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Chapter One

Introduction

That there have been significant practical advances in machine learning and so-called

"artificial intelligence" in the last decade is undeniable. For instance, Fig. 1a shows

a schematic of a generative neural model from Ackley, Hinton, and Sejnowski, 1985

trained to encode 4-bit sequences, a significant achievement for the time. Fig. 1b, on

the other hand, shows a pair of hyper-realistic human faces generated by a neural

network from Karras, Laine, and Aila, 2019. These practical marvels are too numerous

to count. That these advances represent a deepening of theoretical understanding

over and above the claims of connectionists in the 1980s is, however, less assured.

Here, the machine learning discipline is split: one camp argues that contemporary

neural models are largely turbo-charged versions of their twentieth-century ancestors,

incidentally accelerated by modern parallel computing hardware and the availability

of huge, labeled data sets (Russakovsky et al., 2010); a second camp suggests that

these incidental developments have transported us to a new theoretical world in which

these incredible neural marvels must be studied by abstruse new paradigms (Mallat,

2016) and intense collective effort. Yet, what is so damning about the possibility that

contemporary neural architectures are supped-up versions of their ancestors is not

that the new theoretical tools brought to bear for their examination are incorrect or

unimportant (quite the contrary), but rather that fundamental attacks levied against

and unresolved questions posed to these systems from earlier periods might still hold
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water. In short, machine learning practitioners and scholars must once again ask

themselves, "What is intelligence? And is the current neural modeling paradigm the

correct way of studying it?" (see Chollet, 2019).

(a) (b)

Figure 1.1 Neural networks, past and present. (a) A three-layer neural
network encoding 4-bit strings (Ackley, Hinton, and Sejnowski, 1985). "I"-
shapes depict synaptic weights connecting to given location with color of
squares indicating sign (white positive, black negative) and size indicating
magnitude. The bottom two layers can be used to model a density on these
strings. (b) Two artificial faces generated by a generative adversarial network
(Karras, Laine, and Aila, 2019).

The reader will be happy to know that I do not pretend to answer either of these

questions, even partially, though this thesis is very much inspired by those fundamental

attacks once levied against connectionist thinking, particularly proponents of the

"computational theory of mind" (Rescorla, 2020): Jerry Fodor, Randy Gallistel, Noam

Chomsky and their fellow travelers traced back to Descartes and Kant. These criticisms

will be discussed in some detail later, but for now I will summarize them as "routine

precedes representation"1. That is, mentation is best described as the flexible and

hypothetically unbounded combination of atomic representations according to certain

routines or processes rather than the construction of fixed but arbitrarily complex
1By representation, I mean the very narrow sense in which it is used in contemporary neural

modeling as more or less a pattern of synaptic weights or features. Naturally, Fodor and Gallistel are

staunch cognititivists and, as such, defend the general notion of "representation" tirelessly.

2



representations. Contemporary machine learning in all its varied forms does not

commit to either side of this argument, though it is not controversial to say that the

so-called "deep learning" sub-discipline, with its emphasis on complex representations

of high-dimensional data learned by many-layered ("deep") networks, leans towards

the latter, "representation-first", view.2 This is quite a ringing endorsement, given

the recent successes of deep learning.

However, in a spirit of Fodorian contrarianism and inspired by the possibility

that contemporary deep learning is largely a recap of somewhat ancient science, this

dissertation seeks first and foremost to consolidate and promote a body of psychological

and machine learning literature in which the "routine precedes representation" way

of thinking seems obviously correct. Given that machine learning has seen its most

spectacular advances on visual tasks, I have chosen a body of literature from vision

science, namely the "visual relations" literature. This collection of results concerns

the ability of agents (biological or otherwise) to discern when objects in a visual

scene obey a given relation; e.g., a human subject presented with an image of two

shapes might be asked "Are these two shapes the same up to rotation?" or "Are these

two shapes arranged more vertically or horizontally?" We will mostly focus on the

relation expressed in the first question, that of "same-different", for its simplicity and

fundamental role in visual reasoning more generally. Crucially, in the words of animal

psychologist Juan Delius, the accurate assessment of this and other visual relations "...

