Å, %Vbur(r3.5), and 6.5 Å, %Vbur(r6.5), using 

SambVca 2.141 revealed distinct and opposite crowding effects for LO and OPPh3 in the 

primary and secondary coordination spheres (Figure 3.9 and Tables 3.9-3.12). 
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Figure 3.9. Comparison of DFT-optimized structures of (A) 1-La(OPPh3)2 and (B) 1-La(LO)2. 
Space-filling diagram: Neutral donors (OPPh3, LO; orange), BnL (red), LaIII (teal). Capped 
sticks: N(SiHMe2)2. Buried volume (%Vbur) calculated at a radius (r) of 3.5 (white) and 6.5 Å 
(gray). La and N(SiHMe2)2 were excluded from the %Vbur calculations. 
 

For LO, the ortho methyl groups and shallow La–OLO–NLO bond-angles increased steric 

pressure within the primary coordination sphere (%Vbur(r3.5): 1-La(OPPh3)2 = 63.7%, 1-

La(LO)2 = 68.7%), which should further disfavor coordination of P3HB ester linkages and 

therefore limit/suppress base-promoted elimination. The aryl groups of OPPh3 led to significant 

steric crowding in the secondary coordination sphere (%Vbur(r6.5): 1-La(OPPh3)2 = 71.4%, 1-

La(LO)2 = 53.5%); however, these larger structural changes seem to contribute very little, if 

at all, to catalyst isoselectivity and rates 
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Table 3.9. %Vbur(r3.5) of 1-La(OPPh3)2 

Quadrant Vfree Vbur Vtotal %Vfree %Vbur 

SW 10.8 34.0 44.9 24.2 75.8 

NW 16.5 28.4 44.9 36.8 63.2 

NE 11.8 33.0 44.9 26.4 73.6 

SE 16.9 27.9 44.9 37.7 62.3 

 %Vfree = 31.3% // %Vbur = 68.7%  
 
Table 3.10. %Vbur(r6.5) of 1-La(OPPh3)2 

Quadrant Vfree Vbur Vtotal %Vfree %Vbur 

SW 63.4 223.9 287.4 22.1 77.9 

NW 91.5 195.8 287.4 31.9 68.1 

NE 87.7 199.6 287.4 30.5 69.5 

SE 174.2 113.2 287.4 60.6 39.4 

%Vfree = 36.3% // %Vbur = 63.7% 
 
Table 3.11. %Vbur(r3.5) of 1-La(LO)2 

Quadrant Vfree Vbur Vtotal %Vfree %Vbur 

SW 8.1 36.8 44.9 18.0 82.0 

NW 13.5 31.4 44.9 30.1 69.9 

NE 11.1 33.8 44.9 24.7 75.3 

SE 18.7 26.2 44.9 41.6 58.4 

 %Vfree = 28.6% // %Vbur = 71.4%  
 
Table 3.12. %Vbur(r6.5) of 1-La(LO)2 

Quadrant Vfree Vbur Vtotal %Vfree %Vbur 

SW 117.4 169.9 287.4 40.9 59.1 

NW 106.1 181.3 287.4 36.9 63.1 

NE 125.9 161.4 287.4 43.8 56.2 

SE 185.6 101.7 287.4 64.6 35.4 

%Vfree = 46.5% // %Vbur = 53.5% 
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3.3. Conclusions 

In closing, N-oxides can amplify catalyst performance in stereospecific ROP to unprecedented 

levels, where addition of OMeLO to 1-La generates the most active isoselective catalyst for the 

ROP of rac-BBL reported to date. Our experimental and computational studies begin to 

establish clear connections between donor structure and strength on catalyst performance. 

Donor strength is clearly the presiding factor controlling catalyst activity in these systems, 

where the turnover limiting step is highly dependent on donor binding equilibria. Alternatively, 

the donor’s steric profile in the primary coordination sphere plays a large role in suppressing 

catalyst deactivation. While the presence of a donor is crucial to the observed stereoselectivity, 

Pm were found to be nearly independent of donor strength and steric profile. Our results suggest 

that further improvements in catalyst performance might be realized by varying the donor steric 

profile in the primary coordination sphere, and optimizing binding affinity via attenuated donor 

electronics. 
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3.4. Experimental Section 

3.4.1. General Methods 

Instruments and measurements: Unless specified, all reactions were performed under inert 

conditions (N2) using standard Schlenk techniques or in a MBraun drybox equipped with a 

standard catalyst purifier and solvent trap. Glassware was oven-dried for at least 2 h at 150 °C 

prior to use. Celite and 3 Å molecular sieves were heated under reduced pressure at 300 °C for 

at least 24 h and then cooled under vacuum prior to use. The following spectrometers were 

used for NMR characterization: Bruker Avance III HD Ascend (1H: 600 MHz, 13C: 151 MHz, 

31P: 243 MHz) and a Bruker DRX (1H: 400 MHz, 13C: 101 MHz, 31P: 162 MHz). 1H- and 13C-

NMR shifts are referenced relative to the solvent signal (CDCl3: 1H: 7.26 ppm, 13C: 77.16 ppm; 

C6D6: 1H: 7.16 ppm, 13C: 128.06 ppm), while 31P-NMR shifts are referenced relative to external 

solution standards (H3PO4, 0 ppm). Both instruments were equipped with Z-gradient BBFO 

probes. Polymer tacticity (Pm, percentage of meso diads) was measured using a 13C inverse-

gated pulse sequence, followed by integration of the C=O resonances (Figure 3.15). 

 

Gel permeation chromatography (GPC) measurements were performed using an Agilent 1260 

equipped with two Poroshell 120 EC-C18 columns heated at 35 °C (4.6 x 100 mm, 2.7 μm) 

and a UV-vis diode-array detector and refractive detector. The eluent was inhibitor-free THF, 

and the system was calibrated with standard polystyrene standards ranging from 580 to 

1,500,000 Da. Reported molecular weights are those obtained from GPC corrected by a Mark-

Houwink factor of 0.54.15 Unless stated otherwise, all GPC samples were of the quenched crude 

reaction mixtures (not precipitated or purified polymers). Elemental analyses were performed 
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by CENTC Elemental Analysis Facility at University of Rochester (Rochester, NY) for air-

sensitive compounds (1-RE and 1-RE(OPPh3)2) respectively. Samples were shipped in a 

sealed 2 mL vial that was placed in a 20 mL scintillation vial and sealed, which were then 

placed in a vacuum-sealed plastic bag. 

 

Materials: Tetrahydrofuran, diethyl ether, toluene, hexanes, and pentane were purchased from 

Fisher Scientific. Solvents were sparged for 20 min with dry Ar and dried using a commercial 

two-column solvent purification system (LC Technologies). Solvents were further dried by 

storing them over 3 Å molecular sieves for at least 48 h prior to use. Ultrapure, deionized water 

(18.2 MΩ) was obtained from a Millipore Direct-Q 3 UV Water Purification System. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. C6D6 was 

degassed with 3 freeze-pump-thaw cycles and stored over 3 Å molecular sieves for at least 48 

h prior to use. Qualitative assessment of moisture-content in these solvents was performed by 

adding 1 drop of a concentrated solution of a sodium benzophenone radical anion (purple) to 

10 mL of solvent where maintenance of a dark blue color for at least 5 minutes was sufficient 

for use. 

 

2,6-ditertbutyl phenol (Oakwood Chemical; 99% purity), para-formaldehyde (Alfa Aesar; 97% 

purity), benzylamine (TCI; 99% purity), triphenylphosphine oxide (Acros; 99% purity), 

hexamethylphosphoramide (TCI; 98% purity), triphenylphosphate (Sigma-Aldrich; 99% 

purity), potassium hexamethyldisilazide (Sigma-Aldrich; 95% purity), 1,1,3,3-

tetramethyldisilazane (TCI, 97% purity), LaCl3 (Strem; RE = La; 99.9% purity), and acetyl 
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chloride (Acros; 99% purity) were purchased and used as received. Racemic butyrolactone 

(Sigma-Aldrich; 98% purity) was freshly distilled from CaH2 under nitrogen and degassed by 

freeze-pump-thaw cycles prior to use. La[N(SiMe3)2]3,42 La[N(SiHMe2)2]3(THF)2,43 BnL, 1-La, 

1-La(OPPh3)2,1 were prepared according to reported procedures. 

 

3.4.2. Synthetic Details and Characterization. 
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Scheme 3.2. Synthesis of 4-substituted lutidine-oxides (RLO) 
 

2,6-Lutidine-1-oxide (LO) 

N

O  

H2O2 (20 mL, 174 mmol, 2.0 equiv., 27% in H2O, 1.10 g/mL; MW = 34.01 g•mol-1) was added 

to a stirring solution of 2,6-lutidine (9.30 g, 86.8 mmol, 1.0 equiv.; MW = 107.16 g•mol-1) in 

AcOH (25 mL, 434 mmol, 5.0 equiv., 1.05 g/mL; MW = 60.05 g•mol-1) in a 250 mL round-

bottomed flask equipped with a Vigreux condenser. The reaction was heated at 80 oC for 20 h. 

A saturated Na2S2O5 solution (10 mL) was added to the reaction to quench residual peroxide. 

The reaction was concentrated to ca. 25 mL at 60 oC under reduced pressure (ca. 0.5 Torr). The 

pH of the mixture was adjusted to 12 with a 25% NaOH solution. The mixture was extracted 
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with CH2Cl2 (6 x 20 mL). The combined extraction was dried with Na2SO4, filtered, and 

evaporated under reduced pressure. 2,6-Lutidine-1-oxide was obtained as a colorless oil. Yield: 

9.10 g (20.3 mmol, 85% yield; MW: 123.16 g•mol-1). The 1H-NMR spectrum agrees with the 

previous report.44 

1H-NMR (400 MHz, CDCl3, 298 K): δ (ppm) = 2.52 (s, 6H; Me), 7.05 (dd, J = 8.4, 7.6 Hz, 2H; 

3,5-H), 7.12 (d, J = 7.6 Hz, 1H; 4-H); 

1H-NMR (400 MHz, C6D6, 298 K): δ (ppm) = 2.31 (s, 6H; Me), 6.28 (t, J = 7.6 Hz, 2H; 3,5-

H), 6.39 (d, J = 7.6 Hz, 1H; 4-H). 

 

4-Nitro-2,6-lutidine-1-oxide (NO2LO) 

N

O

NO2

 

H2SO4 (6.2 mL 114 mmol, 3.0 equiv., 98%, 1.84 g/mL; MW = 98.07 g•mol-1) was added to 

2,6-lutidine-1-oxide (4.66 g 37.8 mmol, 1.0 equiv.; MW = 123.16 g•mol-1) in a 250 mL round-

bottomed flask equipped with a Vigreux condenser. HNO3 (4.8 mL 76 mmol, 2.0 equiv., 70% 

in water, 1.41 g/mL; MW = 63.01 g•mol-1) was added dropwise. The reaction was heated at 

110 oC for 4 h and allowed to warm to RT. The flask was then cooled in an ice bath, and water 

(50 mL) was added. The mixture was extracted with CH2Cl2 (3 x 25 mL). The combined organic 

layer was washed with saturated Na2CO3 solution (2 x 25 mL) and water (2 x 25 mL), dried 

with Na2SO4, filtered, and dried under reduced pressure. The resulting solid was washed with 

pentane (3 x 20 mL) and dried under reduced pressure. 4-Nitro-2,6-lutidine-1-oxide was 
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obtained as a light-yellow solid. Yield: 2.53 g (15.1 mmol, 40% yield; MW: 168.15 g•mol-1). 

The 1H-NMR spectrum agrees with the previous report.44 

1H-NMR (400 MHz, CDCl3, 298 K): δ (ppm) = 2.58 (s, 6H; Me), 8.03 (s, 2H; 3,5-H); 

1H-NMR (400 MHz, C6D6, 298 K): δ (ppm) = 1.92 (s, 6H; Me), 7.14 (s, 2H; 3,5-H). 

 

4-Methoxy-2,6-lutidine-1-oxide (OMeLO) 

N

O

OMe

 

K2CO3 (2.38 g 17.3 mmol, 2.0 equiv.; MW = 138.20 g•mol-1) was added to a suspension of 4-

nitro-2,6-lutidine-1-oxide (1.45 g 8.62 mmol, 1.0 equiv.; MW = 168.15 g•mol-1) in 15 mL 

MeOH in a 250 mL round-bottomed flask equipped with a Vigreux condenser. The reaction 

was heated in an oil bath at 70 oC for 12 h and allowed to reflux. The mixture was cooled and 

concentrated to ca. 10 mL under reduced pressure. Water (20 mL) was added and the mixture 

was extracted with CH2Cl2 (3 x 15 mL). The combined extraction was dried with Na2SO4, 

filtered, and dried under reduced pressure. 4-Methoxy-2,6-lutidine-1-oxide was obtained as a 

white solid. Yield: 1.25 g (8.16 mmol, 95% yield; MW: 153.18 g•mol-1). The 1H-NMR 

spectrum agrees with the previous report.44 

1H-NMR (400 MHz, CDCl3, 298 K): δ (ppm) = 2.53 (s, 6H; ArMe), 3.81 (s, 3H; OMe), 6.69 

(s, 2H; 3,5-H); 

1H-NMR (400 MHz, C6D6, 298 K): δ (ppm) = 2.37 (s, 6H; ArMe), 3.01 (s, 3H; OMe), 6.15 (s, 

2H; 3,5-H).  
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4-Chloro-2,6-lutidine-1-oxide (ClLO) 

N

O

Cl

 

A 250 mL round-bottomed flask was charged with 4-nitro-2,6-lutidine-1-oxide (3.33 g 19.8 

mmol, 1.0 equiv.; MW = 168.15 g•mol-1) and  AcCl (21 mL, 297 mmol, 15 equiv., 1.10 g/mL; 

MW = 78.50 g•mol-1) and equipped with a Vigreux condenser. The suspension  was heated for 

6 h in an oil bath at 60 oC and allowed to reflux. The precipitated solid was isolated by vacuum 

filtration, washed with acetone (3 x 5 mL), and then dissolved in CH2Cl2 (15 mL). The solution 

was washed with 10% NaOH solution (15 mL) and water (15 mL). The organic layer was dried 

with Na2SO4, filtered, and dried under reduced pressure. 4-Chloro-2,6-lutidine-1-oxide was 

obtained as a white solid. Yield: 1.85 g (11.7 mmol, 59% yield; MW: 157.60 g•mol-1). The 1H-

NMR spectrum agrees with the previous report.44  

1H-NMR (400 MHz, CDCl3, 298 K): δ (ppm) = 2.49 (s, 6H; ArMe), 7.14 (s, 2H; 3,5-H); 

1H-NMR (400 MHz, C6D6, 298 K): δ (ppm) = 2.10 (s, 6H; ArMe), 6.32 (s, 2H; 3,5-H). 

 

4-Dimethylamino-2,6-lutidine-1-oxide (NMe2LO) 

N

O

NMe2

 

4-Chloro-2,6-lutidine-1-oxide (400 mg, 2.54 mmol, 1.0 equiv.; MW = 157.60 g•mol-1) was 

added to an aqueous solution of NHMe2 (4.8 mL, 38.1 mmol, 15 equiv., 40% in H2O, 0.89 
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g/mL; MW = 45.09 g•mol-1) in a 50 mL sealed vessel. The reaction vessel was heated for 9 h 

at 140 oC, and then allowed to cool to RT prior to opening. Water (5 mL) was added and the 

reaction mixture and was extracted with CH2Cl2 (9 x 10 mL). The combined extraction was 

dried with Na2SO4, filtered, and evaporated under reduced pressure to yield the crude product 

as a brown oil. Toluene (5 mL) was added to the crude product, then dried under reduced 

pressure, followed by CH2Cl2 (5 mL). Volatiles were removed under reduced pressure. 4-

Dimethylamino-2,6-lutidine-1-oxide was obtained as a white solid. Yield: 256 mg (1.54 

mmol, 61% yield; MW: 166.22 g•mol-1). 

1H-NMR (400 MHz, CDCl3, 298 K): δ (ppm) = 2.43 (s, 3H; ArMe), 2.92 (s, 6H; NMe2), 6.30 

(s, 2H; 3,5-H); 

1H-NMR (400 MHz, C6D6, 298 K): δ (ppm) = 2.18 (s, 3H; NMe2), 2.53 (s, 6H; ArMe), 5.93 (s, 

2H; 3,5-H). 

