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Abstract of “Probabilistic Algorithms for Integrated Analysis of Single-Cell Multi-Omic

Data” by Pinar Demetci, Ph.D., Brown University, May 2023.

Advances in sequencing technologies in the last decade have enabled us to profile various

genomic features at the single-cell resolution, such as gene expression and chemical modifi-

cations on the DNA. Studying how these features co-vary across cells can reveal how they

interact to regulate cellular processes across cell types and states. However, with some ex-

ceptions, it is not possible to simultaneously take multiple types of genomic measurements

on the same cells due to the destructive nature of sequencing technologies. Multi-modal

studies of single-cell genomes thus require computational methods that integrate data from

different sequencing experiments.

This dissertation presents three probabilistic algorithms designed to address certain real-

world challenges that existing algorithms fail to address when integrating various single-cell

measurements. The first one, Single-Cell alignment with Optimal Transport (SCOT), is an

unsupervised algorithm that compares dataset geometries to yield probabilistic cell align-

ments between two datasets. When there is validation data available for hyperparameter

tuning, SCOT gives results on par with the state-of-the-art alignment algorithms. Un-

like these algorithms, however, SCOT heuristically self-tunes its hyperparameters and still

yields high-quality alignments when users do not have sufficient validation data. This is a

realistic scenario as different features are profiled in different cells in single-cell experiments.

The second algorithm, SCOT version 2 (SCOTv2), extends SCOT to align more than two

datasets at a time. It also handles datasets with disproportionate cell-type representation,

which we show is a common phenomenon in real-world experiments that most alignment

algorithms fail to account for. The third algorithm, Single-cell fused Gromov CO-Optimal

TRansport (SCOOTR), uses a novel optimal transport formulation to jointly align both

cells and features through an alternating optimization scheme. This joint formulation not

only improves cell alignments but also generates hypotheses about the relationships between



genomic features. SCOOTR additionally allows for users to provide weak supervision on

either the feature or the cell alignments in order to improve the quality of both.
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Chapter 1

Introduction

1.1 Background on Single-cell Multi-omics

All processes in cells –such as cell division, differentiation, heat shock response, en-

zyme/hormone secretion, signaling, DNA repair, etc.– are carried out by proteins and

ribonucleic acids (RNAs). The blueprint for the production of these molecules are

encoded in genes. The timing of their production, as well as their abundance, are

determined by tightly regulated gene expression programs [21, 67, 68]. While dif-

ferentially regulated gene expression programs can lead to the specialized cell types

that carry out specific functions in an organism (e.g. motor neurons, skin cells etc),

their misregulation or dysregulation lead to disorders [67]. As a result, studying the

regulatory mechanisms behind gene expression is of interest for both fundamental

and biomedical research.

1.1.1 Genome regulation and sequencing

Gene expression is regulated on multiple levels in the genome. In eukaryotic cells,

the DNA is wrapped around histone proteins, forming the chromatin [21]. The chro-

matin is then further coiled and packaged into the nucleus (Figure 1.1). Genome

architecture studies have revealed that the 3D structure that results from this coiling

influences gene expression regulation as it determines which genomic regions will be

1
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physically located close together in the nucleus, allowing or disallowing for protein

binding events on the genome [21]. Reversible chemical modifications on the chro-

matin, such as acetylation, control the unwrapping of the DNA in a given region,

making it accessible as a template for transcription. When the DNA is unwrapped,

various proteins and RNAs can bind on these accessible regions, either driving gene

expression initiation or preventing the binding of other proteins (e.g. RNA poly-

merase) to supress gene expression [21]. So, obtaining a mechanistic view of the gene

expression regulation requires studying multiple properties of the genome. Thanks to

the advances in molecular biology, we have various sequencing technologies to mea-

sure each of these features, such as HiC assays [78] to probe 3D structure of the

genome, bisulfite sequencing techniques [60] to sequence the methylated regions of

the genome, assays for transposase-accessible chromatin (ATAC) sequencing [10] to

find accessible regions of the chromatin, chromatin immunoprecipitation (ChIP) as-

says [48] to identify protein binding events on the DNA, RNA-sequencing assays [96]

to measure gene expression levels.

1.1.2 Single-cell sequencing and multi-omics

Until 2009, genome sequencing was only available at the bulk (i.e. cell population)

level [101]. Laboratory scientists would lyse a culture of cells and purify the molecule

of interest (e.g. mRNA or DNA) pooled in the culture. Sequencing of these molecules,

then, yielded an average read-out for the whole cell population. In 2009, Tang et al.

[87] performed the first single-cell (transcriptomic) sequencing experiment by isolating

just one individual cell from a four-cell stage mouse blastomere. Then, Islam et al. in

2021 [47], and later Hashomshony in 2012 et al. [43], developed multiplexed single-

cell transcriptomic sequencing methods, respectively called STRT-seq and CEL-seq,

where they individually barcoded mRNA molecules from multiple isolated cells and

then pooled them together in one sequencing run. These protocols scaled single-cell
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Figure 1.1: Overview of the eukaryotic genome architecture and some gene regulatory
events. The figure is prepared on Biorender.com

sequencing to the order of ∼ 100 cells and showed that measurements taken at the

single-cell resolution can reveal genomic heterogeneity in cell populations otherwise

unrevealed by bulk sequencing. However, these protocols were still low-throughput,

time- and labor-intensive. Droplet-based methods reported independently by Klein

et al [51] and Macosko et al [59] in 2015 significantly increased the throughput of

single-cell experiments by automating the isolation and barcoding of cells in droplets

with microfluidic devices. Since then, private companies have improved sequencing

protocols and commercialized these methods, making them accessible to a larger

number of labs [101, 109]. Additionally, using similar approaches for cell isolation and

barcoding, scientists have extended single-cell sequencing protocols to other types of

genomic modalities [46], such as chromatin accessibility [11], DNA methylation [80],

3D conformation of the genome [72], protein binding events [75] etc.

Obtaining genomic measurements at the single-cell resolution is critical to gain a

deeper understanding of genomic regulatory processes [67] Bulk sequencing provides

Biorender.com
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only one data point for an entire population of cells, which represents the average

measurement for all cells in that population. However, single-cell sequencing yields

an individual data point for each cell, revealing the entire distribution of biological

states. By observing how the different genomic features co-vary across cells, re-

searchers can determine which genomic features regulate which genes, and how these

relationships change across different cell types or stages of cell differentiation [52, 67].

To study these relationships across various genomic features, researchers must take

multi-modal (multiple types of) genomic measurements, which are called "multi-omic"

measurements, on single cells [67].

Unfortunately, taking multi-omic measurements at the single-cell resolution is

challenging due to the destructive nature of sequencing assays [6, 52, 57]. Most

sequencing assays require lysing cells, which means cells will not be available for a

subsequent sequencing experiment. This is not an issue for bulk-level sequencing,

where researchers can aliquot a cell population into sub-populations and then apply

a different sequencing assay on each [4]. As long as the sub-populations are large

enough, their average measurements will reflect the average for the original cell popu-

lation. This approach will not work when we want to obtain multi-omic measurements

on the same single cells. However, for some combinations of genomic measurements

(Figure 1.2), researchers have developed experimental protocols to obtain multi-omic

measurements from single-cells. These protocols, hereinafter called “co-assays”, follow

one of three strategies [4, 82]:

1. Applying a non-destructive assay (e.g. one based on fluorescent re-

porters), followed by a destructive one (e.g. sequencing): This strategy

is typically used in plate-based single-cell sequencing protocols that rely on

florescence-activated cell sorting (FACS) to sort individual cells into microtitre

plates. In this strategy, FACS index sorting allows for gathering cytometric

data (e.g. cell surface markers) about the cell before performing sequencing.
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Using this strategy, for example. Wilson et al. have identified cell surface mark-

ers associated with haematopoietic stem cells while performing single-cell RNA

sequencing [99].

• Limitations: The possible cellular properties that can be revealed by this

approach is limited to the ones that can be profiled by fluorescent reporters,

as well as by the spectral overlap between these reporters [82] Addition-

ally, plate-based sequencing technologies that use FACS is typically lower

throughput than the droplet-based methods [82, 101].

2. Isolation of different types of molecules (e.g. DNA and RNA) from

the same cell upon lysis, then separately sequencing them: Several

groups have achieved joint genomic and transcriptomic profiling of single-cells

by physically separating cell nucleus from the cytoplasm or isolating mRNA

molecules using biotinylated or paramagnetic oligo(dT) beads, then indepen-

dently sequencing the mRNAs and the DNA. Examples include G&T-seq [58],

which yields gene expression measurements along with DNA copy number vari-

ation and genome sequencing data, scMT-seq [3] and scM&T-seq [45], both of

which reveal DNA methylation status jointly with gene expression measure-

ments, as well as scTrio-seq [44], which is a tri-modal sequencing method giving

information on DNA methylation, gene expression and DNA copy number vari-

ations together.

• Limitations: This approach is limited to the profiling of cellular properties

that can be detected through different types of molecules. Additionally,

the quality of data gathered through these co-assays is typically lower than

unimodal single-cell sequencing experiments, as explained below [36, 46, 82].

3. Conversion of multiple cellular features to a common molecular format

that can be sequenced in one run: Recently developed CITE-seq [81] and
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REAP-seq [100] assays use this method to jointly profile cell surface proteins

(i.e. “epitopes”) and mRNA levels in one sequencing run. They barcode surface

proteins with oligonucleotides using the antibodies that target them. They

then sequence these oligonucleotides jointly with the cDNAs synthesized from

cellular mRNA. Since this approach is compatible with droplet-based sequencing

protocols, they have higher throughput than fluoresent reporter-based methods

[82]

• Limitations: While this has been a scalable and promising approach, se-

quencing of features that require access to the same part of the genome

without interfering with the measurements of each other remains to be a

challenge.

Figure 1.2: A chart of genomic and cellular feature combinations for which at least one
single-cell co-assaying technology is available (shown in green). For each combination, we
give a non-exhaustive list of example protocols [16–20, 24, 32–34, 40, 41, 44, 45, 54, 58,
63, 64, 71, 73, 74, 76, 81, 85, 95, 100, 102, 103, 110]. This figure is adopted from [57] and
updated with information from [91] to include new assaying protocols available in 2023.
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These three approaches, as outlined above, have enabled the development of a

growing number of single-cell co-assaying protocols. From these protocols, a few have

been commercialized (such as 10x Chromium Single-cell Multiome ATAC + Gene Ex-

pression sequencing [39] or Visium [40]). However, as Figure 1.2 demonstrates, there

are no co-assays available for majority of the combinations of cellular and genomic

features [57]. Each new combination requires the development of a new experimental

protocol, and the number of possible combinations grows combinatorially as we start

to consider possibilities beyond pairwise. Moreover, developing co-assaying protocols

is especially difficult when multiple measurements need access to the same part of the

genome without interfering with one another [46]. Even without this challenge, the

data yielded from co-assays tend to be noisier than data obtained from the uni-modal

single-cell profiling experiments [4, 36, 46]. One reason behind this is that different

sample treatment procedures might be ideal for different sequencing modalities [46].

In settings where there are no co-assays available for the measurement combination

of interest, or co-assaying is not preferable due to the data quality concerns or budget

constraints, scientists approach single-cell sequencing in a manner similar to bulk

sequencing: They divide a cell population into aliquots and use each aliquot for a

different single-cell sequencing experiment. Then, integrating the data from these

experiments to obtain a joint view requires computational approaches [52].

1.2 Thesis Overview and Summary of Contributions

This thesis introduces three computational methods for integrated analysis

of separately profiled (i.e. unpaired) single-cell multi-omic datasets. The

algorithms we present heavily rely on the “optimal transport theory”, which is a

mathematical framework that relates probability measures to one another. We first

introduce optimal transport theory in Chapter 2, then detail three algorithms that

we developed. The algorithms include:
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1. In Chapter 3, Single-cell alignment with optimal transport (SCOT):

An unsupervised algorithm that probabilistically aligns cells from two unpaired

single-cell datasets generated through separate sequencing experiments. The

algorithm performs alignment by comparing the underlying dataset geometries

using Gromov-Wasserstein optimal transport [61]. We additionally develop a

heuristic for automatically self-tuning hyperparameters for cases where users

may not have sufficient validation data to for selecting hyperparameters, which

is a common real-world scenario. This is a unique feature of scot compared to

the other unsupervised single-cell multi-omic alignment methods (as reviewed

in Chapter 3). We demonstrate through experiments with simulated and real-

world single-cell multi-omic datasets that when validation data is available for

hyperparameter tuning, scot performs on par with the state-of-the-art single-

cell multi-omic alignment algorithms that exist since the time of its development.

However, when the users lack validation data, its self-tuning procedure provides

a significant advantage over these algorithms. This work was presented at the

15th Machine Learning in Computational Biology conference, 37th International

Conference on Machine Learning (ICML) Workshop on Computational Biology

(WCB), and the 25th International Conference on Research in Computational

Molecular Biology (RECOMB), then subsequently published in the 2021 RE-

COMB special issue of the Journal of Computational Biology [28].

2. In Chapter 4, SCOTv2: An extension of the scot algorithm that handles

datasets with disproportionate cell type representation and also integrates more

than two datasets together. We show through experiments with real-world

datasets that cell-type proportion disparities is a realistic scenario in real-world

sequencing experiments and that most of the existing single-cell multi-omic in-

tegration algorithms fail to yield quality alignments in this case. This work was

presented at the 16th Machine Learning in Computational Biology conference
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and 26th International Conference on Research in Computational Molecular Bi-

ology (RECOMB) [29], then published in the 2022 RECOMB special issue of

the Journal of Computational Biology [27].

3. In Chapter 5, Single-cell fused gromov co-optimal transport (SG-

COOTR): A single-cell multi-omic alignment method that jointly and itera-

tively aligns both samples and features of input datasets based on a novel opti-

mal transport formulation we propose. This formulation is based on an interpo-

lation between the Gromov-Wasserstein distance [61] and co-optimal transport

[88]. In the sample alignment step, sgcootr leverages information on both

the structure of the dataset through pairwise distances between samples and

the feature-feature relationships across datasets. In the feature alignment step,

sgcootr performs optimal transport between the features of the transformed

sample space. We demonstrate through experiments with both single-cell se-

quencing datasets and established machine learning benchmarks that the pro-

posed interpolation improves upon sample alignments (i.e. cell-cell in single-cell

datasets) by leveraging the additional information between features compared to

scot and scotv2 and also by interpolating the different transformation invari-

ance properties of the Gromov Wasserstein distance and co-optimal transport.

Our experiments with single-cell datasets show that the proposed method can

be used as a hypothesis generation tool for feature relationships and allows for

providing partial supervision on either the feature- or the cell-level alignments

in order to improve the alignment quality of both. An earlier formulation of this

method was presented at the 36th Conference on Neural Information Processing

(NeurIPS) Workshop on Learning Meaningful Representations of Life (LMRL),

as well as the 17th Machine Learning in Computational Biology (MLCB) con-

ference.



Chapter 2

Background on Optimal Transport

All algorithms presented in this thesis (summarized in Chapter 1.2) heavily rely on

the optimal transport theory. Optimal transport is a mathematical framework that

relates probability distributions or discrete measures to one another [70, 93]. Since

the problem put forward in Chapter 1.1.2 is concerned with relating datasets from

different single-cell measurements, which can be treated as empirical measures (see

subsection 2.1), optimal transport lends itself to be a natural choice of approach for

this problem. Here we give a brief overview of optimal transport before describing

the algorithms we developed for single-cell multi-omic data integration tasks.

2.1 Definitions and Notations

• X,Y: Denote sets. For example Rd
+ denotes d-dimensional set of positive real

numbers

• X ,Y : When the sets correspond to spaces, they are denoted by calligraphic

uppercase letters

• P(X ),P(Y): Denote the set of probability distributions defined on metric spaces

X ,Y

• x,y: Vectors are denoted by bold lowercase letters
10
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• X,Y: Matrices are denoted by bold uppercase letters

• JnK: Denotes set of all positive integers up to n, i.e. {1, 2, ..., n}

• 1n: Denotes a vector of 1’s of length n

• µ, ν: Denote continuous probability distributions, defined on spaces X ,Y

• Discrete probability measures, p,q are expressed as histograms with a vector of

probabilistic weights defined at specific locations,

p =
n∑
i=1
aiδxi (2.1)

Σn := {a ∈ Rn
+ :

n∑
i

ai = 1} (2.2)

(i.e. a histogram of n bins, where each bin is represented as a point mass δxi

with a magnitude of ai), where:

– Σn denotes the probability simplex the weights are sampled from,

– δxi denotes a Dirac measure at position xi (i.e. a unit of mass sharply and

infinitely concentrated at location xi)

• T# : P(X )→ P(Y) denotes the pushforward operator, i.e. T#µ = ν for µ ∈

P(X ) and ν ∈ P(Y) (further described below in Section 2.2).

• Γ, γ: Respectively denotes the discrete and continuous Kantorovich couplings

(described below in Section 2.2)

• Π(p,q) or Π(µ, ν): Denotes a set of admissible coupling matrices whose marginals

(row distributions and column distributions) obey the probability distributions

in transport (i.e. couplings that fully transport the input probabilities)

• 〈A,B〉: Denote the Frobenius inner product, i.e. ∑
ij

[A]ij[B]ij
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• exp(x) refers to the exponentiation of x, i.e. ex

Figure 2.1: Schematic of optimal transport maps in Monge’s and Kantorovich’s formu-
lations. Optimal transport relates probabily distributions, either defined as (A) discrete
measures or (B) continuous densities. (C) The Monge formulation seeks to find deter-
ministic pushforward maps that will transport probability distributions onto each other.
(D) Kantorovich’s formulation relaxes the transport problem and allows for probabilistic
transport maps. This figure is adapted from Peyre and Cuturi [70].

2.2 Overview: The Monge Problem and the Kantorovich Re-
laxation

The Monge problem The origins of optimal transport theory can be traced back

to the French mathematician and geometer, Gaspard Monge, from the 18th century

[93]. Monge studied transportation theory to enable efficient movement of resources

for building military constructions. The problem he considered can be summarized

as follows: Assume we have a certain amount of soil extracted from a the ground and

we need to transport it to somewhere in the construction to be used. Where in the



13

construction should one send the soil from a specific location in order to minimize

the total effort [93]? He generalized this problem to probability measures: Given two

metric spaces X and Y and probability distributions from these spaces µ ∈ P(X ) and

ν ∈ P(Y), what transport map, T : X → Y , could transfer all the probability mass

of µ onto ν such that the overall cost of mass transfer, c : X ×Y → R+ ∪+∞, would

be minimized? Monge defined this transport map to be a deterministic pushforward

operator, T# : P(X )→ P(Y), that is both a surjective and an injective map. With

this pushforward operator, the Monge problem can be expressed as:

inf
T
{
∫
X
c(x, T (x))dµ(x)|T#µ = ν}

In the case of relating discrete measures, the pushforward operator is equivalent to

finding a permutation that fully matches the point masses / histogram bins:

min
σ∈Perm(n)

1
n

n∑
i=1

Ci,σ(i)

Kantorovich relaxation In many practical applications of optimal transport, the

deterministic pushforward operator described in Monge’s assignment problem is too

restrictive. For example, in the case of discrete measures, it cannot be used to compare

histograms of different sizes, because a valid solution only exists if the two histograms

have the same number of bins, as well as “compatible” masses (probabilities) defined

over these bins (i.e. for each bin in one histogram, there is a bin with the same mass

in the other histogram) [70]. Moreover, even in cases where a valid solution exists,

computing the solution is too costly due to the combinatorial nature of the problem.

In 1942, the Russian mathematician and economist, Leonid Kantorovich, proposed to

relax Monge’s assignment problem by allowing for probabilistic alignments [50]. In

the case of discrete measures, this allows for splitting the mass of a bin onto multiple

bins during alignment (Figure 2.1C). Kantorovich’s formulation of optimal transport
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seeks to find a coupling (a.k.a “correspondence measure”), Γ, such that:

min
Γ∈Π(p,q)

〈C,Γ〉 = min
Γ∈Π(p,q)

n1∑
i

n2∑
j

Ci,jΓi,j (2.3)

for discrete measures, with the linear constraints defined over the coupling matrix Γ

as:

Π(p, q) = {Γ ∈ Rn1×n2
+ : Γ1n2 = p, ΓT1n1 = q} (2.4)

Here, each entry in the coupling Γi,j describes how much mass is split between

the ith bin from the first histogram, p (of length n1), and the jth bin from the sec-

ond histogram, q(of length n2), representing their correspondence probability. The

transport cost C can be represented as a matrix in the discrete case, with each entry

Ci,j = c(x(i), y(j)) giving the cost of alignment between the bins i ∈ Jn1K and j ∈ Jn2K.

The linear constraints in Equation 2.4 ensure that the coupling comes from a set of

admissible measures Π(p, q), so that the histograms are transported in full and the

marginals of the coupling matrix preserve p and q.

The problem in Equation 2.3 can be generalized to continuous distributions as:

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) (2.5)

such that:

Π(µ, ν) = {γ ∈ P(X × Y)|PX#γ = µ, PY#γ = ν} (2.6)

Hereinafter, we refer to the Kantorovich formulation when discussing optimal

transport. Moreover, we will only discuss the discrete case since we only work with

discrete measures defined on single-cell sequencing datasets in our applications.
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2.3 Efficient Computational Solvers and Associated Regular-
izers

Although Kantorovich relaxation improves the computational complexity of the op-

timal transport problem by allowing for splitting probabilistic masses in transport,

the recovered coupling matrices will be sparse in most cases due to the “least effort”

principle of optimal transport. Sparse coupling may not always be ideal in practi-

cal applications and more dense couplings will make the problem more convex. To

this end, an entropic regularization term over the coupling matrix is added in many

optimal transport applications [70]:

min
Γ∈Π(p,q)

∑
i

∑
j

Γi,jCi,j − εH(Γ) (2.7)

such that

Π(p, q) = {Γ ∈ Rn1×n2
+ : Γ1n2 = p, ΓT1n1 = q}

where H(Γ) = −∑
i

∑
j

Γij log(Γij) is the Shannon entropy.

Figure 2.2: Visualizing the effect of entropic regularization on the optimal cou-
pling. As the entropic regularization coefficient increases, the coupling probabilities are
more split, yielding a less sparse solution. In this example, we align two datasets with 10
MNIST handwritten digit samples [53] in each, as a toy dataset.

In practice, the coefficient of the entropic regularization term, ε controls the extent

of sparsity in the coupling, as demonstrated in Figure 2.2 above, and this regulariza-

tion yields an efficient computation procedure to find the optimal coupling, as derived
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below.