implies the operation of a unitary comparison operation issuing a variable signaling

[the relation] regardless of the particular qualities of the stimuli" (Emphasis mine)

(Delius, 1994, p. 27). That is, the mental routine assessing the relation should function

properly regardless of the visual representations of the objects under the relation:

"routine precedes representation". In many ways, Delius’s claim is a restatement of
2This dissertation will assume a basic familiarity with artificial neural networks and their train-

ing.Goodfellow, Bengio, and Courville, 2016 is a good modern review.
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Fodor and Pylyshyn, 1988’s defense of the compositionality of thought3. As we will

see, across several numerical simulations, contemporary machine learning models do

not always meet this standard. The poor performance of these models on tasks which

are trivially easy for the biological visual system adds to the growing list of perplexing

deficiencies in contemporary machine learning models (see Szegedy, Zaremba, and

Sutskever, 2013; Recht et al., 2019 for some interesting examples.)

Of course, it is one thing to open old wounds from the 1980s regarding the

compositionality of thought, but it is quite another to propose a new model whose

flexible routines are able to support relation detection at the level of biological vision.

Such a model, inasmuch as biology is a proper guide, should proceed in several steps.

The first step is to flexibly organize bundles of features into unified perceptual objects

(Treisman, Kahneman, and Burkell, 1983; Kahneman and Treisman, 1984) so that

the relations can be assessed between appropriate image parts (as opposed to, for

example, coarse combinations of objects and their backgrounds). Second, spatial

attention is shifted to another image region where subsequent objects forming a part

of the relation might be found. Third, and throughout the grouping and shifting

process, perceptual objects should be stored in a working memory buffer (Clevenger

and Hummel, 2014) so that, after all relevant objects in the scene are exhausted, the

relationships among stored objects can be ascertained. Very few contemporary neural

networks are explicitly designed for visual relation detection per se, though the few

that do exist of any relevance to this task typically only involve the attentive and

mnemonic mechanisms of steps two and three. Notable recent examples come from

the so-called "Visual Question Answering" (VQA) literature, in which neural models

answer queries about images provided in the form of text strings.
3In the context of natural language, Fodor writes "Similarity of constituent structure accounts

for the semantic relatedness between systematically related sentences only to the extent that the

semantical properties of the shared constituents are independent."
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Very few indeed are the modern models that address step one, the issue of per-

ceptual organization. On this subject, critical engineering questions abound with

little biological evidence as a guide. Should relevant features simply be enhanced

while irrelevant ones are attenuated (Roelfsema and Houtkamp, 2011)? Or should a

multiplexing scheme be employed in which different objects in a scene are "tagged"

so they can each be individually selected for later processing (Fries, 2005; McLelland

and VanRullen, 2016)? What principles should guide the grouping in the first place

(Grossberg, Mingolla, and Ross, 1997)? And how, of course, should answers to any of

these questions actually be implemented in neural hardware amenable to the modern

statistical learning techniques to which machine learning practitioners have grown

accustom?

This dissertation picks up on one persistent theme running through the perceptual

organization literature, especially that portion of the literature dealing with the

relations among objects in neural systems: temporal coherence among dynamical

neurons has an important role to play. This idea is most strongly associated with

the "correlation theory of brain function" due to von der Malsburg (Malsburg, 1994)

and the "binding by synchrony" results made briefly famous by (Gray and Singer,

1989; Gray et al., 1989), which contend that perceptual organization is mediated by

the temporal coordination of spiking neurons, either at the population or unit level.

Other manifestations come from (Fries, 2015) who argued in his "communication by

coherence" hypothesis that the phase of neural activity with respect to a macroscopic

neural oscillation could serve as a tag for selective attention to grouped features. More

recent evidence for the role of temporal coherence in perceptual organization comes

from Brzezicka, Mamelak, and Rutishauser, 2020 who found that the phase of neural

activity could index visual representations in working memory and from Alamia et al.,

2019 who found that distinctive oscillatory regimes emerged in human EEG data when

subjects performed a visual relation detection task.
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Anyone wishing to transform these physiological intuitions into a bona fide machine

learning model would do well to seek out that branch of scholarship where the issues

of temporal coherence in dynamical systems and the correlations among units in a

distributed system are treated with mathematical seriousness: the study of systems

of coupled oscillators (Strogatz, 2000; Wang and Slotine, 2005). The study of these

objects originated with Huygens’ informal description in the seventeenth century but

took on a new life with the advent of modern mathematical biology in the 1960s.