 

La(BnL)(OCHPh2)(OPPh3)2 [4-La(OPPh3)2] 

4-La(OPPh3)2

N

O

O
tBu

tButBu

tBu

OCHPh2

O=PPh3

O=PPh3

LaIII

 

A 20 mL scintillation vial was charged with HBnL (304 mg, 0.56 mmol, 1.0 equiv.; MW: 543.84 

g•mol-1), a Teflon-coated stir-bar, and THF (2 mL). To the stirring, clear, and colorless solution, 

La[N(SiHMe2)2]3(THF)2 (380 mg, 0.56 mmol, 1.0 equiv.; MW: 680.12 g•mol-1) was added. 

The solution was heated at 60 °C for 2 h and conversion to 1-La was confirmed by H-NMR 

analysis of a reaction aliquot. After the solution was cooled to RT, HOCHPh2 (103 mg, 0.56 
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mmol, 1.0 equiv.; MW: 184.24 g•mol-1) and OPPh3 (311 mg, 1.12 mmol, 2.0 equiv.; MW: 

278.29 g•mol-1) was added. The solution was stirred for 1 min, and then all volatiles were 

removed under reduced pressure. The resulting solid was triturated with toluene (2 x 2 mL), 

washed with pentane (2 x 3 mL), and dried under reduced pressure to afford 4-La(OPPh3)2 as 

a white solid. Yield: 725 mg (0.51 mmol, 91% yield; MW: 1420.54 g•mol-1). 

1H-NMR (400 MHz, C6D6, 298 K): δ (ppm) = 1.58 (s, 18H; 4-tBu), 1.71 (s, 18H; 2-tBu), 3.35 

(d, 2J = 12.3 Hz, 2H; NCH2ArO), 3.87 (s, 2H; NCH2Bn), 4.12 (d, 2J = 12.3 Hz, 2H; NCH2ArO), 

6.25 (s, 1H; OCHPh2), 6.86-6.91 (m, 12H; m-HOPPh3), 6.97-7.09 (m, 13H; p- HOPPh3, 5-HArO, 

HPh), 7.11-7.17 (m, 4H; HPh), 7.21 (d, J = 7.3 Hz, HBn), 7.56-7.61 (m, 14H; o-HOPPh3, 3-HArO), 

7.76 (d, J = 7.4 Hz, 4H; o-HOCHPh2); 

13C{1H}-NMR (101 MHz, C6D6, 298 K): δ (ppm) = 30.6 (CMe3), 32.5 (CMe3), 34.3 (CMe3), 

35.8 (CMe3), 51.4 (NCH2Bn), 59.9 (NCH2ArO), 82.4 (OCHPh2), 123.2, 125.2, 125.5, 126.8, 

127.5, 127.8, 127.9 128.2, 128.9 (d, JP(31)-C(13) = 12.6 Hz; m-COPPh3), 130.6 (d, JP(31)-C(13) = 106 

Hz; C–P), 132.0, 132.3 (d, JP(31)-C(13) = 2.2 Hz; p-COPPh3), 132.8 (d, JP(31)-C(13) = 10.6 Hz; o-

COPPh3, 133.8, 135.6, 136.7, 151.9 (O-CH-COCHPh2), 164.3 (CAr–O); 

31P{1H}-NMR (162 MHz, C6D6, 298 K): δ (ppm) = 33.8 (br); 

Elemental Analysis calcd. (%) for C89H92LaN2O5P2: C 72.72, H 6.53, N 0.99; found: C 72.55, 

H 6.87, N 1.00. 
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Figure 3.10a. 1H-NMR (C6D6, 400 MHz) spectra of 4-La(OPPh3)2. 

 
Figure 3.10b. 13C{1H}- NMR (C6D6, 101 MHz) spectra of 4-La(OPPh3)2. 
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Figure 3.10c. 31P{1H}-NMR (C6D6, 162 MHz) spectra of 4-La(OPPh3)2. 

 

La(BnL)(OCHPh2)( OMeLO)2 [4-La(OMeLO)2] 

N

O

O
tBu

tButBu

tBu

OCHPh2LaIII

N
O

OMe

OMe

O
N

2-La(OMeLO-LO)2  

A 20 mL scintillation vial was charged with HBnL (139 mg, 0.26 mmol, 1.0 equiv.; MW: 543.84 

g•mol-1), a Teflon-coated stir-bar, and THF (2 mL). To the stirring, clear, and colorless solution, 

La[N(SiHMe2)2]3(THF)2 (174 mg, 0.26 mmol, 1.0 equiv.; MW: 680.12 g•mol-1) was added. 

The solution was heated at 60 °C for 2 h and conversion to 1-La was confirmed by H-NMR 

analysis of a reaction aliquot. After the solution was cooled to RT, Ph2CHOH (47 mg, 0.26 

mmol, 1.0 equiv.; MW: 184.24 g•mol-1) and 4-MeO-LO (78 mg, 10.51 mmol, 2.0 equiv.; MW: 

153.18 g•mol-1) was added. The solution was stirred for 1 min, and then all volatiles were 

removed under reduced pressure. The resulting solid was washed with cold pentane (2 x 2 mL) 

and dried under reduced pressure to afford 4-La(OMeLO)2 as a white solid. Yield: 264 mg (0.23 

mmol, 88% yield; MW: 1170.32 g•mol-1). Note: The product was consistently found to contain 

ca. 1 equiv. pentane even after drying under reduced pressure (ca. 1 Torr) at RT. 

1H-NMR (600 MHz, C6D6, 298 K): δ (ppm) = 1.49 (s, 18H; 4-tBu), 1.91 (s, 18H; 2-tBu), 2.31 
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(s, 12H; ArMeOMe-LO), 2.85 (s, 6H; OMe), 3.75 (d, 2J = 12.7 Hz, 2H; NCH2ArO), 4.26 (s, 2H; 

NCH2Bn), 5.05 (d, br, 2J = 12.7 Hz, 2H; NCH2ArO), 5.75 (s, 1H; OCHPh2), 5.78 (s, 4H; 3,5-

HOMe-LO), 6.96 (t, J = 7.2 Hz, 2H; p-HOCHPh2), 7.10 (t, J = 7.4 Hz, 4H; m-HOCHPh2), 7.17 (heavily 

overlapped with C6D5H, 1H; p-HBn), 7.27 (d, J = 2.4 Hz, 2H; 5-HArO), 7.30 (t, J = 7.2 Hz, 2H; 

m-HBn), 7.45 (d, J = 7.4 Hz, 4H; o-HOCHPh2), 7.56 (br, 2H; o-HBn), 7.67 (d, J = 2.4 Hz, 2H; 3-

HArO); 

13C{1H}-NMR (151 MHz, C6D6, 298 K): δ (ppm) = 19.38 (ArMeOMe-LO), 30.6 (CMe3), 32.4 

(CMe3), 34.3 (CMe3), 35.8 (CMe3), 50.8 (NCH2Bn), 55.0 (OMe), 60.6 (NCH2ArO), 81.4 

(OCHPh2), 109.4 (3,5-COMe-LO), 123.3, 125.3, 125.7, 127.2, 127.3, 127.78 127.81, 128.3, 128.4, 

132.5 (2,6-COMe-LO), 134.3, 135.4, 136.6, 150.6 (O-CH-COCHPh2), 158.6 (br, 4-COMe-LO), 164.0 

(CAr–O); 

Elemental Analysis calcd. (%) for (C66H84LaN3O7 + C5H8): C 68.86, H 7.49, N 3.39; found: C 

68.59, H 7.67, N 3.35. 
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Figure 3.11a. 1H-NMR (C6D6, 600 MHz) spectra of 4-La(OMeLO)2 (*: pentane). 

 

 
Figure 3.11b. 13C{1H}-NMR (C6D6, 151 MHz) spectra of 4-La(OMeLO)2 (*: pentane). 
 

* * 

* * 
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Figure 3.12. 1H DOSY NMR (400 MHz, C6D6) of a mixture of 4-La(OPPh3)2 and ferrocene 
(Fc). 4-La(OPPh3)2 (14 mg, 0.010 mmol, 1.0 equiv; MW: 1420.54 g•mol-1) and Fc (3.5 mg, 
0.019 mmol, 1.9 equiv; MW: 186.04 g•mol-1) were dissolved in 0.5 mL C6D6. Diffusion time 
was (Δ, d20) 100 ms, and the rectangular gradient pulse duration (δ, p30) was 1000 µs. 

 
Figure 3.13. 1H DOSY NMR (400 MHz, C6D6) of a mixture of 4-La(OMeLO)2 and ferrocene 
(Fc). 4-La(OMeLO)2 (12 mg, 0.010 mmol, 1.0 equiv; MW: 1170.32 g•mol-1) and Fc (2.0 mg, 
0.011 mmol, 1.1 equiv; MW: 186.04 g•mol-1) were dissolved in 0.5 mL C6D6. Diffusion time 
was (Δ, d20) 100 ms, and the rectangular gradient pulse duration (δ, p30) was 1000 µs. 

 

3.4.3. Experimental Procedures 

Typical polymerization procedures 

Reactions at ambient temperature: 

In a glovebox, a 2 mL scintillation vial was charged with 1-La (5.0 mg, 0.0052 mmol, 1.0 

equiv.; MW: 957.27 g•mol-1), and toluene (0.382 mL). A toluene solution of HOCHPh2 (2% 

m/m, 0.055 mL, ρ = 0.867 g/mL; 0.96 mg, 0.0052 mmol, 1.0 equiv.; MW: 184.24 g•mol-1) then 
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a toluene solution of ligand, e.g., OMeLO (5% m/m, 0.037 mL, ρ = 0.867 g/mL; 1.6 mg, 0.0105 

mmol, 2.0 equiv.; MW: 153.18 g•mol-1) were added to the clear, colorless solution. After 

approximately one minute, rac-BBL (0.085 mL, ρ = 1.06 g/mL, 90 mg, 1.04 mmol, 200 equiv.; 

MW: 86.09 g•mol-1) was added to the catalyst solution. The conversion was checked by 1H 

NMR by adding a reaction aliquot to a 0.02 mL of a ca. 5 wt% toluene solution of benzoic acid 

(BzOH), followed by addition of CDCl3 (~0.5 mL). After the desired conversion and/or time 

was reached, the reaction was quenched by the addition of a toluene solution of BzOH (5% 

m/m, ca. 0.1 mL), and volatiles were removed under reduced pressure. 

Note: The ROP of rac-BBL is exothermic (ΔGp° = –14.1 kcal•mol-1),45 and highly active 

catalysts under the concentrated reaction conditions (2.4 M) can produce a significant exotherm 

(i.e. reaction is warm to touch). In order to avoid unintended warming of the reaction for the 

kinetic studies, propagation rates (kp) were measured under reaction conditions that were 

diluted 8-fold (0.3 M rather than 2.4 M). The higher solvent volume and slower rates allowed 

for efficient heat-transfer and stable reaction temperatures. 

Reactions at –30 °C: 

The following modifications to the procedure for the ambient temperature reaction were made: 

Before addition of rac-BBL, both catalyst solution and rac-BBL were chilled at –30 oC in the 

glovebox freezer. After the solution temperatures equilibrated, the rac-BBL was added to the 

catalyst solution and the reaction was run in the freezer. 

Sample for end-group analysis: 

The sample prepared for end-group analysis was isolated from the ROP of rac-BBL at –30 oC 

using [BBL]:[1-La]:[OMeLO]:[Ph2CHOH] = 200:1:2:1, [BBL] = 2.4 M. After quenching with 
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BzOH and removing the volatiles, the residue was washed with MeOH (3 x 1 mL) to remove 

most of the residual free ligand and BzOH. The sample was then dried under reduced pressure 

to afford the sample used for end-group analysis by NMR. 

 

3.4.4. Supporting Data and Spectra 
 
Table 3.13. Impact of OMeLO equivalents on the ROP of rac-BBL. 

O

O n
Tol, 25 °C

O

O

rac-BBL P3HB

1-La
[BBL]
[BBL] = 200

= 2.4 M

[La]

1 HOCHPh2
_ OMeLO

 
Entry 

OMeLO 
(equiv) Time (h) Conv. 

(%)a 
Mn, calcb 

(kg/mol) 
Mn, expc 

(kg/mol) Đc,d Pme 

1 0 1 20 3.4 2.8 1.05 0.57 

2 1 0.1 54 9.3 n.d. n.d. n.d. 

  1 95 16.5 10.8 1.20 0.67 

3 2 0.1 95 16.5 12.5 1.16 0.73 

4 3 0.1 96 16.5 12.8 1.14 0.73 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude 
reaction mixture. b – [BBL]/[La]/[Ph2CHOH] × Conv. × 0.08609 kg•mol-1. c – Determined by gel 
permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected 
by Mark-Houwink factor of 0.54. d – Mw/Mn. e – Probability of meso-linkages between repeat 
units. Determined by integration of P3HB C=O resonances using inverse gated (IG) 13C-NMR. 

 

 
Figure 3.14. GPC calibration curve using polystyrene standards (orange) and GPC trace (blue) 
of Table 3.1, entry 5. The reaction was performed in toluene at ambient temperature for 0.1 h 
with [BBL]:[1-La]:[OMeLO]:[HOCHPh2] = 200:1:2:1 and [BBL] = 2.4 M. Conversion = 95%, 
Mn = 12.5 kg/mol (corrected by Mark-Houwink factor of 0.54), Đ = 1.16 
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Figure 3.15. Carbonyl region of IG-13C-NMR (151 MHz, CDCl3) of P3HB (Table 3.1, entry 
9). Reaction was performed in toluene at –30 oC for 1 h with [BBL]:[1-La]:[OMeLO]: 
[HOCHPh2] = 200:1:2:1 and [BBL] = 2.4 M . Conversion = 99%. 
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3.5. Computational Section 

3.5.1. Methods 

All calculations were performed employing the Gaussian 09 package (revision D.01).46 

 

La complexes: Complexes were optimized at the M06-L level of theory33 with Grimme’s D3 

dispersion correction34 using the Stuttgart [7s6p5d|5s4p3d]36 ECP46MWB35-36 contracted 

pseudopotential basis set on lanthanum and the 6-31G* basis set used on all other atoms.37-39 

The standard “fine” grid size was used for numerical integrations while a convergence criterion 

of 10-6 was used for all calculations.  Optimized geometries were confirmed as minima by 

frequency analysis (the absence of negative frequencies). NBO40 calculations were performed 

at the M06L level of theory using the def2-TZVP basis set.47-48 Solvation effects associated 

with toluene were accounted for in the single point calculations using the SMD continuum 

solvation model.49  Input geometries were generated from the crystallographic data or 

constructed using Avogadro.50 

 

Free ligands (only): For  4-substituted lutidine N-oxide (RLO) calculations, structures were 

optimized at the M06-2X level of theory51 employing the def2-TZVP basis set.47-48 NBO 

calculations were performed with the same level of theory and basis set. 
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3.5.2. Structure 
 
Table 3.14. Cartesian coordinates of LO optimized with M06-2X/Def2-TZVP. 

Atom X Y Z 
N 0 -0.65882 0.00038 
C 1.18731 0.01341 0.0001 
C 1.18886 1.39543 -0.00005 
C 0.00003 2.10448 -0.00003 
C -1.18883 1.39545 -0.00005 
C -1.18732 0.01344 0.00011 
C 2.40848 -0.83405 -0.00004 
H 2.14324 1.90408 -0.00016 
C -2.40849 -0.83401 -0.00004 
H 0.00003 3.18541 -0.00014 
H -2.14319 1.90414 -0.00016 
O -0.00003 -1.94228 -0.00021 
H -3.2983 -0.20907 -0.00021 
H -2.41112 -1.48756 0.87333 
H -2.41087 -1.48761 -0.87338 
H 3.2983 -0.20912 -0.00028 
H 2.41082 -1.48771 -0.87333 
H 2.41113 -1.48752 0.87339 

 
Table 3.15. Cartesian coordinates of NO2LO optimized with M06-2X/Def2-TZVP. 