The Lagrangian of the function in Equation 2.7 is:

L(Γ, λ(1), λ(2)) =
∑
i

∑
j

Γi,jCi,j + ε
∑
i

∑
j

Γij log(Γij)︸ ︷︷ ︸
Primary problem

−λ(1)T (Γ1− p)− λ(2)T (ΓT1− q)︸ ︷︷ ︸
Linear constraints

(2.8)

At optimality, we will have:

∂L

∂Γi,j

= 0 = Cij + ε log(Γij)− λ(1)
i − λ

(2)
j (2.9)

=⇒ ε log(Γij) = −Cij + λ(1)
i + λ(2)

j (2.10)

=⇒ log(Γij) =
−Cij + λ(1)

i + λ(2)
j

ε
(2.11)

=⇒ Γij = exp (
−Cij + λ(1)

i + λ(2)
j

ε
) (2.12)

=⇒ Γij = exp (λ
(1)
i

ε
) exp (−Cij

ε
) exp (

λ
(2)
j

ε
) (2.13)

In Equation 2.13, the expression exp (−Cij
ε

) is a constant. In fact, it is the Gibbs

kernel associated with the cost matrix C, which does not change. We will denote

this by the matrix K. The other two expressions are scaling vectors based on the

unknown optimal Lagrangian multiplies λ(1) and λ(2). Let:

u = exp (λ
(1)

ε
) (2.14)

v = exp (λ
(2)

ε
) (2.15)

such that [Diag(u)KDiag(v)]1 = p = Γ1 and (2.16)

[Diag(v)KTDiag(u)]1 = q = ΓT1 (2.17)

where Diag(u) denotes a matrix with the elements of the vector u in its diagonal

entries, with 0s elsewhere. Note that the product of a diagonal matrix with 1 yields

a colun vector containing the diagonal entries from the matrix. So, we can simplify



17

the expression in Equation 2.17 with:

Diag(u)Kv = p (2.18)

Diag(v)KTu = q (2.19)

This system of equations can be solved by the following algorithm:
Algorithm 1: Sinkhorn iterations

1 Given the entropic regularization coefficient, ε, and the cost matrix C

2 Compute K=−C
ε

3 Initialize v(0) = [1, 1, ..., 1]T

4 Until convergence:

5 Update u(t) so that Equation 2.18 holds:

6 u(t)= p
Kv(t−1)

7 Update v(t) so that Equation 2.19 holds:

8 v(t)= q
KTu(t)

9 After convergence (let’s say, reached after n iterations):

10 Return: Γ = Diag(u(n))K Diag(v(n))

There are other regularizers and solvers developed for the efficient computation

of the Kantorovich optimal transport problem. For more information on these, we

refer the readers to [70]. In the subsequent algorithms presented in this thesis, we

employ entropic regularization and mainly rely on the Sinkhorn iterations presented

in Algorithm 10, which we simply refer to as “Sinkhorn()” function from now on.



Chapter 3

SCOT: Unsupervised Single-cell
alignment with (Gromov-
Wasserstein) Optimal Transport

3.1 Introduction

As introduced in Chapter 1.1, the growing variety of single-cell assays allows us to

measure the heterogeneous landscape of cell state in a sample, revealing distinct

subpopulations and their developmental and regulatory trajectories across time. Dif-

ferent technologies can interrogate different molecular aspects of the cell, such as

gene expression, protein synthesis, chromatin accessibility, DNA methylation, his-

tone modifications, and chromatin 3D confirmation. Combining data generated by

these single-cell assays can provide novel insights into the interactions between these

molecular views and their joint regulatory mechanisms. Hence, learning this combined

information is critical to our understanding of complex biological processes and het-

erogeneous diseases. Despite its importance, combining single-cell multi-omics data is

a challenging task. Aside from some co-assay procedures that simultaneously isolate

separate molecular material for each measurement, applying multiple assays on the

same single cell is not currently possible (more information in Chapter 1.1.2) In such

18
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cases, the measurements are taken by dividing a cell population into subpopulations

and assaying them separately, losing the potential for 1–1 correspondence of cells that

is required for easy data integration (Figure 3.1).

In recent years, computational methods have been developed to solve the single-cell

data integration problem. Many of these methods combine different experiments from

a single modality such as RNA sequencing for correcting batch effects [2, 7, 83, 97, 98].

However, integrating data from multiple modalities such as gene expression and DNA

methylation presents unique challenges. For example, when we measure different

properties of a cell, we cannot a priori identify correspondences between features in

the two domains. Accordingly, integrating two or more single-cell data modalities re-

quires methods that rely on neither common cells nor features across the data types.

This aspect prevents the application of some existing single-cell alignment methods

to unsupervised settings because they require some correspondence information to

perform alignment [2, 7, 83, 97, 98]. Earlier versions of the popular batch integra-

tion method Seurat required correspondence information in the form of cells from

a similar biological state that are shared across the two datasets (known as “anchor

points”).While a more recent version automatically selects these anchor points, it still

requires features from one domain to be mapped to the other domain to perform the

single-cell alignment [83]. This mapping might be possible for experiments like gene

expression and chromatin accessibility, where one can map the chromatin region read

counts to the corresponding gene regions. However, it can be difficult to perform

for other sequencing assay combinations. Furthermore, [13] have shown that such

methods do not yield quality alignments in unsupervised settings.
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Figure 3.1: Visualization of the single-cell multi-omic integration problem. When
experimentally co-profiling different aspects of the genome on single-cells is not possible, sci-
entist apply different single-cell sequencing methods on separate aliquots of a cell population.
This procedure yields disparate datasets as plotted, with limited to no prior information on
1-1 correspondences either between cells or features.

3.1.1 Existing Approaches (as of the acceptance for publication in 2020)

Multiple approaches have tried to align datasets in an entirely unsupervised fashion.

One of the earliest attempts, the joint Laplacian manifold alignment (JLMA) algo-

rithm, constructs eigenvector projections based on k-nearest neighbor graph Lapla-

cians of the data [94]. The generalized unsupervised manifold alignment (GUMA) [22]

algorithm seeks a 1–1 correspondence between two datasets based on optimization of

a local geometry matching term. Liu et al. [56] showed that these methods do not

perform well on the single-cell alignment task and proposed an alignment algorithm

based on the maximum mean discrepancy (MMD) measure, called MMD-MA. An-

other method, UnionCom [13], extends GUMA to perform unsupervised topological

alignment and makes it more suitable for single-cell multi-omics integration. While

MMD-MA aims to match the global distributions of the datasets in a shared latent

space, UnionCom emphasizes learning both local and global alignments between the

two distributions. Neither method requires any correspondence information, either

among samples or features, to perform an alignment. The respective papers demon-

strate state-of-the-art performance on simulated and real datasets. Although these

results are encouraging, MMD-MA and UnionCom require that the user specify three



21

and four hyperparameters, respectively. Hyperparameter selection can significantly

affect the quality of alignments. Therefore, in an unsupervised real-world setting

with no validation data on correspondences, hyperparameter tuning can be difficult

to perform and can lead to sub-par alignments.

3.1.2 Our contributions

In this chapter, we propose an unsupervised alignment method based on optimal

transport theory. Optimal transport finds the most cost-effective way to move data

points from one domain to another. One way to think about it is as the problem of

moving a pile of sand to fill in a hole through the least amount of work. Traditionally,

optimal transport problems have been difficult to compute, especially for large-scale

datasets. However, subsequent relaxations [50, 70] modify the original optimal trans-

port problem, making it more applicable and easier to compute. Recently, several

regularization procedures [69] have further improved the computational scalability of

optimal transport.

In biology, an emerging number of applications are using optimal transport to

learn a mapping between data distributions [1, 12, 77, 104, 105]. Schiebinger et

al. [77] use it to study temporal changes in gene expression by using regularized

unbalanced optimal transport to compute expression differences between time points.

SpaOTsc [12] maps cells with high ligand expression onto cells with high receptor

expression to recover cell signaling relationships in spatially resolved single-cell RNA-

seq datasets. ImageAEOT [105] maps single-cell images to a common latent space

through an autoencoder and then uses optimal transport to track cell trajectories.

In related work, the same authors use autoencoders and optimal transport to learn

transport maps among multiple domains [104]. However, the application of their

method to single-cell datasets requires some form of supervision, like class labels, to

be used during transport.
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The classic optimal transport problem requires datasets from the same metric

space. Mémoli et al. [62] generalizes optimal transport to the Gromov-Wasserstein

distance, which compares metric spaces directly instead of comparing samples across

spaces, making optimal transport suitable for multi-modal alignment. In natural

language processing, Alvarez et al. [1] use this approach to measure similarities

between pairs of words across languages to compute the similarity between languages.

As far as we are aware, the only biological application of Gromov-Wasserstein optimal

transporta comes from [66], which uses it to reconstruct the spatial organization of

cells from transcriptional profiles.

We present Single-Cell alignment using Optimal Transport (SCOT), an unsu-

pervised algorithm that uses Gromov-Wasserstein-based optimal transport to align

single-cell multi-omics datasets (presented schematically in Figure 3.2). Like Union-

Com, SCOT aims to preserve local geometry when aligning single-cell data. SCOT

achieves this by constructing a k-nearest neighbor (k−NN) graph for each dataset

(or domain) and then computing graph distance matrices for each k−NN graph to

capture the intra-domain distances. SCOT then finds a probabilistic coupling matrix

that minimizes the discrepancy between the intra-domain distance matrices. Finally,

it uses the coupling matrix to project one single-cell dataset onto another through

barycentric projection, thus aligning them. Unlike MMD-MA and UnionCom, SCOT

requires tuning only two hyperparameters and is robust to the choice of one. We

compare the alignment performance of SCOT with MMD-MA and UnionCom on

four simulated and two real-world datasets. SCOT aligns datasets as well as the

state-of-the-art methods and scales well with increasing numbers of samples. More-

over, we demonstrate that the Gromov-Wasserstein distance can guide SCOT’s hy-

perparameter tuning in a fully unsupervised setting when no orthogonal alignment

information is available. Thus, unlike other methods, SCOT provides a heuristic for

hyperparameter selection without validation data.
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Figure 3.2: Schematic of SCOT alignment of single-cell multi-omics data. A
population of cells is aliquoted for different single-cell sequencing assays. SCOT constructs
k-NN graphs based on sample-wise correlations and finds a probabilistic coupling between
the samples of each domain that minimizes the distance between the two intra-domain
graph distance matrices. Barycentric projection projects one domain onto another based
on this coupling matrix.

3.2 Methods

SCOT relies on Gromov-Wasserstein optimal transport to move data points from

one domain to another while preserving the original local geometry. The goal of the

transport problem at the core of SCOT is to find an ideal “coupling” (also called

“correspondence”) matrix that describes the probability of alignment between each

point across domains. In this section, we first briefly re-introduce optimal transport

theory, followed by its extension to Gromov-Wasserstein distance. Then, we present

the details of our algorithm.

We have two datasets representing two domains, X = (x1,x2, . . . ,xnx) from X

and Y = (y1,y2, . . . ,yny) from Y . The datasets have nx and ny points, respectively.

We do not require any correspondence information or assume that there is any ground

truth for 1—1 correspondence between samples or features, but we do assume there

is some underlying shared biology (e.g. cells across the datasets sharing a lineage or

belonging to shared cell types), so that the datasets can be meaningfully aligned.
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3.2.1 Optimal Transport

The Kantorovich optimal transport problem seeks to find a minimal cost mapping

between two probability distributions or discrete measures [70]. Referring back to the

problem of moving a sand pile to fill in a hole, Kantorovich optimal transport allows

us to split the mass of a grain of sand instead of moving the whole grain; therefore,

the mappings need not be 1—1. Consider discrete measures p and q as such

p =
nx∑
i=1

aiδxi and q =
ny∑
j=1

bjδyj ,

where ∑nx
i=1 ai = 1 = ∑ny

j=1 bj, ai ≥ 0, bj ≥ 0 and δxi is the Dirac measure. This

optimal transport problem finds a minimal coupling Γ that attains

min
Γ∈Π(p,q)

nx∑
i=1

ny∑
j=1

c(xi,yj)dΓi,j (3.1)

subject to: Γ(i, j) ≥ 0,
nx∑
i=1

Γi,j = qj,
ny∑
j=1

Γi,j = pi

where c(xi,yj) is a cost function defined over the samples from the two datasets

and Π(p,q) is the set of couplings of p and q given by

Π(p,q) = {Γ ∈ Rnx×ny
+ : Γ1ny = p, ΓT1nx = q}. (3.2)

Intuitively, the cost function says how many resources it will take to move point

xi in the first dataset to point yj in the second dataset, and the coupling Γ relates

the two discrete measures p and q by correspondence probabilities. Each row Γi tells

us how to split the mass of data point xi onto the points yj for j = 1, . . . , ny, and the

condition Γ1ny = p requires that the sum of each row Γi is equal to pi, the probability

of sample xi. The discrete optimal transport problem finds a coupling matrix, Γ, that
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minimizes the cost of moving samples through the linear program:

min
Γ∈Π(p,q)

〈Γ, C〉. (3.3)

Although this problem can be solved with minimum cost flow solvers, it is usually

regularized with entropy for more efficient optimization and empirically better results

[23]. Entropy diffuses the optimal coupling, meaning that more masses will be split.

Thus, the numerical optimal transport problem is

min
Γ∈Π(p,q)

〈Γ, C〉 − εH(Γ), (3.4)

where ε > 0 and H(Γ) is the Shannon entropy (∑nx
i=1

∑ny
j=1 Γij log Γij).

Equation 3.4 is a strictly convex optimization problem, and for some unknown

vectors u ∈ Rnx and v ∈ Rny , the solution has the form Γ∗ = diag(u)Kdiag(v), with

K = exp
(
−C

ε

)
, element-wise. This solution can be obtained efficiently via Sinkhorn’s

algorithm, which iteratively computes

u← p�Kv and v ← q �KTu, (3.5)

where � denotes element-wise division. This derivation immediately follows from

solving the corresponding dual problem for Equation 3.4 [70].

3.2.2 Gromov-Wasserstein Optimal Transport

While the classic optimal transport formulation requires us to define a cost function

across domains (Equation 3.1), this is difficult to do when working with data from

different metric spaces. This is because we cannot directly compare data points with

different modalities, such as in the case of multi-omic alignment. Gromov-Wasserstein

distance extends optimal transport by comparing distances between data points rather

than directly comparing the data points themselves [1] and allows us to work with

data from different modalities. Consider the same discrete measures p and q as
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above, the cost function in the formulation of the optimal transport problem will now

be defined over sample-wise pairwise distances dx(i, k) and dy(j, l) in the X and Y

datasets, respectively:

GW (p,q) := min
Γ∈Π(p,q)

nx∑
i,k

ny∑
j,l

L(dx(i, k), dy(j, l))Γ(i, j)Γ(k, l). (3.6)

where L indicates the cost function. The main change from basic optimal transport

(Equation 3.1) to Gromov-Wasserstein (Equation 3.6) is that we consider the effect

of transporting pairs of samples rather than single samples. Intuitively, L(dx(i, k),

dy(j, l)) captures how transporting xi to yj and xk to yl would distort the original

distances between i and k and between xj and xl. This change ensures that the

optimal transport plan Γ will preserve some local geometry.

For solving the Gromov-Wasserstein optimal transport formulation, we compute

pairwise distance matrices Dx and Dy for the two domains separately, as well as the

fourth order tensor L ∈ Rnx×nx×ny×ny , where Lijkl = L(Dx
ik, D

y
jl). Then, the discrete

Gromov-Wasserstein problem can also be expressed as the inner product

GW (p,q) = min
Γ∈Π(p,q)

〈L(Dx, Dy)⊗ Γ,Γ〉 (3.7)

Equation 4.2 is now both non-linear and non-convex and involves operations on a

fourth-order tensor, including the O(n2
xn

2
y) operation tensor product L(Dx, Dy) ⊗ Γ

for a naive implementation. Peyré et al. show that for some choices of loss function

this product can be computed in O(n2
xny +nxn

2
y) cost [69]. In particular, for the case

L = L2, the inner product can be computed by

L(Dx, Dy)⊗ Γ = (Dx)2p1Tny + 1nxqT ((Dy)2)T −DxΓ(Dy)T . (3.8)
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As in the classic optimal transport case, the coupling matrix can be efficiently com-

puted for an entropically regularized optimization problem:

GW (p,q) = min
Γ∈Π(p,q)

〈L(Dx, Dy)⊗ Γ,Γ〉 − εH(Γ). (3.9)

Larger values of ε lead to an easier optimization problem but also a denser coupling

matrix, meaning that solutions will indicate significant correspondences between more

data points. Smaller values of ε lead to sparser solutions, meaning that the coupling

matrix is more likely to find the correct one-to-one correspondences for datasets where

there are one-to-one correspondences. However, it also yields a harder (more non-

convex) optimization problem [1].

Peyré et al. [69] propose using a projected gradient descent approach for op-

timization, where both the projection and the gradient are taken with respect to

Kullback-Leibler divergence. These projections are computed via Sinkhorn iterations.

Algorithm 1 in the supplement presents the algorithm for L = L2.

3.2.3 Single-Cell alignment using Optimal Transport (SCOT)

Our method, SCOT, works as follows. First, we compute the pairwise distances on

our data in a way similar to [66]. To do this, we use the correlations between data

points within each dataset to construct k-NN connectivity graphs. We find that

connectivity graphs, which connect nodes with binary edges, empirically work better

than weighted edges. This could be because connectivity graphs potentially denoise

the data. Next, we compute the shortest path distance on the graph between each

pair of nodes via Dijkstra’s algorithm. We set the distance of any unconnected nodes

to be the maximum finite distance in the graph and normalize the matrix by dividing

the elements by this maximum distance. If k is the number of samples, then the k-NN

graph is the complete graph, so the corresponding distance matrix is a matrix of all

ones. In this case, the distance matrix does not provide information about the local
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geometry, so we recommend keeping k small relative to the number of samples to avoid

this scenario. We find that our approach is robust to the choice of k (Supplementary

Section 1.5)

Since we do not know the true distribution of the original datasets, we follow [1]

and empirically set p and q to be the uniform distributions on the data points. Then,

we solve for the optimal coupling Γ which minimizes Equation 4.4. To implement this

method, we use the Python Optimal Transport toolbox (https://pot.readthedocs.

io/en/stable/) [38].

One of the advantages of using optimal transport is the probabilistic interpretation

of the resulting coupling matrix Γ, where the entries of the normalized row 1
pi

Γi are

the probabilities that the fixed data point xi corresponds to each yj. However, to use

the evaluation metrics previously used in the field and to visualize alignment, we need

to project the two datasets into the same space. The Procrustes approach proposed

in [1] does not generalize to datasets with different feature and sample dimensions,

so we use a barycentric projection:

xi 7→
1
pi

ny∑
j=1

Γijyj. (3.10)

3.2.4 Alternative Unsupervised Alignment Procedure

In the description of SCOT, the number k for nearest neighbors and the entropy

weight ε are hyperparameters. One way to set these hyperparameters for optimal

alignment is to use some orthogonal correspondence information to select the best

alignment either directly [13, 56] or by performing cross-validation [79]. This selec-

tion strategy is problematic for truly unsupervised setting, where no correspondence

information is available a priori upon sequencing separate cell cultures. As a solution,

we provide an alternative procedure to learn reasonable alignments based on tracking

the Gromov-Wasserstein distance (Equation 4.2). This procedure is based on our

https://pot.readthedocs.io/en/stable/
https://pot.readthedocs.io/en/stable/


29

observation that the Gromov-Wasserstein distance serves as a proxy for measuring

alignment quality (see Figure 3.5 (A)). In this procedure, we alternate between opti-

mizing ε and k to minimize the Gromov-Wasserstein distance between the domains

(detailed in Algorithm 2). Although the lowest Gromov-Wasserstein distance is not

always the best alignment, it consistently appears to be one of the better alignments.
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Algorithm 2: SCOT Alignment with Gromov-Wasserstein OT

1 Inputs: Datasets X, Y . Regularization coefficient ε. Number of neighbors k.

2 // Compute graph distances Dx, Dy; p = Uniform(X), q = Uniform(Y);

3 Dxy ← D2
x1

T
ny + 1nxq(D2

x)T ;

4 while not converged do

5 D̂Γ ← Dxy − 2DxΓDT
y ;

6 // Compute cost matrix

7 u← 1 , K ← exp{−D̂Γ/ε}; // Perform Sinkhorn iterations

8 while not converged do

9 u← p�Kv, v ← qT �KTu;

10 end

11 Γ← diag(u)Kdiag(v);

12 end

13 Return: nxΓY

Algorithm 3: Unsupervised hyperparameter search procedure

1 Input: Datasets X, Y .

2 n← min(nx, ny), k1 ← min(0.2n, 50)

3 ε1 ← argmin ε ∈ [10−3, 10−2]SCOT(X, Y, k1, ε) // Fix k1 and vary ε

4 // Fix ε1 and vary k

5 if n > 250 then

6 k2 ← argmin k ∈ [20, 100]SCOT(X, Y, k, ε1)

7 end

8 else

9 k2 ← argmin k ∈ [0.05n, 0.2n]SCOT(X, Y, k, ε1)

10 end

11 // Do a more refined search around k2 and ε1
12 kbest, εbest ←

argmin k ∈ [k2 − 5, k2 + 5], ε ∈ [10−0.25ε1, 100.25ε1]SCOT(X, Y, k, ε)

13 Return: kbest, εbest
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3.3 Experimental Setup

3.3.1 Simulated datasets

We follow Liu et al. [56] and benchmark SCOT on three different simulations1. All

three simulations contain two domains with 300 samples that have been non-linearly

projected to 1000- and 2000-dimensional feature spaces, respectively. The three simu-

lations are a bifurcation, a Swiss roll, and a circular frustum (Figure 3.3) with points

belonging to three different groups. In addition to these three previously existing sim-

ulations, we use Splatter [106] to create simulated single-cell RNA sequencing count

data, which we call synthetic RNA-seq. We generate 5000 cells with 1000 genes from

three cell groups and reduce the count matrix to the five genes with the highest vari-

ances. This count matrix is mapped into two new domains with dimensions p1 = 50

and p2 = 500 by multiplying it with two randomly generated matrices, resulting in

data with dimensions 5000× 50 and 5000× 500.

All four datasets were simulated with 1—1 sample-wise correspondences, which are

solely used for evaluating model performance. Each domain is projected to a different

dimension, so there is no feature-wise correspondence either. In all simulations, we

Z-score normalize the features before running the alignment algorithms as in [56].

3.3.2 Single-cell multi-omics datasets

We use two sets of single-cell multi-omics data to demonstrate the applicability of our

model to real datasets. Both datasets are generated by co-assays; thus, we have known

cell-level correspondence information for benchmarking. The first dataset is generated

using the scGEM assay [19], which simultaneously profiles gene expression and DNA

methylation. The dataset (Sequence Read Archive accession SRP077853) is derived

from human somatic cell samples undergoing conversion to induced pluripotent stem

cells (iPSCs) and show a continuous trajectory. This dataset was also used by Cao
1https://noble.gs.washington.edu/proj/mmd-ma/

https://noble.gs.washington.edu/proj/mmd-ma/
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et al. [13] to demonstrate the performance of their UnionCom algorithm. We pre-

processed the data as described in the original publications [13, 19], and ended up with

dimensions are 177× 34 for the gene expression data and 177× 27 for the chromatin

accessibility data.

The second dataset is generated by the SNAREseq assay [18], which links chro-

matin accessibility with gene expression. The data (Gene Expression Omnibus acces-

sion GSE126074) is derived from a mixture of human cell lines: BJ, H1, K562, and

GM12878 and show distinct cell type clusters. We pre-process the datasets following

Chen et al. [18]. The resulting data matrices for the SNARE-seq dataset were of size

1047×19 and 1047×10 for ATAC-seq and RNA-seq, respectively. We unit normalize

all real datasets as done in [79].

3.3.3 Evaluation metrics

We compare SCOT with the two state-of-the-art unsupervised single-cell alignment

methods MMD-MA [56] and UnionCom [13]. None of these methods use any cor-

respondence information for aligning the datasets. However, all datasets have 1–1

sample-level correspondence information, which we use to quantify the alignment

performance through the “fraction of samples closer than the true match" (FOS-

CTTM) metric introduced by Liu et al. [56]. For each domain, we compute the

Euclidean distances between a fixed sample point and all the data points in the other

domain. Next, we use these distances to compute the fraction of samples that are

closer to the fixed sample than its true match. Finally, we average these values for all

the samples in both domains. For perfect alignment, all samples would be closest to

their true match, yielding an average FOSCTTM of zero. Therefore, a lower average

FOSCTTM corresponds to better alignment performance.