It was only then that physicists, mathematicians and mathematical biologists, like

Kuramoto, Malkin and Winfree developed the formal theory of these systems in

their attempts to study the emergence of collective ("synchronous") behavior in a

population of heterogeneous individuals (anything from voters with their own political

opinions in a democratic society to interacting neurons each with their own intrinsic

dynamics in a neural network). By far, the central model in the study of these systems

is the "Kuramoto model" first proposed by the eponymous physicist in a beautiful

and hugely influential two-page report from 1975 (Kuramoto, 1975). Since this early

work, the study of synchrony in complex systems and the emergence of coordinated

behavior in heterogenous populations has become a science in itself.

So far, I have suggested that 1) contemporary neural networks underperform on

tasks involving the detection of relations among arbitrary objects, 2) that there exists

a compelling neuroscientific literature implicating coherence of neural activity as a

fundamental mechanism not only in the perceptual organization presumably required

for relation detection but also flexible reasoning more generally and 3) that the study

of systems of coupled oscillators is, more or less, a rigorous formulation of the intuitions

from this neuroscientific literature. An obvious question emerges: can one build a

model using the mathematics of (3), which captures the dynamics explored in (2) and

solves the cognitive problems of (1)? This is not an easy question. First of all, it

presupposes that oscillatory systems can "learn" how to solve problems or at least
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exhibit target behavior. Very little is understood about these systems in general (see

Arenas and Albert, 2008 for some open problems), and less still is known about how

to control them. Further, a direct application of oscillatory systems to the problems

of perceptual organization and relation detection would require integrating these

systems into larger networks of modules carrying out those other processes suspected

to underlie flexible cognition.

Instead, this dissertation takes the simpler route of laying the groundwork for a

fuller exploration of these questions at a later date. Its general purpose is to convince

scientists that "representation-first" machine learning is not always advisable and

that somewhat heterodox literature of von der Malsburg, Fries and others should

provide us with inspiration for the creation of future "routine-first" systems. Its

main technical contribution is the development of several learning algorithms, based

on contemporary methods from machine learning, specifically tailored to oscillatory

systems. I will deploy these algorithms on systems attempting to learn grouping

abilities which I believe to be pre-requisite behaviors for flexible reasoning and relation

detection. Initial results are encouraging, and future work will scale these findings to

more complex problems and realistic scenarios.

The subsequent chapters of this dissertation will be

• Chapter 2: A review the literature on visual relations in psychology, neuro-

science and machine learning followed by numerical experiments. I will argue

that this literature exemplifies the benefits of a "routine precedes representation"

approach to visual cognition. I will show across several computer simulations

that feedforward models of the visual cortex which are otherwise powerful mod-

els of visual processing fail to model relational understanding in efficient and

biologically relevant ways.

• Chapter 3: A review of oscillatory coding for visual cognition followed by a
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technical review of oscillatory systems. A particular focus will be the nascent

literature on the optimization of oscillatory systems. I will also lay out how,

depending on the setting of various hyperparameters, these systems take on

either equilibrium or non-equilibrium characteristics and therefore enable or

prohibit the application of different training methods. I will spell out these

methods in detail in the following chapters.

• Chapter 4: The development of a maximum likelihood technique for the training

of an equilibrium oscillatory system. I will show how conditional inference in

these systems can be interpreted as perceptual grouping. I will also demonstrate

through a mean field reduction that variants on these systems have unexpected

fast synapse dynamics speculated upon in Malsburg, 1994. I will also show how

selective attention in these systems takes the form of Bayesian inference.

• Chapter 5 The development of a supervised learning technique for the generally

non-equilibrium Kuramoto model and application of this method to a quasi-

same-different detection task. I will show that the quenched random parameters

of the Kuramoto model can be construed as samples of an adaptable distribution

whose parameters can be adjusted by error minimization. Various applications

of this framework will be explored.