Atom X Y Z 
N -1.60028 -0.00001 0.00028 
C -1.06449 -1.13601 0.00012 
C 0.4103 -1.25428 0.00001 
C 1.14876 0.00001 0.00002 
C 0.41029 1.25428 0.00002 
C -1.06452 1.13599 0.00009 
C -1.81718 -2.47395 0.00003 
H 1.15676 -2.07871 -0.00003 
C -1.81722 2.47393 -0.00007 
N 2.60567 0.00001 -0.00002 
H 1.15673 2.07872 -0.00004 
O -2.90609 0.00001 -0.00025 
O 3.07679 -1.02808 -0.00019 
O 3.0768 1.02809 0.0001 
H -0.98448 -3.20718 -0.00004 
H -2.57445 -2.17403 -0.7993 
H -2.57448 -2.17414 0.79933 
H -0.98452 3.20716 -0.0001 
H -2.57459 2.17413 0.79918 
H -2.57442 2.174 -0.79946 
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Table 3.16. Cartesian coordinates of MeOLO optimized with M06-2X/Def2-TZVP. 
Atom X Y Z 

N -1.4199 0.19516 0.00019 
C -0.50413 1.19459 -0.00039 
C 0.85161 0.90647 -0.00087 
C 1.28111 -0.41235 -0.00082 
C 0.32066 -1.41944 -0.00056 
C -1.01936 -1.1109 -0.00011 
C -1.0536 2.57609 -0.00033 
H 1.54289 1.73545 -0.0014 
C -2.10957 -2.1215 0.00032 
O 2.57218 -0.80163 -0.00127 
H 0.63183 -2.45479 -0.00066 
O -2.68262 0.47596 0.00098 
C 3.56264 0.20888 0.00181 
H 4.5192 -0.30548 0.00348 
H 3.48249 0.83315 0.895 
H 3.48657 0.83479 -0.89058 
H -1.69194 -3.12538 -0.00168 
H -2.74943 -1.97892 -0.87138 
H -2.74658 -1.98141 0.87456 
H -0.24607 3.30409 -0.0024 
H -1.6894 2.72406 0.87369 
H -1.69286 2.72267 -0.87202 

 
Table 3.17. Cartesian coordinates of ClLO optimized with M06-2X/Def2-TZVP. 

Atom X Y Z 
N 1.41199 0 0.00008 
C 0.73885 -1.18669 0.00001 
C -0.64226 -1.19467 0.00001 
C -1.33725 0.00001 0.00002 
C -0.64226 1.19467 -0.00001 
C 0.73886 1.18669 0 
C 1.58295 -2.40941 -0.00001 
H -1.16398 -2.14099 -0.00002 
C 1.58295 2.40941 0 
Cl -3.06503 0 -0.00001 
H -1.16398 2.141 -0.00004 
O 2.69472 -0.00001 -0.00006 
H 0.95797 -3.29883 -0.00018 
H 2.23605 -2.41004 0.87363 
H 2.2363 -2.40984 -0.87345 
H 0.95797 3.29883 -0.00017 
H 2.23632 2.40985 -0.87343 
H 2.23604 2.41002 0.87365 

 

135



Table 3.18. Cartesian coordinates of NMe2LOoptimized with M06-2X/Def2-TZVP. 
Atom X Y Z 

N 1.76028 0.00002 0.0001 
C 1.0796 -1.17569 -0.00111 
C -0.29866 -1.19107 -0.00517 
C -1.04168 -0.00012 -0.00933 
C -0.29877 1.19091 -0.0052 
C 1.07948 1.17566 -0.00116 
C 1.9185 -2.40413 0.00247 
H -0.7835 -2.15517 -0.00525 
C 1.91826 2.4042 0.00225 
N -2.40596 -0.00006 -0.01764 
H -0.78378 2.15493 -0.00489 
O 3.06143 0.00009 0.00422 
C -3.12371 -1.25512 0.00814 
C -3.12333 1.25522 0.00851 
H -2.89351 -1.83362 0.90844 
H -2.88302 -1.87048 -0.86373 
H -4.19115 -1.05508 -0.00374 
H -2.883 1.87058 -0.86347 
H -2.8923 1.83351 0.90875 
H -4.19084 1.05548 -0.00246 
H 1.29075 -3.29209 0.0026 
H 2.57101 -2.40485 0.87622 
H 2.57425 -2.40763 -0.86887 
H 1.29042 3.29209 0.00212 
H 2.57404 2.40752 -0.86907 
H 2.57074 2.40522 0.87602 

 
Table 3.19. Cartesian coordinates of LO optimized with M06L/6-31G*.  
EM06L = -402.0456974 Hartree 

Atom X Y Z 
N 0 -0.66906 0.00033 
C -1.19973 0.01776 0.0001 
C -1.19289 1.40246 0.00006 
C -0.00001 2.1169 0.00013 
C 1.19287 1.40246 0.00006 
C 1.19974 0.01777 0.0001 
C -2.4095 -0.83747 -0.00007 
H -2.15341 1.91444 -0.00002 
C 2.40949 -0.83746 -0.00007 
H -0.00002 3.20354 0.0001 
H 2.15339 1.91446 -0.00002 
O 0.00001 -1.94762 -0.00045 
H 3.31681 -0.22691 -0.00036 
H 2.41496 -1.5023 -0.87202 
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H 2.41535 -1.50206 0.87206 
H -3.31681 -0.22694 -0.00036 
H -2.41533 -1.50208 0.87206 
H -2.41494 -1.50231 -0.87202 

 
Table 3.20. Cartesian coordinates of NO2LO optimized with M06L/6-31G*.  
EM06L = -606.5446496 Hartree. 

Atom X Y Z 
N 1.65718 0 0.00002 
C 0.97325 -1.20839 -0.00001 
C -0.40537 -1.20622 -0.00001 
C -1.096 0 0 
C -0.40537 1.20622 0.00002 
C 0.97325 1.20839 0.00002 
C 1.83056 -2.41573 -0.00003 
H -0.95126 -2.14467 -0.00003 
C 1.83056 2.41573 0.00003 
N -2.54953 0 0 
H -0.95126 2.14467 0.00003 
O 2.92724 0 -0.00001 
O -3.11804 -1.09357 -0.00004 
O -3.11804 1.09357 0 
H 1.22061 -3.32228 -0.00006 
H 2.49326 -2.42048 0.87307 
H 2.49329 -2.42043 -0.87309 
H 1.22061 3.32228 0.00001 
H 2.49329 2.42045 -0.87303 
H 2.49325 2.42046 0.87313 

 
Table 3.21. Cartesian coordinates of MeOLO optimized with M06L/6-31G*.  
EM06L = -516.5547283 Hartree. 

Atom X Y Z 
N -1.43361 0.19497 -0.00008 
C -0.50093 1.20667 -0.00021 
C 0.85517 0.91067 -0.00014 
C 1.29095 -0.41287 0 
C 0.32859 -1.42532 -0.00005 
C -1.01778 -1.12467 -0.00015 
C -1.06532 2.57637 -0.00038 
H 1.55275 1.7437 -0.00022 
C -2.11226 -2.12265 -0.00024 
O 2.59068 -0.80686 0.00009 
H 0.64443 -2.46548 -0.00003 
O -2.68783 0.47091 0.00006 
C 3.5636 0.2171 0.00089 
H 4.5316 -0.28706 0.00145 
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H 3.48209 0.85076 0.89575 
H 3.4833 0.85105 -0.89388 
H -1.71281 -3.1407 -0.00134 
H -2.76236 -1.9805 -0.87165 
H -2.76124 -1.98211 0.87228 
H -0.27085 3.32823 -0.00147 
H -1.71253 2.72711 0.87199 
H -1.71415 2.72608 -0.87172 

 
Table 3.22. Cartesian coordinates of ClLO optimized with M06L/6-31G*.  
ErM06L = -861.6255661 Hartree. 

Atom X Y Z 
N -1.42603 0 -0.00006 
C -0.73845 1.19928 -0.00002 
C 0.64538 1.20072 -0.00003 
C 1.34503 0 -0.00005 
C 0.64538 -1.20072 -0.00003 
C -0.73845 -1.19927 -0.00002 
C -1.59072 2.41045 0.00003 
H 1.17101 2.15217 -0.00002 
C -1.59072 -2.41044 0.00004 
Cl 3.08174 0 -0.00004 
H 1.171 -2.15217 -0.00001 
O -2.70421 0 0.00015 
H -0.98047 3.31746 0.00007 
H -2.25486 2.41404 0.8723 
H -2.25487 2.41412 -0.87223 
H -0.98048 -3.31746 0.00008 
H -2.25487 -2.41412 -0.87222 
H -2.25487 -2.41404 0.87231 

 
Table 3.23. Cartesian coordinates of NMe2LO optimized with M06L/6-31G*.  
EM06L = -535.994177 Hartree 

Atom X Y Z 
N 1.78921 0 -0.00003 
C 1.08428 1.19443 -0.00013 
C -0.30417 1.1967 -0.00065 
C -1.04916 0 -0.00127 
C -0.30417 -1.1967 -0.00069 
C 1.08428 -1.19443 -0.00016 
C 1.92682 2.41535 0.00042 
H -0.79844 2.16441 -0.00047 
C 1.92682 -2.41535 0.00035 
N -2.4317 0 -0.00252 
H -0.79844 -2.16441 -0.00057 
O 3.09716 0 0.00043 
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C -3.14672 1.25037 0.00104 
C -3.14672 -1.25037 0.00123 
H -2.91297 1.86034 -0.88551 
H -2.91526 1.85499 0.892 
H -4.22103 1.05245 -0.00114 
H -2.91499 -1.85498 0.89212 
H -2.91323 -1.86035 -0.88538 
H -4.22103 -1.05245 -0.00063 
H 1.3095 3.31841 0.00045 
H 2.59247 2.42402 -0.87066 
H 2.59198 2.42359 0.87188 
H 1.3095 -3.31841 0.00036 
H 2.59199 -2.42361 0.87181 
H 2.59247 -2.424 -0.87074 

 
Table 3.24. Cartesian coordinates of OPPh3 optimized with M06L/6-31G*. 
EM06L = -1111.44 Hartree 

Atom X Y Z 
H -4.59611 -2.69704 -1.09264 
C -3.70343 -2.19768 -0.71912 
H -2.56526 -2.56019 -2.51449 
C -2.56549 -2.1185 -1.51927 
H -4.58117 -1.71995 1.19041 
C -3.6958 -1.64867 0.56104 
C -1.42245 -1.48293 -1.04296 
C -2.55555 -1.01139 1.0392 
H -0.5261 -1.44357 -1.6633 
C -1.41346 -0.91632 0.23606 
H -2.52818 -0.59259 2.04448 
H -0.98064 1.11893 -1.6619 
P 0.00388 -0.02159 0.9387 
C -0.57869 1.92612 -1.04764 
H 1.39618 0.19076 -1.70771 
O 0.01401 -0.02204 2.43696 
H -0.98122 3.43919 -2.52396 
C -0.07909 1.65082 0.22961 
C -0.58771 3.23155 -1.53027 
C 1.93812 -0.51728 -1.07897 
C 1.4922 -0.77869 0.221 
C 3.08716 -1.13455 -1.56359 
H 3.43127 -0.92364 -2.57474 
C 0.39186 2.70078 1.02521 
C -0.10665 4.27074 -0.737 
C 2.22096 -1.65067 1.03674 
C 0.37875 4.00518 0.54128 
H 1.88141 -1.82343 2.05725 

139



H 0.75003 2.48003 2.02994 
C 3.80356 -2.00863 -0.74882 
H -0.11904 5.29234 -1.11347 
C 3.37226 -2.26299 0.55105 
H 4.70735 -2.48485 -1.12561 
H 3.93951 -2.93595 1.19186 
H 0.74242 4.81895 1.16647 

 
Table 3.25. Comparison of natural charges (q) across optimized 1-La(OPPh3)2, 1-La(LO)2, 4-
La(OPPh3)2, and 4-La(LO)2 structures.  Natural charges were calculated with NBO 3.1 using 
the M06L functional and Def2-TZVP basis set (see computational methods). 
 

 1-La(OPPh3)2 1-La(LO)2 4-La(OPPh3)2 4-La(LO)2 

qLa(1) 1.98683 1.92241 2.08173 1.9921 
qO(1) -0.91116 -0.92309 -0.90916 -0.88704 
qO(2) -0.90204 -0.92832 -0.91293 -0.9271 
qO(3) -1.15147 -0.63383 -1.15874 -0.64161 
qO(4) -1.15244 -0.61308 -1.14579 -0.61556 
qO(5) N/A N/A -0.99826 -1.00459 
qN(1) -0.46224 -0.46834 -0.47775 -0.47773 
qN(2) -1.83539 -1.85027 N/A N/A 
qN(3) N/A 0.06952 N/A 0.07744 
qN(4) N/A 0.08294 N/A 0.06423 
qP(1) 1.98456 N/A 1.98832 N/A 
qP(2) 1.98683 N/A 1.98017 N/A 

 
Table 3.26. Comparison of Wilberg bond indices across optimized 1-La(OPPh3)2, 1-La(LO)2, 
4-La(OPPh3)2, and 4-La(LO)2 structures.  Bond indices were calculated with NBO 3.1 using 
the M06L functional and Def2-TZVP basis set (see computational methods). 
 

Bond 1-La(OPPh3)2 1-La(LO)2 4-La(OPPh3)2 4-La(LO)2 
O(3) - P(1) 1.0196 N/a 1.0272 N/A 
O(4) - P(2) 1.0284 N/a 1.0345 N/A 
O(3) - N(3) N/A 1.1461 N/A 1.1485 
O(4) - N(4) N/A 1.1644 N/A 1.1541 
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Figure 3.16. Labeled ball and stick image of 1-La(OPPh3)2. H-atoms other than those of the 
NDMS Si-H were removed for clarity. 
 
Table 3.27. Comparison of selected bond distances (Å) and metrical parameters of the X-ray / 
DFT calculated structures of 1-La(OPPh3)2. The mean unsigned error (MUE) is 0.0465. 
 

Distance (Å) X-ray DFT Angle (°) X-ray DFT 

La(1)–O(1) 2.276(2) 2.352 O(1)–La(1)–O(2) 144.92(8) 143.16 

La(1)–O(2) 2.267(2) 2.340 O(1)–La(1)–O(3) 96.74(7) 96.49 

La(1)–O(3) 2.482(2) 2.502 O(1)–La(1)–O(4) 84.02(7) 81.62 

La(1)–O(4) 2.457(2) 2.490 O(1)–La(1)–N(1) 71.33(7) 71.57 

La(1)–N(1) 2.828(2) 2.885 O(1)–La(1)–N(2) 109.07(8) 109.14 

La(1)–N(2) 2.459(3) 2.479 O(2)–La(1)–O(3) 85.42(7) 86.13 

   O(2)–La(1)–O(4) 87.84(7) 85.10 

   O(2)–La(1)–N(1) 73.92(7) 72.90 

   O(2)–La(1)–N(2) 105.42(8) 105.88 

   O(3)–La(1)–O(4) 169.24(7) 165.65 

   O(3)–La(1)–N(1) 85.97(7) 82.39 

   O(3)–La(1)–N(2) 96.63(8) 100.31 

   O(4)–La(1)–N(1) 84.11(7) 83.53 

   O(4)–La(1)–N(2) 93.24(8) 93.71 

   N(1)–La(1)–N(2) 177.28(8) 177.05 

   P(1)–O(3)–La(1) 167.6(1) 160.24 

   P(2)–O(4)–La(1) 163.0(1) 156.94 
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Table 3.28. Cartesian coordinates of 1-La(OPPh3)2. 
Atom X Y Z 