Since all the datasets have group-specific (simulations) or cell-type-specific (real

experiments) labels, we also adopt the metric used by Cao et al. [13] called “label
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transfer accuracy” (LTA) to assess the quality of the cell label assignment and to

allow for a more direct comparison with their results. This metric measures the

ability to correctly transfer sample labels from one domain to another based on their

neighborhood in the aligned domain. As described in [13], we train a k-nearest

neighbor classifier on one of the domains and predict the sample labels in the other

domain. The label transfer accuracy is the proportion of correctly predicted labels,

so it ranges from 0 to 1, and higher values indicate good performance. We apply this

metric to alignments selected by the FOSCTTM measure.

We benchmark methods under two scenarios: two scenarios: one, where we tune

hyperparameters to yield the best alignment results for a given dataset, assuming

some correspondence information (as measured by the average FOSCTTM measure)

and one, where we assume a fully unsupervised setting, where no correspondence

information is available to be used to select hyperparameters. We benchmark methods

under two scenarios: when correspondence information exists for validation and when

it does not. The first scenario allows us to compare how methods perform with respect

to each other in their ideal settings. The second scenario allows us to demonstrate a

more realistic use case and shows how methods would perform in a fully unsupervised

scenario, where a user would align datasets with no prior correspondence information.

For the first, we choose hyperparameters corresponding to the best alignment as

measured by the average FOSCTTM on known correspondences, and we give full

details in the next section below. For the second scenario, SCOT offers an alternative

automatic hyperparameter tuning procedure as detailed in Section 3.2.4. However,

MMD-MA and UnionCom do not provide a similar unsupervised hyperparameter

tuning method. Therefore, a user would need to rely on the default hyperparameters

of these algorithms. For this scenario, we compare SCOT’s alternative tuning proce-

dure with the alignments generated by default hyperparameters for MMD-MA and

UnionCom.
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3.3.4 Hyperparameter tuning

We run each method over a grid of hyperparameters and select the setting that

yields the lowest average FOSCTTM. For SCOT, the grid covers the regulariza-

tion weight ε ∈ {0.0001, 0.0005, 0.001, 0.005, ..., 0.1} and number of neighbors k ∈

{10, 15, 20, 25, 30, 35, . . . 100, 1
6nx}. We observe empirically that going above 1

6n for k

does not yield any improvement in alignment.

We pick the hyperparameters for MMD-MA and UnionCom based on the default

values and recommended ranges. MMD-MA has three hyperparameters: weights

λ1, λ2 ∈ {10−3, 10−4, 10−5, 10−6, 10−7} for the terms in the optimization problem and

the dimensionality p ∈ {4, 5, 6, 16, 32, 64} of the embedding space. UnionCom requires

the user to specify four hyperparameters: the number kmax ∈ {40, 100} of maximum

number of neighbors in the graph,the dimensionality p ∈ {4, 5, 6, 16, 32, 64} of the

embedding space, the trade-off parameter β ∈ {0.1, 1, 10, 15, 20} for the embedding,

and a regularization coefficient ρ ∈ {0, 5, 10, 15, 20}. We select the embedding di-

mension p ∈ {16, 32, 64} around the default value of 32 set by UnionCom but also

add p ∈ {4, 5, 6} to match the recommended values for MMD-MA. We keep the hy-

perparameter search space size approximately consistent across the three methods.

For each dataset, we present alignment and runtime results for the best performing

hyperparameters.

Furthermore, we consider the scenario where correspondence information is un-

available to pick the optimal hyperparameters. For SCOT, we apply the alternative

unsupervised alignment algorithm (Algorithm 2 in Supplementary Materials) to align

all the datasets. Since MMD-MA and UnionCom do not provide a hyperparameter

selection strategy, we rely on the default hyperparameters; we use UnionCom’s pro-

vided default parameters of kmax = 40, p = 32, ρ = 10, and β = 1, and the center

values of MMD-MA’s recommended range: p = 5, λ1 = 10−5, and λ2 = 10−5. We also

present the alignment results for all three methods in this fully unsupervised setting.
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3.4 Results

We use four simulation datasets and two real-world single-cell sequencing datasets

to assess the alignment performance of SCOT. We benchmark it against the two

state-of-the-art unsupervised single-cell multi-omics alignment algorithms, MMD-MA

and UnionCom, using FOSCTTM and LTA metrics. The former assesses cell-to-

cell alignment error and the latter assesses the cell-type grouping accuracy upon

alignment.

3.4.1 SCOT successfully aligns the simulated datasets

In this experiment, we align the three simulation datasets from [56], as well as the

synthetic single-cell RNA-seq count data generated with Splatter [106]. Prior to

alignment, we first select the best performing hyperparameters for each method using

the ground-truth correspondence information, as described in Section 3.4.

In Figure 3.3, we visualize the original domains, as well as the alignment per-

formed by SCOT. We color the samples by their domain and cell-type identity. We

observe that the global structure is matched, and cells cluster correctly based on

cell-type identity. We then sort and plot the FOSCTTM score for each sample in

Figure 3.3C. Mean FOSCTTM values are summarized in Table 3.1. We also re-

port the label transfer accuracy values in Table 3.2 when the first domain is used

to train a classifier to predict the labels in the second domain. Overall, we observe

that SCOT consistently achieves one of the lowest average FOSCTTM scores, thereby

demonstrating its ability to recover the correct correspondences. SCOT also consis-

tently yields high label transfer accuracy scores indicating that samples are correctly

mapped to their assigned groups.
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Table 3.1: Alignment performance by average FOSCTTM measure when the first domain
is projected onto the second domain. For real-world datasets, we picked gene expression
domain in scGEM and chromatin accessibility domain in SNAREseq to be projected.

Sim. 1 Sim. 2 Sim. 3 Syn. RNA-Seq scGEM SNAREseq
SCOT 0.085 0.022 0.009 0.001 0.192 0.150
MMD-MA 0.124 0.023 0.012 0.112 0.201 0.150
UnionCom 0.083 0.016 0.152 0.038 0.209 0.265

Table 3.2: Alignment performance by label transfer accuracy (k = 5) when the first
domain (epigenomic domains in real-world datasets) is projected onto the second domain
(gene expression domain in real-world datasets).

Sim. 1 Sim. 2 Sim. 3 Syn. RNA-Seq scGEM SNAREseq
SCOT 0.937 0.977 0.957 0.998 0.576 0.982
MMD-MA 0.89 0.783 0.947 0.706 0.588 0.942
UnionCom 0.96 0.62 0.613 0.997 0.582 0.423

3.4.2 SCOT gives state-of-the-art performance for single-cell multi-omics
alignment

Next, we apply our method to real single-cell sequencing data and visualize the align-

ments in Figure 3.4. To have ground-truth information on cell–cell correspondences

solely for benchmarking purposes, we use datasets generated by co-assaying technol-

ogy. Overall, SCOT gives the lowest average FOSCTTM measure in comparison to

MMD-MA and UnionCom (Table 3.1) and recovers accurate 1–1 correspondences in

single-cell datasets. For the scGEM data, we report label transfer accuracy using the

DNA methylation domain for predicting the cell-type labels in the gene expression

domain. For the SNARE-seq dataset, we use the gene expression domain for predict-

ing cell labels in the chromatin accessibility domain (Table 3.2.) SCOT yields the

best label transfer accuracy result on SNAREseq dataset and performs comparably

to the other methods for scGEM. All methods have higher label transfer accuracy

performance on SNAREseq dataset compared to scGEM dataset because SNAREseq

dataset contains a mixture of different cell-types that cluster separately, while scGEM

dataset contains cells going through a continuous differentiation.
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While MMD-MA and UnionCom project both datasets to a shared low-dimensional

space, SCOT projects one dataset onto the other. We find that the direction of pro-

jection makes no significant difference in performance ( Table 3.3).

Table 3.3: Best mean FOSCTTM for each direction of the barycentric projection for all
datasets. The method is robust to the direction of the projection.

Domain 1 onto Domain 2 Domain 2 onto Domain 1
Sim. 1 0.085 0.087
Sim. 2 0.022 0.023
Sim. 3 0.009 0.009

Syn. RNA-Seq 0.001 7.68× 10−5

scGEM 0.192 0.212
SNARE-seq 0.150 0.151
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Figure 3.3: Alignment results for simulated datasets.We present the alignment result on
four simulations (left to right) - a bifurcation, a Swiss roll, a circular frustum, and synthetic
RNA-seq data generated from Splatter [106] A. Visualization of the dataset before
alignment. Each dataset has two domains to be aligned. B. Visualization of datasets
after alignment by SCOT. The upper row plots samples colored by domain they come
from, while the bottom row shows samples colored by their group (or cell-type) identity.
C. Performance benchmarking. We plot sorted FOSCTTM measures for alignments
performed by SCOT, MMD-MA, and UnionCom for benchmarking. Mean FOSCTTM
measures for each alignment and dataset are included in figure legends. Best performing
results are bolded.
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Figure 3.4: Aligning real world single-cell sequencing dataset. A. We first visualize the
original datasets before alignment. Each dataset has two domains with different sequencing
modalities. Left: our alignment colored based by domain (plotted in 2D using PCA). B.
We visualize the aligned datasets after running SCOT. For each dataset, we plot alignments
both by coloring data points by domain and by cell-type identity. C. We benchmark SCOT
against MMD-MA and UnionCom algorithms by comparing FOSCTTM values we get.
Graphs here plot sorted FOSCTTM measures and the legend contains average FOSCTTM
measures for each alignment.

3.4.3 SCOT’s alternative unsupervised hyperparameter tuning procedure
achieves quality alignments

We compare the alignment performances in fully unsupervised settings, when we

have no validation data on correspondences to use for hyperparameter tuning, as de-

scribed in Section 3.4. We present the alignment performances, measured by average

FOSCTTM measures, in Table 3.4 when using SCOT’s alternative self-tuning proce-

dure. In this procedure, hyperparameter choice is guided by the Gromov-Wasserstein
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distance, as we have observed a correlation between Gromov-Wasserstein distances

between the aligned datasets and alignment quality (Figure 3.5 A). In this unsu-

pervised setting, we use MMD-MA’s and UnionCom’s default parameters since they

lack self-tuning capability. SCOT returns nearly the same alignments for simulated

data and only marginally worse alignments for real data. In contrast, MMD-MA

and UnionCom show inconsistent alignment performance and fail to align some of

the simulated and all real datasets with the default parameter values. Therefore, the

proposed procedure could guide a user to an alignment close to the optimal result

when no orthogonal information is available.

Table 3.4: Alignment performance by mean FOSCTTM scores in fully unsupervised setting.
The hyperparameters for SCOT are chosen by lowest Gromov-Wasserstein distance and the
defaul hyperparameters are used for MMD-MA, and UnionCom. Best values are bolded.

Sim. 1 Sim. 2 Sim. 3 Syn. RNA-Seq scGEM SNAREseq
SCOT (GW) 0.088 0.025 0.009 0.001 0.209 0.218
MMD-MA 0.125 0.012 0.739 0.384 0.437 0.473
UnionCom 0.091 0.028 0.684 0.028 0.691 0.510

Table 3.5: Alignment performance by label transfer accuracy (k = 5) in the fully unsuper-
vised setting when the first domain is used for training. The hyperparameters for SCOT are
chosen by lowest Gromov-Wasserstein distance and the defaul hyperparameters are used for
MMD-MA, and UnionCom. Best values are bolded.

Sim. 1 Sim. 2 Sim. 3 Syn. RNA-Seq scGEM SNAREseq
SCOT 0.977 0.977 0.95 0.996 0.582 0.701
MMD-MA 0.897 0.957 0.7 0.506 0.237 0.412
UnionCom 0.947 0.947 0.133 0.948 0.107 0.288

3.4.4 SCOT’s computation speed scales well with the sample size

We compare SCOT’s running times with the baseline methods for the best perform-

ing hyperparameters on the synthetic RNA-seq dataset by varying the number of

cells to demonstrate how each algorithm scales to larger datasets. While SCOT is
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implemented for CPU, both MMD-MA and UnionCom algorithms provide GPU ver-

sions, which run faster. Therefore, we use them for benchmarking. We run CPU

computations on an Intel Xeon e5-2670 with 16GB memory and GPU computations

on a single NVIDIA GTX 1080ti with VRAM of 11GB. SCOT’s running time scales

similarly to that of MMD-MA, even though SCOT runs on a CPU and MMD-MA

runs on a GPU (Figure 3.5 (B)). Both methods scale better than the GPU-based

UnionCom implementation.

Figure 3.5: A. Runtime comparisons with growing sample size. Dotted lines are polynomial
trend lines. B. Relationship between Gromov-Wasserstein distance between the aligned
datasets and alignment quality. Lower Gromov-Wasserstein values tend to correspond to
better alignments (lower FOSCTTM measures).

3.4.5 Investigating algorithmic choices and hyperparameters of SCOT

To better understand our method, we investigated the effects of different algorithmic

choices and hyperparameter combinations on the alignment performance of the real-

world datasets. Figure 3.6 shows the range of average FOSCTTM values we receive

for alignments with different combinations of k (number of neighbors in k−NN graphs

and ε (entropic regularization coefficient) values for the two real-world sequencing

datasets. Overall, we observe that the choice of ε tends to make a larger impact on the

alignment performance than k. Next, we consider the effect of different algorithmic

choices on the alignment performance of SCOT. We compare the final SCOT model

with (1) no entropic regularization, (2) using Euclidean distances for intra-domain
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distance matrices, and (3) using correlation-based intra-domain distance matrices in

lieu of graph distances. For each of these settings, we run alignments for the same

combinations of hyperparameters as descrbed in section 3.4 and record the average

FOSCTTM measure we receive for each alignment. In Figure 3.7, we compare these

in violin plots for scGEM and SNARE-seq datasets. This experiment shows that

both entropic regularization and modeling the single-cell datasets as graphs for intra-

domain distance computations yield lower FOSCTTM measures, corresponding to

higher quality alignments.

Figure 3.6: Hyperparameter tuning results for scGEM (left) and SNARE-seq (right)
datasets. We sweeped a range of values for the two hyperparameters in our model: number
of neighbors in k−NN graphs, k (on the x-axis), and the entropic regularization coefficient,
ε (on y-axis). The color of the scattered dots correspond to the average FOSCTTM values
we receive for each alignment, with lower values corresponding to better alignments. The
hyperparameter combinations that yielded the best FOSCTTM values are in black squares.
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Figure 3.7: Ablation test results. We considered several modifications to algorithmic choices
in SCOT and investigated the range of average FOSCTTM values we received in our align-
ments for scGEM (blue) and SNARE-seq (orange) datasets. The modifications considered
are: (1) removing the entropic regularization term from the Gromov-Wasserstein optimal
transport objective function, (2) using Euclidean distances for intra-domain distance and (3)
using correlation-based distances instead of graph distances for the intra-domain distance
matrices.

3.5 Discussion

We have demonstrated that SCOT, which uses Gromov Wasserstein optimal trans-

port for unsupervised single-cell multi-omics data integration, performs on par with

UnionCom and MMD-MA when sample correspondence information is available for

hyperparameter tuning and shows advantages in other scenarios and aspects. Our

formulation of a coupling matrix based on matching graph distances is somewhat

similar to UnionCom’s initial step; however, UnionCom only matches sample-to-

sample distances, while Gromov-Wasserstein distance considers the cost of moving

pairs of points, enabling our method to better preserve local geometry. Addition-

ally, SCOT performs global alignment of the marginal distributions, which is similar

to how MMD-MA uses the MMD term to ensure that the two distributions agree

globally in the latent space. We hypothesize that these properties result in SCOT’s

state-of-the-art performance. Furthermore, SCOT’s optimization runs in less time
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and with fewer hyperparameters, and the Gromov-Wasserstein distance can guide

the user to choose an alignment when no validation information exists. Therefore,

unlike other methods, SCOT easily yields high quality alignments in the realistic fully

unsupervised setting.

While barycentric projection provides a way to visualize the alignment, it assumes

that cells in one dataset should be mapped to the convex hull of the other dataset.

In the next chapter, we reformulate SCOT with unbalanced Gromov-Wasserstein

optimal transport, which takes care of outliers as well as under- or over-represented

groups. There are also other ways to use the coupling matrix to infer alignment such

as using it with other dimension reduction methods like t-SNE (as in UnionCom)

to align the manifolds while embedding them both into a new space. Alternatively,

depending on the application, a projection may not be required; it may be sufficient

to have probabilities relating the samples to one another. Future work could develop

effective ways to utilize the coupling matrix and extend our framework to handle

more than two alignments at a time.



Chapter 4

SCOTv2: Unbalanced
Multi-domain Single-cell
Alignment

4.1 Introduction

In Chapter 3, we discussed unsupervised integration of separately profiled (i.e. un-

paired) single-cell multi-omics datasets, and introduced an algorithm to address this

challenge, Single-cell alignment with Optimal Transport (SCOT). The unsupervised

methods [13, 35, 56, 83] discussed in Chapter 3, including our work SCOT [25, 28],

have shown good performance for integrating different single-cell measurement do-

mains when tested on datasets obtained from co-assays. Since these methods were

only evaluated on co-assays (with 1–1 correspondence between cells across domains),

our understanding of their performance on datasets obtained from experiments that

are not co-assays is limited. Such experiments perform separate sampling to measure

distinct genomic features, like gene expression and 3D chromatin conformation. As

a result of this sampling, their datasets can consist of varying proportions of cell-

types across different measurements, creating cell-type imbalance and lacking 1–1

cell correspondences. We hypothesize that alignment methods that perform well on

45
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co-assay datasets may not effectively handle the differences in cell-type proportions

of the commonly available non-co-assay datasets. Indeed, a recent method, Pamona

[14], extended our SCOT framework and used partial Gromov-Wasserstein (GW) op-

timal transport to allow for missing or underrepresented cell-types in one domain

when performing alignment. The paper showed that current integration methods

[13, 25, 28, 56, 83] tend to perform worse under such settings.

Figure 4.1: An example of the cell-type representation imbalance observed in real-world un-
paired single-cell multi-omic datasets. This particular example is from scNMT-seq dataset.
While this dataset is generated via a co-assaying technology (i.e. paired multi-omic dataset),
the cell-type representation disproportion arises because different number of cells are re-
tained after the quality control procedure is carried out for each measurement modality.

4.2 Our contributions

We present SCOTv2, a novel extension of SCOT that can effectively align both co-

assay and non-co-assay datasets using a single framework. It uses unbalanced GW

optimal transport to align datasets with disproportionate cell-types while only in-

troducing one additional hyperparameter. This unbalanced framework relaxes the

constraint that each point must be mapped with its original mass during the optimal
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Figure 4.2: Overview of SCOTv2 on scNMT-seq dataset [20], which contains unbalanced
cell-type representation across three domains - RNA expression, chromatin accessibility, and
DNA methylation. SCOTv2 selects an anchor domain (denoted with *) and aligns other
measurements to it. First, it computes intra-domain distances matrices Dm for m = 1, 2, 3,
which are used to solve for correspondence matrices between the anchor and other domains.
The circle sizes in the matrices depict the magnitude of the correspondence probabilities or
how much mass to transport. Unbalanced GW relaxes the mass conservation constraint,
so the transport map does not need to move each point with its original mass. Finally,
it either co-embeds the domains into a common space or uses barycentric projections to
project them onto the anchor domain.

transport. Specifically, an underrepresented cell-type in one domain can be trans-

ported with more mass to match the proportion of that cell-type in the other domain

and vice-versa. The SCOTv2 framework is summarized in Figure 4.2. We demon-

strate that SCOTv2 aligns datasets with imbalance in cell-type representations better

than state-of-the-art baselines and computationally scales as well as the fastest meth-

ods. Furthermore, we extend SCOTv2 to integrate single-cell datasets with more than

two measurements, making it a multi-omics alignment tool. We perform alignments

of five real-world single-cell datasets, with both simulated and natural cell-type imbal-

ance as well as two and more than two domains (M ≥ 2), demonstrating SCOTv2’s

applicability across a wide range of scenarios. Finally, similar to the previous ver-

sion, we present a self-tuning heuristic process to select hyperparameters for SCOTv2

without any corresponding information like cell-type annotations or matching cells or

features in truly unsupervised settings.



48

4.3 Method

Optimal transport finds the most cost-effective way to move data points from one

domain to another. One can imagine it as the problem of moving a pile of sand to fill

in a hole through the least amount of work. Our previous framework SCOT [25, 28]

uses Gromov-Wasserstein optimal transport, which preserves local geometry when

moving data points from one domain to another. The output of SCOT is a matrix

of probabilities that represent how likely it is that data points from one modality

correspond to data points in the other.

Here, we reintroduce the SCOT formulation to integrateM domains (or single-cell

measurements) Xm = (xm1 , xm2 , . . . xmnm) ∈ Rdm for m = 1, . . .M with nm data points

(or cells) each. For each dataset, we define a marginal distribution pm, which can be

written as an empirical distribution over the data points:

pm =
nm∑
i=1

pmi δxi . (4.1)

Here, δxi is the Dirac measure. For SCOT, we choose these distributions to be uniform

over the data.

Gromov-Wasserstein optimal transport performs the transport operation by com-

paring distances between samples rather than directly comparing the samples them-

selves [1]. Therefore, for each dataset, we compute the intra-domain distance matrix

Dm. Next, we construct k-NN graphs based on correlations between data points and

use Dijkstra’s algorithm to compute the shortest path distance on the graph between

each pair of nodes. Finally, we connect all unconnected nodes by the maximum finite

distance in the graph and set Dm to be the matrix resulting from normalizing the

distances by this maximum.

For two datasets and a given cost function L : R×R→ R, we compute the fourth-

order tensor L ∈ Rnx×nx×ny×ny , where Lijkl = L(D1
ik, D

2
jl). Intuitively, L quantifies
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how transporting a pair of points x1
i , x

1
k onto another pair across domains, x2

j , x
2
l ,

distorts the original intra-domain distances and helps to preserve local geometry.

Then, the discrete Gromov-Wasserstein problem between p1 and p2 is,

GW (p1, p2) = min
Γ∈Π(p1,p2)

∑
i,j,k,l

LijklΓijΓkl, (4.2)

where Γ is a coupling matrix from the set:

Π(p1, p2) = {Γ ∈ Rn1×n2
+ : Γ1n2 = p1, ΓT1n1 = p2}. (4.3)

One of the advantages of using optimal transport is the probabilistic interpretation

of the resulting coupling matrix Γ, where the entries of the normalized row 1
pi

Γi are

the probabilities that the fixed data point xi corresponds to each yj. Each entry Γij
describes how much of the mass of xi should be mapped to yj.

To make this problem more computationally tractable, we solve the entropically

regularized version:

GWε(p1, p2) = min
Γ∈Π(p1,p2)

〈L(D1, D2)⊗ Γ,Γ〉 − εH(Γ). (4.4)

where ε > 0 andH(Γ) is the Shannon entropy defined asH(Γ) = ∑nx
i=1

∑ny
j=1 Γij log Γij.

Larger values of ε make the problem more convex but also lead to a denser coupling

matrix, meaning there are more correspondences between samples. In SCOT, we use

the cost function L = L2.