1.1 Contributions

This thesis adds to knowledge in several areas. A principal cognitive contribution

is the dissertation’s formalization of the notion of systematicity in machine vision

and a subsequent analysis of this behavior in contemporary neural networks. This

analysis attempts to synthesize several hitherto disparate areas of study: the design of

feedforward neural networks, the computational theory of mind as advocated by Jerry

Fodor and others, and the psychology of visual reasoning. It is the hope of the author
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that other scholars will begin to formalize and quantify systematicity in their own

ways and this measurement will mark another shared area of research for cognitive

scientists and machine learning practitioners.

The conceit of systematicity is used in this thesis to motivate a renewed focus on

oscillatory phenomena in visual cortex. In particular, I will present new experimental

evidence collected with colleagues from Centre de Recherche Cerveau & Cognition,

Université Toulouse III, implicating oscillatory mechanisms in visual reasoning. This

finding sheds new light on the critically important but deeply mysterious phenomenon

of cortical rhythms.

Inspired by this result, I develop the early stages of a new machine learning

paradigm based on oscillatory systems. The initial material I have provided represents

only the smallest possible steps of what could very likely be a large-scale research

program, but it is my desire that what few threads I offer on this subject will be taken

up by machine learning practitioners, cognitive neuroscientists and computational

physicists interested in these matters. If the last decade’s incredibly fruitful dialogue

between computer vision and the study of the visual cortex is to be trusted, the

development of machine learning techniques directly relevant to cortical rhythms could

prove extremely valuable for cognitive neuroscientists in particular.

Wherever relevant, I have noted where dissertation material has or will soon appear

in publication.
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Chapter Two

Systematicity and visual relations

According1 to an already outdated account of Dean, Patterson, and Young, 2018,

about 100 machine learning papers are published on the preprint website ArXiV.org

each day, and a great deal of these probably concern computer vision, in many ways the

crown jewel of the last decade’s "deep learning" revolution. This number has probably

increased exponentially since it was estimated in 2017. It would be safe to guess

that the overwhelming majority of this material consists of incremental developments

of pre-existing ideas within the albeit very fruitful paradigm of deep learning while

comparatively little is devoted to a deeper understanding of the paradigm itself, its

fundamental concepts and boundaries, where it succeeds and where fails2. That

these analyses are somewhat rare is understandable, since they typically entail both

a difficult meta-scientific discussion of what objects in the world lend themselves to

a fruitful, explanatory theory and the even trickier task of constructing a technical

vocabulary with which to build that theory. Rarer still are those areas in the literature

where fundamental analyses of the paradigm are brought into contact with concrete

material and experiments from either deep learning or those branches of brain science
1The material from this chapter has been published in Ricci, Kim, and Serre, 2018 and Kim et al.,

2018. A forthcoming publication, Ricci, Cadene, and Serre, Submitted, addresses a similar topic with

a greater focus on "visual question answering" (VQA) and recurrent models.
2There are of course very notable recent exceptions, both defending and critiquing deep learning,

for instance, LeCun, Bengio, and Hinton, 2015 and Lake et al., 2016, respectively.
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which are supposedly its inspiration.

This chapter intends to do just that, by situating some recent developments in

the emulation of biological visual reasoning by deep networks in the context of earlier

theoretical debates most closely associated with Fodor and Pylyshyn, 1988. Many of

the issues raised by Fodor and Pylyshyn have either never been resolved or are too

mired in controversy to be of practical use to the machine learning scholar, though

this chapter will contend that the insistence by Fodor and Pylyshyn, 1988 on the

productivity, compositionality and especially systematicity of thought has serious and

concrete implications for the creation of thinking visual machines. By "systematicity",

we roughly mean the fact that minds seem to automatically generalize their under-

standing of a complex expression to all syntactically identical but semantically different

expressions: a classic example holds that there is no one who understands "John

loves Mary" but not "Mary loves John". Throughout a review of the psychological

and neuroscientific literature on visual relations, we will argue that visual relation

detection is a hitherto neglected but strongly corroborating example of systematic

cognition in the Fodorian sense. We will focus largely on one type of visual relation,

that of identity up to transformation or the "same-different" relation. Further, we will

outline how the cognitive mechanisms supporting this behavior, properly construed,

align quite closely with those which "classical" cognitive scientists have traditionally

argued underlie representations with a combinatorial syntax. Put more plainly, we

will show how biological agents use a combination of attention and working memory to

sequentially construct representations of the relations among visual objects as opposed

to representing the relation as an atomic feature.