La -0.29981 -1.12441 0.41677 

P -3.74097 -1.48595 -1.45500 

P 2.86892 0.44494 2.21830 

Si -0.68865 -2.32960 3.51336 

Si -1.14850 -4.61708 1.53020 

O -1.53853 0.78492 1.01052 

O 0.92655 -2.09454 -1.32405 

O 1.86782 -0.37776 1.41819 

O -2.27603 -1.50307 -1.05007 

N 0.29273 0.97205 -1.47470 

N -0.88206 -2.98133 1.95315 

C -1.90097 2.00475 0.69177 

C -2.68182 2.79876 1.58781 

C -3.21061 2.20371 2.90052 

C -2.06846 1.73578 3.81483 

H -1.48231 0.93847 3.34954 

H -2.47598 1.34691 4.75887 

H -1.39683 2.56965 4.06600 

C -4.12874 1.00989 2.59502 

H -5.01097 1.33205 2.02287 

H -4.49363 0.55516 3.52739 

H -3.60650 0.23436 2.02395 

C -4.03659 3.21514 3.69943 

H -3.44566 4.09286 3.99347 

H -4.40195 2.74214 4.61975 

H -4.91331 3.56853 3.14158 
C -2.98944 4.11350 1.22096 
H -3.55859 4.72400 1.91677 
C -2.60834 4.68217 0.00284 
C -2.91820 6.12510 -0.38782 
C -3.63497 6.88584 0.72586 
H -4.60251 6.43053 0.97328 
H -3.82733 7.92037 0.41444 
H -3.03676 6.92139 1.64535 
C -3.80695 6.14868 -1.63881 
H -3.33988 5.61227 -2.47483 
H -3.99682 7.17976 -1.96774 
H -4.77923 5.67757 -1.43997 
C -1.60302 6.85217 -0.70303 
H -0.92460 6.82899 0.16014 
H -1.78529 7.90346 -0.96541 
H -1.07976 6.38459 -1.54646 
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C -1.91934 3.85626 -0.88488 
H -1.68055 4.23038 -1.88418 
C -1.55096 2.54916 -0.57846 
C -0.97878 1.70336 -1.69057 
H -1.71235 0.92442 -1.95735 
H -0.88262 2.34571 -2.58894 
C 1.36692 1.80041 -0.89676 
H 2.15273 1.10496 -0.57673 
H 0.93211 2.23246 0.01047 
C 2.02037 2.90614 -1.69463 
C 1.37060 4.12081 -1.93938 
H 0.35442 4.25854 -1.57668 
C 2.02739 5.17353 -2.56952 
H 1.50204 6.11228 -2.74321 
C 3.35882 5.03836 -2.95459 
H 3.87719 5.86387 -3.43991 
C 4.02685 3.84392 -2.69802 
H 5.07490 3.73169 -2.97403 
C 3.36105 2.78997 -2.07716 
H 3.89255 1.85886 -1.87022 
C 0.67020 0.32745 -2.75881 
H 0.75636 1.10505 -3.54257 
H -0.18979 -0.30738 -3.02934 
C 1.93172 -0.48819 -2.74119 
C 3.01788 -0.09908 -3.52018 
H 2.92581 0.82287 -4.10000 
C 4.19730 -0.84425 -3.58075 
C 5.33998 -0.40032 -4.49338 
C 5.73666 1.04749 -4.17858 
H 6.07926 1.15358 -3.13887 
H 4.89474 1.73610 -4.31860 
H 6.55180 1.38091 -4.83621 
C 4.87222 -0.47187 -5.95378 
H 4.58563 -1.49575 -6.22435 
H 5.66750 -0.14729 -6.63970 
H 4.00037 0.17210 -6.12303 
C 6.58057 -1.27971 -4.34331 
H 6.97325 -1.26756 -3.31674 
H 7.37903 -0.91846 -5.00394 
H 6.37862 -2.32480 -4.60869 
C 4.24825 -2.00662 -2.80388 
H 5.16424 -2.59086 -2.82028 
C 3.19434 -2.45659 -2.00425 
C 3.32682 -3.73267 -1.16322 
C 4.72751 -4.34167 -1.27227 
H 4.97455 -4.63206 -2.30132 
H 4.78334 -5.24658 -0.65423 
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H 5.50514 -3.64978 -0.91949 
C 2.32024 -4.78818 -1.64169 
H 1.29544 -4.41332 -1.57327 
H 2.39773 -5.69940 -1.03110 
H 2.51583 -5.06604 -2.68571 
C 3.08852 -3.44184 0.32892 
H 3.74144 -2.63436 0.68747 
H 3.30576 -4.33859 0.92705 
H 2.05257 -3.15402 0.53617 
C 1.98587 -1.69963 -1.99767 
C 0.62807 -3.16939 4.56618 
H 1.54563 -3.32598 3.98374 
H 0.28825 -4.15504 4.91108 
H 0.89244 -2.58202 5.45447 
C -2.26719 -2.15239 4.52899 
H -2.08478 -1.64769 5.48676 
H -2.71239 -3.13102 4.75297 
H -3.01709 -1.56416 3.98423 
C -1.53446 -4.71530 -0.31498 
H -2.52682 -4.31158 -0.55461 
H -1.50155 -5.74646 -0.69006 
H -0.80510 -4.13601 -0.90068 
C 0.32003 -5.75244 1.86761 
H 1.19714 -5.41979 1.29713 
H 0.10879 -6.78798 1.57064 
H 0.60877 -5.76494 2.92551 
C -4.00040 -2.71936 -2.74725 
C -2.86971 -3.29317 -3.33878 
H -1.87934 -3.00260 -2.98969 
C -3.02270 -4.23846 -4.34918 
H -2.14189 -4.68758 -4.80379 
C -4.29655 -4.61193 -4.76905 
H -4.41359 -5.35515 -5.55577 
C -5.42497 -4.04182 -4.18097 
H -6.42028 -4.33897 -4.50593 
C -5.27895 -3.09699 -3.17194 
H -6.16263 -2.65867 -2.70671 
C -4.82869 -1.83621 -0.05986 
C -6.18823 -1.49780 -0.08521 
H -6.60729 -0.97653 -0.94669 
C -6.99975 -1.79660 1.00373 
H -8.05343 -1.52520 0.98377 
C -6.45976 -2.43020 2.12197 
H -7.09600 -2.66084 2.97462 
C -5.10725 -2.75796 2.15558 
H -4.67697 -3.24193 3.03033 
C -4.28838 -2.46021 1.06973 
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 H -3.22135 -2.68740 1.11786 
C -4.27478 0.10418 -2.11753 
C -4.29907 0.34785 -3.49606 
H -4.09539 -0.46261 -4.19579 
C -4.57801 1.62603 -3.96960 
H -4.59462 1.81359 -5.04160 
C -4.83126 2.66366 -3.07378 
H -5.04042 3.66511 -3.44732 
C -4.80995 2.42641 -1.70130 
H -4.97615 3.23708 -0.99323 
C -4.53043 1.15210 -1.22256 
H -4.48753 0.97593 -0.14730 
C 2.98406 -0.08995 3.94054 
C 3.73558 -1.23458 4.24179 
H 4.26388 -1.76125 3.44643 
C 3.81077 -1.69789 5.54974 
H 4.39605 -2.58687 5.77620 
C 3.13052 -1.02927 6.56560 
H 3.19013 -1.39314 7.58984 
C 2.36904 0.09918 6.27156 
H 1.83311 0.61910 7.06299 
C 2.29645 0.57123 4.96459 
H 1.70652 1.45960 4.74194 
C 2.43212 2.19679 2.18403 
C 1.09343 2.54843 2.41586 
H 0.36187 1.77692 2.66199 
C 0.67522 3.86350 2.24034 
H -0.37540 4.11661 2.38307 
C 1.58785 4.83315 1.82586 
H 1.25505 5.85687 1.66346 
C 2.91713 4.49065 1.59374 
H 3.62229 5.24009 1.23880 
C 3.34121 3.17713 1.77163 
H 4.37362 2.91097 1.54973 
C 4.52611 0.29168 1.52410 
C 4.66537 -0.10391 0.18884 
H 3.78866 -0.37614 -0.40197 
C 5.93379 -0.18380 -0.38109 
H 6.02315 -0.51030 -1.41646 
C 7.06066 0.14027 0.36868 
H 8.04951 0.07662 -0.08243 
C 6.92658 0.53701 1.69894 
H 7.80714 0.78405 2.28868 
C 5.66426 0.60986 2.27718 
H 5.56048 0.90881 3.32104 
H -0.21623 -0.91038 3.26421 
H -2.32449 -5.20212 2.26206 
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Figure 3.17. Labeled ball and stick image of 1-La(LO)2. H-atoms other than those of the 
NDMS Si-H were removed for clarity. 
 
Table 3.29. Selected bond distances (Å) and metrical parameters of the DFT calculated 
structures of 1-La(LO)2.  

Distance (Å) DFT Angle (°) DFT 

La(1)–O(1) 2.364 O(1)–La(1)–O(2) 90.30 

La(1)–O(2) 2.321 O(1)–La(1)–O(3) 145.24 

La(1)–O(3) 2.554 O(1)–La(1)–O(4) 82.97 

La(1)–O(4) 2.600 O(1)–La(1)–N(1) 73.00 

La(1)–N(1) 2.825 O(1)–La(1)–N(2) 108.28 

La(1)–N(2) 2.488 O(2)–La(1)–O(3) 89.43 

  O(2)–La(1)–O(4) 89.62 

  O(2)–La(1)–N(1) 72.29 

  O(2)–La(1)–N(2) 106.44 

  O(3)–La(1)–O(4) 86.50 

  O(3)–La(1)–N(1) 166.72 

  O(3)–La(1)–N(2) 93.28 

  O(4)–La(1)–N(1) 80.61 

  O(4)–La(1)–N(2) 99.68 

  N(1)–La(1)–N(2) 178.71 

  P(1)–N(3)–La(1) 133.64 

  P(2)–N(4)–La(1) 141.87 

 
Table 3.30. Cartesian coordinates of 1-La(LO)2. 

Atom X Y Z 

La 0.07843 -1.20463 0.32087 

Si 1.94421 -4.12572 -0.59786 

Si -0.35345 -4.70646 1.27474 

O 2.10945 -0.00116 0.20647 
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O -2.23046 -1.03693 0.48729 

O -0.12494 -1.12983 -2.22397 

O 0.28224 -0.68215 2.85979 

N -0.58880 1.54011 0.28184 

N 0.61175 -3.63507 0.34972 

C 2.64267 1.19912 0.03892 

C 3.98987 1.37583 -0.40299 

C 4.93021 0.17767 -0.59537 

C 4.39014 -0.80937 -1.63679 

H 3.38441 -1.15693 -1.38603 

H 5.04287 -1.69175 -1.70468 

H 4.36147 -0.34518 -2.63258 

C 5.09708 -0.53665 0.75309 

H 5.53718 0.13881 1.49890 

H 5.75884 -1.40880 0.65189 

H 4.13039 -0.87692 1.12935 

C 6.32732 0.59521 -1.06037 

H 6.30350 1.11568 -2.02668 

H 6.95043 -0.29980 -1.18348 

H 6.83085 1.24817 -0.33631 

C 4.47034 2.67753 -0.57384 
H 5.48838 2.80568 -0.92914 
C 3.72628 3.82429 -0.29203 
C 4.27317 5.24190 -0.44200 
C 5.66599 5.25922 -1.06958 
H 6.40058 4.72965 -0.44976 
H 6.01580 6.29319 -1.18254 
H 5.66935 4.79575 -2.06448 
C 4.35441 5.90355 0.94056 
H 3.36979 5.94170 1.42342 
H 4.72860 6.93381 0.86218 
H 5.02805 5.34725 1.60450 
C 3.33407 6.06985 -1.33010 
H 3.21557 5.61310 -2.32099 
H 3.72582 7.08680 -1.46887 
H 2.33526 6.16173 -0.88523 
C 2.43206 3.62287 0.18170 
H 1.82843 4.48498 0.47507 
C 1.86679 2.35702 0.32258 
C 0.50922 2.26817 0.96483 
H 0.60408 1.75944 1.93923 
H 0.17118 3.29887 1.19128 
C -0.82969 1.95383 -1.11883 
H -1.50067 1.19931 -1.55339 
H 0.14277 1.85201 -1.61755 
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C -1.38931 3.33063 -1.38977 
C -0.56956 4.46342 -1.33849 
H 0.48643 4.33983 -1.10523 
C -1.07093 5.72866 -1.62841 
H -0.41243 6.59535 -1.58455 
C -2.40438 5.88151 -1.99864 
H -2.79914 6.86825 -2.23610 
C -3.22419 4.75952 -2.08622 
H -4.26067 4.86483 -2.40306 
C -2.72226 3.49707 -1.78063 
H -3.37045 2.62356 -1.85321 
C -1.77941 1.66867 1.16556 
H -1.90464 2.73420 1.43980 
H -1.49642 1.13505 2.08788 
C -3.09968 1.15190 0.67988 
C -4.19158 2.01543 0.65696 
H -4.01771 3.06677 0.90143 
C -5.47398 1.58423 0.32141 
C -6.64218 2.56830 0.33090 
C -6.35215 3.72190 -0.63636 
H -6.22506 3.35189 -1.66290 
H -5.43516 4.25801 -0.36130 
H -7.17677 4.44829 -0.63784 
C -6.81388 3.13986 1.74467 
H -7.03285 2.34378 2.46740 
H -7.63910 3.86489 1.77665 
H -5.90536 3.65369 2.08253 
C -7.95754 1.91237 -0.08582 
H -7.90400 1.50009 -1.10158 
H -8.76729 2.65305 -0.07123 
H -8.24240 1.09821 0.59275 
C -5.61624 0.23218 -0.00175 
H -6.60305 -0.12700 -0.27845 
C -4.56588 -0.68823 0.01911 
C -4.81044 -2.16047 -0.32136 
C -6.25351 -2.43155 -0.75180 
H -6.97364 -2.21246 0.04681 
H -6.36271 -3.49330 -1.00781 
H -6.53926 -1.84752 -1.63626 
C -4.52208 -3.03989 0.90268 
H -3.48106 -2.94655 1.22155 
H -4.71580 -4.09704 0.67053 
H -5.16543 -2.75743 1.74619 
C -3.90001 -2.58406 -1.47970 
H -4.11611 -1.99775 -2.38391 
H -4.04924 -3.64679 -1.72262 
H -2.85014 -2.43138 -1.21721 
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C -3.27175 -0.22515 0.39014 
C 1.67160 -5.70898 -1.59503 
H 0.75052 -5.68363 -2.18976 
H 1.59566 -6.57725 -0.92626 
H 2.50656 -5.90237 -2.28131 
C 3.57390 -4.35573 0.32949 
H 4.33026 -4.82865 -0.31064 
H 3.44843 -4.99224 1.21565 
H 3.99073 -3.39741 0.66281 
C -1.18411 -3.74906 2.67779 
H -0.47915 -3.46681 3.47058 
H -1.98312 -4.33866 3.14606 
H -1.65655 -2.81851 2.32763 
C -1.70209 -5.53618 0.24938 
H -2.34506 -4.77821 -0.21946 
H -2.35177 -6.18357 0.85236 
H -1.27945 -6.14921 -0.55742 
H 2.20239 -3.01558 -1.57518 
H 0.45546 -5.80035 1.90947 
H -0.72042 -3.70375 -1.85188 
H -1.80665 -2.99018 -3.03958 
C -0.90151 -3.59742 -2.93255 
H -1.08141 -4.58969 -3.35633 
C 0.24445 -2.94869 -3.60445 
N 0.55795 -1.67483 -3.20380 
H 0.80977 1.02183 -3.52588 
H 0.75834 -4.55684 -4.89121 
C 1.00866 -3.54004 -4.59891 
C 1.55626 -0.94873 -3.80035 
C 1.72660 0.44805 -3.34232 
C 2.06330 -2.85752 -5.18916 
C 2.31903 -1.55315 -4.78832 
H 2.66815 -3.32969 -5.95888 
H 2.55929 0.92658 -3.86478 
H 1.91611 0.49205 -2.26314 
H 3.11995 -0.97056 -5.23669 
H -1.23171 0.41083 4.53654 
H -0.60997 1.70374 5.60801 
C -0.42406 1.13413 4.69361 
H -0.46337 1.82577 3.84276 
C 0.88831 0.45089 4.77268 
N 1.16639 -0.47845 3.79856 
H 1.64429 -2.95584 2.77069 
H 1.59126 1.42736 6.52135 
C 1.82905 0.68427 5.76428 
C 2.32584 -1.21474 3.81940 
C 2.48355 -2.25011 2.77864 
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C 3.03310 -0.00626 5.78719 
C 3.26382 -0.96282 4.80875 
H 3.77115 0.18749 6.56074 
H 3.41380 -2.80488 2.92715 
H 2.52155 -1.79704 1.77853 
H 4.18084 -1.54639 4.79321 

 

 
Figure 3.18. Labeled ball and stick image of 4-La(OPPh3)2. H-atoms were removed for clarity. 
 
Table 3.31. Selected bond distances (Å) and metrical parameters of the DFT calculated 
structures of 4-La(OPPh3)2.  