4.3.1 Unbalanced Optimal Transport of SCOTv2

Our proposed solution to align datasets with different numbers of samples or pro-

portions of cell-types is to use unbalanced optimal transport, which adds divergence

terms to allow for mass variations in the marginals [55, 86]. We follow Séjourné et al



50

[86], and use the Kullback-Leibler divergence ,

KL(p||q) =
∑
x

p(x) log
(
p(x)
q(x)

)
, (4.5)

to measure the difference between the marginals of the coupling Γ and the input

marginals p1 and p2. Thus, we solve the unbalanced GW problem:

GWε,ρ(p1, p2) = min
Γ≥0
〈L(D1, D2)⊗ Γ,Γ〉 − εH(Γ) + ρKL(Γ1n2||p1) + ρKL(ΓT1n1||p2),

(4.6)

where ρ > 0 is a hyperparameter that controls the marginal relaxation. When ρ

is large, the marginals of Γ should be close to p1 and p2, and when ρ is small, the

marginals of Γ may differ more, allowing each point to transport with more or less

mass than it originally had. We demonstrate the effects of this relaxation term in

Figure 4.3. See Supplementary Algorithm 4 for details.

4.3.2 Extending SCOTv2 for Multi-Domain Alignment

To align more than two datasets (M > 2), we use one domain as an anchor to align

the other domains. The anchor should be the domain with the clearest biological

structures, for example, a dataset with the best-defined cell-type clusters. We propose

selecting the anchor via the kNN graph used to compute Dm. For every node xmi in

the graph, we calculate the average of the k neighboring node values Nk(xmi ). Next,

we measure the difference between this average and the true value of the node. This

difference reflects how well the averaged neighborhood represents the given node. We

then average these differences across the graph and select the domain with the lowest

averaged difference as the anchor. Intuitively, we select the anchor whose kNN graph

best reflects its dataset. Suppose X1 is the anchor dataset. Then, form = 2, 3, . . . , N ,

we compute the coupling matrix Γm according to Equation 4.4.
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To have all of the datasets aligned in the same domain, we can either use barycen-

tric projection to project each Xm for m = 2, 3, . . . ,M onto X1 or find a shared

embedding space as described in Section 4.3.3. In the first iteration of SCOT, we

used a barycentric projection to align and project one dataset onto the other. Due

to the marginal relaxation, we now search for a non-negative n1 × nm dimensional

matrix Γ instead of Γ ∈ Π(p1, pm). Because of this change, the adjusted barycentric

projection is:

xmi 7→
∑n1
j=1 Γmijx1

j∑n1
j=1 Γmij

. (4.7)

4.3.3 Embedding with the Coupling Matrix

Other methods such as MMD-MA and UnionCom align datasets by embedding them

into a common latent space of dimension p ≤ minm=1,...,M dm. Here dm represents the

original dimension size of measurement (or domain) m. Embedding the datasets in

a new space often leads to a better alignment as it introduces the additional benefits

of dimension reduction, allowing more meaningful structures in the datasets such as

cell-types to be more prevalent. Due to these benefits, we also enable the embedding

option through a modification of the t-SNE method proposed by UnionCom [13].

For each domain m, we compute Pm, an nm × nm cell-to-cell transition matrix; each

entry Pm
j|i is the conditional probability that a data point xmi would pick xmj as its

neighbor when chosen according a Gaussian distribution centered at xmi . Similarly,

for the lower-dimensional embeddings, we compute a cell-to-cell probability matrix

Qm′ through a Student-t distribution. The full descriptions of Pm and Qm′ are given

in Supplementary Section 4.3.4.

Then, to jointly embed all domains through the anchor domain X1, the optimiza-

tion problem is:

min
X1′ ,...,XM′

M∑
m=1

KL(Pm||Qm′) + β
M∑
m=2
||X1′ −Xm′(Γm)T ||2F , (4.8)
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where Xm′ is the lower dimensional embedding of Xm, and Γm is the coupling ma-

trix from solving Equation 4.6 for m = 2, . . . ,M . These two terms seek to find an

embedding that both preserves the local geometry in the original domain and aligns

the domains according to the correspondence found by GW. The intuition behind the

term KL(Pm||Qm′) is very similar to that of GW; if two points have a high transition

probability in the original space, then they should also have a high transition proba-

bility in the latent space. The term ||X1′ −Xm′(Γm)T ||2F measures how well aligned

the new embeddings X1′ and Xm′ are according to the prescribed coupling matrix

Γm. Finally, β > 0 controls the trade-off between preserving the original geometry

with the KL term and enforcing the alignment found with GW. We solve this opti-

mization problem using gradient descent from UnionCom with a default latent space

dimension size p = 3 [13]. The overall SCOTv2 method is presented as Algorithm 5.

4.3.4 Embedding Method Details

The full details of t-SNE can be found in [90]. For each domain m, we compute Pm,

an nm×nm cell-to-cell transition matrix; each entry Pm
j|i is the conditional probability

that a data point xmi would pick xmj as its neighbor when chosen according a Gaussian

distribution centered at xmi :

Pm
j|i =

exp(−||xmi − xmj ||2/2σ2
i )∑

k 6=i exp(−||xmi − xmk ||2/2σ2
i )
. (4.9)

The bandwidth σi is chosen according to the density of the data points through a

binary search for the value of σi that achieves the user-supplied perplexity value. Pm

is computed by averaging Pm
i|j and Pm

j|i to give more weight to outlier points:

Pm
ij =

Pm
i|j + Pm

j|i

2nm
(4.10)
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Algorithm 4: Pseudocode for Unbalanced GW Optimal Transport (UG-
WOT)
1 Input: Marginal probabilities p1 and p2, intra-domain distance matrices D1 and

D2, relaxation coefficient ρ, regularization coefficient ε
2 Initialize the coupling matrix: Γ = π = p1 ⊗ p2

3 while Γ not converged do
4 Γ← π
5 Γ(mass) ←

∑
i,j Γi,j ε̃← Γ(mass)ε, ρ̃← Γ(mass)ρ

6 // Compute cost C:
7 Γ1 ← Γ1n2 , Γ2 ← ΓT1n1

8 A← (D1)◦2Γ1, B ← (D2)◦2Γ2

9 D ← D1ΓD2

10 E ← ε
∑
ij log

(
Γi,j
p1
i p

2
j

)
Γi,j + ρ

(∑
i log

(
Γ1
i

p1
i

)
Γ1
i +

∑
j log

(
Γ2
j

p2
j

)
Γ2
j

)
11 C ← A+B − 2D + E
12 // Perform Sinkhorn iterations
13 while (u, v) not converged do
14 u← − ε̃ρ̃

ε̃+ρ̃ log
[∑

i,j exp(vj − Cij)/ε̃+ log p2
]

15 v ← − ε̃ρ̃
ε̃+ρ̃ log

[∑
i,j exp(ui − Cij)/ε̃+ log p1

]
16 end
17 // Update: πij ← exp [ui + vj − Cij ] p1

i p
2
j

18 // Rescale: π ←
√

Γ(mass)/π(mass)π

19 end
20 Return: Γ

Then, to jointly embed all domains through the anchor domain X1, the optimiza-

tion problem is:

min
X1′ ,...,XM′

M∑
m=1

KL(Pm||Qm′) + β
M∑
m=2
||X1′ −Xm′(Γm)T ||2F , (4.11)

where Xm′ is the lower dimensional embedding of Xm, Pm is defined as in Equa-

tion 4.9, and Γm is the coupling matrix from solving Equation 4.6 form = 1, 2, . . . ,M ,

Xm′ . The probability matrix Qm is computed through a Student-t distribution with

one degree of freedom:

Qm′

ij =
(1 + ||xm′i − xm

′
j ||)−1∑

k 6=l 1 + (||xm′k − xm
′

l ||)−1 . (4.12)
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Algorithm 5: Pseudocode for SCOTv2 Algorithm
1 Input: Datasets X1, . . . , XM , number of neighbors in nearest neighbor graphs k,

entropic regularization coefficient ε, mass conservation relaxation coefficient ρ.
2 for m = 1, . . . ,M do
3 // Initialize marginal probabilities: pm ← Uniform(Xm);
4 //Construct Gm, a k−NN graph based on pairwise correlations
5 // Compute intra-domain distance matrix Dm on Gm with Dijsktra’s algorithm.
6 // Compute a “neighborbood correlation” score, cm:
7 cm = 1

nm

∑nm
i=1

1
k

∑
xmj ∈Nk(xmi )

corr(xmj , xmi )

8 end
9 // Select an anchor domain Xm∗: m∗ =m=1,...M cm

10 for m = 1, . . . ,M (m 6= m∗) do
11 // Compute pairwise coupling matrices between the anchor domain Xm∗ and

all other domains:
12 Γm ← GWε,ρ(pm, pm∗)
13 if Barycentric projection then

14 xm
′

i ←
∑n1

j=1 Γmijx
m∗
j∑n1

j=1 Γmij
15 end
16 else
17 // Find shared embedding (e.g. via modified t-SNE as detailed below)
18 X1′ . . . XM ′ ←

minXm′ ,...,XM′
∑M
m=1 KL(Pm||Qm′) + β

∑
m 6=m∗ ||Xm∗′ −Xm′(Γm)T ||2F

19 end
20 end
21 Return: Aligned datasets, X1′ . . . XM ′ .

The intuition behind the cost KL(Pm||Qm′) is very similar to that of GW; if two

points have a high transition probability in the original space, then they should also

have a high transition probability in the latent space.

Additionally to the t-SNE co-embedding, we give users a choice to co-embed

datasets in a shared d−dimensional space in a similar fashion to Pamona [14], where,

for the anchor dataset X and non-anchor datasets Yi for i = 1, ...,m datasets. For

this, we compute the graph Laplacian matrices LX and Li
Y and introduce rotation
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invariant constraints to find embeddings Xe,Ye that yields:

max
Xe,Ye

trace(XeΓeYeT) (4.13)

such that XeSxxXeT = I,YeSyyYeT = I (4.14)

where

Ye = [Y1e, ...,Yme],Sxx =
m∑

i=1
(Lx + λΣi

x), (4.15)

Σi
X = diag(Γi1ni),Σi

Y = diag(1TnxΓ
i), i = 1, ..., ny (4.16)

Γe = [Γ1, ...,Γm]T (4.17)

Syy = diag(L1
y + λΣ1

Y, ...,L1
y + λΣ1

Y) (4.18)

with λ being a hyperparameter. Equation 4.13 is optimized using the eigenvalue

decomposition method as in Pamona [14]. Implementation can be found in Section

7.

4.3.5 Heuristic process for self-tuning hyperparameters

SCOTv2 has three hyperparameters: (1) k for the number of neighbors to consider

in nearest neighbor graphs, (2) the weight of the entropic regularization term, ε, and

(3) the coefficient of the mass relaxation constraint, ρ. The barycentric projection

of one domain onto another does not require any hyperparameters. However, jointly

embedding the domains in a latent space requires selecting the dimension p.

Ideally, orthogonal correspondence information such as 1–1 correspondences and

cell-type labels can guide hyperparameter tuning as validation. However, such in-

formation is hard to obtain in most cases. First, no validation data on cell-to-cell

correspondences exists for non-co-assay datasets. Second, it is challenging to infer

cell-types for certain sequencing domains such as 3D chromatin conformation. Lastly,

the cell-type annotations may not always agree across single-cell domains.
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We provide a heuristic to self-tune hyperparameters in the completely unsuper-

vised setting. We first choose a k for the neighborhood graphs that yields a high

average correlation value between the neighborhood predicted values and measured

genomic values of the graph nodes. This step is the same as the one used to select the

anchor domain for multi-omics alignment in Section 4.3.2. Next, we choose ε and ρ

values that minimize the Gromov-Wasserstein distance between the aligned datasets.

Algorithm 6 gives the details of this procedure.

Algorithm 6: Unsupervised hyperparameter search procedure
1 Input: Datasets X1, . . . , XM .
2 // Find k for each domain
3 for m = 1, . . . ,M do
4 km = argmax

k∈{10,20,...,150}

1
nm

∑nm
i=1

1
k

∑
xmj ∈Nk(xmi )

corr(xmj , xmi )

5 // Use km to compute Dm

6 end
7 // Use the GW distance to pick ρ and ε
8 for m = 2, . . . ,M do
9 εm, ρm = argmin ε, ρGWε,ρ(1n1 ,1nm)

10 end
11 Return: km, εm, ρm.

4.4 Experimental Setup

4.4.1 Datasets

We evaluate SCOTv2 on single-cell datasets with disproportionate cell-types using

two schemes. (1) We subsample different cell-types in co-assay datasets to simu-

late cell-type representation disparities between sequencing modalities. (2) We select

real-world separately sequenced single-cell multi-omics datasets, which lack 1–1 cell

correspondences and have different cell-type proportions across modalities due to the

sampling procedure. Additionally, we present results on the original co-assay datasets
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Figure 4.3: Schematic visualizing the effect of the mass relaxation term in SCOTv2 (un-
balanced Gromov-Wasserstein optimal transport). A. By allowing for the marginal dis-
tributions of the coupling matrix to diverge from the dataset marginals, we let the mass
of each datapoint to be locally modified during transportation to better match cells from
similar cell types, yielding better alignments for datasets with disproportionate cell-type
representation. B. An example comparing SCOT and SCOTv2 alignments on SNARE-seq
dataset alignment, with subsampled cell-type clusters in the chromatin accessibility domain
to simulate cell-type imbalance. Notice that SCOT moves cells from over-represented cell-
types (e.g. BJ) in the place of underrepresented cell-types (e.g. K562), while SCOTv2 more
correctly aligns cells.

with 1–1 cell correspondence to demonstrate the flexibility of SCOTv2 across balanced

and unbalanced single-cell datasets.

Co-assay single-cell datasets with 1–1 cell correspondence

We use three co-assay datasets to validate our model, sequenced by SNARE-seq,

scGEM, and scNMT technologies. SNARE-seq is a two-modality sequencing tech-

nology that simultaneously captures the chromatin accessibility and transcriptional

profiles of cells [18]. This dataset contains a total of 1047 cells from four cell lines: BJ

(human fibroblast cells), H1 (human embryonic cells), K562 (human erythroleukemia
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cells), and GM12878 (human lymphoblastoid cells) (Gene Expression Omnibus access

code: GSE126074). We follow the same data preprocessing steps outlined by Chen et

al. [18]. The scGEM technology is a three-modality sequencing technology that pro-

files the genetic sequence, gene expression, and DNA methylation states in the same

cell [19]. The dataset we use is derived from human somatic cell samples undergoing

conversion to induced pluripotent stem cells (Sequence Read Archive accession code

SRP077853) [19]. We access the preprocessed data provided by Welch et al. [97],

which only contains the gene expression and DNA methylation modalities 1. The

dataset sequenced by scNMT-seq method [5] contains three modalities of genomic

data: gene expression, DNA methylation, and chromatin accessibility, from mouse

gastrulation samples, going through the Carnegie stages of vertebrate development

(Gene Expression Omnibus access code: GSE109262). We access the preprocessed

data through the scripts2 provided by the authors. While the SNARE-seq and scGEM

datasets contain the same number of cells across measurements, scNMT-seq modal-

ities contain different cell-type proportions after preprocessing due to varying noise

levels in measurements. Supplementary Table 4.1 lists the number of cells belonging

to different cell-types in each domain for scNMT-seq dataset.

Single-cell datasets with simulated cell-type imbalance.

To test alignment performance sensitivity to different levels and types of cell-type

proportion disparities across modalities, we generate simulation datasets by subsam-

pling SNARE-seq and scGEM co-sequencing datasets in two ways. (1) We remove

a cell-type from one modality. (2) We reduce the proportion of a cell-type in one

modality by subsampling it at 50% and another cell-type in the other modality by

subsampling it at 75%. We simulate this setting to test how the alignment methods

will behave when multiple cell-types have disproportionate representation at different
1Preprocessed data for the scGEM dataset accessed here: https://github.com/jw156605/MATCHER
2Preprocessing scripts for the scNMT-seq data accessed here: https://github.com/PMBio/scNMT-seq/

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
https://www.ncbi.nlm.nih.gov/sra/?term=SRP077853
https://www.ncbi.nlm.nih.gov/sra/?term=SRP077853
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109262
https://github.com/jw156605/MATCHER
https://github.com/PMBio/scNMT-seq/
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levels (for example, half or quarter percentage of cell-types missing) across modalities.

For these cases, we uniformly pick at random which cell-type to subsample or re-

move. Specifically, for scGEM in simulation case (1), we remove “d16T+” cells in the

DNA methylation domain while retaining the original gene expression domain, and

remove the “d24T+” cells in the gene expression domain while retaining the original

DNA methylation domain. For the SNARE-seq dataset, we remove “GM” cells in

the gene expression domain and “K562” in the chromatin accessibility domain. In

simulation case (2), we subsample the “d8” cluster of the scGEM dataset at 75% in

the gene expression modality and the “d16T+” cluster at 50% in the DNA methy-

lation modality. For SNARE-seq, we subsample the “H1” cluster at 75% and the

“K562” cluster at 50% in the gene expression and chromatin accessibility domains,

respectively.

Single-cell datasets without 1—1 correspondences

We also align non-co-assay datasets, containing separately sequenced single-cell -omic

measurements. Bonora et al. generated the first dataset we use, “sciOmics" [9]. This

dataset consists of sciRNA-seq, sciATAC-seq, and sciHiC measurements, capturing

gene expression, chromatin accessibility, and 3D chromosomal conformation profiles

of mouse embryonic stem cells undergoing differentiation. The measurements were

taken at five stages: days 0, 3, 7, 11, and as fully differentiated neural progenitor

cells (NPCs). The second non-co-assay dataset, “MEC,” contains gene expression

and chromatin accessibility measurements taken using the 10X Chromium scRNA-

seq and scATAC-seq technologies on mouse mammary epithelial cells (MEC). Since

each modality consists of separately sampled cell populations, these contain disparate

cell-type proportions across modalities. Table 4.1 lists the number of cells belonging

to different cell-types in each domain for sciOmics and MEC datasets.
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Table 4.1: Number of cells in (and percentages of) each cell-type across different modalities
in the scNMT-seq co-assayed dataset after quality control procedures and the non-coassay
datasets.

Modality #1
(Gene Expression)

Modality #2
(Chromatin Accessibility)

Modality #3
(DNA Methylation or

3D chromosomal conform.)

scNMT
dataset

(n = 579)
E4.5: 76 (12.73%)
E5.5: 104 (17.42%)

Day6.5: 146 (24.46%)
E7.5: 271 (45.39%)

(n = 647)
E4.5: 63 (9.73%)
E5.5: 89 (13.76%)
E6.5: 220 (34.00%)
E7.5: 175 (42.50%)

(n =725)
E4.5: 65 (8.96%)
E5.5: 91 (12.55%)
E6.5: 278 (38.34 %)
E7.5: 291 (40.14%)

sciOmics
dataset

(n = 1,058)
Day0: 489 (46.22%)
Day3: 127 (12.00%)
Day7: 78 (7.37%)

Day11: 145 (13.71%)
NPC: 219 (20.70%)

(n = 1,296)
Day0: 164 (12.65%)
Day3: 702 (54.17%)
Day7: 77 (5.94%)

Day11: 175 (13.50%)
NPC: 178 (13.73%)

(n =2,154)
Day0: 987 (45.82 %)
Day3: 435 (20.19 %)
Day7: 243 (11.28 %)
Day11: 164 (7.61 %)
NPC: 325 (15.09 %)

MEC
dataset

(n=26,273)
Basal: 11,138 (42.39 %)

L-Sec (Prog): 7,683 (29.24 %)
L-HR: 3,439 (13.09 %)

L-Sec (Mat): 2,869 (10.92 %)
L-Sec (Prolif): 758 (2.89 %)

Stroma: 386 (1.47 %)

(n=21,262)
Basal: 13,353 (62.80 %)

L-Sec (Prog): 3,343 (15.72 %)
L-HR: 2,624 (12.34 %)

L-Sec (Mat): 1,165 (5.48 %)
L-Sec (Prolif): 7 (0.033 %)

Stroma: 770 (3.62 %)

N/A

4.4.2 Evaluation metrics and baseline methods

Although most of the datasets lack 1–1 cell correspondences, we can evaluate align-

ment using cell-type labels through label transfer accuracy (LTA) as in [13, 14, 25, 28].

This metric assesses the clustering of cell-types after alignment by training a kNN

classifier on a training set (50% of the aligned data) and then evaluates its predictive

accuracy on a test dataset (the other 50% of the aligned data). Higher values corre-

spond to better alignments, indicating that cells that belong to the same cell-type are

aligned close together after integration. We benchmark our method against the cur-

rent unsupervised single-cell multi-omic alignment methods, Pamona [14], UnionCom

[13], MMD-MA [79], bindSC [35], Seuratv4 [83], and the previous version of SCOT,

which performs alignment without the KL term [25, 28]. Pamona [14], as previously
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discussed, uses partial Gromov-Wasserstein (GW) optimal transport to align single-

cell datasets. UnionCom [13] performs unsupervised topological alignment through a

two-step procedure that first finds a correspondence between the domains, consider-

ing both global and local geometries with a hyperparameter to control the trade-off

between them, and then embeds them in a new shared space. MMD-MA [79] uses

the maximum mean discrepancy (MMD) measure to align and embed two datasets

in a new space. BindSC [35] requires the users to bring input datasets to the gene

expression feature space by constructing a gene activity score matrix for the epige-

nomic domains, then finds a correspondence matrix between samples through bi-order

canonical correspondence analysis (bi-CCA), and jointly embeds the domains into a

new space. Finally, Seuratv4 [83] also requires gene activity score matrices for epige-

nomic domains and then identifies correspondence anchors via CCA. Based on these

anchors, it imputes one genomic domain based from the other domain and co-embeds

them into a shared space using UMAP.

Since bindSC and Seurat v4 require the creation of gene activity score matrices

for epigenomic datasets, they might be more difficult to use with certain sequencing

domains. For instance, gene activity scoring is challenging for 3D chromosomal con-

formation. Of all the selected baselines, only Pamona and UnionCom can align more

than two domains, so we only use them as baselines for experiments with multiple

domains (M > 2). For each benchmark, we define a hyperparameter grid of similar

granularity and perform extensive tuning (see Section 4.5). We report the alignment

results with the best performing hyperparameter combinations in Section 4.6.1.

4.5 Hyperparameter Tuning Procedure Details

For each alignment method, we define a grid of hyperparameters and choose the

best performing combination for each experiment. If methods share similar hyperpa-

rameters in their formulation, we keep the range defined for these consistent across
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all algorithms. Examples for such hyperparameters are dimensionality of the latent

space, p, for the algorithms that commonly embed datasets; entropic regularization

constant, ε, for methods that employ optimal transport; number of neighbors, k, for

methods that model single-cell datasets with nearest neighbor graphs. Otherwise,

we refer to the publication and the code repository for each method to choose a

hyperparameter range.

For Pamona, we tune four hyperparameters: k ∈ {20, 30, . . . , 150}, the number of

neighbors in the cell neighborhood graphs, ε ∈ {5e − 4, 3e − 4, 1e − 4, 7e − 3, 5e −

3, . . . , 1e− 2}, the entropic regularization coefficient for the optimal transport formu-

lation, λ ∈ {0.1, 0.5, 1, 5, 10}, the coefficient for the trade-off between aligning corre-

sponding cells and preserving local geometries, and lastly, p ∈ {3, 4, 5, 10, 30, 32}, the

output dimension for embedding. We choose the ranges for ε and k to be consistent

with the corresponding hyperparameters in SCOT and SCOTv2 algorithms and the

ranges for the embedding dimensions to be consistent with the recommended values

in MMD-MA and UnionCom embeddings.