Finally, we will demonstrate through several numerical simulations how the stan-

dard model of visual processing, the convolutional neural network (CNN), which lacks

these "classical" cognitive mechanisms, exhibits decidedly unsystematic behavior when

trained on a visual relations task. The key assumption underlying these experiments
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is that a truly systematic machine should be able to learn two instances of otherwise

syntactically identical visual rules with equal ease. We find that this is not the case

for CNNs. This simulation also implies the existence of a visual relation "Chomsky

Hierarchy" which taxonomizes visual rules according to which machines express them

efficiently. We also demonstrate that, though the addition of a so-called "relation

network" (RN) module helps make CNNs more systematic by improving their ability

to generalize visual rules to objects in arbitrary locations, unsystematic overfitting

to particular object features remains. What’s more, we show how the RN sidesteps

the problem of feature binding by assuming visual objects are of stereotyped shape

and scale. Collectively, our results computationally recapitulate the consensus of the

psychological and neuroscientific literature that systematic relation detection at the

level of biological vision requires a perceptual grouping/feature binding mechanism

for the formation of perceptual objects followed by manipulation of these objects by

attention and working memory.

2.1 Fodor & Pylyshyn: Then and Now

Despite its labyrinthine prose, Fodor and Pylyshyn, 1988 remains a thrilling and

inspiring injunction to investigate the conceptual foundations of neural networks whose

pugnacity has been rarely matched3. Its authors mount a subtle and multifaceted

critique of the Second Great Awakening of neural network modeling of the mind in

the 1980s, the first being that of McCulloch and Pitts, Hebb, Minsky, Rosenblatt and

others. It is clear that the authors intend some of their critiques to be fundamental

and some of them to be corollary, and indeed the most fundamental of them has

neither been fully understood let alone resolved. We will outline both types of critiques

below and insist on the importance of the latter. At the outset, we must note that
3See Marcus, 2018
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the source of much confusion about their polemic is Fodor’s and Pylyshyn’s claim

that the neural networks of the 1980s were deficient at the cognitive level, by which

they meant the level of analysis whose fundamental items were semantically evaluable

representations and the processes acting on them. Fodor and Pylyshyn were adamant

that these networks were not deficient at the implementational level, since networks

of neurons with spreading activation can easily implement the "classical" machines

to which the authors are obviously wedded, namely the Turing and von Neumann

machines4. It is rather important keep the distinction between critiques at the cognitive

and implementational levels in mind while evaluating the soundness of Fodor’s and

Pylyshyn’s argument.

What is the nature of this deficiency? According to Fodor and Pylyshyn, 1988,

representations in biological minds exist in two sorts: an atomic sort, which is not

reducible to semantically evaluable sub-parts, and a complex sort which is recursively

assembled from atomic representations. Representation in biological cognition, in

their view, therefore comprises a combinatorial syntax and the production rules of this

syntax are what we have called "routines" above, in an homage to visual perception

(Ullman, 1984). In subsequent work Fodor and Pylyshyn, 2014, Fodor and Pylyshyn

make the stronger claim that it is in fact only these routines and the manner in

which they mechanically respond to the syntactical structure of complex mental

expressions that endow representations with meaning. This syntactical reductionist

claim à la Chomsky (Chomsky, 2009) is a form of the "routine precedes representation"

maxim used above. Fodor and Pylyshyn emphasize that complex representations,

those assembled from atomic representations, must literally contain those atoms as

constituents and that this part-whole relationship must have a structural analogue in

the physical implementation of the cognitive architecture. This distinguishes complex
4See Hyötyniemi, 1996 for a constructive proof of the equivalence of recurrent neural networks

and Turing machines
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representations from neural network features which are excited by the activity of

afferent units. For instance, Fodor and Pylyshyn would consider the Boolean formula