Distance (Å) DFT Angle (°) DFT 

La(1)–O(1) 2.383 O(1)–La(1)–O(2) 146.63 

La(1)–O(2) 2.363 O(1)–La(1)–O(3) 85.63 

La(1)–O(3) 2.494 O(1)–La(1)–O(4) 80.96 

La(1)–O(4) 2.505 O(1)–La(1)–O(5) 102.29 

La(1)–O(5) 2.323 O(1)–La(1)–N(1) 73.86 

La(1)–N(1) 2.871 O(2)–La(1)–O(3) 93.01 

  O(2)–La(1)–O(4) 99.13 

  O(2)–La(1)–O(5) 110.83 

  O(2)–La(1)–N(1) 73.21 

  O(3)–La(1)–O(4) 166.51 

  O(3)–La(1)–O(5) 85.16 

  O(3)–La(1)–N(1) 78.52 

  O(4)–La(1)–O(5) 95.91 

  O(4)–La(1)–N(1) 99.30 

  O(5)–La(1)–N(1) 163.44 

  P(1)–O(3)–La(1) 169.67 

  P(2)–O(4)–La(1) 136.72 
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Table 3.32. Cartesian coordinates of 4-La(OPPh3)2. 
Atom X Y Z 

La -0.90356 -0.52548 -0.31549 

P -4.05013 1.32622 -1.23408 

P 2.21106 -1.16708 2.10906 

O -1.15358 1.59828 0.73636 

O 0.05659 -1.74404 -2.09802 

O 1.11414 -0.79043 1.12600 

O -3.01434 0.22335 -1.43736 

N 0.95972 1.23156 -1.61241 

C -0.40272 2.66937 0.89858 

C -0.27967 3.34613 2.14928 

C -1.06053 2.87147 3.38076 

C -0.74748 1.40636 3.72401 

H -0.90580 0.74166 2.86939 

H -1.39485 1.06329 4.54415 

H 0.29065 1.29155 4.06712 

C -2.56274 3.01465 3.10349 

H -2.81766 4.05806 2.86663 

H -3.15122 2.71808 3.98322 

H -2.86772 2.37953 2.26593 

C -0.73594 3.69877 4.62608 

H 0.33061 3.64701 4.88539 

H -1.30198 3.30940 5.48190 

H -1.00545 4.75616 4.50674 

C 0.55454 4.47034 2.21461 

H 0.65789 4.97388 3.17252 
C 1.27146 4.97713 1.12531 
C 2.18046 6.20085 1.20040 
C 2.34833 6.71440 2.62958 
H 1.39539 7.03877 3.06672 
H 3.02710 7.57669 2.64391 
H 2.77505 5.94866 3.29237 
C 1.57525 7.32543 0.34804 
H 1.45076 7.00897 -0.69574 
H 2.21755 8.21723 0.35365 
H 0.58693 7.61758 0.72751 
C 3.57069 5.85223 0.64737 
H 4.03861 5.04015 1.22023 
H 4.23638 6.72556 0.69198 
H 3.53136 5.51867 -0.39696 
C 1.11312 4.31409 -0.09093 
H 1.63200 4.67572 -0.98175 
C 0.31020 3.18964 -0.21619 
C 0.20203 2.50445 -1.53936 
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H -0.84998 2.25150 -1.75950 
H 0.52279 3.19388 -2.34123 
C 2.26341 1.25017 -0.94971 
H 2.62372 0.21322 -0.95706 
H 2.06684 1.47726 0.10338 
C 3.38705 2.14900 -1.41057 
C 3.34644 3.02209 -2.50073 
H 2.45168 3.08766 -3.11528 
C 4.44328 3.82556 -2.81540 
H 4.38740 4.49615 -3.67185 
C 5.59939 3.77657 -2.04348 
H 6.45153 4.40799 -2.28872 
C 5.65452 2.90856 -0.95364 
H 6.55086 2.85817 -0.33568 
C 4.56298 2.10539 -0.64955 
H 4.61132 1.42672 0.20490 
C 0.97062 0.71827 -3.00430 
H 1.33437 1.49358 -3.70158 
H -0.08498 0.53188 -3.26782 
C 1.77942 -0.52764 -3.15872 
C 3.06272 -0.46861 -3.68764 
H 3.44631 0.50552 -4.00331 
C 3.86997 -1.60258 -3.78682 
C 5.31044 -1.46504 -4.27320 
C 6.07145 -0.53956 -3.31133 
H 6.06841 -0.94073 -2.28742 
H 5.61866 0.45900 -3.26886 
H 7.11866 -0.42040 -3.62356 
C 5.33490 -0.84718 -5.67703 
H 4.80262 -1.48203 -6.39648 
H 6.36725 -0.72215 -6.03257 
H 4.85877 0.14054 -5.68947 
C 6.03733 -2.80755 -4.32935 
H 6.09804 -3.28392 -3.34096 
H 7.06511 -2.66518 -4.68711 
H 5.54252 -3.51318 -5.00875 
C 3.30198 -2.81571 -3.38265 
H 3.89946 -3.71912 -3.48096 
C 2.01647 -2.93584 -2.84594 
C 1.44150 -4.29686 -2.44864 
C 2.39846 -5.45122 -2.74879 
H 2.65221 -5.51389 -3.81492 
H 1.92707 -6.40050 -2.46288 
H 3.33483 -5.36581 -2.17984 
C 0.14951 -4.54480 -3.24064 
H -0.56455 -3.73261 -3.07995 
H -0.31912 -5.48996 -2.93056 
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H 0.36046 -4.60722 -4.31631 
C 1.14279 -4.33872 -0.94449 
H 2.07046 -4.31667 -0.35828 
H 0.59676 -5.25594 -0.68014 
H 0.53122 -3.48340 -0.64124 
C 1.24387 -1.75043 -2.67980 
C -5.43415 1.04171 -2.35772 
C -5.63911 -0.25935 -2.82786 
H -4.93536 -1.04584 -2.55742 
C -6.73311 -0.53505 -3.64259 
H -6.88935 -1.54853 -4.00884 
C -7.61996 0.48069 -3.99100 
H -8.47369 0.26154 -4.63001 
C -7.41509 1.77927 -3.52794 
H -8.10271 2.57513 -3.80834 
C -6.32476 2.06132 -2.71202 
H -6.15568 3.08067 -2.36275 
C -4.70479 1.31996 0.44855 
C -5.58907 2.30919 0.89693 
H -5.87614 3.12832 0.23589 
C -6.08983 2.25868 2.19264 
H -6.77070 3.03329 2.54034 
C -5.71353 1.22161 3.04637 
H -6.10149 1.18999 4.06324 
C -4.83573 0.23733 2.60384 
H -4.52256 -0.56571 3.27005 
C -4.33447 0.28076 1.30611 
H -3.63709 -0.48886 0.97709 
C -3.43448 2.98513 -1.58417 
C -3.21488 3.35817 -2.91923 
H -3.53367 2.70020 -3.72823 
C -2.57569 4.55760 -3.21021 
H -2.40029 4.83913 -4.24689 
C -2.14696 5.38999 -2.17558 
H -1.62416 6.31779 -2.40420 
C -2.37208 5.03013 -0.84999 
H -2.01260 5.66014 -0.03725 
C -3.01496 3.83226 -0.55332 
H -3.15842 3.53657 0.48361 
C 1.52444 -1.68654 3.69076 
C 0.17690 -2.05775 3.74482 
H -0.45191 -2.00278 2.85277 
C -0.36418 -2.49394 4.95221 
H -1.40934 -2.79898 4.98674 
C 0.42512 -2.54761 6.09716 
H -0.00325 -2.88848 7.03835 
C 1.76586 -2.16471 6.04573 
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H 2.37983 -2.19757 6.94370 
C 2.31734 -1.73464 4.84487 
H 3.36345 -1.42728 4.80373 
C 3.31162 0.22930 2.43671 
C 2.73793 1.50510 2.51644 
H 1.67039 1.63866 2.34011 
C 3.53121 2.61301 2.78941 
H 3.06679 3.59787 2.82806 
C 4.90182 2.45677 2.98767 
H 5.52364 3.32786 3.19000 
C 5.47903 1.19052 2.91543 
H 6.55059 1.06805 3.06295 
C 4.68809 0.07664 2.63988 
H 5.14370 -0.91090 2.56427 
C 3.25454 -2.49818 1.47580 
C 3.91499 -2.29784 0.25470 
H 3.81561 -1.35167 -0.28189 
C 4.68481 -3.31452 -0.29656 
H 5.17703 -3.15366 -1.25470 
C 4.79800 -4.53831 0.36085 
H 5.39446 -5.33636 -0.07845 
C 4.13737 -4.74716 1.56912 
H 4.21595 -5.70689 2.07662 
C 3.36662 -3.73074 2.12797 
H 2.84274 -3.89708 3.06909 
H -6.66346 -3.56808 -1.35573 
H -4.16901 -4.87773 2.80138 
H -3.21719 -6.93366 3.80917 
C -3.10504 -5.09798 2.69052 
C -2.57226 -6.25348 3.25395 
C -1.21482 -6.53788 3.11280 
H -0.79627 -7.44164 3.55340 
C -0.93696 -4.49844 1.85320 
C -0.39959 -5.65749 2.40623 
H 0.66378 -5.86813 2.28585 
H -5.57050 -3.08039 0.82049 
C -5.57590 -3.55584 -1.28579 
C -4.96239 -3.28333 -0.06354 
H -3.68199 -2.59861 2.06544 
C -2.87781 -2.93774 1.37089 
C -4.80028 -3.79468 -2.41740 
C -3.57190 -3.25468 0.04797 
H -5.27541 -4.00894 -3.37426 
C -2.29397 -4.20509 1.98635 
C -2.80252 -3.48745 -1.09806 
C -3.40915 -3.75157 -2.32122 
H -1.71092 -3.47383 -1.03103 
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H -2.79263 -3.93354 -3.20038 
H -0.30079 -3.79125 1.32277 
O -1.93245 -1.95287 1.20148 

 

 
Figure 3.19. Labeled ball and stick image of 4-La(LO)2. H-atoms were removed for clarity. 
 
Table 3.33. Selected bond distances (Å) and metrical parameters of the DFT calculated 
structures of 4-La(LO)2.  

Distance (Å) DFT Angle (°) DFT 

La(1)–O(1) 2.365 O(1)–La(1)–O(2) 141.86 

La(1)–O(2) 2.350 O(1)–La(1)–O(3) 91.03 

La(1)–O(3) 2.509 O(1)–La(1)–O(4) 76.48 

La(1)–O(4) 2.577 O(1)–La(1)–O(5) 116.54 

La(1)–O(5) 2.293 O(1)–La(1)–N(1) 75.58 

La(1)–N(1) 2.775 O(2)–La(1)–O(3) 104.35 

  O(2)–La(1)–O(4) 89.74 

  O(2)–La(1)–O(5) 96.93 

  O(2)–La(1)–N(1) 72.06 

  O(3)–La(1)–O(4) 165.81 

  O(3)–La(1)–O(5) 95.09 

  O(3)–La(1)–N(1) 82.98 

  O(4)–La(1)–O(5) 84.76 

  O(4)–La(1)–N(1) 100.07 

  O(5)–La(1)–N(1) 167.82 

  P(1)–N(3)–La(1) 156.11 

  P(2)–N(4)–La(1) 114.07 
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Table 3.34. Cartesian coordinates of 4-La(LO)2. 
Atom X Y Z 

La 0.62347 -0.26391 -0.56337

O -0.37311 -1.84327 -2.01453

O 0.61844 2.02761 -0.04118

O -0.43770 -1.35820 1.42989 

O 1.67753 0.27209 -2.85264

N -1.94566 0.70056 -0.97457

C -1.49352 -2.44740 -1.67503

C -1.56073 -3.85496 -1.46217

C -0.30117 -4.71766 -1.61175

C 0.80530 -4.27831 -0.63733

H 1.10466 -3.23734 -0.80066

H 1.70025 -4.90318 -0.77469

H 0.49370 -4.37992 0.41127 

C 0.23022 -4.60860 -3.04893

H -0.50150 -5.00745 -3.76290

H 1.15883 -5.18772 -3.15982

H 0.43241 -3.56693 -3.31126

C -0.57710 -6.19496 -1.32451

H -0.94463 -6.35561 -0.30137

H 0.34955 -6.77215 -1.43738

H -1.31441 -6.61897 -2.01747

C -2.80138 -4.41834 -1.15239

H -2.85073 -5.49168 -0.98752

C -3.98290 -3.67749 -1.02633

C -5.33262 -4.30868 -0.68824
C -5.20444 -5.78605 -0.31969
H -4.81677 -6.38488 -1.15307
H -6.18685 -6.19481 -0.05091
H -4.53503 -5.93476 0.53867 
C -6.26819 -4.18626 -1.89845
H -6.41138 -3.13690 -2.18531
H -7.25699 -4.61301 -1.67872
H -5.85610 -4.71382 -2.76768
C -5.96990 -3.57477 0.50015 
H -5.32199 -3.61119 1.38718 
H -6.93358 -4.02977 0.76787 
H -6.15769 -2.51886 0.26889 
C -3.89171 -2.30010 -1.24167
H -4.79093 -1.68091 -1.19700
C -2.68402 -1.67695 -1.54206
C -2.64451 -0.22295 -1.91269
H -2.09945 -0.12632 -2.86301
H -3.67072 0.14916 -2.08329
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C -2.62544 0.83013 0.33185 
H -2.07151 1.60391 0.88477 
H -2.46887 -0.12521 0.85242 
C -4.10347 1.13124 0.34504 
C -4.99682 0.15842 0.80464 
H -4.60348 -0.80516 1.13601 
C -6.36696 0.40042 0.84506 
H -7.04342 -0.36975 1.21421 
C -6.86802 1.62803 0.41930 
H -7.93910 1.82160 0.44586 
C -5.98869 2.61174 -0.02772 
H -6.37072 3.58118 -0.34514 
C -4.61886 2.36746 -0.05924 
H -3.93440 3.15466 -0.37140 
C -1.71896 1.97983 -1.70385 
H -2.64443 2.25935 -2.24182 
H -0.98815 1.72281 -2.49470 
C -1.23458 3.18942 -0.95104 
C -1.91801 4.38950 -1.13113 
H -2.82126 4.37753 -1.74717 
C -1.48366 5.59100 -0.57400 
C -2.29762 6.86567 -0.78527 
C -3.73680 6.64222 -0.29960 
H -3.75876 6.36130 0.76100 
H -4.23480 5.84383 -0.86430 
H -4.33566 7.55481 -0.42365 
C -2.32778 7.21263 -2.27993 
H -1.31587 7.39336 -2.66387 
H -2.92620 8.11624 -2.46114 
H -2.76588 6.39940 -2.87214 
C -1.71525 8.05571 -0.02465 
H -1.67308 7.86746 1.05578 
H -2.33848 8.94478 -0.18351 
H -0.70056 8.30105 -0.36303 
C -0.29092 5.55093 0.15221 
H 0.07399 6.47853 0.58255 
C 0.46106 4.38886 0.35043 
C 1.78460 4.43674 1.12825 
C 2.12348 5.85207 1.60149 
H 2.22702 6.55625 0.76600 
H 3.08023 5.83680 2.13895 
H 1.36713 6.25233 2.28879 
C 2.95293 3.95028 0.25777 
H 2.79899 2.91326 -0.05809 
H 3.89352 3.99790 0.82604 
H 3.07028 4.57798 -0.63576 
C 1.71616 3.53587 2.36733 
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H 0.83501 3.76623 2.98126 
H 2.60973 3.67580 2.99288 
H 1.67254 2.48598 2.07064 
C -0.03056 3.16811 -0.19529 
H 1.21151 0.29679 2.64334 
H -0.24030 1.20238 2.22588 
C 0.25725 0.66502 3.04605 
H 0.47528 1.37654 3.84562 
C -0.57076 -0.44620 3.55003 
N -0.89962 -1.42691 2.64950 
H -2.55829 -2.84843 1.06063 
H -0.75136 0.22323 5.55620 
C -1.03459 -0.55605 4.85290 
C -1.72166 -2.47609 2.98055 
C -2.08498 -3.39734 1.88603 
C -1.83216 -1.62443 5.23825 
C -2.17834 -2.57416 4.28594 
H -2.19120 -1.70818 6.26072 
H -2.77026 -4.17186 2.24232 
H -1.20318 -3.87282 1.44176 
H -2.82215 -3.41417 4.53402 
H 1.71388 2.80531 -2.07666 
H 2.89775 3.80911 -2.95174 
C 2.42209 2.82564 -2.91375 
H 1.82969 2.66865 -3.82305 
C 3.44267 1.75975 -2.77698 
N 2.97556 0.47281 -2.81117 
H 2.47715 -2.15995 -2.15705 
H 5.16752 2.98679 -2.57526 
C 4.80770 1.96186 -2.63094 
C 3.80831 -0.61571 -2.81344 
C 3.16347 -1.93845 -2.98392 
C 5.67967 0.88259 -2.55479 
C 5.17090 -0.40490 -2.67228 
H 6.74649 1.04026 -2.41527 
H 3.91923 -2.72817 -3.02214 
H 2.55087 -1.95695 -3.89302 
H 5.82014 -1.27638 -2.62366 
O 2.77877 -0.69251 0.09284 
C 3.93752 -0.51099 0.81075 
C 5.01412 -1.51538 0.42516 
C 6.36684 -1.20886 0.58739 
H 6.64423 -0.23944 1.00752 
C 7.35417 -2.10999 0.20092 
H 8.40540 -1.85141 0.32371 
C 6.99798 -3.34058 -0.35059 
H 7.76797 -4.04629 -0.65891 
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C 5.65025 -3.66040 -0.50340 
H 5.36209 -4.62163 -0.92956 
C 4.66680 -2.75266 -0.11758 
H 3.60990 -2.97847 -0.25599 
C 3.63231 -0.57969 2.30162 
C 3.92059 0.48541 3.15366 
H 4.42368 1.36636 2.74948 
C 3.54231 0.44945 4.49633 
H 3.76221 1.29780 5.14374 
C 2.87011 -0.65967 4.99986 
H 2.56645 -0.68924 6.04572 
C 2.58230 -1.73556 4.15578 
H 2.05148 -2.60572 4.54406 
C 2.96225 -1.69482 2.81962 
H 2.72120 -2.52199 2.14990 
H 4.36938 0.49877 0.62280 

 

3.5.3. Buried Volume (%Vbur) Calculations 

All buried volume calculations of the free ligands and metal complexes were performed using 

SambVca 2.1.41 Abbreviations for tabulated values are provided within SambVca 2.1, but 

several are provided again below for convenience. 