For UnionCom, we tune the trade-off parameter β ∈ {0.1, 1, 5, 10, 15, 20} and the

regularization coefficient ρ ∈ {0, 0.1, 1, 5, 10, 15, 20} based on the ranges reported by

Cao et al. in the publication [13]. We additionally tune the maximum neighborhood

size permitted in the neighborhood graphs, kmax ∈ {40, 100, 150}, as well as the em-

bedding dimensionality p ∈ {3, 4, 5, 10, 30, 32}. The sweep range for hyperparameter

kmax is smaller than the other hyperparameters because UnionCom automatically

starts from k = 2 and goes up to kmax to find the lowest k that returns a connected

graph to use in the algorithm. Therefore, more refined search is not needed.

For MMD-MA, we choose the weights λ1 and λ2 ∈ {1e − 2, 5e − 3, 1e − 3, 5e −

4, . . . , 1e − 9}. This range includes the hyperparameter range suggested by Singh

et al (λ1, λ2 ∈ {1e − 3, 1e − 4, 1e − 5, 1e − 6, 1e − 7}) but extends it further to

increase the granularity for the sake of more fair comparison against methods that
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require a higher number of hyperparameters to test, such as Pamona and UnionCom.

Similarly to other methods, we also select the embedding dimensionality from p ∈

{3, 4, 5, 10, 30, 32}.

For bindSC, we choose the couple coefficient that assigns weight to the initial gene

activity matrix α ∈ {0, 0.1, 0.2, . . . 0.9} and the couple coefficient that assigns weight

factor to multi-objective function λ ∈ {0.1, 0.2, . . . , 0.9}. Additionally, we choose the

number of canonical vectors for the embdedding space K ∈ {3, 4, 5, 10, 30, 32}.

Lastly, for Seurat v4, we tune the number of neighbors to consider when find-

ing anchors, k ∈ {5, 10, 15, 20}, dimensions of the final co-embedding space, p ∈

{3, 4, 5, 10, 30, 32} and the choice of the reference and anchor domains when finding

anchors.

4.6 Results

4.6.1 SCOTv2 gives high-quality alignments consistently across all single-
datasets

We first present the alignment results for real-world co-assay datasets with simu-

lated cell-type imbalance. We present the results obtained by the best performing

hyperparameter combinations for all methods compared in this study. Figure 4.4

(A) visualizes the barycentric projection alignments performed by SCOTv2 plotted

as 2D PCA for SNARE-seq and scGEM datasets, respectively. We use barycentric

projection for visualization purposes for the ease of comparison with the original do-

mains, plotted in Supplementary Figure ??. Here, we integrate datasets under three

different settings described in the previous section: (1) Balanced datasets (or “full

datasets” with no subsampling), (2) Missing cell-type in the epigenomic domains,

and (3) Subsampled cells in both domains (one cell-type at 50% in the epigenomic

domains and another cell-type at 75% in the gene expression domains). We include

alignment results on the full datasets with 1–1 sample correspondences to ensure that
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SCOTv2 performs well for balanced cases as well.

Qualitatively, we see that SCOTv2 preserves the cell-type annotations after align-

ment for all three settings. In Figure 4.4 (B), we report the quantitative performance

of SCOTv2 and all the other state-of-the-art baselines using the Label Transfer Accu-

racy (LTA) scores. MMD-MA, UnionCom, Seurat, and bindSC fail to reliably align

datasets with disproportionate cell-type representation across modalities. While Pa-

mona tends to yield high-quality alignments for cases with cell-type disproportion,

it fails to perform well on the SNARE-seq balanced dataset as well as its subsam-

pling simulation. We additionally apply Pamona to randomly downsampled co-assays

(Figure 4.6). We show that while Pamona’s partial optimal transport framework

handles cell-type disproportion better than the balanced optimal transport formula-

tion (demonstrated by SCOT), SCOTv2 still shows an advantage in all SNARE-seq

simulations (∼ 20% increase in LTA), as well as the smaller downsampling schemes

(∼ 10%).

Among all methods tested, SCOTv2 consistently gives more high-quality align-

ments across different scenarios of cell-type representation. It also demonstrates a

∼ 22% average increase in LTA over the previous version of the algorithm (SCOT)

when comparing the barycentric projection results and ∼ 27% for the embedding

results. Supplementary Figure 4.6 presents similar results (SCOTv2 attains an LTA

of 0.786 followed by Pamona at 0.62 on SNAREseq and 0.542 followed by Pamona

at 0.538 on scGEM) for missing cell-types in the other (gene expression) domain,

suggesting that our choice of domain with missing cell-type does not affect the per-

formance comparison results. UnionCom, Pamona, and SCOTv2 allow us to perform

both barycentric projections and embed the single-cell domains in a lower-dimensional

space. Overall, we observe that embedding yields higher LTA values than barycentric

projection. Since the barycentric projection projects one domain onto another, the
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SNARE
(full

dataset)

SNARE
(missing
cell-type)

SNARE
(subsam.
dataset)

scGEM
(full

dataset)

scGEM
(missing
cell-type)

scGEM
(subsam.
dataset)

scNMT sciOmics MEC

SCOTv2 0.826 0.653 0.751 0.509 0.521 0.415 0.727 0.537 0.584
SCOT 0.852 0.572 0.588 0.423 0.323 0.314 N/A N/A 0.466
Pamona 0.554 0.423 0.419 0.385 0.414 0.308 0.588 0.329 0.417
MMD-MA 0.523 0.407 0.431 0.360 0.296 0.287 N/A N/A 0.233
UnionCom 0.411 0.406 0.422 0.332 0.315 0.276 0.474 0.306 0.349
bindSC 0.713 0.584 0.475 0.387 0.254 0.262 N/A N/A 0.412
Seurat 0.428 0.517 0.503 0.408 0.377 0.329 N/A N/A 0.387

Table 4.2: Alignment performance benchmarking in the fully unsupervised setting. We run
SCOTv2 and SCOT using their heuristics to approximately self-tune hyperparameters. We
use default parameters for other methods due to a lack of similar procedures for unsupervised
self-tuning.

separation of the domain being projected onto (or anchor domain) limits the cluster-

ing separation after alignment. In contrast, the embedding utilizes t-SNE to enhance

cell-type separation, allowing for better-separated clusters after alignment.

Next, we report the alignment performance of SCOTv2 on single-cell datasets

with disparities in cell-type representation due to sampling during experiments. We

include scNMT, a co-assay with varying levels of cells across domains due to quality

control procedures, along with sciOmics and MEC for this experiment. Note that

scNMT and sciOmics have three different modalities, and hence, we can only report

the baselines for methods that can align datasets with M > 2. Figure 4.5(A)

presents the qualitative alignment results for SCOTv2 with PCA. SCOTv2 performs

well on all three datasets, including the ones with three modalities. The LTA scores in

Figure 4.5(B) demonstrate that SCOTv2 consistently yields the best alignments on

the three real-world datasets. These results highlight its ability to reliably integrate

separately sampled with disproportionate cell-type representation and multiple (M >

2) modalities simultaneously.
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Figure 4.6: Alignment results on simulations with co-assay datasets. A visualizes the align-
ment results by SCOTv2, using barycentric projection, on co-assay datasets SNARE-seq
and scGEM when a cell-type is missing in the gene expression domain. B quantifies the
alignment quality in this experiment by using the label transfer accuracy metric and com-
pares to baseline methods. C plots the average label transfer accuracy results obtained from
SCOTv2, SCOT, and Pamona algorithms when aligning randomly downsampled datasets.
These experiments are repeated five times and the standard deviation is shown with error
bars.
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4.6.2 Hyperparameter self-tuning aligns well without depending on or-
thogonal correspondence information

The benchmarking results above present the alignment performance of each algorithm

at its best hyperparameter setting; however, users may not have 1—1 correspondences

to validate alignments, for the purpose of hyperparameter selection, in real-world ap-

plications. While users may have access to cell-type labels, inferring cell-types is

highly difficult in specific modalities of single-cell sequencing, such as 3D chromatin

conformation. Additionally, different sequencing modalities might disagree on cell-

type clustering (as is often the case with scRNA-seq and scATAC-seq datasets). In

these situations, users might not have sufficient validation data for tuning hyperpa-

rameters.

We design a heuristic process (described in Section 4.3.5), as done previously for

SCOT, that allows SCOTv2 to select hyperparameters in a completely unsupervised

manner. Other alignment methods do not provide an unsupervised hyperparameter

tuning procedure. Therefore, without validation data, a user would have to use the

default parameters. In Table 4.2, we compare alignment performance for our heuristic

against the default parameters of other methods. While our heuristic does not always

yield the optimal hyperparameter combination, it does give more favorable results

over the default settings of the other methods. Thus, we recommend using it in cases

that lack orthogonal information for hyperparameter tuning.
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4.6.3 SCOTv2 scales well with increasing number of samples

Figure 4.7: Runtimes for SCOTv2, SCOT, Pamona, UnionCom, and MMD-MA as the
number of samples increases.

We compare the runtime of SCOTv2 with the top performing methods: Pamona,

MMD-MA, UnionCom, and the previous version of SCOT by subsampling various

numbers of cells from the MEC dataset. MMD-MA, UnionCom, and SCOTv2 have

GPU versions, while Pamona and SCOT only have CPU versions. We run MMD-MA

and UnionCom on a single NVIDIA GTX 1080ti GPU with VRAM of 11GB and

Pamona and SCOT on Intel Xeon e5-2670 CPU with 16GB memory. We also run

SCOTv2 on the same CPU to give comparable results to Pamona’s runtimes. Figure

4.7 depicts that SCOT, MMD-MA, Pamona, and SCOTv2 show similar computational

scaling.

4.7 Discussion

We present SCOTv2, an improved unsupervised alignment algorithm for single-cell

multi-omic alignment. It extends the alignment capabilities of SCOT to datasets with
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cell-type representation disproportions across different sequencing measurements. It

also performs alignment for single-cell datasets with more than two measurements

(M > 2). Experiments on real-world subsampled co-assay datasets and separately

sampled and sequenced single-cell datasets demonstrate that SCOTv2 reliably yields

high-quality alignments for a wide range of cell-type disproportions without compro-

mising its computational scalability. Furthermore, SCOTv2’s flexible marginal con-

straints enable it to consistently give good alignments results for both balanced and

unbalanced single-cell datasets. In addition to effectively handling cell-type imbal-

ances and multi-omics alignment, SCOTv2 can self-tune its hyperparameters making

it applicable in complete unsupervised settings. Therefore, SCOTv2 offers a conve-

nient way to align multiple single-cell measurements without requiring any orthogonal

correspondence information.

In this second iteration of SCOT, we have utilized the coupling matrix in a new

way to find a latent embedding space. While this dimension reduction improves cell-

type separation, using the coupling matrix directly may offer even more insights into

interactions between the aligned domains. Future work could consider how to use the

probabilities in the coupling matrix directly for downstream analysis like improved

clustering and pseudo-time inference. Though SCOTv2 has runtimes that scale with

other methods, it requires O(n2) memory storage for the distance matrices, which may

be an issue for especially large datasets. One way to address this limitation would be

to develop a procedure to align a representative subset of each domain that can be

extended to the entire dataset. Another way could be to co-embed datasets through

a coupled autoencoder scheme and align cells in this embedding space via unbalanced

optimal transport, without the use of pairwise distances. Therefore, future work could

explore these directions to further improve the scalability of SCOTv2.
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Figure 4.4: Alignment results for simulations and balanced co-assay datasets. A visual-
izes the barycentric projection alignment on SNARE-seq and scGEM for the full co-assay
datasets, simulations with a missing cell-type in the epigenomic domain, and subsampled
cell-types in both domains. B compares the alignment performance of SCOTv2 to the
benchmarks through LTA. For SCOTvs, Pamona, and UnionCom, we report results on
both embedding into a shared space (solid bars) and the barycentric projection (dotted
bars).
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Figure 4.5: Alignment results for multi-modal (M > 2) and separately sequenced datasets.
A visualizes the alignment of scNMT-seq, sciOmics, and MEC. All datasets have unequal
sample sizes and cell-type proportions across domains. B benchmarks alignment perfor-
mance through LTA. As in Figure 4.4, we report results both by embedding (solid bars)
and barycentric projection (dotted bars) for the methods that allow for both. For scNMT-
seq and sciOmics, which are three-modal datasets, we only demonstrate results for SCOTv2,
Pamona, and UnionCom, which can handle more than two modalities.



Chapter 5

Jointly aligning samples and
features of datasets

5.1 Introduction

As introduced in Chapter 1.1, a large motivation behind obtaining paired or inte-

grated measurements of single-cell multi-omics is to study the rules of cell regulation

by combining information about different genomic events. Although the algorithms

presented so far in Chapters 3 and 4 align multi-omic measurements from single-cell

experiments, they do not reveal possible relationships between the genomic features

captured in these measurements. Given the size of the feature space in typical se-

quencing experiments (e.g. hundereds of proteins, tens of thousands of genes, millions

of chromatin regions), generating ranked hypotheses on potential cross-modal rela-

tionships could help biologists with prioritizing experiments. Here, we present a novel

algorithm, “Single-cell fused Gromov Co-optimal Transport (scootr)”, that jointly

aligns both the cells and the features from unpaired single-cell multi-omic datasets.

Our proposed method is also capable of leveraging supervising information from ei-

ther level (on feature-feature or cell-cell relationships) in order to improve alignment

quality on both levels.

72



73

5.1.1 Related Works

All existing single-cell multi-omic alignment algorithms, as presented in the previous

chapters and used in the benchmarking of the scot and scotv2 algorithms, are solely

capable of aligning cells. A nuanced exception to this trend is bindSC, which was

released in 2022 after the publications of scot and scotv2. The bindSC method uses

an alternating optimization procedure, using bi-order cannonical correlation analysis,

to align cells while also aligning features. Although bindSC is released as a cell-

cell alignment method, it is possible to access to the feature alignments it computes

during its optimization. Therefore, in this study, we use bindSC as a baseline while

evaluating our feature-level alignments.

5.1.2 Our contributions

• We propose a new optimal transport formulation,Single-cell fused gromov CO-

OptimalTRansport (SCOOTR), that interpolates between Gromov-Wasserstein

distance and co-optimal transport . As a result of this interpolation, our pro-

posed divergence can compare probability measures or datasets across different

metric spaces, while leveraging both structural information related to the un-

derlying data geometries and the raw features.

• Our method jointly solves for two coupling matrices, one that relates samples

across the datasets, and one that relates features (Figure 5.1).

• We demonstrate that the new formulation gives improved cell alignments com-

pared to SCOT and SCOTv2.

• We demonstrate that users can leverage any prior information that exists on

either the feature or the sample (i.e. cell) level relationships in order to improve

the quality of the coupling matrices recovered.
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Figure 5.1: Schematic outlining the SCOOTR algorithm. Given two single-cell multi-omic
datasets, SCOOTR seeks to find two coupling matrices, one aligning cells, and the other
aligning features across these datasets.

5.2 Method

Notations In what follows, we denote by ∆n = {w ∈ (R+)n : ∑n
i=1wi = 1} the

simplex histogram with n bins. We use ⊗ for tensor-matrix multiplication, i.e.,

for a tensor L = (Li,j,k,l), the tensor-matrix multiplication L ⊗ B is the matrix

(∑k,l Li,j,k,lBk,l)i,j. We use 〈·, ·〉 for the matrix scalar product associated with the

Frobenius norm ‖ · ‖F . Finally, we write 1d ∈ Rd for a d-dimensional vector of

ones and denote all matrices by upper-case bold letters (i.e., X) or upper-case Greek

letters (i.e., Γ); all vectors are written in lower-case bold (i.e., x). We use the terms

“coupling matrix” and “correspondence matrix” interchangeably.

Monge-Kantorovich problem Let X,Y be two subsets of Rd and c : X×Y→ R≥0

be a lower semi-continuous cost function defined for all (x,y) ∈ X × Y. Given two

probability measures µ ∈ P(X), ν ∈ P(Y), where MK seeks a coupling γ ∈ Π(µ, ν)

minimizing the following quantity:

Wc(µ, ν) = Eγ∈Π(µ,ν)c(x,y), (5.1)
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where Π(µ, µ) is the space of probability distributions over R2 with marginals µ and

ν. Such optimization problem defines a proper metric on the space of probability

distributions called the Wasserstein distance.

In the discrete version of the problem, one deals with the empirical measures

supported on vectors X = {xi}ni=1 ∈ X and Y = {yi}mi=1 ∈ Y as follows:

w = 1
n

n∑
i=1

δxi , and w′ = 1
m

m∑
i=1

δyi ,

where δx are Dirac measures located at x. In this case, Π(p, q) denotes the polytope

of matrices Γ such that Γ1 = 1n,ΓT1 = 1m and (5.1) reads:

WC(w,w′) = min
Γ∈Π(1n,1m)

〈Γ,C〉F , (5.2)

where 〈·, ·〉F is the Frobenius dot product, C ≥ 0 is a cost matrix ∈ Rn1×n2 , represent-

ing the pairwise transportation costs. One can also add an entropic regularization

E(Γ) := ∑
ij Γij(log Γij − 1) to (5.2) to obtain a strongly convex optimization prob-

lem with smoother solutions that can be obtained using a simple matrix balancing

algorithm.

Gromov-Wasserstein distance When the input spaces X,Y are different, for in-

stance, X,Y are subsets of Rd and Rd′ , respectively, one cannot use the above-

mentioned OT formulations as they rely on a cost function c that is defined only

for comparable metric spaces. To circumvent this limitation, a new OT distance

between two metric-measure spaces termed Gromov-Wasserstein (GW) [61] was

proposed.

The idea behind GW problem is as follows: instead of aligning vectors from X and

Y, we align their pairwise distances (or similarities) by assuming that coupling values

should be higher for pairs of points that exhibit higher intra-domain similarities. More

formally, given two metrics dX : X×X→ R+ and dY : Y×Y→ R+, we first define two
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matrices DX ∈ Rn×n and DY ∈ Rm×m such that (DX)ij = dX(xi,xj) and similarly

for DY. The GW distance for measure metric spaces (w, dX) and (w′, dY) in this case

is defined as follows:

GW(DX,DY,w,w′) := min
Γ∈Π(w,w′)

∑
i,j,k,l

L(DX
i,k,DX

j,l)Γi,jΓk,l = 〈L(DX,DY)⊗ Γ,Γ〉F ,

(5.3)

where L : R × R → R+ is an arbitrary loss function, usually the quadratic-loss

or Kullback-Leibler divergence. Similarly, one can define an entropic version of the

Gromov-Wasserstein distance as done in [69].

COOT follows a different idea and aims to align X and Y in their original space

by solving:

COOT(X,Y,w,w′,v,v′) := min
Γs∈Π(w,w′),Γv∈Π(v,v′)

∑
i,j,k,l

L(Xi,k,Yj,l)Γsi,jΓvk,l, (5.4)

where v and v′ are empirical distributions associated with the features (columns) of

X and Y.

5.2.1 Single-cell fused Gromov Co-Optimal Transport (SCOOTR)

While Gromov-Wasserstein optimal transport accounts for dataset structure during

the alignment of samples, it discards features. Co-optimal transport (COOT), on

the other hand, jointly aligns both samples and features, but does not leaverage

the information on dataset geometries given by pairwise distances, which proved to

be beneficial in single-cell dataset integration tasks, as demonstrated by SCOT and

SCOTv2 algorithms [25, 27, 29]. We propose an interpolation between the two to
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combine the best of both worlds:

min
Γs ∈ Π(w,w′),
Γv ∈ Π(v,v′)

〈αL(DX,DY)⊗ Γs + (1− α)L(X,Y)⊗ Γv,Γs〉. (5.5)

with L = L2. Similarly to SCOTv2, an unbalanced formulation can be obtained with

the addition of the KLD terms over the coupling marginals. We additionally add the

entropic regularization term for both coupling matrices ε1H(Γs) + ε2H(Γv) in order

to make computation empirically more efficient and employ Sinkhorn iterations in

optimization. The choice of α hyperparameter determines the strength of interpo-

lation between Gromov-Wasserstein distance and COOT. We show in the proofs in

Section 7.1 that as α approaches 1, we retrieve Gromov-Wasserstein distance, and as

α approaches 0, SCOOTR behaves like COOT.

5.2.2 Providing supervision to SCOOTR

A useful property of SCOOTR that is inherited from COOT is that one can provide

a weak supervision when solving for Γs and Γv by scaling the costs of matching

samples/features that should not be matched together. We do this by multiplying the

cost matrix L with a supervision matrix D that user provides in inputs. This matrix

can be provided for either the sample or the feature alignments. If it’s provided for

the feature-level alignments, for example, it is only used in the optimization step for

the feature-feature coupling matrix in the block coordinate descent (Supplementary

Algorithm 7). The entries of the supervision matrix are expected to range between

0 and 1. For example, an entry for 0 for the row i and column j in the feature-level

supervision matrix removes the cost associated with aligning the feature i and feature

j of the two input datasets, respectively. We will show that this unique feature of
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scootr is valuable when dealing with single-cell measurements.
Algorithm 7: Pseudocode for SCOOTR

1 Input: X,X ′,DX ,DX′
, α, ε1, ε2,M s(optional),M v(optional), choice of

barycentricProjection or embedding

2 Initialize:

3 w ←, Uniform(1/ns),w′ ←, Uniform(1/n′s),

4 v ←, Uniform(1/nf ),v′ ← Uniform(1/n′v),

5 Γs
0 ← ww′T ,Γv

0 ← vv′T , t← 0

6 while t < maxIter and err > 0, do:

7 Lst ← α
∑
i,j,k,l ||DX

·,ik −DX′
·,jl||2 + (1− α)∑i,j ||X·,k −X ′·,l||2(Γvt )i,j //

Calculating the new cost matrix for samples

8 Lst ←M s �Lst // Scaling if providing supervision on sample alignments

9 Γs
t ← Sinkhorn(w,w′,Lst , ε1) // Optimizing the coupling matrix for

samples

10 Lvt ←
∑
m,n ||Xm,· −X ′n,·||2(Γst−1)m,n // The new cost matrix for features

11 Lvt ←M v �Lvt // Scaling if providing supervision on feature alignments

12 Γv
t ← Sinkhorn(v,v′,Lvt , ε2) // Optimizing the coupling matrix for

features

13 err← ||Γs
t − Γs

t−1||2

14 t← t+ 1

15 Align cells in the same space:

16 if Barycentric projection then

17 X̂ = nsΓsX′ and X̂′ = X′

18 end

19 else

20 // Find shared embedding (same as in SCOTv2)

21 X̂, X̂← minX̂,X̂′ KL(P ||Q′) + β||X −X ′(Γs)T ||2F
22 end

23 Return: X̂, X̂,Γv
t
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5.3 Experimental Setup

We first show that scootr can yield cell-cell alignment results on par with the

existing single-cell multi-omic alignment methods. Then, we demonstrate its ability

to also simultaneously align the features from different genomic modalities, using

simulated and real-world single-cell sequencing datasets.

5.3.1 Datasets

When choosing datasets, we follow our main baselines – the existing optimal transport-

based single-cell alignment methods [14, 25, 27, 29] and bindSC [35] – and curate a

similar set of simulated and real-world datasets for a comparable benchmarking. We

use the datasets with ground-truth information on 1-1 cell pairings for evaluating

cell-level alignment performance. Similarly, we use the datasets with some prior

information on feature correspondences for evaluating feature-level alignment perfor-

mance.

Datasets for cell-cell alignment benchmarking We use one simulated dataset and

three real-world single-cell multi-omic datasets to benchmark our cell alignment per-

formance in the balanced scenario (i.e. no discrepancies in cell-type representation

across datasets). The simulated dataset that has been generated by [25] using a

single-cell RNA-seq data simulation package in R, called Splatter [106], also used in

the experiments for SCOT in Chapter 3. We refer to this dataset as “Synthetic RNA”.