A ∧ B to be a complex representation with real constituents {A,B} (assuming A

and B are meaning-bearing symbols) but would consider the activation of a neuron

representing a face as a result of afferent activity in mouth- and eye-representing

units to be merely an atomic feature without real constituents. In the former case,

the logical deduction A ∧ B =⇒ A can be drawn by the mechanical operation of

a classical computer which can physically access the constituent "A", whereas the

afferent eye and mouth features causally connected to the face unit remain largely

inaccessible. Here, Fodor and Pylyshyn join Gallistel and King, 2009 in insisting that

cognition hinges on the "computational accessibility" of representations.

Perhaps most contentious is Fodor’s and Pylyshyn’s central claim that the mind

cannot be "both a combinatorial representational system and a Connectionist ar-

chitecture at the cognitive level" (Fodor and Pylyshyn, 1988, p. 17) The authors

are not particularly forthcoming with their definition of "connectionist architecture

at the cognitive level," though one surmises they mean something like a system in

which meaning-bearing representations are manipulated and evaluated by spreading

activation in a neural network. As we have already mentioned, it is perfectly possible

to create a combinatorial representational system in connectionist hardware, but Fodor

and Pylyshyn contend that a cognitive theory of such a system cannot be grounded

in a connectionist vocabulary. The authors are, therefore, primarily concerned with

the meta-scientific project of choosing a level of analysis and a technical vocabulary

for the interpretation of cognitive systems as opposed to the construction of those

systems in the first place.

Far more relevant to the contemporary machine learning practitioner is the in-

terconnected set of cognitive behaviors which, according to Fodor and Pylyshyn,

thinking machines (be they classical or connectionist) must strive to emulate: pro-

14



ductivity, systematicity and compositionality. We say that a cognitive architecture is

"productive" if, despite having a finite vocabulary of atomic representations, "[t]he

representational capacities of such a system are, by assumption, unbounded under

appropriate idealization" (Fodor and Pylyshyn, 1988, p. 21). These infinite abilities

with finite means are typically explained by a recursive syntax. Consequently, he

quintessential example of representational productivity comes from natural language:

intuitively, there is no longest sentence, and the ability of humans to produce or

interpret a sentence is limited only by practical factors like working memory and

attentional capacity. These limitations can, in turn, be incrementally alleviated with

special tools and methods (e.g., a pencil for writing). Second, a cognitive architecture

is "systematic" if the ability to represent given expressions automatically entails the

representation of perhaps an infinite set of other expressions. Continuing the linguistic

examples, Fodor and Pylyshyn note that there is no one who understands "John

loves Mary" without understanding "Mary loves John" or "Billy loves Alice", for that

matter. Finally, a cognitive architecture is "compositional" if the meaning of complex

expressions is determined by the meaning of the constituents, excepting idioms (e.g.

Compare the meanings of "He kicked the wall" to "He kicked the fence" to "He kicked

the bucket".).

Of these three properties, systematicity is perhaps easiest to quantify and there-

fore lends itself without much difficulty to experimental investigation. Indeed, it is

superficially similar to the familiar concept of invariance from perception and neural

network design (Riesenhuber and Poggio, 1999), though there are key differences.

For their part, Fodor and Pylyshyn explain the systematicity of thought in classi-

cal terminology: representational systems automatically understand systematically

related expressions because 1) the expressions share a syntactical form and 2) the

constituents of the expressions roughly maintain their meaning independent of context.

A systematic representational system is easy enough to imagine in classical computing
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hardware where syntax is explicit model5, and Fodor and Pylyshyn, 1988 spend a

good deal of time explaining how this behavior is supported by the classical com-

puter’s sequential "storing, retrieving, or otherwise operating on structured symbolic

expressions". The appearance of systematic representation in more neurally plausible

systems, however, has been the subject of some debate. For example, Chalmers,

1993 has argued that Fodor and Pylyshyn, 1988’s line of reasoning forbids all neural

networks from being truly systematic, even if they are made to implement classical

machines, and subsequent critics (Aizawa, 1997; Matthews, 1997) pointed out that

classical machines themselves are not necessarily systematic. The rebuttal mounted

by Fodor and colleagues has typically been that neural networks, so far, only exhibit

systematic behavior as a matter of chance and not of logical necessity (Fodor and