 

Free ligands: Structures of the free ligands, OPPh3, PyO, and LO, were obtained from the 

deposited X-ray structures found in the Cambridge Structural Database (CSD; Structure codes: 

OPPh3 = TPEPHO,52 PyO = PYRDNO11,53 LO = ACOHAC54). In the case of LO, the 

interstitial water molecule was removed. These coordinates were then uploaded via the web 

applet, and the oxygen of the oxide donor was selected as the center of the sphere. The z-axis 

and xz-plane were defined as follows: z-axis = OPyO & NPyO, OLO & NLO, OOPPh3 & POPPh3  //   

xz-plane = OPPh3: P & COPPh3 (2-Ar), PyO: C (2,6-Ar), LO: C (2,6-Me2). The distance of the 

coordination point from the center of the sphere was chosen to be 2.28 Å, with a scaling of 1.17 

for all bond radii, and a sphere radius of 3.5 Å.  
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Metal complexes: Structures of the metal complexes, 1-La(OPPh3)2, 1-La(LO)2, 4-

La(OPPh3)2, 4-La(LO)2, were obtained from the DFT optimized structures (SI, section 5). La 

was selected as the center of the sphere, and the z-axis and xz-plane were defined as follows: 

z-axis = La & BnN //  xz-plane = OAr & OAr. Bond radii were scaled to 1.17 and two sphere radii 

were used to capture the %Vbur related to the primary (3.5 Å) and secondary (6.5 Å) 

coordination spheres. Note: La and the N(SiHMe2)2 / OCHPh2 groups were excluded from the 

volume calculations. 
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Chapter 4: Quantitative Study of Kinetic of Polymerization of 

rac-β-BBL Accompanied by Time-dependent 

Concentration of Catalyst 
 

Abstract 

During polymerization of BBL, the simultaneous elimination discussed in previous chapters 

not only cleaves macromolecular chains, but also deactivates the catalyst. Despite the 

importance of tracking such processes, the evolution of active catalytic species is challenging 

to detect and measure directly. In this chapter, I describe how we can indirectly track the active 

catalyst profile by analyzing the time function of monomer conversion within the lanthanum 

catalyst we’ve developed. Through this analysis, we have found that the elimination is second 

order in the catalytic species in the OPPh3-assisted ROP of BBL, and determined rate constants 

for propagation and elimination under various conditions. Further application of this method 

in reactions with various equivalents of OPPh3 or different lutidine-oxides helps refine the role 

of these exogenous ligands in the donor-amplified ROP of rac-BBL. These results may direct 

further developments of this catalytic system. 
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4.1. Introduction 

In previous studies of metal alkoxide catalyzed ROP of BBL, generation of crotyl end-groups 

after polymerization has been noticed and found to proceed through several possible pathways: 

(i) elimination of water, hydroxide, or oxide from the alcohol end-group under acidic or basic 

conditions respectively,1-4 (ii) thermal scission,5-8 or (iii) base-induced elimination of internal 

ester units.9-11 Regardless of the different elimination pathways, the eventual outcome leads to 

the formation of a crotyl end-group and elimination of active catalytic species (i.e. formation 

of a metal carboxylate). The effect of such side reaction affects not only the average and 

distribution of molecular weights of the macromolecular product, but also the kinetics of the 

polymerization. While the former has received some limited attention, the latter has been 

largely overlooked. The low concentration of catalyst employed in these reactions can make 

the time-dependent quantification of catalyst speciation extremely challenging, which has led 

to significant difficulties in quantifying the active catalytic species and disentangling rates of  

propagation and elimination. 

 

For example, we measured the conversion 1-La(TPPO)2 catalyzed ROP of BBL at different 

time, where the conversion varied from 20% to 90%, in Chapter 2. Notably, the polymerization 

of BBL catalyzed by 1-La(TPPO)2 didn’t show simple, pseudo first-order behavior. As 

reflected by the conversion-time plots (Figure 4.1), the reaction rate was very fast at the 

beginning and drastically dropped when the conversion was above 50%. The lack of linearity 

in plots of -ln(1-conversion) vs time further discounts pseudo first-order behavior, while other 

attempts of fitting the reaction to a power law of [BBL] all failed.  
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4.2. Result and Discussion 

4.2.1. General Analysis of the Kinetic Behavior 

With the knowledge of the elimination side reaction during ROP of BBL, the deviation from 

pseudo-first order kinetic behavior in Figure 4.1 can be readily rationalized. As propagation 

proceeds, active species are converted to in-active La carboxylates. Therefore, the rate of 

propagation is no longer proptional to the concentration of BBL over time. While this qualitive 

explanation provides a clear motivation to design systems which suppress these deactivation 

pathways, a more quantative analysis which could decouple the influence of reaction conditions 

on propagation and elimination rates requires a more detailed and mathematical approach. 

 
Figure 4.1. Conversion of BBL (blue circle), -ln(1-conversion) (orange squares) as functions 
of time. Reaction was performed in toluene at ambient temperature with [BBL]/[1-
La(TPPO)2]/[iPrOH] = 200/1/1 and [BBL] = 2.4 M. 
 

In order to comprehensively investigate the kinetic of this reaction, one must figure out the rate 

law of not only propagation, but also elimination. The propagation rate constant can be 

determined by measuring conversions at time points in the reaction where minimal catalyst 

degradation due to elimination has occurred (i.e. first-order behavior is maintained). In contrast, 

the direct determination of the elimination rate constant is not trivial, as the direct and accurate 

measurement of the degradation of catalyst is not as straightforward as following the 
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consumption of substrate. One approach could attempt quantitative detection of the active 

catalytic species during the reaction; however, this species is expected to be present in very ow 

concentrations and exists as undetermined, unstable, and variable states. Alternatively, one 

could follow the formation of the crotyl end-group, the byproduct of the degradation, but this 

is also challenging to quantify due to its low concentration. 

 

Given the aforementioned difficulties in the direct measurement of catalyst evolution, we 

considered an alternative approach. Other than directly following the active catalyst or the 

byproduct of its degradation, one might indirectly extract the active catalyst concentration 

following monomer conversion. In principle, the rates of propagation and elimination could be 

extracted from the conversion-time relationship of the substrate, if a known or reasonably 

assumed reaction order of the substrate can be made. To avoid over-generalizing and 

complicating the problem, the following discussion will assume that, in the absence of catalyst 

deactivation, the consumption of substrate is first order in both substrate and catalyst. Such rate 

laws are commonly observed for the ROP of cyclic esters, including the ROP of BBL.9, 12-16 

 

Relationship between the evolution of substrate and catalyst: A reaction which is first order 

in both substrate and catalyst can be defined as: 

𝑆𝑆′ =
𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝐶𝐶𝑆𝑆      (1) 

where S and C are functions of time and stand for the concentration of the substrate and catalyst 

respectively, k is the proportionality constant, or rate constant in chemistry, that doesn’t change 

over time, and the prime notation means the time derivative.  
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Dividing both sides of (1) by –S leads to the following: 

−
𝑆𝑆′

𝑆𝑆
= −�ln �

𝑆𝑆
𝑆𝑆𝑡𝑡=0

��
′

= −[ln(1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. )]′ = 𝑘𝑘𝐶𝐶      (2) 

In eq. (2), S and C are now separated. The right-hand side is proportional to C, and one can 

know how C changes over time by plotting -S/S’, (i.e., –[ln(1-Conv.)]’) and time. Although 

there is an undetermined number, k, this plot can help establish how the catalyst evolves during 

the reaction. Furthermore, one can postulate a reasonable time dependence (e.g., any power 

law of C) or a function containing S. Once the rate law of the catalyst is known and the numeric 

parameters determined, one can then plug the values back into the rate law of the substrate to 

compare with and validate against experimental data. 

 

4.2.2. Kinetics of 4-La(OPPh3)2 Catalyzed ROP of BBL 

Although essential to understanding and improving catalyst performance, the evolution of the 

active catalyst is not yet known. General approaches which can extract the rate of productive 

(propagation) and unproductive (deactivation) processes are unknown, despite significant 

interest, a non-power rate law, and the ability to follow reaction conversion (i.e., substrate 

concentration) at given points in time. This is surprising, as according to the above analysis, as 

long as we measure conversion accurately and frequently enough, there is a chance to discover 

how catalyst changes during reaction. 

 

Before any experiment or analysis, it worth to pointing out that the polymerization of BBL is 

significantly exothermic (ΔGp = –59.2 kJ/mol).17 Under typical ROP conditions (2.4 M BBL, 

0.012 M La), this leads to a significant and immediate exotherm, which would lead to 
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uncontrolled temperature fluctuations and ruin kinetic measurements. The described, unwanted 

thermal effects can be avoided by performing the ROP of BBL under significantly more dilute 

conditions (e.g., 0.3 M BBL). 

 

We initially conducted the reaction with 0.3 M BBL in toluene, 1 mol% 4-La(OPPh3)2 (see 

Chapter 3). To further avoid concentration fluctuations between kinetic runs, the actual 

concentrations of BBL and 4-La(OPPh3)2 were further determined using O(SiMe3)2 as an 

internal standard. The result is shown in Table 4.1. and Figure 4.2.a. Please note that key 

variables in eq. (2) such as S and k, have been replaced by M (monomer concentration) and kp 

(propagation rate constant). Furthermore, for concision, we define 

𝑓𝑓(𝑑𝑑) = ln�1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. (𝑑𝑑)� = ln (
𝑀𝑀(𝑑𝑑)
𝑀𝑀(0)) 

M is practically measurable, and thus so is f. Using eq. 2, we derived a time evolution of catalyst 

concentration (eq. 3), though with an undetermined constant factor, kp. Eq. 3 gives a connection 

between the wondered C and the measurable f. 

𝑘𝑘𝑝𝑝𝐶𝐶 = −
𝑀𝑀′

𝑀𝑀
= −[ln(1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. )]′ = −𝑓𝑓′      (3) 

 

If the conversion is measured in a nearly continuous way, one can obtain f ’ at a certain time by 

differentiating f at adjacent times. In practice, the actual measurements conducted were fairly 

sparse. To keep the continuity and accuracy of f ’, we need to solve it in (at least) a 2nd order 

approximation. For the nth time point, tn, we expand f(tn±1) to the term of 2nd derivative: 

𝑓𝑓(𝑑𝑑𝑛𝑛+𝑖𝑖) = 𝑓𝑓(𝑑𝑑𝑛𝑛) + 𝑓𝑓′(𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛+𝑖𝑖 − 𝑑𝑑𝑛𝑛) +
1
2
𝑓𝑓′′(𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛+𝑖𝑖 − 𝑑𝑑𝑛𝑛)2 + 𝑂𝑂�(𝑑𝑑𝑛𝑛+𝑖𝑖 − 𝑑𝑑𝑛𝑛)3�       (4) 

where 𝑖𝑖 = ±1.  
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With the two equations of (4), f’(tn) is solved (see the procedures in 4.5.1): 

𝑓𝑓′(𝑑𝑑𝑛𝑛) =
1

𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛−1
[(𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1)

𝑓𝑓(𝑑𝑑𝑛𝑛+1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛

+ (𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)
𝑓𝑓(𝑑𝑑𝑛𝑛) − 𝑓𝑓(𝑑𝑑𝑛𝑛−1)

𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1
]       (5) 

 

Table 4.1. ROP of rac-BBL (0.322 M) with 4-La(OPPh3)2 at different time points. 
O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

4-La(OPPh3)2
[BBL]
[BBL] = 100

= 0.322 M

[La]
 

Entry Time (min) Conv. (%)a f = ln(1-Conv.) -df/dt = kpC ln(-df/dt) Sim. Conv. (%)b 

0 0 0 0 - - 0 
1 2 14.1 -0.152 0.0544 -2.91 14.6 
2 3 17.7 -0.195 0.0400 -3.22 18.3 
3 5.5 23.9 -0.273 0.0268 -3.62 24.5 
4 8 28.1 -0.329 0.0197 -3.93 28.5 
5 12 32.2 -0.389 0.0133 -4.32 32.7 
6 19 37.0 -0.462 0.00897 -4.71 37.4 
7 30 41.5 -0.536 0.00551 -5.20 41.9 
8 40 44.0 -0.580 0.00423 -5.47 44.7 
9 55 47.3 -0.641 0.00336 -5.70 47.5 

10 83 50.3 -0.699 - - 51.1 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. 
b – Simulated conversions are calculated with eq. (12). kp = 39.9 (M∙min)-1 and ke = 231 (M∙min)-1, 
determined by linear regression of eq. (13). 

 

The relative concentration of catalyst is shown in Figure 4.2.b. Although the actual 

concentration is veiled by the constant kp, which stands for the rate constant of propagation, 

one can clearly notice the dramatic catalyst decay, which has been qualitatively represented in 

conversion-time plot in Figure 4.2.a. 

 

Further investigation of the catalyst evolution with respect to time reveals the rate law for 

catalyst degradation. We found 1/(kpC) can be represented as a linear function of reaction time 

(Figure 4.2.c), which supports a 2nd-order dependence on catalyst concentration (eq. 7) for 
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catalyst degradation (base-promoted elimination). Combined with the assumption that 

propagation is 1st order in monomer and catalyst (eq. 6), we solved the process of 

polymerization as a function of time and derived the rate constants from experimental data. 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑝𝑝𝐶𝐶𝑀𝑀       (6) 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑒𝑒𝐶𝐶2       (7) 

Where again C represents the catalyst concentration, M represents the monomer concentration, 

and kp and ke stand for the rate constants of propagation and elimination, respectively. 

O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

4-La(OPPh3)2
[BBL]
[BBL] = 100

= 0.322 M

[La]
 

 

 
Figure 4.2. (a) Conversion of BBL (b) kpC and (c) 1/kpC as functions of time. (d) Linear 
relationship of ln(-f’) and f. Reaction was performed in toluene at ambient temperature with 
[BBL]/[4-La(OPPh3)2] = 100/1 and [BBL] = 0.322 M. 
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Dividing eq. (7) by eq. (6) can cancel the time differentials, which after separation of variables, 

leads to eq. (8):  

𝑑𝑑𝐶𝐶
𝐶𝐶

=
𝑘𝑘𝑒𝑒
𝑘𝑘𝑝𝑝
𝑑𝑑𝑀𝑀
𝑀𝑀

       ⇒ 𝑑𝑑(ln𝐶𝐶) =
𝑘𝑘𝑒𝑒
𝑘𝑘𝑝𝑝
𝑑𝑑(ln𝑀𝑀)       (8) 

Let C0 = C(0) and M0 = M(0). At t = 0, C = C0,* M = M0, which gives: 

ln
𝐶𝐶
𝐶𝐶0

=
𝑘𝑘𝑒𝑒
𝑘𝑘𝑝𝑝

ln
𝑀𝑀
𝑀𝑀0

       ⇒ 𝐶𝐶 = 𝐶𝐶0 �
𝑀𝑀
𝑀𝑀0
�
𝑘𝑘𝑒𝑒 𝑘𝑘𝑝𝑝⁄

       (9) 

*Note that we neglect the time needed for converting the pre-catalyst to the active catalyst. 
This works well for the current case according to Figure 4.2.b, but this may not hold under 
some other conditions. 