This dataset includes a simulated gene expression domain with 50 genes and 5000 cells

divided across three cell-types, and another domain created by non-linearly project-

ing these cells onto a 500-dimensional space. As a result of its generation scheme, the

dataset has ground-truth 1-1 cell correspondence information. To have ground-truth

information on cell correspondences for evaluation, for the real-world datasets, we
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choose three co-assay datasets which have paired measurements on the same individ-

ual cells: an scGEM dataset [19], a SNARE-seq dataset [18], and a CITE-seq dataset

[81]. These first two datasets have been used by existing single-cell alignment meth-

ods, including the ones employing optimal transport [13, 14, 25, 27, 56, 79], while the

last one was included in the evaluations of bindSC [35]. The scGEM dataset con-

tains measurements on gene expression and DNA methylation states of 177 individual

cells from human somatic cell population undergoing conversion to induced pluripo-

tent stem cells (iPSCs) [19]. We accessed the pre-processed count matrices for this

dataset through the MATCHER repository 1. The SNARE-seq dataset contains gene

expression and chromatin accessibility profiles of 1047 individual cells from a mixed

population of four cell lines: H1(human embryonic stem cells), BJ (a fibroblast cell

line), K562 (a lymphoblast cell line), and GM12878 (lymphoblastoid cells derived

from blood) [18]. We access their count matrices on Gene Expression Omnibus, with

the accession code GSE126074. Finally, the CITE-seq dataset has gene expression

profiles and epitope abundance measurements on 25 antibodies from 30,672 cells from

human bone marrow tissue [81]. The count matrices for this dataset were downloaded

from the Seurat website 2

To test alignments in the unbalanced scenario (when cell-type representation is

disproportionate across datasets), we also include the subsampling simulations on the

SNARE-seq and scGEM datasets, as well as the scNMT-seq dataset, from SCOTv2

[27, 29].

Datasets for feature-feature alignment benchmarking We assess feature-level

alignment performance on real-world single-cell multi-omic datasets with some ground-

truth correspondence information between the features. Among the three real-world

datasets described above, we have ground-truth information on the CITE-seq dataset,
1https://github.com/jw156605/MATCHER
2https://satijalab.org/seurat/v4.0/weighted_nearest_neighbor_analysis.html

https://github.com/jw156605/MATCHER
https://satij alab.org/seurat/v4.0/weighted_nearest_neighbor_analysis.html
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where we know which genes from the gene expression domain encode the 25 antibodies

from the antibody abundance domain. We use these 1-1 correspondences to evalu-

ate our feature alignments. Since we do not have such reliable ground-truth feature

correspondence information for SNARE-seq and scGEM datasets, we use a novel

computational tool called CellOracle [49]. This tool has been developed to infer reg-

ulatory networks jointly from single-cell chromatin accessibility and gene expression

data. For the SNARE-seq dataset, we use CellOracle to construct gene regulatory

networks. We take the chromosomal region of transcription factors and genomic

elements that a gene is connected to in this network as its probable feature corre-

spondences, and compare our alignments against these (more detail in Section 5.3.2).

We are unaware of the existence of such tools for single-cell methylation data. As a

result, we do not include scGEM dataset in our feature-level alignment performance

benchmarking. Instead, we add a new real-world dataset with a need for single-cell

alignment. This dataset contains unpaired single-cell gene expression profiles from

mouse prefrontal cortex[8], and the bearded lizard pallium [89]. It has been curated

with data from separately conducted experiments. Here, we have information on

paralogous genes across the two species, as well as relevant cell types.

In addition to these three real-world sequencing datasets, we simulate a new set

of multi-omic data with varying levels of sparsity in underlying feature-level corre-

spondences. Our goal for including these simulations is to investigate the effect of

correspondence sparsity on alignment performance. We follow the simulation set-up

by Zhang et al [108], which modifies a single-cell RNA-seq simulation method, Sym-

Sim [107], to also simulate scATAC-seq count data based on a gene-chromosomal

region relationship matrix 3. We simulate 500 cells with 50 genes in the gene expres-

sion modality, and 1000 chromosomal regions in the chromatin accessibility modality.

We randomly generate five gene-to-chromosomal region correspondence matrices with
3https://github.com/PeterZZQ/Symsim2

https://github.com/PeterZZQ/Symsim2
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uniform 1-2 (sparse), 1-4, 1-6, 1-8, and 1-10 (dense) matches. We generate five multi-

omic datasets using these ground-truth correspondence matrices.

5.3.2 Evaluation Criteria

Cell-cell alignment evaluation When evaluating cell-cell alignments, we use a met-

ric previously used by other single-cell multi-omic integration tools [13, 14, 25, 27,

35, 56, 79] called “fraction of samples closer than the true match” (FOSCTTM). For

this metric, we compute the Euclidean distances between a fixed sample point and

all the data points in the other domain. Then, we use these distances to compute

the fraction of samples that are closer to the fixed sample than its true match, and

then average these values for all the samples in both domains. This metric measures

alignment error, so the lower values correspond to higher quality alignments.

Feature-feature alignment evaluation To assess feature-feature alignment perfor-

mance, we investigate the accuracy of feature correspondences recovered. We mainly

use three real-world datasets for this task - CITE-seq, SNARE-seq, and the cross-

species scRNA-seq datasets. Due to the versatility of the genomic measurements

in these datasets, we follow a different procedure for each to define “ground-truth”

feature correspondences to compute the accuracy.

For the CITE-seq dataset, we expect the feature correspondences to recover the

relationship between the 25 antibodies and the genes that encode them. To investigate

this, we simultaneously align the cells and features of the two modalities using the 25

antibodies and 25 genes in an unsupervised manner. We compute the percentage of

25 antibodies whose strongest correspondence is their encoding gene.

For SNARE-seq dataset, we start by pre-processing the dataset to prune features.

The original dataset contains 18,666 genes and 1,136,771 chromosomal regions in

their respective modalities. We select the top 1000 most variable genes using the

FindVariableFeatures function of Seurat with its default parameters. We also select
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the top 2500 chromosomal regions in the chromatin accessibility domain using the

FindTopFeatures function of Signac [84]. With these, we construct a gene regulatory

network with CellOracle [49] using both domains. Then, for each gene, we identify

the chromosomal regions of its regulators from the regulatory network, using the

human reference genome GRCh38/hg38. We expect the genes in the gene expression

modality to be matched with at least one of the chromosomal regions overlapping

with each regulator’s genomic coordinates, and compute the accuracy over all genes

accordingly.

For the cross-species RNA-seq dataset, we expect alignments between the cell-type

annotations common to the mouse and lizard datasets, namely: excitatory neurons,

inhibitory neurons, microglia, OPC (Oligodendrocyte precursor cells), oligodendro-

cytes, and endothelial cells. For this dataset, we generate cell-label matches by av-

eraging the rows and columns of the cell-cell alignment matrix yielded by scootr

based on these cell annotation labels. We compute the percentage of these six cell-

type groups that match as their strongest correspondence.

5.3.3 Baselines

For the cell-cell alignment evaluation, we consider the following unsupervised single-

cell multi-omic integration methods, SCOT [25], SCOTv2 [27, 29], and bindSC [35].

Among these, SCOT and SCOTv2 are optimal transport-based methods; they both

use Gromow-Wasserstein (GW) optimal transport [61, 70] with different relaxations.

We note that unlike other alignment methods, bindSC could be considered a weakly

supervised method since it requires a gene activity matrix as an input. For feature-

feature alignment benchmarking, bindSC remains our only baseline since the other

integration methods only perform alignment on the cell level. Although bindSC

does not return the final feature-level correspondence matrix to the user, it does

return the relationship between each feature and the computer intermediary factors.
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By multiplying these matrices, we are able to obtain a feature-level correspondence

matrix. For all methods, we set a grid of hyperparameter combinations and choose the

best performing combination for each dataset. For scootr, we consider the EMD (for

ε1,2 = 0) and Sinkhorn algorithms for each OT subproblem, entropic regularization

strength for Sinkhorn taking values in {10−5, . . . , 104}, and interpolation coefficient

α = {0.0, 0.1, 0.2, ..., 1.0}.

5.4 Results

We apply scootr on four real-world datasets, as well as a synthetic dataset to jointly

align cells and genomic features of unpaired single-cell multi-omic datasets. We com-

pare scootr’s feature alignment performance to bindSC, which is the only other

computational tool that can perform joint alignment of cells and features. We addi-

tionally benchmark scootr’s cell alignment performance against the other two single-

cell multi-omic alignment algorithms introduced in this thesis, SCOT and SCOTv2,

which only perform cell-cell alignment.

5.4.1 SCOOTR improves upon cell alignment performance of SCOT and
SCOTv2

We benchmark scootr’s cell-cell alignment performance under two settings: (1)

the balanced case, where there is a 1 − 1 correspondence between the cells of the

integrated datasets, and (2) the unbalanced case, where there is a discrepancy in

the cell-type proportions across the integrated datasets. For the first case, we use

the mean “fraction of samples closer than true match” (FOSCTTM) metric, which

measures alignment error, and for the second, we use label transfer accuracy since

FOSCTTM cannot be used without ground-truth information on 1 − 1 cell corre-

spondences. Label transfer accuracy measures cell-type alignment quality, therefore

higher values are better. We use SCOTv2 instead of SCOT in the second case as a
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baseline, because SCOT does not perform well in unbalanced cases, as demonstrated

before. As Tables 5.1 and 5.2 show, scootr improves upon the cell-type alignment

performance of both SCOT and SCOTv2 and outperform bindSC.

Table 5.1: Quality of cell alignments yielded by SCOT, SCOOTR,and bindSC in the “bal-
anced case” (no disproportionate cell-type representation across datasets), as quantified by
the average FOSCTTM metric (lower values are better).

Balanced Cell Alignment Experiments (Mean FOSCTTM, lower is better)
Splatter Simulation
(Synthetic RNA-seq) scGEM SNARE-seq CITE-seq

SCOOTR 0.0 0.183 0.136 0.109
SCOT 7.1 e-5 0.198 0.150 0.131
bindSC 3.8 e-4 0.204 0.242 0.144

Table 5.2: Quality of cell alignments yielded by SCOT, SCOOTR,and bindSC in the “un-
balanced case” (disproportionate cell-type representation across datasets), as quantified by
the label transfer accuracy metric (higher values are better).

Unbalanced Cell Alignment Experiments (Label transfer accuracy, higher is better)
scGEM

(downsampled)
SNARE-seq

(downsampled)
scNMT-seq

(Gene Exp. + Methyl.)
SGCOOTR 0.473 0.832 0.762
SCOTv2 0.415 0.751 0.741
bindSC 0.262 0.575 0.754
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5.4.2 SCOOTR generates biologically meaningful hypotheses on feature
correspondences

Figure 5.2: Cell-cell and feature-feature alignment results on CITE-seq dataset. A vi-
sualizes the original domains – antibody abundance, and gene expression, respectively –,
following dimensionality reduction with 2D principal component analysis (PCA). B visu-
alizes the aligned domains, after the gene expression domain has been projected onto the
antibody abundance domain via barycentric projection. C Feature alignment probabilities
recovered by scootr. The green boxes along the diagonal indicate the “ground-truth”
correspondences we expect to see between the antibodies and their encoding genes. D. The
feature alignment probabilities recovered by bindSC.

Among the real-world datasets we use, CITE-seq has underlying 1-1 correspondences

between the antibodies and their encoding genes. We expect scootr to recover them

when we align 25 antibodies with the corresponding 25 genes (while simultaneously

aligning cells) in its unsupervised setting. We present the feature correspondence

matrix scootr yields in 5.2C. The rows and columns of this matrix are ordered such

that the expected ground-truth correspondences are along the diagonal (marked by

green squares). Note that the row and column probabilities add up to the weights

from marginal distributions initialized in the beginning of the optimization. We

observe that all antibodies are matched to their corresponding genes with a non-zero

probability of correspondence and 15 of them (60%) have the strongest correspondence
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probability with their encoding gene. Compared to the feature correspondence matrix

we receive from bindSC (Figure 5.2D), we yield a sparser correspondence matrix

while correctly aligning a higher number of antibodies with their encoding genes

(compared to 13 antibody-gene pairs yielded by bindSC, giving a ∼ 52% alignment

accuracy). Figure 5.2B shows the cell-level alignments we receive from this run,

which demonstrates that scootr simultaneously recovers quality cell and feature

alignments for CITE-seq dataset.

Figure 5.3: Cell and feature alignment results on SNARE-seq dataset. A visualizes the orig-
inal domains – chromatin accessibility, and gene expression, respectively, following dimen-
sionality reduction with 2D principal component analysis (PCA). B visualizes the aligned
domains, after the chromatin accessibility domain has been projected onto the gene expres-
sion domain domain via barycentric projection. C Sankey plot visualizing the top chromatin
accessibility feature correspondences recovered for the cell-type marker genes. These corre-
spondences include the chromosomal regions of the marker genes and regions with predicted
cell-type specific transcriptional factor (TF) binding.

5.4.3 Supervision on one level (e.g. cell- or feature-level alignments)
improves alignment quality of both

Despite the success of unsupervised alignment on CITE-seq dataset, we observe that

providing supervision on cell-type alignments greatly increases the quality of feature

alignments on SNARE-seq dataset. In real-world applications, we can reasonably
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expect some level of prior information to be available on the samples, namely, cell-

type annotations, for at least a subset of the cells. In most cases, upon obtaining se-

quencing measurements, biologists use marker genes to find different cell-type groups.

Although it is expected to observe some mismatch in cell type annotations between

different genomic views, we demonstrate in Table 5.3 that the performance of scootr

improves even with weak supervision. Our unique joint alignment formulation pro-

vides the ability to perform this weak supervision at both sample and feature level.

In this table, we use varying proportions (0, 20, ...100%) of the cell-type annotations

to provide supervision on the cell-level to assist with the feature-level alignments. As

described in the Methods section, we create a supervision matrix, which removes the

cost of aligning two cells if they belong to the same cell type. In the 100% super-

vised setting, we use all of the cell type annotations to create this supervision matrix;

whereas in the 20% supervised setting, we only use 20% of the cell type annotations.

To obtain a ground-truth on correspondences, we use CellOracle [49] to infer a regu-

latory network using both the gene expression and the chromatin accessibility data.

We expect to recover the correspondences between genes and at least one segment

of the chromosomal regions corresponding to each of their regulators (described in

Section 5.3.2). We visualize examples of chromatin accessibility to gene expression

correspondences yielded by scootr for the cell-type marker genes in Figure 5.3(C).

We look into biological annotations of the matching chromatin accessibility re-

gions on UCSC Genome Browser [65] with annotations from JASPAR Transcription

Factor Binding Site Database [15] and ReMap Atlas of Regulatory Regions [42]. We

observe that the marker genes are matched with their chromosomal region or the

regions associated with relevant transcription factor binding sites. For example, the

strongest correspondence of COL1A2, the marker gene of BJ cell-line, is in the chro-

mosomal region of JUN, which is a transcription factor identified to be differentially

expressed in BJ cells, and to a lesser level, K562 cells [18]. Its second strongest match
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is a region within its own chromosomal region. Similarly, the marker gene for the

GM12878 cell line, HLA-DRB1, is most strongly matched with a region upstream of

its own genomic region, along with predicted GM12878-specific transcriptional bind-

ing sites. Another example is PRAME and Chr22: 22.520-22.521 Mb region, which

is a region upstream of the PRAME gene body that is rich with predicted tran-

scriptional factor (TF) binding sites according to the “RepMap Atlas of Regulatory

Regions” [42] annotations on UCSC Genome Browser (Human hg38 annotations) [65].

Among the predicted TF bindings, many of them are K562-specific predictions, and

some of these are known regulators of PRAME, such as but not limited to E2F6,

HDAC2, CTCF (based on GRNdb database [37] of TF-gene relationships). Addi-

tionally, COL1A2 and HLA-DRB1 also have recovered correspondences with their

own chromosomal region, “Chr7:94.396-94.421 Mb” and “Chr6:32,578-32,579 Mb”,

respectively. We observe that COL1A2 and PRAME are also additionally aligned

with “Chr1: 58,780 - 58,784 Mb” regions, which correspond to the gene body of JUN

transcriptional factor. Indeed, JUN has been identified as one of the transcriptional

factors differentially expressed in the K562 and BJ cells, but more strongly in the lat-

ter, according to the original publication that released this dataset [18]. GRNdb also

identified JUN to be one of the regulators of the COL1A2 gene. In addition to the

chromosomal region of JUN, PRAME has another region abundant in predicted TF

binding sites among its top correspondences: “Chr6: 7.974-7.978 Mb”. This region is

annotated with an H3K27Ac mark on the UCSC Genome Browser, and has multiple

predicted binding sites of TFs GRNdb identifies as regulators of PRAME, such as

IRF1, HDAC2, HOXC6 and POU2AF1. The HLA-DRB1 gene is also aligned with

a chromosomal region rich in GM12878-specific predictions of TF bindings, such as

IRF4, IRF8, ETV6, and CREM, which GRNdb lists as potential regulators of HLA-

DRB1. Lastly, even though we couldn’t find a biological relationship reported in the
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literature between the CLYBL gene and EPCAM gene (marker gene for the H1 cell-

line), the chromosomal region in CLYBL body where scootr finds a correspondence

with EPCAM indeed appears to be differentially accessible in H1 cells (and in to a

lesser degree, K562) in our dataset.

Table 5.3: Feature alignment performance on SNARE-seq and cross-species RNA-seq
dataset with increasing supervision on cell-type alignments.

Supervision level (%)
on cell-type alignments 0 % 20 % 40 % 60 % 80 % 100 % bindSC

Accuracy (%) of
feature alignments 31.22 % 42.91 % 54.82 % 63.48 % 71.84 % 79.67 % 40.26 %

Figure 5.4: Cell-type alignment results on cross-species dataset. Full supervision is
provided on the 10, 816 paralogous genes between mice and lizard.

Similarly, we demonstrate that supervision on the feature-level alignments im-

proves cell-level alignment quality. For this, we align the gene expression data ob-

tained from the brain tissue of two different species, namely, mouse pre-frontal cortex

and bearded dragon lizard pallium. Since these are separately profiled datasets, we

do not expect to find 1-1 correspondences between the cells; however, we have prior
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information on relatedness of cell-type labels (Section 5.3.2). Here, we provide feature-

level supervision to guide scootr to recover these cell-type relationships. Coming

from different species, these datasets do not have the exact same set of features, how-

ever, they share 10,816 paralogous genes. We create a supervision matrix, similar

to the case in SNARE-seq, to guide the alignments between paralogous genes across

the two datasets and investigate the alignments yielded for the cells. We average

the cell-cell alignment probabilities across cell types to get the cell-type alignments.

Figure 5.4A demonstrates the cell-type alignments we receive from fully supervised

case, and the Table 5.4 presents the cell-type alignment accuracy with varying levels

(0%, 20%, ..., 100%) of feature alignment supervision. Here, accuracy is calculated as

a percentage of correspondences recovered among all the expected correspondences

(marked by the green boxes in Figure 5.4A). Similarly to cell alignment, we see

that supervision on feature alignments increases cell-level alignment accuracy. So,

when validation data is present on feature relationships, they can be used to ob-

tain higher quality cell-cell alignments using scootr. Additionally, this application

demonstrates that scootr can also be used to relate cell clusters from different

datasets.

Table 5.4: Cell-type alignment performance on cross-species RNA-seq dataset with increas-
ing supervision on paralogous gene alignments.

Supervision level (%)
on feature alignments 0 % 20 % 40 % 60 % 80 % 100 % bindSC

Accuracy (%) of
sample alignments 66.67 % 83.34 % 83.34 % 100 % 100 % 100 % 83.34 %

5.5 Discussion

The majority of the existing single-cell multi-omic alignment methods solely align

cells. Our proposed method scootr jointly aligns both the cells and the features
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of single-cell multi-omic datasets, allowing researchers to study potential relation-

ships between different views of the genome. We intend scootr to be a hypothesis-

generation tool for biologists. The correspondence probabilities that scootr yields

can be used to rank the predicted cross-measurement relationships, allowing scien-

tists to prioritize downstream investigations accordingly when studying regulatory

interactions.

Single-cell alignment methods require validation data on cell-cell correspondence

to tune the hyperparameters. However, such information is unlikely to be present in

real-world cases when datasets are separately sequenced. Although both scot and

scootr perform self-tuning by tracing optimal transport cost, the lowest cost does

not always correspond to the best alignment, and the quality of self-tuning can vary

between datasets. If prior information other than cell-cell alignment validations is

present –such as the paralogous genes in the case of cross-species alignment exper-

iments or the cell-type annotations in SNARE-seq experiments–, using these could

lead to better alignments in some datasets compared to self-tuning. Our experi-

ments demonstrate that even partial supervision leads to improvement in alignment

performance.

For the feature-level alignments, neural-network-based formulations of fused Gro-

mov co-optimal transport could potentially allow one to account for more complex

relationships. However, maintaining feature-level interpretability in the coupling ma-

trix becomes more challenging in this formulation. Investigating an interpretability-

preserving neural formulation remains to be a future work. Additionally, it might be

possible to set the marginal distributions over cells and features based on common bi-

ological knowledge. For example, when aligning gene expression data and chromatin

accessibility data, one might scale the weights of chromosomal regions corresponding

to common transcription binding sites based on existing databases, guiding the algo-

rithm to align these with more genes. Similarly, one could scale the weights of the
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cells based on prior clustering without the need for cell-type annotations. Future work

could compare such approaches to the unsupervised and supervised cases presented

here. In the meantime, we allow users to customize marginal distributions when

running scootr. Overall we demonstrate that scootr is a competitive single-cell

multi-omic data integration method that can help generate hypotheses for genomic

feature relationships when jointly studying multiple single-cell datasets.



Chapter 6

Conclusion

Versatility of single-cell sequencing technologies gives an unprecedented opportunity

to study how the different genomic features co-vary across cells. These studies can

give new biological insights into the mechanisms behind how the different events

in the genome interact to regulate cells. Due to the experimental challenges behind

single-cell multi-omic (i.e. multi-modal genomic) profiling, it is difficult to experimen-

tally obtain multi-omic data at the single-cell resolution. Therefore, studying multi-

omic relationships requires computational integration of separately profiled single-

cell datasets with different genomic measurements. Despite the importance of this

problem, many computational methods developed have not addressed the real-world

challenges that arise when integrating these datasets.

In this dissertation, we presented three algorithms that make contributions to-

wards addressing these challenges, such as automatically tuning hyperparameters in

the absence of sufficient validation data, and accounting for disproportionate cell-type

representation that commonly occurs when measurements are taken from different

samples of a cell population. To our knowledge, no existing single-cell alignment al-

gorithm has a similar attempt of self-tuning hyperparameters and, as demonstrated

in Chapter 4, most algorithms fail to take into account potential cell-type representa-

tion disparities across the datasets they integrate. The second algorithm we present,

94
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SCOTv2, which is build on SCOT, addresses both of these challenges and yields com-

petitive results in a range of settings, including the cases where there are missing

cell types or different numbers of cells from each cell type in different datasets in-

tegrated, as well as real-world unpaired and paired single-cell multi-omic datasets.