McLaughlin, 1990), compared to biological minds and classical computers, where, they

argue, systematicity seems to come "for free". For instance, it is known that children

as young as seven months can recognize phrases with familiar structures, even if the

phrase constituents are novel (Marcus, Fernandes, and Johnson, 2007). In machine

learning terms, systematicity represents an extreme form of "out-of-distribution"

(Krueger et al., 2020) generalization, and, indeed, there have been numerous attempts

to model systematicity as generalization "for free" in neural networks (see Jansen and

Watter, 2012 and (Calvo and Symons, 2014) for somewhat recent reviews). Needless

to say, the ability of neural networks to generalize to truly novel inputs, including

those that share a "syntactic structure" with training data, is not entirely understood

and numerous interesting failures continue to be reported (e.g. Szegedy, Zaremba,

and Sutskever, 2013), even in networks designed explicitly for systematic cognition

(Loula, Baroni, and Lake, 2019).
5For instance, in the computer language Python, the expression ’1+1’ is systematically related

to ’2+2’ since 1) they share a syntactic structure defined by the ’+’ operator and the semantics of

Python ensure that every integer type is interpreted equivalently by ’+’.
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It could be argued that adequate modeling of systematicity is only a serious issue

for uncontroversially rule-based domains, like language, and that traditional neural

network architectures are perfectly sufficient for other domains, like vision. After all,

vision models which are openly sympathetic to the classical cognitive position of Fodor

and Pylyshyn, 1988, like visual grammars (Zhu and Mumford, 2006), parts-based

models (Biederman, 1987; Yuille, Hallinan, and Cohen, 1992) and compositional

machines (Jin and Geman, 2006), are hopelessly outperformed on recognition tasks by

today’s deep networks, notably the CNN, which are in many ways straightforward

extensions traditional networks of the 1980s (notably Fukushima, 1980). However, it

could very well be the case that machine vision has simply not progressed, despite

all appearances and announcements to the contrary, to a stage in which questions

of complex syntactical expressions and deduction are even tractable. As we have

already suggested, most machine vision research in the past decade has been dedicated

to the problem of image classification, and indeed there is strong evidence that the

CNN is a good model of pre-attentive visual processing (Serre, Oliva, and Poggio,

2007)6. Despite some important but imperfect attempts to model more complex visual

reasoning (see Ricci, Cadene, and Serre, Submitted for a review), image classification

still dominates the attention of machine learning theorists and experimentalists.

Nevertheless, very little of our intuitive visual experience involves the classification

of static images, though this is impossible to quantify precisely. A rather larger portion

of our conscious visual experience consists of dynamic interaction with unfamiliar

objects in a structured environment. We may walk down the street, see a large piece

of machinery perched on a ledge above us and know we must take another route to

avoid danger. From inspecting the shape of a keyhole, we might realize that we have
6Though the CNN is still considered the standard model of biological visual recognition, there is

somewhat recent work showing that task-optimized recurrent models are better predictors of primate

neural activity (Yamins et al., 2014)
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been using the wrong key to enter our home or the wrong key upside-down. In short,

the visual world has structure, just as language has structure, and the combinatorial

explosion resulting from the numerous objects of the visual world and the many

relations among them necessitates a serious discussion of systematic cognition. Today,

neural networks excel at labeling individual objects in an image, but this is nothing

more than the construction of "atomic" representations in the sense of Fodor and

Pylyshyn, 1988: far more interesting and relevant to visual experience is the way in

which we dynamically combine these atoms into structured representations. And,

unless we want to embark on the quixotic journey of learning a "grandmother neuron"

(Quiroga et al., 2005) for every possible relationship among any number of objects7, we

should take seriously Fodor’s and Pylyshyn’s intuition about mechanisms for "storing,

retrieving, or otherwise operating on structured symbolic expressions", even for static

images.