 

Eq. (9) is an expression of C in terms of M. Using the expression of C in eq. (9) within eq. (6), 

we get an ordinary differential equation (ODE) of M. 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑝𝑝𝐶𝐶0𝑀𝑀 �
𝑀𝑀
𝑀𝑀0
�
𝑘𝑘𝑒𝑒 𝑘𝑘𝑝𝑝⁄

       (10) 

Solving eq. (10) with M = M0 at t = 0 as the initial condition (see the procedures in 4.5.2): 

𝑀𝑀
𝑀𝑀0

= (1 + 𝑘𝑘𝑒𝑒𝐶𝐶0𝑑𝑑)−𝑘𝑘𝑝𝑝 𝑘𝑘𝑒𝑒⁄        (11) 

i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶(𝑑𝑑) = 1 − (1 + 𝑘𝑘𝑒𝑒𝐶𝐶0𝑑𝑑)−𝑘𝑘𝑝𝑝 𝑘𝑘𝑒𝑒⁄        (12) 

In cases where the elimination rate is negligible (ke ~0), the limit of eq. (12) is 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 =

1 − 𝐶𝐶−𝑘𝑘𝑝𝑝𝐶𝐶0𝑡𝑡, which agrees with the kinetic of a 1st order reaction. 

 

To determine the rate constants, eq. (10) can be divided by M and the natural logarithm can be 

taken for both sides to yield: 

ln(−𝑓𝑓′) =
𝑘𝑘𝑒𝑒
𝑘𝑘𝑝𝑝
𝑓𝑓 + ln�𝑘𝑘𝑝𝑝𝐶𝐶0�         (13) 

where 𝑓𝑓(𝑑𝑑) = ln 𝑀𝑀(𝑡𝑡)
𝑀𝑀0
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The plot of ln(-f ’) vs f displays a linear relationship, where according to eq. (13), the slope and 

intercept are ke/kp and ln(kpC0), respectively (Figure 4.2.d). With a known C0, we can readily 

extract kp and ke. Using C0 = 0.00322 M in the case of Figure 4.2.d, we arrive at kp = 39.9 

(M∙min)-1 and ke = 231 (M∙min)-1. 

 

We then applied this method to various monomer concentrations while maintaining the same 

catalyst concentration to establish the monomer order for propagation and catalyst deactivation 

(Table 4.2 and 4.3). Linear regressions using eq. (13) display high coefficient of determinations 

(Figure 4.3.a). Furthermore, using the kp and ke extracted from these regressions and using eq. 

(12), reaction conversions can be simulated as functions of the reaction time. Under the 

conditions we have tested, all simulated conversion values display excellent agreement with 

the experimental results (Figure 4.3.b, Table 4.1, 4.2 and 4.3) 

 

 
Figure 4.3. (a) Linear relationship of ln(-f’) and f; (b) experimental (solid dots) and simulated 
(dash lines) conversions of BBL as functions of reaction time. Reactions were performed in 
toluene at ambient temperature with [BBL]/[4-La(OPPh3)2] = 52/1 and [BBL] = 0.330 M 
(green); 100/1 and [BBL] = 0.322 M (orange); 190/1 and [BBL] = 0.325 M (blue).  
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Table 4.2. ROP of rac-BBL (0.172 M) with 4-La(OPPh3)2 at different time points. 
O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

4-La(OPPh3)2
[BBL]
[BBL] = 52

= 0.172 M

[La]
 

Entry Time (min) Conv. (%)a f = ln(1-Conv.) -df/dt = kpC ln(-df/dt) Sim. Conv. (%)b 

0 0 0 0 - - 0 
1 2.6 19.2 -0.214 0.0633 -2.76 21.5 
2 4 25.0 -0.288 0.0493 -3.01 27.3 
3 7 33.7 -0.411 0.0360 -3.33 35.3 
4 10 39.6 -0.504 0.0273 -3.60 40.4 
5 15 45.7 -0.611 0.0186 -3.98 46.0 
6 20 49.8 -0.690 0.0138 -4.28 49.9 
7 26 53.2 -0.758 0.0105 -4.55 53.2 
8 34 56.5 -0.833 0.00859 -4.76 56.5 
9 46 60.3 -0.923 0.00556 -5.19 59.9 

10 60 62.1 -0.969 0.00414 -5.49 62.7 
11 82 66.4 -1.090 - - 65.8 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. 
b – Simulated conversions are calculated with eq. (12). kp = 44.4 (M∙min)-1 and ke = 156 (M∙min)-1, 
determined by linear regression of eq. (13). 

 

Table 4.3. ROP of rac-BBL (0.618 M) with 4-La(OPPh3)2 at different time points. 
O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

4-La(OPPh3)2
[BBL]
[BBL] = 190

= 0.618 M

[La]
 

Entry Time (min) Conv. (%)a f = ln(1-Conv.) -df/dt = kpC ln(-df/dt) Sim. Conv. (%)b 

0 0 0 0 - - 0 
1 2 12.4 -0.133 0.0371 -3.30 10.5 
2 3 14.4 -0.155 0.0202 -3.90 12.9 
3 6 17.8 -0.196 0.0117 -4.45 17.5 
4 10 20.8 -0.233 0.00793 -4.84 21.0 
5 16 23.6 -0.269 0.00522 -5.26 24.2 
6 25 26.3 -0.305 0.00351 -5.65 27.1 
7 43 29.8 -0.353 0.00227 -6.09 30.7 
8 60 31.9 -0.385 0.00168 -6.39 32.8 
9 100 35.3 -0.436 0.00112 -6.79 35.9 

10 133 37.4 -0.469 0.00088 -7.04 37.6 
11 180 39.5 -0.503 - - 39.3 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. 
b – Simulated conversions are calculated with eq. (12). kp = 32.5 (M∙min)-1 and ke = 346 (M∙min)-1, 
determined by linear regression of eq. (13). 
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4.2.3. Effect of Equivalent of OPPh3 and Induction Period 

In Chapter 2, we qualitatively compared the ROP of BBL catalyzed by 1-La in the presence of 

0, 1, 2 and 3 equivalents of OPPh3, where the equivalents of exogeneous donor led to 

remarkable changes in reaction rates and selectivity. With our method to evaluate the active 

catalyst concentration in hand, we set out to evaluate the impact of exogenous donor on the 

ROP of BBL catalyzed by 1-La. To do this, we evaluated a series of reactions using 1 – 6 

equivalents of OPPh3 with 3 mM 1-La and 100 equivalents of BBL, by recording conversions 

at different times (Table 4.4 and Figure 4.4.a). 

 

In all cases, increases in reaction conversion were insignificant after ~1 h reaction times 

compared to earlier time points. At this 1 h time point, increasing equivalents of OPPh3 (1.0 to 

6.0) led to large increases in the conversion of BBL (34% to 87%). Given that only modest 

increases in reaction conversion at 1 h were observed moving from 4 – 6 equiv OPPh3 (84 vs 

87%), the upper limit of OPPh3 equivalents we investigated was restricted to 6. 

 

At the more dilute reaction conditions (0.3 vs 2.4 M BBL), there were significant differences 

in reaction conversion at 1 h for our optimal “standard” conditions (i.e., 2 equiv. OPPh3; 48% 

conversion) and with large excesses of OPPh3 (i.e., 6 equiv, 87% conversion). On the other 

hand, regardless of the higher final conversion, the reactions with large excesses of OPPh3 led 

to much slower rates at early stages. The opposite effects of OPPh3 equivalents in the early and 

late stages of the reaction suggested different kinetics associated with the evolution of the active 

catalyst.  
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O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

1-La
1 Ph2CHOH
_ OPPh3

[BBL]
[BBL] = 100

= 0.3 M

[La]
 

 

 
Figure 4.4. (a) Conversions of BBL and (b) relative catalyst concentration as functions of 
reaction time. Reactions were performed in toluene at ambient temperature with [BBL]/[1-
La]/[Ph2CHOH] = 100/1/1, [OPPh3]/[1-La] = 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 6.0, and [BBL] = 
0.3 M. 
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Table 4.4. The ROP of rac-BBL (0.3 M) catalyzed by 1-La with variable equiv. OPPh3 

O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

1-La
1 Ph2CHOH
_ OPPh3

[BBL]
[BBL] = 100

= 0.3 M

[La]
 

1.0 equiv. OPPh3 1.5 equiv. OPPh3 

Time (min) Conv. (%)a f b -df/dt = kpC Time (min) Conv. (%)a f b -df/dt = kpC 

2 8.6 -0.090 0.0292 2 14.7 -0.159 0.0545 
3 10.5 -0.111 0.0200 3.4 19.0 -0.211 0.0320 
5 13.6 -0.146 0.0156 5 22.4 -0.253 0.0237 
7 15.9 -0.174 0.0126 7 25.4 -0.294 0.0187 

12 19.7 -0.220 0.00840 10 29.0 -0.342 0.0141 
22 24.9 -0.287 0.00587 15 32.6 -0.395 0.00937 
42 30.9 -0.370 0.00339 20 35.3 -0.436 0.00761 
81 35.9 -0.445 - 30 39.3 -0.500 0.00571 
    52 44.7 -0.592 0.00343 
    73 47.7 -0.649 0.00233 
    110 50.9 -0.712 - 

2.0 equiv. OPPh3 2.5 equiv. OPPh3 

Time (min) Conv. (%)a f b -df/dt = kpC Time (min) Conv. (%)a f b -df/dt = kpC 

2 14.1 -0.152 0.0544 2 15.3 -0.167 0.0732 
3 17.7 -0.195 0.0400 3 20.9 -0.235 0.0638 

5.5 23.9 -0.273 0.0268 5 29.2 -0.345 0.0478 
8 28.1 -0.329 0.0197 8 36.6 -0.456 0.0330 

12 32.2 -0.389 0.0133 15 46.1 -0.618 0.0181 
19 37.0 -0.462 0.00897 22 50.8 -0.709 0.0114 
30 41.5 -0.536 0.00551 31 54.8 -0.794 0.00807 
40 44.0 -0.580 0.00423 40 57.4 -0.854 0.00618 
55 47.3 -0.641 0.00336 50 59.8 -0.910 0.00486 
83 50.3 -0.699 - 70 62.3 -0.977 - 

3.0 equiv. OPPh3     

Time (min) Conv. (%)a f b -df/dt = kpC     

2 12.8 -0.137 0.0727     
3 19.1 -0.212 0.0740     
5 30.0 -0.357 0.0667     

8.3 42.1 -0.546 0.0496     
12 50.2 -0.698 0.0354     
18 57.4 -0.854 0.0227     
33 65.6 -1.07 0.0112     
46 69.3 -1.18 0.00736     
65 72.3 -1.28 0.00487     

120 76.5 -1.45 -     

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. 
b – f = ln(1-Conv.). 
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Table 4.4. Continued 
 

4.0 equiv. OPPh3 6.0 equiv. OPPh3 

Time (min) Conv. (%)a f b -df/dt = kpC Time (min) Conv. (%)a f b -df/dt = kpC 

2.5 9.8 -0.103 0.0671 3 6.9 -0.071 0.0459 
4 20.3 -0.227 0.0819 4 11.7 -0.125 0.0530 
6 32.2 -0.389 0.0814 5 16.3 -0.177 0.0570 
8 42.4 -0.552 0.0797 7 26.5 -0.308 0.0682 

10 50.7 -0.707 0.0691 9.5 38.6 -0.488 0.0699 
12 56.3 -0.829 0.0576 11 44.6 -0.591 0.0699 
15 62.8 -0.988 0.0480 14 55.4 -0.807 0.0621 
21 70.3 -1.22 0.0325 17 61.9 -0.964 0.0562 
30 76.2 -1.44 0.0210 20 68.1 -1.14 0.0519 
45 81.0 -1.66 0.0122 24 73.0 -1.31 0.0380 
60 83.5 -1.80 0.00741 35 80.5 -1.64 0.0252 
84 85.2 -1.91 0.00396 47 84.7 -1.88 0.0170 

120 86.8 -2.02 - 63 87.5 -2.08 - 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. 
b – f = ln(1-Conv.). 

 

Relative catalyst concentrations during the reaction can be represented as -f ’ according to eq. 

(3) (Table 4.4 and Figure 4.4.b). Note that among the curves of reactions with varied conditions, 

we cannot argue in which reaction the remained active catalyst is more than another at any 

given time, because it is kpC rather than C we use as the vertical coordinate, where kps are 

undetermined and likely vary from one condition to another while they are considered as 

constants during each reaction. The interpretation of these curves is confined within each of 

themselves. Regardless of that, significant decreases of catalyst concentration were observed 

in all cases.. 

 

Plots of -f’ vs time reveal donor-dependent maxima, which reflect donor-dependent maxima in 

active-catalyst concentration. Notably, excess OPPh3 (3.0, 4.0 and 6.0 equiv.) shifts the maxima 

of -f ’ to later time, consistent with slower reaction rates at earlier timepoints. Such behavior is 
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consistent with increased delays in converting the pre-catalyst to authentically catalytic species, 

an induction period, where excess OPPh3 appears to extend the induction period.  Although we 

didn’t observe a maxima in reactions with fewer than 2.5 equivalents of OPPh3 were no more 

than 2.5, we attribute this to the actual maximum of catalyst concentration appearing much 

earlier than the first measurement we conducted (ca. 2 min). 

 

Given these results, we hypothesize that activation of the pre-catalyst involves substitution of 

one of the two-bound OPPh3 by the monomer, BBL. Before the addition of monomer, the pre-

catalyst is in the state of a monomeric La alkoxide with two bound OPPh3, e.g., 4-La. We 

hypothesize that the precatalyst can be further converted to the relevant active catalyst for 

insertion and ring-opening through a ligand substitution reaction between free BBL and La-

bound OPPh3. The fraction of [La] species bound by BBL depends on the concentrations and 

binding strength of OPPh3 and BBL, where higher binding strength and concentrations of 

OPPh3 would lead to lower concentrations of active catalyst. This hypothesis is consistent with 

expectations based on the donor strength of OPPh318 and BBL19, as well as our experimental 

observations for (1) the positive correlation between OPPh3 equivalent and length of induction 

period; (2) the presence of unbound OPPh3 during reaction (see Chapter 2.). 

 

Despite the lower catalyst concentration and slower reaction rates at earlier conversions, a 

slower composite reaction rate is beneficial to the final conversion. Because of the lower initial 

concentration of catalyst and the 2nd order dependence of catalyst degradation on its 

concentration, the irreversible consumption of catalyst is reduced at early stages of the reaction 
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with higher concentrations of OPPh3. Therefore, reaction conversions are improved with higher 

concentrations of OPPh3, due to an extended catalyst lifetime. 

 

4.2.4. Effect of Electronic Property of Lutidine Oxide 

In Chapter 3, we observed that the electron donating ability of groups located in the para-

position of a family of lutidine oxides had a significant impact in the activity of ROP of BBL 

initiated by a LaIII aminobisphenolate catalyst. Unlike increasing the equivalent of OPPh3, 

which promotes the overall activity monotonically, the highest activity in our screen scale is 

supported by the lutidine oxide with OMe on para-position. More electron-rich (NMe2) or 

electron-deficient (H) para-substituents than OMe lead to slower rates and lower conversions. 

In Chapter 3, we established that more electron-rich lutidine oxide bind more tightly to the La 

complex, while studies in Chapter 2 and the preceding section support that the substitution of 

the exogenous ligand is involved in catalyst activation and affects both the reaction rates and 

conversion. Herein, we continue to analyze the effects of donor electronic properties on the 

evolution of the active catalyst.  

 

With the 1-La as the precursor of catalyst of ROP of BBL, we chose OMeLO, NMe2LO and LO 

as the exogenous ligand with interest in this study. Monomer concentration and catalyst loading 

were set at 0.3 M and 1 mol% to maintain comparable conditions to our studies with OPPh3. 

Conversions were measured by removal and quenching of aliquots at given time points, and 

this data was further converted to catalyst evolution according to eq. (3). The results of these 

experiments are shown in Table 4.5 and Figure 4.5.a. 
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The investigation of catalyst evolution shows that for the optimal lutidine oxide, OMeLO, the 

concentration of active catalytic species reaches a maximum at 1 min of the reaction (Figure 

4.5.c.; 32% conversion). When a more electron-rich ligand is instead used, NMe2LO, the maxima 

is reached at longer time points (Figure 4.5.b.; 9 min, 17% conversion). The stronger donor 

suppresses the formation of active catalytic species, which leads to lower conversions and 

slower rates. In the reaction with a less electron-rich donor, HLO, the active species is found to 

decrease monotonically within the first measurement (Figure 4.5.d; 10 s, 5% conversion). This 

observation supports fast activation of the La benzhydrolate precursor with two LO coordinated. 

 

 
Figure 4.5. (a) Conversions of ROP of BBL with 1-La and RLO, R = NMe2 (blue), OMe 
(orange) and H (green), and relative catalyst concentration [(b) R = NMe2 (blue), (c) R = OMe 
(orange) and (d) R =H (green)] as functions of reaction time. Reactions were performed in 
toluene at ambient temperature with [BBL]/[1-La]/[Ph2CHOH]/[RLO] = 100/1/1/2, and [BBL] 
= 0.3 M.  
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Table 4.5. ROP of rac-BBL (0.3 M) with 1-La and RLO. 
 