In addition, the cell-cell coupling matrices yielded by the optimal transport frame-

work we employ in SCOT and SCOTv2 have unique advantages compared to the

other alignment algorithms that solely co-embed datasets in a shared space. While

co-embedding visualizes which cells are most likely to be similar to each other across

measurement modalities, they do not provide information on what sort of profile a

cell from one measurement modality (e.g. gene expression) would look like in another

measurement modality (e.g. chromatin accessibility). On the other hand, we can

obtain this information via barycentric projection. Additionally, the coupling matrix

gives probabilistic information on cell-cell similarities as opposed to deterministic

embeddings.

SCOOTR further improves on cell-type alignment quality of SCOT and SCOTv2

by considering not only the dataset geometries, but also the relationships between

features, yielding hypotheses on possible multi-omic feature interactions. We expect

SCOOTR to be instrumental in discovering new biological relationships across dif-

ferent genomic domains, without requiring paired measurements. It can also be used

to leverage any supervising information (however partial) a user may have on either

cell-type or feature correspondences to improve alignment quality on both levels, as

demonstrated in Chapter 5.

While both SCOTv2 and SCOOTR give promising results on single-cell multi-

modal integration experiments, there are a number of avenues for further improve-

ment through future work. First of these is regarding the runtime of the algorithms.

The entropically regularized Gromov-Wasserstein optimal transport has a sample

complexity of O(n2), that is, it scales quadratically with the number of cells. As the



96

sequencing technologies get higher throughput, it is becoming possible for a single

sequencing experiment to yield data on ∼ 1, 000, 000 cells. A runtime complexity of

O(n2) is not ideal in such a scenario. A potential way to address this issue could be to

use approximate solvers for Gromov-Wasserstein optimal transport, which might yield

lower quality alignments but in a faster manner, such as sliced Gromov-Wasserstein

[92]. Another potential approach is to co-embed datasets in a common space first

via a more efficient but potentially less accurate algorithm first, for example using

coupled autoencoders, and then perform matching in this space via optimal trans-

port that directly compares samples in the embedding space (rather than employing

Gromov-Wasserstein).

The second avenue for improvements is the self-tuning procedure. The heuris-

tics we develop perform significantly better than the default settings of the existing

algorithms, which do not have similar self-tuning procedures. This makes the inte-

gration task possible even when users do not have validating data, such as cell-type

annotations, which are difficult to infer from certain sequencing experiments like HiC

(measuring 3D structure of the chromatin). However, the self-tuning heuristics we

developed yield a small decrease in alignment performance compared to the hyperpa-

rameter tuning case with validation data. Investigating better performing self-tuning

methods could make these algorithms more useful in real-world applications.

Lastly, the algorithm presented in the last chapter, SCOOTR, takes the integra-

tion task one step forward by also generating hypotheses between feature alignments,

without relying on paired data. Algorithms that yield interpretable results on multi-

omic relationships can lead to new biological insights by helping scientists prioritize

validation experiments. While SCOOTR experiments show encouraging results on

multi-omic relationships inferred, future work could improve on these results by (1)

introducing a more sophisticated formulation in the feature alignment cost computa-

tion step of SCOOTR to account for more complex relationships and (2) leveraging
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existing approaches used for reducing noise in single-cell datasets, as as pseudobulk

analyses. Regarding the first direction here, neural formulations of optimal transport,

which can take into more complex relationships between the samples or features than

optimal transport alone, have previously yielded impressive results on machine learn-

ing benchmarks. However, employing such approaches is not straightforward for the

single-cell feature alignment tasks, as these tend to perform alignment in the latent

space of the neural models, and not in the original feature space, losing interpretabil-

ity. Regarding the second direction, optimal transport results will be highly influ-

enced by the quality of the ground cost defined between the features. Since single-cell

datasets are notoriously noisy, approaches like pseudobulk analyses could reduce the

level of noise in the ground cost. Such an approach could be implemented by group-

ing cells after the sample alignment step, and taking group averages for the genomic

features before computing the cost matrix. This, however, would increase the runtime

complexity of the algorithm and would work only if the clusters are biologically mean-

ingful. Finally, due to the size of the feature space in single-cell datasets, we needed

to perform feature pruning before running SCOOTR, only keeping features that show

high variability across cells. A formulation that jointly picks features when comput-

ing alignments could further increase the quality of feature relationships predicted,

which is another potential avenue for future work.



Chapter 7

Appendix

7.1 Proofs for SCOOTR

Notations We first define our notations=:

• X, Y: two datasets with n and n′ samples in each, from X ∈ Rd and Y ∈ Rd′ ,

respectively.

• µ̂, ν̂: empirical distributions associated with the samples (rows) of X and Y,

respectively.

• µ̂′, ν̂ ′: empirical distributions associated with the features (columns) of X and

Y.

• KX ∈ Rn×n, KY ∈ Rn′×n′ : pairwise sample similarity matrices for X and Y.

• γs, γv: coupling matrices between samples and features, respectively.

We additionally define:

• EGW (KX,KY, γ
s) = ∑

ijkl L(KXik
,KYjl

)γsijγskl

• ECOOT (X,Y, γs, γv) = ∑
i,jMij(X,Y, γv)γsij,

with M(X,Y, γv) = ∑
ij L(Xi,Yj)γv

98
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•

EFGCOOT (X,Y,KX,KY, γ
s, γv) =α

∑
ijkl

L(KXik
,KYjl

)γsijγskl+

(1− α)
∑
ij

Mij(X,Y, γv)γsij

such that:

GW (µ̂, ν̂) = min
γs∈Γ(µ̂,ν̂)

EGW (KX,KY, γ
s)

COOT (µ̂, ν̂, µ̂′, ν̂ ′) = min
γs ∈ Γ(µ̂, ν̂),
γv ∈ Γ(µ̂′, ν̂′)

ECOOT (X,Y, γs, γv)

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) = min
γs ∈ Γ(µ̂, ν̂),
γv ∈ Γ(µ̂′, ν̂′)

EFGCOOT (X,Y,KX,KY, γ
s, γv)

Bounds

Lemma 1: FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) is lower-bounded by the interpolation between

GW (µ̂, ν̂) and COOT (µ̂, ν̂, µ̂′, ν̂ ′):

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) ≥ αGW (µ̂, ν̂) + (1− α)COOT (µ̂, ν̂, µ̂′, ν̂ ′) (7.1)

Proof. Let αs,α be the coupling that minimizes EFGCOOT . Then,

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) := EFGCOOT (X,Y,KX,KY, γ
s,α, γv) (7.2)

Since γs,α may not necessarily be the optimal coupling for COOT (µ̂, ν̂, µ̂′, ν̂ ′) or for

GW (µ̂, ν̂), we have:

COOT (µ̂, ν̂, µ̂′, ν̂ ′) ≤ ECOOT (X,Y, γs,α, γv) (7.3)

COOT (µ̂, ν̂, µ̂′, ν̂ ′)GW (µ̂, ν̂) ≤ EGW (KX,KY, γ
s,α) (7.4)

The inequality in Equation 7.1 is then derived.
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Equations 7.3 and 7.4 also imply:

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) ≥ (1− α)COOT (µ̂, ν̂, µ̂′, ν̂ ′) (7.5)

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) ≥ αGW (µ̂, ν̂) (7.6)

Interpolation Properties

Theorem 1: As α tends to zero, the FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) recovers COOT (µ̂, ν̂, µ̂′, ν̂ ′)

and as α tends to 1, it recovers GW (µ̂, ν̂) :

lim
α→0

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) = COOT (µ̂, ν̂, µ̂′, ν̂ ′)

lim
α→1

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) = GW (µ̂, ν̂)

Proof. We declare that

• γs,α denotes the optimal sample coupling for FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′),

• γs,COOT denotes the optimal sample coupling for COOT (µ̂, ν̂, µ̂′, ν̂ ′),

• γs,GW denotes the optimal sample coupling for GW (µ̂, ν̂).

Then, due to the suboptimality of γs,α for COOT (µ̂, ν̂, µ̂′, ν̂ ′) and

γs,COOT for FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) we have:

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′)− (1− α)COOT (µ̂, ν̂, µ̂′, ν̂ ′)︸ ︷︷ ︸
EFGCOOT (∗,γs,α,γv)−(1−α)ECOOT (∗,γs,COOT ,γv)

(7.7)

≤ EFGCOOT (∗, γs,COOT , γv)− (1− α)ECOOT (∗, γs,COOT , γv)︸ ︷︷ ︸
αEGW (∗,γs,COOT )

(7.8)

=⇒ FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) ≤ (1− α)COOT (µ̂, ν̂, µ̂′, ν̂ ′) + αEGW (∗, γs,COOT )

(7.9)
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Taking Equation7.9(14) and Equation7.5 together:

(1− α)COOT (µ̂, ν̂, µ̂′, ν̂ ′) ≤ FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) (7.10)

≤ (1− α)COOT (µ̂, ν̂, µ̂′, ν̂ ′) + αEGW (∗, γs,COOT ) (7.11)

Therefore, as α goes to 0, limα→0 FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) = COOT (µ̂, ν̂, µ̂′, ν̂ ′).

Similarly, we can use the suboptimality of of γs,α for GW (µ̂, ν̂) and γs,GW for

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′):

FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′)− αGW (µ̂, ν̂)︸ ︷︷ ︸
EFGCOOT (∗,γs,α,γv)−αEGW (∗,γs,GW )

≤ EFGCOOT (∗, γs,GW , γv)− αEGW (∗, γs,GW )︸ ︷︷ ︸
(1−α)ECOOT (∗,γs,COOT ,γv)

(7.12)

=⇒ FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) ≤ αGW (µ̂, ν̂) + αEGW (∗, γs,GW , γv) (7.13)

Taking Equations 7.6 and 7.13 together:

αGW (µ̂, ν̂) ≤ FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) ≤ αGW (µ̂, ν̂) + αECOOT (∗, γs,GW ) (7.14)

Therefore, as α goes to 1, limα→1 FGCOOTα(µ̂, ν̂, µ̂′, ν̂ ′) = GW (µ̂, ν̂).
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7.2 Python implementation of the proposed algorithms

For full implementation of the proposed algorithms, along with example applications

that reproduce results in this thesis ad utility functions that preprocess data etc,

please visit the following GitHub repositories:

• For SCOT and SCOTv2: https://github.com/rsinghlab/SCOT

• For SCOOTR: https://github.com/rsinghlab/SCOOTR

However, the code included below present the crux of these algorithms, implemented

in Python:

Code for the SCOT algorithm

"""

Authors : Pinar Demetci , Rebecca Santorella

Principal Investigator : Ritambhara Singh , Ph.D. from Brown University

12 February 2020

Updated : 27 November 2020

SCOT algorithm ( version 1): Single Cell alignment using Optimal Transport

Correspondence : pinar_demetci@brown .edu , rebecca_santorella@brown .edu ,

ritambhara@brown .edu

"""

### Import python packages we depend on:

# For regular matrix operations :

import numpy as np

# For optimal transport operations :

import ot

# For computing graph distances :

from scipy. sparse . csgraph import dijkstra

from scipy. sparse import csr_matrix

from sklearn . neighbors import kneighbors_graph

# For pre -processing , normalization

from sklearn . preprocessing import StandardScaler , normalize

class SCOT( object ):

https://github.com/rsinghlab/SCOT
https://github.com/rsinghlab/SCOOTR
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"""

SCOT algorithm for unsupervised alignment of single -cell multi -omic data.

https :// www. biorxiv .org/ content /10.1101/2020.04.28. 066787v2 ( original

preprint )

https :// www. liebertpub .com/doi/full/10.1089/cmb.2021.0446 ( Journal of

Computational Biology publication

through RECOMB 2021 conference )

Input: domain1 , domain2 in form of numpy arrays /matrices , where the rows

correspond to samples and columns

correspond to features .

Returns : aligned domain 1, aligned domain 2 in form of numpy arrays /

matrices projected on domain 1

Example use:

# Given two numpy matrices , domain1 and domain2 , where the rows are cells

and columns are different genomic

features :

scot= SCOT(domain1 , domain2 )

aligned_domain1 , aligned_domain2 = scot.align(k=20 , e=1e -3)

#If you can ’t pick the parameters k and e, you can try out our

unsupervised self - tuning heuristic by

running :

scot= SCOT(domain1 , domain2 )

aligned_domain1 , aligned_domain2 = scot.align( selfTune =True)

Required parameters :

- k: Number of neighbors to be used when constructing kNN graphs . Default =

min(min(n_1 , n_2), 50), where n_i ,

for i=1,2 corresponds to the number of

samples in the i^th domain .

- e: Regularization constant for the entropic regularization term in

entropic Gromov - Wasserstein optimal

transport formulation . Default = 1e -3

Optional parameters :

- normalize = Determines whether to normalize input data ahead of alignment

. True or False ( boolean parameter ).

Default = True.

- norm= Determines what sort of normalization to run , "l2", "l1", "max", "

zscore ". Default ="l2"
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- mode: " connectivity " or " distance ". Determines whether to use a

connectivity graph ( adjacency matrix

of 1s/0s based on whether nodes are

connected ) or a distance graph (

adjacency matrix entries weighted by

distances between nodes). Default ="

connectivity "

- metric : Sets the metric to use while constructing nearest neighbor

graphs . some possible choices are "

correlation ", " minkowski ". "

correlation " is Pearson ’s correlation

and " minkowski " is equivalent to

Euclidean distance in its default form

(). Default = " correlation ".

- verbose : Prints loss while optimizing the optimal transport formulation .

Default =True

- XontoY : Determines the direction of barycentric projection . True or

False ( boolean parameter ). If True ,

projects domain1 onto domain2 . If

False , projects domain2 onto domain1 .

Default =True.

Note: If you want to specify the marginal distributions of the input

domains and not use uniform

distribution , please set the

attributes p and q to the

distributions of your choice (for

domain 1, and 2, respectively )

after initializing a SCOT class instance and before running alignment

and set init_marginals =False in .align

() parameters

"""

def __init__ (self , domain1 , domain2 ):

self.X= domain1

self.y= domain2

self.p= None # empirical probability distribution for domain 1 (X)

self.q= None # empirical probability distribution for domain 2 (y)

self.Cx=None #intra - domain graph distances for domain 1 (X)

self.Cy=None #intra - domain graph distances for domain 2 (y)
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self. coupling =None # Coupling matrix that relates domain 1 and domain 2,

..., m

self. gwdist =None # Gromov - Wasserstein distance between domains after

alignment

self.flag = None # convergence flag

self. X_aligned =None # aligned datasets to return : domain1

self. y_aligned =None # aligned datasets to return : domain2

def init_marginals (self):

# Without any prior information , we set the probabilities to what we

observe empirically : uniform over all

observed sample

self.p= ot.unif(self.X.shape[0])

self.q = ot.unif(self.y.shape[0])

def normalize (self , norm="l2", bySample =True):

assert (norm in ["l1","l2","max", " zscore "]), "Norm argument has to be

either one of ’max ’, ’l1 ’, ’l2’ or ’

zscore ’. If you would like to perform

another type of normalization , please

give SCOT the normalize data and set

the argument normalize =False when

running the algorithm ."

if ( bySample ==True or bySample ==None):

axis=1

else:

axis=0

if norm==" zscore ":

scaler = StandardScaler ()

self.X, self.y= scaler . fit_transform (self.X), scaler . fit_transform (self

.y)

else:

self.X, self.y = normalize (self.X, norm=norm , axis=axis), normalize (

self.y, norm=norm , axis=axis)

def construct_graph (self , k, mode= " connectivity ", metric =" correlation "):

assert (mode in [" connectivity ", " distance "]), "Norm argument has to be

either one of ’connectivity ’, or ’

distance ’. "
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if mode==" connectivity ":

include_self =True

else:

include_self =False

self. Xgraph = kneighbors_graph (self.X, k, mode=mode , metric =metric ,

include_self = include_self )

self. ygraph = kneighbors_graph (self.y, k, mode=mode , metric =metric ,

include_self = include_self )

return self.Xgraph , self. ygraph

def init_distances (self):

# Compute shortest distances

X_shortestPath = dijkstra ( csgraph = csr_matrix (self. Xgraph ), directed =False

, return_predecessors =False)

y_shortestPath = dijkstra ( csgraph = csr_matrix (self. ygraph ), directed =False

, return_predecessors =False)

# Deal with unconnected stuff ( infinities ):

X_max=np. nanmax ( X_shortestPath [ X_shortestPath != np.inf])

y_max=np. nanmax ( y_shortestPath [ y_shortestPath != np.inf])

X_shortestPath [ X_shortestPath > X_max] = X_max

y_shortestPath [ y_shortestPath > y_max] = y_max

# Finnally , normalize the distance matrix :

self.Cx= X_shortestPath / X_shortestPath .max ()

self.Cy= y_shortestPath / y_shortestPath .max ()

return self.Cx , self.Cy

def find_correspondences (self , e, verbose =True):

self.coupling , log= ot. gromov . entropic_gromov_wasserstein (self.Cx , self.

Cy , self.p, self.q, loss_fun =’

square_loss ’, epsilon =e, log=True ,

verbose = verbose )

self. gwdist =log[’gw_dist ’]

# Check convergence :

if (np.isnan(self. coupling ).any () or np.any (~ self. coupling .any(axis=1))

or np.any (~ self. coupling .any(axis=0))

or sum(sum(self. coupling )) < .95):

self.flag=False
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else:

self.flag=True

return self. gwdist

def barycentric_projection (self , XontoY =True):

if XontoY :

# Projecting the first domain onto the second domain

self. y_aligned =self.y

weights =np.sum(self.coupling , axis = 0)

self. X_aligned =np. matmul (self.coupling , self.y) / weights [:, None]

else:

# Projecting the second domain onto the first domain

self. X_aligned =self.X

weights =np.sum(self.coupling , axis = 0)

self. y_aligned =np. matmul (np. transpose (self. coupling ), self.X) /

weights [:, None]

return self.X_aligned , self. y_aligned

def align(self , k=None , e=1e-3, mode=" connectivity ", metric =" correlation ",

verbose =True , normalize =True , norm="

l2", XontoY =True , selfTune =False ,

init_marginals =True):

if normalize :

self. normalize (norm=norm)

if init_marginals :

self. init_marginals ()

if selfTune :

X_aligned , y_aligned = self. unsupervised_scot ()

else:

if k==None:

k=min (( int(self.X.shape[0]*0.2), int(self.y.shape[0]*0.2)),50)

self. construct_graph (k, mode= " connectivity ", metric =" correlation ")

self. init_distances ()

self. find_correspondences (e=e, verbose = verbose )

if self.flag==False:

print (" CONVERGENCE ERROR: Optimization procedure runs into numerical

errors with the hyperparameters

specified . Please try aligning with

higher values of epsilon .")
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return

else:

X_aligned , y_aligned = self. barycentric_projection ( XontoY = XontoY )

self.X_aligned , self. y_aligned =X_aligned , y_aligned

return self.X_aligned , self. y_aligned

def search_scot (self , ks , es , all_values = False , mode= " connectivity ",

metric =" correlation ", normalize =True ,

norm="l2", init_marginals =True):

’’’

Performs a hyperparameter sweep for given values of k and epsilon

Default : return the parameters corresponding to the lowest GW distance

( Optional ): return all k, epsilon , and GW values

’’’

# initialize alignment

if normalize :

self. normalize (norm=norm)

if init_marginals :

self. init_marginals ()

# Note to self: Incorporate multiprocessing here to speed things up

# store values of k, epsilon , and gw distance

total=len(es)*len(ks)

k_sweep =np.zeros(total)

e_sweep =np.zeros(total)

gw_sweep =np.zeros(total)

gmin = 1

counter =1

X_aligned , y_aligned =None , None

e_best , k_best =None , None

# search in k first to reduce graph computation

for k in ks:

self. construct_graph (k, mode= mode , metric = metric )

self. init_distances ()

for e in es:

print (counter , "/", total)

print (" Aligning k: ",k, " and e: ",e)

# run alignment / optimize correspondence matrix :
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self. find_correspondences (e=e, verbose =False)

# save values

if self.flag:

if all_values :

k_sweep [ counter ]=k

e_sweep [ counter ]=e

gw_sweep [ counter ] = self. gwdist

print(self. gwdist )

# save the alignment if it is lower

if self. gwdist < gmin:

X_aligned , y_aligned = self. barycentric_projection ()

gmin =self. gwdist

e_best , k_best = e, k

counter = counter + 1

if all_values :

# return alignment and all values

return X_aligned , y_aligned , gw_sweep , k_sweep , e_sweep

else:

# return alignment and the parameters corresponding to the lowest GW

distance

return X_aligned , y_aligned , gmin , k_best , e_best

def unsupervised_scot (self , normalize =False , norm=’l2’):

’’’

Unsupervised hyperparameter tuning algorithm to find an alignment

by using the GW distance as a measure of alignment

’’’

# use k = 20% of # sample or k = 50 if dataset is large

n = min(self.X.shape[0], self.y.shape[0])

k_start = min(n // 5, 50)

num_eps = 12

num_k = 5

# define search space

es = np. logspace (-1, -3, num_eps )

if ( n > 250):

ks = np. linspace (20 , 100 , num_k)

else:
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ks = np. linspace (n // 20 , n //6, num_k)

ks = ks. astype (int)

# search parameter space

X_aligned , y_aligned , g_best , k_best , e_best = self. search_scot (ks , es ,

all_values =False , normalize =normalize ,

norm=norm , init_marginals =False)

print(" Alignment completed . Hyperparameters selected from the

unsupervised hyperparameter sweep are:

%d for number of neighbors k and %f

for epsilon " %(k_best , e_best ))

return X_aligned ,
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Code for the SCOTv2 algorithm

"""

Author : Pinar Demetci

Principal Investigator : Ritambhara Singh , Ph.D. from Brown University

08 August 2021

Updated : 23 February 2023

SCOTv2 algorithm : Single Cell alignment using Optimal Transport version 2

Correspondence : pinar_demetci@brown .edu , ritambhara@brown .edu

"""

### Import python packages we depend on:

import numpy as np

import torch

import ot

import scipy

# For computing graph distances :

from scipy. sparse . csgraph import dijkstra

from scipy. sparse import csr_matrix

from sklearn . neighbors import kneighbors_graph

# For pre -processing , normalization

from sklearn . preprocessing import StandardScaler , normalize

class SCOTv2 ( object ):

"""

SCOT algorithm for unsupervised alignment of single -cell multi -omic data.

https :// www. biorxiv .org/ content /10.1101/2020.04.28. 066787v2 ( original

preprint )

https :// www. liebertpub .com/doi/full/10.1089/cmb.2021.0446 ( Journal of

Computational Biology publication

through RECOMB 2021 conference )

Input: domain1 , domain2 in form of numpy arrays /matrices , where the rows

correspond to samples and columns

correspond to features .

Returns : aligned domain 1, aligned domain 2 in form of numpy arrays /

matrices projected on domain 1

Example use:
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# Given two numpy matrices , domain1 and domain2 , where the rows are cells

and columns are different genomic

features :

scot= SCOT(domain1 , domain2 )

aligned_domain1 , aligned_domain2 = scot.align(k=20 , e=1e -3)

#If you can ’t pick the parameters k and e, you can try out our

unsupervised self - tuning heuristic by

running :

scot= SCOT(domain1 , domain2 )

aligned_domain1 , aligned_domain2 = scot.align( selfTune =True)

Required parameters :

- k: Number of neighbors to be used when constructing kNN graphs . Default =

min(min(n_1 , n_2), 50), where n_i ,

for i=1,2 corresponds to the number of

samples in the i^th domain .

- e: Regularization constant for the entropic regularization term in

entropic Gromov - Wasserstein optimal

transport formulation . Default = 1e -3

Optional parameters :

- normalize = Determines whether to normalize input data ahead of alignment

. True or False ( boolean parameter ).

Default = True.

- norm= Determines what sort of normalization to run , "l2", "l1", "max", "

zscore ". Default ="l2"

- mode: " connectivity " or " distance ". Determines whether to use a

connectivity graph ( adjacency matrix

of 1s/0s based on whether nodes are

connected ) or a distance graph (

adjacency matrix entries weighted by

distances between nodes). Default ="

connectivity "

- metric : Sets the metric to use while constructing nearest neighbor

graphs . some possible choices are "

correlation ", " minkowski ". "

correlation " is Pearson ’s correlation

and " minkowski " is equivalent to

Euclidean distance in its default form

(). Default = " correlation ".
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- verbose : Prints loss while optimizing the optimal transport formulation .

Default =True

- XontoY : Determines the direction of barycentric projection . True or

False ( boolean parameter ). If True ,

projects domain1 onto domain2 . If

False , projects domain2 onto domain1 .

Default =True.

Note: If you want to specify the marginal distributions of the input

domains and not use uniform

distribution , please set the

attributes p and q to the

distributions of your choice (for

domain 1, and 2, respectively )

after initializing a SCOT class instance and before running alignment

and set init_marginals =False in .align

() parameters

"""

def __init__ (self , data):

assert type(data)==list and len(data)>=2, "As input , SCOTv2 requires a

list , containing at least two numpy

arrays to be aligned . \

Each numpy array/ matrix corresponds to a dataset , with samples (

cells) in rows and features ( latent

representations or genomic features )

in columns . \

We recommend using latent representations (e.g. principal components

for RNA -seq and topics - via cisTopic

- for ATAC -seq/Methyl -seq)."

self.data=data

self. marginals =[] # Holds the empirical probability distributions over

samples in each dataset

self. graphs =[] # Holds graphs per dataset

self. graphDists =[] # Holds intra - domain graph distances for each input

dataset

self. couplings =[] # Holds coupling matrices

self. gwdists =[] # Gromov - Wasserstein distances between domains after

alignment

self.flags = [] # Holds alignment convergence flags ( booleans : True/

False)
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self. aligned_data =[]

def _init_marginals (self):

# Without any prior information , we set the probabilities to what we

observe empirically : uniform over all

observed sample

for i in range(len(self.data)):

num_cells =self.data[i].shape[0]

marginalDist =torch.ones( num_cells )/ num_cells

self. marginals . append ( marginalDist )

return self. marginals

def _normalize (self , norm="l2", bySample =True):

assert (norm in ["l1","l2","max", " zscore "]), "Norm argument has to be

either one of ’max ’, ’l1 ’, ’l2’ or ’

zscore ’.\

If you would like to perform another type of normalization , please give

SCOT the normalized data and set the

argument ’normalize =False ’ when

running the algorithm . \

We have found l2 normalization to empirically perform better with

single -cell sequencing datasets ,

including when using latent

representations . "

for i in range(len(self.data)):

if norm==" zscore ":

scaler = StandardScaler ()

self.data[i]= scaler . fit_transform (self.data[i])

else:

if ( bySample ==True or bySample ==None):

axis=1

else:

axis=0

self.data[i] = normalize (self.data[i], norm=norm , axis=axis)

return self.data # Normalized data

def construct_graph (self , k=20 , mode= " connectivity ", metric =" correlation "

):

assert (mode in [" connectivity ", " distance "]), "Norm argument has to be

either one of ’connectivity ’, or ’

distance ’. "

if mode==" connectivity ":
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include_self =True

else:

include_self =False

for i in range(len(self.data)):

self. graphs . append ( kneighbors_graph (self.data[i], n_neighbors =k, mode=

mode , metric =metric , include_self =

include_self ))

return self. graphs

def init_graph_distances (self):

for i in range(len(self.data)):

# Compute shortest distances

shortestPath = dijkstra ( csgraph = csr_matrix (self. graphs [i]), directed =

False , return_predecessors =False)

# Deal with unconnected stuff ( infinities ):

Max_dist =np. nanmax ( shortestPath [ shortestPath != np.inf])

shortestPath [ shortestPath > Max_dist ] = Max_dist

# Finnally , normalize the distance matrix :

self. graphDists . append ( shortestPath / shortestPath .max ())

return self. graphDists

def _exp_sinkhorn_solver (self , ecost , u, v,a,b, mass , eps , rho , rho2 ,

nits_sinkhorn , tol_sinkhorn ):

"""

Parameters

----------

- ecost: torch. Tensor of size [size_X , size_Y ]

Exponential kernel generated from the local cost based on the

current coupling .

- u: torch. Tensor of size [ size_X [0]].

First dual potential defined on X.

- v: torch. Tensor of size [ size_Y [0]].

Second dual potential defined on Y.

- mass: torch. Tensor of size [1].

Mass of the current coupling .

- nits_sinkhorn : int.

Maximum number of iterations to update Sinkhorn potentials in

inner loop.

- tol_sinkhorn : float

Tolerance on convergence of Sinkhorn potentials .
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Returns

----------

u: torch. Tensor of size [ size_X [0]]

First dual potential of Sinkhorn algorithm

v: torch. Tensor of size [ size_Y [0]]

Second dual potential of Sinkhorn algorithm

logpi: torch. Tensor of size [size_X , size_Y ]

Optimal transport plan in log -space.

"""

# Initialize potentials by finding best translation

if u is None or v is None:

u, v = torch. ones_like (a), torch. ones_like (b)

k = (a * u ** (-eps / rho)).sum ()+ (b * v ** (-eps / rho)).sum ()

k = k / (2 * (u[:, None] * v[None , :] * ecost *a[:, None] * b[None , :]

).sum ())

z = (0.5 * mass * eps) / (2.0 + 0.5 * (eps / rho) + 0.5 * (eps / rho2)

)

k = k ** z

u,v= u * k, v * k

# perform Sinkhorn updates in LSE form

for j in range( nits_sinkhorn ):

u_prev = u.clone ()

v = torch. einsum ("ij ,i->j", ecost , a * u) ** (-1.0 / (1.0 + eps /

rho))

u = torch. einsum ("ij ,j->i", ecost , b * v) ** (-1.0 / (1.0 + eps /

rho2))

if (u.log () - u_prev .log ()).abs ().max ().item () * eps < tol_sinkhorn :

break

pi = u[:, None] * v[None , :] * ecost * a[:, None] * b[None , :]

return u, v, pi

def exp_unbalanced_gw (self ,a, dx , b, dy , eps=0.01 , rho=1.0, rho2=None ,

nits_plan =3000 , tol_plan =1e-6,

nits_sinkhorn =3000 , tol_sinkhorn =1e-6)

:

if rho2 is None:

rho2 = rho #KL divergence coefficient doesn ’t have to be the same for

both couplings .

#But , to keep # hyperparameters low , we default to using the

same coefficient .
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# Someone else playing with our code could assign a rho2

different than rho , though .

# Initialize the coupling and local costs

pi= a[:, None]* b[None , :] / (a.sum () * b.sum ()).sqrt ()

pi_prev = torch. zeros_like (pi)

up , vp = None , None

for i in range( nits_plan ):

pi_prev = pi.clone ()

mp = pi.sum ()

# Compute the current local cost:

distxy = torch. einsum ("ij ,kj ->ik", dx , torch. einsum ("kl ,jl ->kj", dy ,

pi))

kl_pi = torch.sum(pi * (pi / (a[:, None] * b[None , :]) + 1e-10).log ())

mu , nu = torch.sum(pi , dim=1), torch.sum(pi , dim=0)

distxx = torch. einsum ("ij ,j->i", dx ** 2, mu)

distyy = torch. einsum ("kl ,l->k", dy ** 2, nu)

lcost = ( distxx [:, None] + distyy [None , :] - 2 * distxy ) + eps * kl_pi

if rho < float("Inf"):

lcost = (lcost+ rho* torch.sum(mu * (mu / a + 1e-10).log ()))

if rho2 < float ("Inf"):

lcost = (lcost+ rho2* torch.sum(nu * (nu / b + 1e-10).log ()))

ecost = (-lcost /(mp * eps)).exp ()

if (i%10)==0:

print (" Unbalanced GW step:", i)

# compute the coupling via sinkhorn

up , vp , pi = self. _exp_sinkhorn_solver (ecost , up , vp , a, b, mp , eps ,

rho , rho2 , nits_sinkhorn , tol_sinkhorn )

flag=True

if torch.any(torch.isnan(pi)):

flag=False

pi = (mp / pi.sum ()).sqrt () * pi

if (pi - pi_prev ).abs ().max ().item () < tol_plan :

break

return pi , flag
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def find_correspondences (self , normalize =True , norm="l2", bySample =True , k

=20 , mode= " connectivity ", metric ="

correlation ", eps=0.01 , rho=1.0, rho2

=None):

# Normalize

if normalize :

self. _normalize (norm=norm , bySample = bySample )

# Initialize inputs for ( unbalanced ) Gromov - Wasserstein optimal

transport :

self. _init_marginals ()

print(" computing intra - domain graph distances ")

self. construct_graph (k=k, mode=mode , metric = metric )

self. init_graph_distances ()

# Run pairwise dataset alignments :

for i in range(len(self.data)-1):

print(" running pairwise dataset alignments ")

a,b =torch. Tensor (self. marginals [0]), torch. Tensor (self. marginals [i+1]

)

dx , dy= torch. Tensor (self. graphDists [0]), torch. Tensor (self. graphDists

[i+1])

coupling , flag=self. exp_unbalanced_gw (a, dx , b, dy , eps=eps , rho=rho ,

rho2=rho2 , nits_plan =3000 , tol_plan =1e

-6, nits_sinkhorn =3000 , tol_sinkhorn =

1e-6)

self. couplings . append ( coupling )

self.flags. append (flag)

if flag==False:

raise Exception (

f" Solver got NaN plan with params (eps , rho , rho2) "

f" = {eps , rho , rho2}. Try increasing argument eps")

return self. couplings

def barycentric_projection (self):

aligned_datasets =[self.data[0]]

for i in range(0,len(self. couplings )):

coupling =np. transpose (self. couplings [i].numpy ())

weights =np.sum(coupling , axis = 1)

projected_data =np. matmul (( coupling / weights [:, None]), self.data[0])

aligned_datasets . append ( projected_data )

return aligned_datasets

def coembed_datasets (self , Lambda =1.0, out_dim =10):

"""
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Co - embeds datasets in a shared space.

Implementation is based on Cao et al 2022 ( Pamona )

"""

n_datasets = len(self.data)

H0 = []

L = []

for i in range( n_datasets -1):

self. couplings [i] = self. couplings [i]*np.shape(self.data[i])[0]

for i in range( n_datasets ):

graph_data = self. graphs [i] + self. graphs [i].T. multiply (self. graphs [i]

.T > self. graphs [i]) - \

self. graphs [i]. multiply (self. graphs [i].T > self. graphs [i])

W = np.array( graph_data . todense ())

index_pos = np.where(W>0)

W[ index_pos ] = 1/W[ index_pos ]

D = np.diag(np.dot(W, np.ones(np.shape(W)[1])))

L. append (D - W)

Sigma_x = []

Sigma_y = []

for i in range( n_datasets -1):

Sigma_y . append (np.diag(np.dot(np. transpose (np.ones(np.shape(self.

coupling [i])[0])), self. coupling [i])))

Sigma_x . append (np.diag(np.dot(self. coupling [i], np.ones(np.shape(self.

coupling [i])[1]))))

S_xy = coupling [0]

S_xx = L[0] + Lambda * Sigma_x [0]

S_yy = L[-1] + Lambda * Sigma_y [0]

for i in range(1, n_datasets -1):

S_xy = np. vstack ((S_xy , self. coupling [i]))

S_xx = block_diag (S_xx , L[i] + Lambda * Sigma_x [i])

S_yy = S_yy + Lambda * Sigma_y [i]

v, Q = np. linalg .eig(S_xx)

v = v + 1e-12

V = np.diag(v ** (-0.5))

H_x = np.dot(Q, np.dot(V, np. transpose (Q)))

v, Q = np. linalg .eig(S_yy)

v = v + 1e-12

V = np.diag(v ** (-0.5))
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H_y = np.dot(Q, np.dot(V, np. transpose (Q)))

H = np.dot(H_x , np.dot(S_xy , H_y))

U, sigma , V = np. linalg .svd(H)

num = [0]

for i in range( n_datasets -1):

num. append (num[i]+len(data[i]))

U, V = U[:,: output_dim ], np. transpose (V)[:,: output_dim ]

fx = np.dot(H_x , U)

fy = np.dot(H_y , V)

integrated_data = []

for i in range( n_datasets -1):

integrated_data . append (fx[num[i]:num[i+1]])

integrated_data . append (fy)

return integrated_data

def align(self , normalize =True , norm="l2", bySample =True , k=20 , mode= "

connectivity ", metric =" correlation ",

eps=0.01 , rho=1.0, rho2=None ,

projMethod =" embedding ", Lambda =1.0,

out_dim =10):

assert projMethod in [" embedding ", " barycentric "], "The input to the

parameter ’projMethod ’ needs to be one

of \

’embedding ’ (if co - embedding them in a new shared space) or

’barycentric ’ (if using barycentric

projection )"

self. find_correspondences ( normalize =normalize , norm=norm , bySample =

bySample , k=k, mode=mode , metric =

metric , eps=eps , rho=rho , rho2=rho2)

print("FLAGS", self.flags)

if projMethod ==" embedding ":

integrated_data =self. coembed_datasets ( Lambda =Lambda , out_dim = out_dim )

else:

integrated_data =self. barycentric_projection ()

self. integrated_data = integrated_data

return integrated_data
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Code for the SGCOOTR algorithm

import numpy as np

import ot

from scipy import stats

from scipy. sparse import random

from ot. bregman import sinkhorn_scaling

def random_gamma_init (p,q, ** kwargs ):

""" Returns random coupling matrix with marginal p,q

"""

rvs=stats.beta(1e-1,1e-1).rvs

S= random (len(p), len(q), density =1, data_rvs =rvs)

return sinkhorn_scaling (p,q,S.A, ** kwargs )

def init_matrix_np (X1 , X2 , v1 , v2):

""" Return loss matrices and tensors for COOT fast computation

Returns the value of |X1 -X2|^{2} \ otimes T as done in [1] based on [2] for

the Gromov - Wasserstein distance .

Where :

- X1 : The source dataset of shape (n,d)

- X2 : The target dataset of shape (n’,d ’)

- v1 ,v2 : weights ( histograms ) on the columns of resp. X1 and X2

- T : Coupling matrix of shape (n,n ’)

Parameters

----------

X1 : numpy array , shape (n, d)

Source dataset

X2 : numpy array , shape (n’, d ’)

Target dataset

v1 : numpy array , shape (d,)

Weight ( histogram ) on the features of X1.

v2 : numpy array , shape (d ’,)

Weight ( histogram ) on the features of X2.

Returns

-------

constC : ndarray , shape (n, n ’)

Constant C matrix (see paragraph 1.2 of supplementary material in [1])

hC1 : ndarray , shape (n, d)

h1(X1) matrix (see paragraph 1.2 of supplementary material in [1])

hC2 : ndarray , shape (n’, d ’)

h2(X2) matrix (see paragraph 1.2 of supplementary material in [1])
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References

----------

.. [1] Redko Ievgen , Vayer Titouan , Flamary R{\’e}mi and Courty Nicolas

"CO - Optimal Transport "

.. [2] P e y r , Gabriel , Marco Cuturi , and Justin Solomon ,

"Gromov - Wasserstein averaging of kernel and distance matrices ."

International Conference on Machine Learning (ICML). 2016.

"""

def f1(a):

return (a ** 2)

def f2(b):

return (b ** 2)

def h1(a):

return a

def h2(b):

return 2 * b

constC1 = np.dot(np.dot(f1(X1), v1. reshape (-1, 1)),

np.ones(f1(X2).shape[0]). reshape (1, -1))

constC2 = np.dot(np.ones(f1(X1).shape[0]). reshape (-1, 1),

np.dot(v2. reshape (1, -1), f2(X2).T))

constC = constC1 + constC2

hX1 = h1(X1)

hX2 = h2(X2)

return constC , hX1 , hX2

def fgcot(X1 , X2 , C1 ,C2 , w1 = None , w2 = None , v1 = None , v2 = None , alpha=0

.5,

niter=100 , algo=’sinkhorn ’, reg=0,algo2=’sinkhorn ’,

reg2=0, verbose =True , log=False , random_init =False , C_lin=None):

""" Returns COOT between two datasets X1 ,X2 (see [1])

The function solves the following optimization problem :

.. math ::

COOT = \min_{Ts ,Tv} \sum_{i,j,k,l} |X1_{i,k}-X2_{j,l}|^{2}*Ts_{i,j}*Tv_{

k,l}
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Where :

- X1 : The source dataset

- X2 : The target dataset

- w1 ,w2 : weights ( histograms ) on the samples (rows) of resp. X1 and X2

- v1 ,v2 : weights ( histograms ) on the features ( columns ) of resp. X1 and

X2

Parameters

----------

X1 : numpy array , shape (n, d)

Source dataset

X2 : numpy array , shape (n’, d ’)

Target dataset

w1 : numpy array , shape (n,)

Weight ( histogram ) on the samples of X1. If None uniform distribution is

considered .

w2 : numpy array , shape (n ’,)

Weight ( histogram ) on the samples of X2. If None uniform distribution is

considered .

v1 : numpy array , shape (d,)

Weight ( histogram ) on the features of X1. If None uniform distribution

is considered .

v2 : numpy array , shape (d ’,)

Weight ( histogram ) on the features of X2. If None uniform distribution

is considered .

niter : integer

Number max of iterations of the BCD for solving COOT.

algo : string

Choice of algorithm for solving OT problems on samples each iteration .

Choice [’emd ’,’sinkhorn ’].

If ’emd ’ returns sparse solution

If ’sinkhorn ’ returns regularized solution

algo2 : string

Choice of algorithm for solving OT problems on features each iteration

. Choice [’emd ’,’sinkhorn ’].

If ’emd ’ returns sparse solution

If ’sinkhorn ’ returns regularized solution

reg : float

Regularization parameter for samples coupling matrix . Ignored if algo

=’emd ’

reg2 : float
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Regularization parameter for features coupling matrix . Ignored if algo

=’emd ’

eps : float

Threshold for the convergence

random_init : bool

Wether to use random initialization for the coupling matrices . If

false identity couplings are

considered .

log : bool , optional

record log if True

C_lin : numpy array , shape (n, n ’)

Prior on the sample correspondences . Added to the cost for the samples

transport

Returns

-------

Ts : numpy array , shape (n,n ’)

Optimal Transport coupling between the samples

Tv : numpy array , shape (d,d ’)

Optimal Transport coupling between the features

cost : float

Optimization value after convergence

log : dict

convergence information and coupling marices

References

----------

.. [1] Redko Ievgen , Vayer Titouan , Flamary R{\’e}mi and Courty Nicolas

"CO - Optimal Transport "

Example

----------

import numpy as np

from cot import cot_numpy

n_samples =300

Xs=np. random .rand(n_samples ,2)

Xt=np. random .rand(n_samples ,1)

cot_numpy (Xs ,Xt)

"""

if v1 is None:

v1 = np.ones(X1.shape[1]) / X1.shape[1] # is (d,)

if v2 is None:

v2 = np.ones(X2.shape[1]) / X2.shape[1] # is (d ’,)

if w1 is None:
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w1 = np.ones(X1.shape[0]) / X1.shape[0] # is (n ’,)

if w2 is None:

w2 = np.ones(X2.shape[0]) / X2.shape[0] # is (n,)

if not random_init :

Ts = np.ones ((X1.shape[0], X2.shape[0])) / (X1.shape[0] * X2.shape[0])

# is (n,n ’)

Tv = np.ones ((X1.shape[1], X2.shape[1])) / (X1.shape[1] * X2.shape[1])

# is (d,d ’)

else:

Ts= random_gamma_init (w1 ,w2)

Tv= random_gamma_init (v1 ,v2)

constC_s , hC1_s , hC2_s = init_matrix_np (X1 , X2 , v1 , v2)

constC_gw , hC1_gw , hC2_gw = ot. gromov . init_matrix (C1 , C2 , w1 , w2)

constC_v , hC1_v , hC2_v = init_matrix_np (X1.T, X2.T, w1 , w2)

cost = np.inf

log_out ={}

log_out [’cost ’] = []

for i in range (niter):

Tsold = Ts

Tvold = Tv

costold = cost

M = constC_s - np.dot(hC1_s , Tv).dot(hC2_s.T)

tens = ot. gromov . gwggrad (constC_gw , hC1_gw , hC2_gw , Ts)

# print ("COOT , GW SUMS , before :")

# print(np.sum(M), np.sum(tens))

Mmin , Mmax=np.amin(M), np.amax(M)

tmin , tmax=np.amin(tens), np.amax(tens)

M=(M-Mmin)/(Mmax-Mmin)

tens=(tens-tmin)/(tmax-tmin)

# M=M/np.sum(M)

# tens=tens/np.sum(tens)

# print ("‘

M=((1-alpha)*M) + (alpha*tens)
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if algo == ’emd ’:

Ts = ot.emd(w1 , w2 , M, numItermax =1e7)

elif algo == ’sinkhorn ’:

Ts = ot. sinkhorn (w1 , w2 , M, reg)

M = constC_v - np.dot(hC1_v , Ts).dot(hC2_v.T)

if C_lin is not None:

M=M+C_lin

if algo2 == ’emd ’:

Tv = ot.emd(v1 , v2 , M, numItermax =1e7)

elif algo2 == ’sinkhorn ’:

Tv = ot. sinkhorn (v1 ,v2 , M, reg2)

delta = np. linalg .norm(Ts - Tsold) + np. linalg .norm(Tv - Tvold)

cost = np.sum(M * Tv)

if log:

log_out [’cost ’]. append (cost)

if verbose :

print(’Delta: {0} Loss: {1}’. format (delta , cost))

if delta < 1e-16 or np.abs( costold - cost) < 1e-7:

if verbose :

print (’converged at iter ’, i)

break

if log:

return Ts , Tv , cost , log_out

else:

return Ts , Tv , cost
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7.3 Other relevant work published during Ph.D. program

• QH Tran, H Janati, N Courty, R Flamary, I Redko, P Demetci, R Singh.

(2023). Unbalanced CO-Optimal Transport. Proceedings of the AAAI Confer-

ence on Artificial Intelligence (AAAI 2023).

• P Demetci, W Cheng, G Darnell, X Zhou, S Ramachandran, L Crawford.

(2021) Multi-scale genomic inference using biologically annotated neural net-

works. PLOS Genetics. 17(8): e1009754.

• R Singh, P Demetci, G Bonora, V Ramani, C Lee, H Fang, Z Duan, X Deng, J

Shendure, C Disteche, W Stafford Noble. (2020) Unsupervised manifold align-

ment for single-cell multi-omics data ACM Conference on Bioinformatics, Com-

putational Biology, and Health Informatics (ACM BCB)

• B Alpay*, P Demetci*, S Istrail, D Aguiar. (2020) Combinatorial and statis-

tical prediction of gene expression from haplotype sequence. Bioinformatics. 36

(Supp-1): i194-i202. * denotes co-first authorship.

https://arxiv.org/abs/2205.14923
https://doi.org/10.1371/journal.pgen.1009754
https://doi.org/10.1371/journal.pgen.1009754
https://dl.acm.org/doi/10.1145/3388440.3412410
https://dl.acm.org/doi/10.1145/3388440.3412410
https://academic.oup.com/bioinformatics/article/36/Supplement_1/i194/5870481
https://academic.oup.com/bioinformatics/article/36/Supplement_1/i194/5870481
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