O

O nTol, 25 °C, TimeO

O

rac-BBL P3HB

1-La
1 Ph2CHOH
2 RLO [BBL]

[BBL] = 100

= 0.3 M

[La]
 

NMe2LO OMeLO LO 

Time 
(min) 

Conv. 
(%) a kpC b Time 

(min) 
Conv. 
(%) a kpC b Time 

(min) 
Conv. 
(%) a kpC b 

2 3.4 0.0176 0.12 3.7 0.311 0.17 4.7 0.254 
5 8.5 0.0206 0.25 7.4 0.308 0.5 10.3 0.154 
9 16.8 0.0227 0.5 14.7 0.363 1 15.2 0.106 

17 29.4 0.0192 1 31.5 0.448 1.5 19.4 0.0886 
25 38.8 0.0168 2 57.1 0.424 2 22.4 0.0698 
35 47.6 0.0142 3 70.6 0.322 3 26.8 0.0564 
45 53.9 0.0122 6 81.5 0.137 8 41.1 0.0362 
60 61.1 - 20 91.5 - 15 50.9 0.0227 

      30 61.3 - 

a – Determined by 1H-NMR integration of BBL and PHB methine resonances in the crude reaction 
mixture. 
b – kpC = df/dt, f = ln(1-Conv.). 

 

Based on the strength of the exogenous ligand and the varying time of catalyst activation, the 

catalyst evolution is treated with two models. One is with a short induction period, in which 

the coordination of monomer is fast. In this scenario, activation of the pre-catalyst is effectively 

finished within the first seconds of the reaction, meaning that both the reaction time and 

conversion of BBL is negligible compared to the whole reaction time and final conversion. 

With this approximation, the reaction can be considered as one with a high initial concentration 

of catalytic species, where this amount equals that of the pre-catalyst used in the reaction. In 

this scenario, the reaction rate is predominantly affected by the rate of propagation and catalyst 

degradation (kp and ke). Catalysts using moderate donor-strength exogenous ligands (OPPh3 

and HLO) are categorized in this type. In these cases, the catalytic species declines 

monotonically from the initial measurement, even at relatively low conversions. For these 
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systems, increasing the strength and concentration of the ligand enhances the reactivity by 

suppressing catalyst degradation (i.e., elimination, ke). 

 

The alternative model features an unignorable induction period, during which the amount of 

active species increases during times in which there is significant conversion of monomer. A 

significant portion of conversion takes place when active species reaches its maximum, so the 

catalyst evolution must still be evaluated as a competition between activation and degradation. 

In our studies, the reactions with highly electron-rich exogenous ligands (NMe2LO and OMeLO) 

showed this characteristic. We have found that donor strength not only impacts catalyst 

activation, but also attenuates the rate of propagation and catalyst degradation.  

 

While further investigations are warranted, our initial experimental results suggest that catalyst 

activation can be rate-determining with stronger ligands, which can ultimately lead to lower 

reactivity. In the induction or activation dominated model, the activation rate can be 

qualitatively compared according to the time of the maximum of catalytic species. The more 

electron-rich the ligand is, the slower catalyst activation is (Figure 4.5.b and 4.5.c). This trend 

is consistent with our earlier hypothesis where the activation of catalyst involves substitution 

of one of the two coordinated ligands with BBL. 

 

In summary, the electronic properties of the exogenous ligand can contribute oppositely in two 

different stages of the reaction. Increasing the electron-donating ability of the ligand 

decelerates monomer binding. This leads to an off-cycle intermediate (bis-donor coordinated 
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species), but also suppresses a key, irreversible catalyst degradation pathway (i.e., elimination). 

The underlying influence of these donors on enhancing the propagation rate still needs to be 

better understood, but it is clear that donors of intermediate strength, OMeLO, can balance these 

effects to reach unprecedented activity. 
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4.3. Conclusion 

In this chapter, we proposed a method that can quantitatively evaluate the change in 

concentration of the catalytic species. This includes addressing a key catalyst deactivation 

process, elimination, which in previous chapters was found to considerably reduce the reaction 

rate. According to the relationship we have developed between the active species and reaction 

time, we have inferred that the elimination process is 2nd-order in catalyst and we have deduced 

rate constants for propagation and elimination in the ROP of BBL initiated by 4-La(OPPh3)2. 

The kinetic model and derived rate constants are in excellent agreement with the experimental 

results. With this method, we evaluated key parameters surrounding exogeneous donor ligands 

in ROP of BBL initiated by 1-La or its alkoxide derivative and assisted with such ligands, 

which included donor equivalents and donor electronic properties. These methods help 

categorize their effects and mechanistic roles in the ROP of BBL, and should enable the 

systematic design of future catalysts for ROP. 

  

190



4.4. Experimental Section 

4.4.1. General Methods 

Instruments and measurements: Unless specified, all reactions were performed under inert 

conditions (N2) using standard Schlenk techniques or in a MBraun drybox equipped with a 

standard catalyst purifier and solvent trap. Glassware was oven-dried for at least 2 h at 150 °C 

prior to use. Celite and 3 Å molecular sieves were heated under reduced pressure at 300 °C for 

at least 24 h and then cooled under vacuum prior to use. The following spectrometers were 

used for NMR characterization: Bruker Avance III HD Ascend (1H: 600 MHz, 13C: 151 MHz, 

31P: 243 MHz) and a Bruker DRX (1H: 400 MHz, 13C: 101 MHz, 31P: 162 MHz). 1H- and 13C-

NMR shifts are referenced relative to the solvent signal (CDCl3: 1H: 7.26 ppm, 13C: 77.16 ppm; 

C6D6: 1H: 7.16 ppm, 13C: 128.06 ppm), while 31P-NMR shifts are referenced relative to external 

solution standards (H3PO4, 0 ppm). Both instruments were equipped with Z-gradient BBFO 

probes. 

 

Materials: Tetrahydrofuran, diethyl ether, toluene, hexanes, and pentane were purchased from 

Fisher Scientific. Solvents were sparged for 20 min with dry Ar and dried using a commercial 

two-column solvent purification system (LC Technologies). Solvents were further dried by 

storing them over 3 Å molecular sieves for at least 48 h prior to use. Ultrapure, deionized water 

(18.2 MΩ) was obtained from a Millipore Direct-Q 3 UV Water Purification System. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. C6D6 was 

degassed with 3 freeze-pump-thaw cycles and stored over 3 Å molecular sieves for at least 48 

h prior to use. Qualitative assessment of moisture-content in these solvents was performed by 
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adding 1 drop of a concentrated solution of a sodium benzophenone radical anion (purple) to 

10 mL of solvent where maintenance of a dark blue color for at least 5 minutes was sufficient 

for use. 

 

2,6-ditertbutyl phenol (Oakwood Chemical; 99% purity), para-formaldehyde (Alfa Aesar; 97% 

purity), benzylamine (TCI; 99% purity), triphenylphosphine oxide (Acros; 99% purity), 

hexamethylphosphoramide (TCI; 98% purity), triphenylphosphate (Sigma-Aldrich; 99% 

purity), potassium hexamethyldisilazide (Sigma-Aldrich; 95% purity), 1,1,3,3-

tetramethyldisilazane (TCI, 97% purity), LaCl3 (Strem; RE = La; 99.9% purity), and acetyl 

chloride (Acros; 99% purity) were purchased and used as received. Racemic butyrolactone 

(Sigma-Aldrich; 98% purity) was freshly distilled from CaH2 under nitrogen and degassed by 

freeze-pump-thaw cycles prior to use. La[N(SiMe3)2]3,20 La[N(SiHMe2)2]3(THF)2,21 BnL, 1-La, 

1-La(OPPh3)2,22 were prepared according to reported procedures. NMe2LO, OMeLO, LO and 4-

La(OPPh3)2 were prepared as described in Chapter 3. 

 

4.4.2. Representative Example Measuring Conversion with a Pre-set Reaction Time 

In a glovebox, a 4 mL scintillation vial was charged with 1-La (10.0 mg, 0.0104 mmol, 1.0 

equiv.; MW: 957.27 g•mol-1), a toluene solution of O(SiMe3)2 (0.10% m/m, 3.20 mL, ρ = 0.867 

g/mL; 2.77 g, 0.0171 mmol, 1.64 equiv.; MW: 162.38 g•mol-1), and a magnetic stir bar. 

O(SiMe3)2 was used as an internal standard to accurately determine the amount and 

concentration of La complex and BBL. 
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Note: Despite the internal standard, the toluene solution of O(SiMe3)2 effectively acted as the 

solvent of the reaction and its amount regulated the reaction concentration. The amount of this 

solution was corrected according to the mass addition of the reaction vial before adding the stir 

bar. The ratio of 1-La to O(SiMe3)2 was determined by 1H-NMR of the mixed solution at this 

moment, which consumed 0.01 mL of the total volume (3.20 mL). 

 

 A toluene solution of HOCHPh2 (2.0% m/m, 0.110 mL, ρ = 0.867 g/mL; 1.92 mg, 0.0104 

mmol, 1.0 equiv.; MW: 184.24 g•mol-1) and a toluene solution of ligand, e.g., OMeLO (5% m/m, 

0.074 mL, ρ = 0.867 g/mL; 3.2 mg, 0.0209 mmol, 2.0 equiv.; MW: 153.18 g•mol-1) were added 

to the clear, colorless solution. After approximately one minute, rac-BBL (0.085 mL, ρ = 1.06 

g/mL, 90 mg, 1.04 mmol, 100 equiv.; MW: 86.09 g•mol-1) was added to the stirring catalyst 

solution. After a pre-set reaction time, the conversion was checked by adding ca. 0.1 mL 

reaction solution to a 0.02 mL of a ca. 5 wt% toluene solution of benzoic acid (BzOH), followed 

by addition of 0.5 mL CDCl3. The resulting solution was transferred to an NMR tube for 1H-

NMR analysis, yielding the conversion of BBL. The initial amount and concentration of BBL 

were corrected according to the ratio of the total area of methine peaks of BBL and P3HB to 

the signal of O(SiMe3)2. 
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4.5. Appended Math Procedures 

4.5.1. 2nd Order Approximation of Derivatives of Discrete Functions with Different Step-
Sizes (eq. 5) 

In Section 4.2.2, we introduced f(t) to represent the degree of the consumption of the substrate, 

that is the monomer in a polymerization, of which the derivative is proportional to the 

concentration of the catalytic species. If the independent variable of a function is given with 

equal interval, the derivative of the function at each point can be easily approximated with the 

function value at the point and those at its adjacent points. This is usually the case of an 

automated measurement. Limited by the nonautomated experimental method, the times when 

f(t) is measured are set with unequal intervals, which are even deliberately assigned to 

increasing. This fact requires a more careful process to solve the derivative, as we expressed in 

eq. 5. 

 

For value of function at the nth time point, eq. 4 gives 2nd order expansions from f(tn) to f(tn±1): 

𝑓𝑓(𝑑𝑑𝑛𝑛+1) − 𝑓𝑓(𝑑𝑑𝑛𝑛) = 𝑓𝑓′(𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛) +
1
2
𝑓𝑓′′(𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)2 + 𝑂𝑂((𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)3)       (14) 

𝑓𝑓(𝑑𝑑𝑛𝑛−1) − 𝑓𝑓(𝑑𝑑𝑛𝑛) = 𝑓𝑓′(𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛) +
1
2
𝑓𝑓′′(𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛)2 + 𝑂𝑂((𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛)3)       (15) 

 

f(tn), f(tn-1) and f(tn+1) are experimentally measured, f ’(tn) and f ’’(tn) are unknown yet, and f ’’(tn) 

is what we interested in. Dividing eq. 14 by (tn+1 - tn)2 and neglecting 3rd order terms, we obtain 

𝑓𝑓(𝑑𝑑𝑛𝑛+1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
(𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)2 =

𝑓𝑓′(𝑑𝑑𝑛𝑛)
𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛

+
1
2
𝑓𝑓′′(𝑑𝑑𝑛𝑛)       (16) 

Similarly, we reorganize eq. 15 as 

𝑓𝑓(𝑑𝑑𝑛𝑛−1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
(𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛)2 =

𝑓𝑓′(𝑑𝑑𝑛𝑛)
𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛

+
1
2
𝑓𝑓′′(𝑑𝑑𝑛𝑛)       (17) 
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Subtracting eq. 17 from eq. 16, we cancel the unknown terms of second derivative. 

𝑓𝑓(𝑑𝑑𝑛𝑛+1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
(𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)2 −

𝑓𝑓(𝑑𝑑𝑛𝑛−1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
(𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛)2 =

𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛+1
(𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)(𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛)

𝑓𝑓′(𝑑𝑑𝑛𝑛)       (18) 

Now, we can express f’(tn) as 

𝑓𝑓′(𝑑𝑑𝑛𝑛) =
1

𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛+1
[(𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛)

𝑓𝑓(𝑑𝑑𝑛𝑛+1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛

− (𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)
𝑓𝑓(𝑑𝑑𝑛𝑛−1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)

𝑑𝑑𝑛𝑛−1 − 𝑑𝑑𝑛𝑛
]       (19) 

Rearranging eq. 19 to keep the convention that a subtraction involving two values of time is 

always the later minus the earlier, we obtain eq. 5. 

𝑓𝑓′(𝑑𝑑𝑛𝑛) =
1

𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛−1
[(𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1)

𝑓𝑓(𝑑𝑑𝑛𝑛+1) − 𝑓𝑓(𝑑𝑑𝑛𝑛)
𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛

+ (𝑑𝑑𝑛𝑛+1 − 𝑑𝑑𝑛𝑛)
𝑓𝑓(𝑑𝑑𝑛𝑛) − 𝑓𝑓(𝑑𝑑𝑛𝑛−1)

𝑑𝑑𝑛𝑛 − 𝑑𝑑𝑛𝑛−1
]       (5) 

 

This expression has a straightforward physical meaning: f ’(tn) is approximated as the average 

of the slopes of its two adjacent intervals, weighted by how close an adjacent point is to the 

point of tn. 

 

4.5.2. Solution of Monomer Evolution with Time-dependent Catalytic Species (eq. 10) 

In Section 4.2.2, the time derivative was obtained by combining the rate law of the evolution 

of monomer and catalytic species (eq. 10), where M and M0 are the monomer concentration at 

any given time and the beginning of the reaction. The solution of this equation would express 

the monomer concentration as a function of time. 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑝𝑝𝐶𝐶0𝑀𝑀 �
𝑀𝑀
𝑀𝑀0
�
𝑘𝑘𝑒𝑒 𝑘𝑘𝑝𝑝⁄

       (10) 

Instead of M with a dimension of concentration, we herein are using u = M/M0 as the variable, 

which is dimensionless and shows how complete the reaction has been.  
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Dividing eq. 10 by M0 and substitute M/M0 with u, we obtain 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑝𝑝𝐶𝐶0𝑑𝑑𝑑𝑑𝑘𝑘𝑒𝑒/𝑘𝑘𝑝𝑝 = −𝑘𝑘𝑝𝑝𝐶𝐶0𝑑𝑑𝑘𝑘𝑒𝑒/𝑘𝑘𝑝𝑝+1 

Separate terms of u and t: 

𝑘𝑘𝑝𝑝𝐶𝐶0𝑑𝑑𝑑𝑑 = −𝑑𝑑−𝑘𝑘𝑒𝑒/𝑘𝑘𝑝𝑝−1𝑑𝑑𝑑𝑑 

Integrate both side: 

𝑘𝑘𝑝𝑝𝐶𝐶0𝑑𝑑 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝑑𝑑 = −
1

−𝑘𝑘𝑒𝑒/𝑘𝑘𝑝𝑝
𝑑𝑑−𝑘𝑘𝑒𝑒/𝑘𝑘𝑝𝑝 

Knowing u = 1 when t = 0, the constant is solved: 

𝑘𝑘𝑝𝑝𝐶𝐶0𝑑𝑑 +
𝑘𝑘𝑝𝑝
𝑘𝑘𝑒𝑒

=
𝑘𝑘𝑝𝑝
𝑘𝑘𝑒𝑒
𝑑𝑑−𝑘𝑘𝑒𝑒/𝑘𝑘𝑝𝑝 

Rearrange the equation to express u, namely M/M0, we obtain the solution as eq. 11: 

𝑀𝑀
𝑀𝑀0

= 𝑑𝑑 = (1 + 𝑘𝑘𝑒𝑒𝐶𝐶0𝑑𝑑)−𝑘𝑘𝑝𝑝 𝑘𝑘𝑒𝑒⁄        (11) 
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