Just as CNN-based image classification mirrored a long and important literature

on rapid visual classification in the mammalian cortex inspiration, it will be very

useful to curate a corresponding literature for the creation of visual machines where

systematicity is more obviously required. To that end, we note that the typical

examples of systematicity in language involve binary relations among lexical items

which are largely understood by force of the relation’s syntax and not by recourse

to the meaning of the constituents: we understand "X loves Y", where X and Y are

people’s names if we understand "John loves Mary". Are there similar examples in

visual cognition? The answer is emphatically "yes", though the literature on so-called

"visual relations" has rarely been brought into contact with the theoretical material

discussed here. In the next section, we will review this literature in detail. Following

that, we will propose several quantitative measures of systematicity in neural networks
7Via personal correspondence, Randy Gallistel has described this as the "Learning one representa-

tion for a red Volkswagen and one for a red Volkswagen with a dent in the hood" approach.
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and explore how these networks fare by this measure on a series of visual relations

tasks.

2.2 Visual Relations: A Review

In this section, we will briefly outline the basic results from the psychophysical,

neuroscientific and machine learning literatures on visual relations. A few persistent

themes will be observed: serial vs. parallel relation processing, the explicitness

or implicitness of relational representation, various roles for attention and working

memory, etc. The notion of systematicity is not often explicitly invoked by scholars

studying visual relations, but we will note wherever the concept is secretly at play.

Our goal is to curate a set of benchmarks for systematic relational understanding in

biological intelligence so that the deficits we will subsequently find in machines seem

all the starker.

2.2.1 Psychophysics

Below, we review a set of psychophysics experiments organized by the types of visual

relations they investigate. We want to emphasize the formal properties of relations

themselves since, as we will argue in a later section, we suspect these properties will

play an important role in the development of a theory of visual relations. Here, the

three types of relations we explore are 1) same-different relations, 2) same-different

relations under transformation and 2) spatial relations.

Same-Different Relations The capacity to judge whether items in a scene are

the same or different is fundamental to relational processing. William James noted

the centrality of same-different relations to human reasoning when he claimed "the

sense of sameness is the very keel and backbone of our thinking" (James, 1890). This
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sentiment was reiterated by (Nickerson, 1978), who stated "without the ability to

make such [same-different] comparisons there could be no perception as we know it".

Further, as the "sameness" of two objects in an image is a rather abstract property,

determined "regardless of the particular qualities of the stimuli" (Delius, 1994), it is

unlikely that the mechanism underlying same-different judgments relies on the glorified

template matching found in contemporary feedforward vision modeling. Instead, an

intuitive mechanism for computing same-different judgments is some algorithm which

dynamically selects objects in a scene, stores their representations in memory, and

then compares them. Psychophysical investigation of human same-different processing

has probed for the existence of such a comparative mechanism and has tested its speed

and performance in numerous stimulus conditions.

In a typical same-different task, subjects view an image containing two or more

items and are asked to determine whether or not all of the items are "the same". The

definition of sameness varies between experiments: items are either completely identical

(Donderi and Zelnicker, 1969; Donderi, 1983) or the same on some subset of cued

dimensions, like color or shape (Eriksen, O’Hara, and Eriksen, 1982; Eviatar, Zaidel,

and Wickens, 1994). Stimuli from a classic experiment of (Donderi and Zelnicker,

1969) are depicted in Fig. 2.1. Items can either be presented simultaneously in one

stimulus or sequentially, across several frames. Here, we only consider the case of

simultaneously presented items.

Early psychophysical work on same-different processing in humans was explicitly

cast as a form of visual search (Sternberg, 1966; Treisman and Gelade, 1980) in which

subjects had to determine whether or not all items in a stimulus were identical. As in

visual search, the central phenomenon of interest was the reaction time in determining

the homogeneity or heterogeneity of items in the visual field. However, unlike the

typical search paradigm, subjects are only tasked with detecting the uniformity of all

stimulus items and not the presence of a particular feature. This raises some interesting
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Figure 2.1 (Donderi and Zelnicker, 1969) tested subjects on a rapid same-different task.
Pictured are four stimuli, two different (left panels) and two same (right panels). Notice
that the different item in the lower-left stimulus actually shares a feature (flat right side)
with the other items. This was true of several stimuli, but the authors report no effect
from these shared features. Figure taken from (Donderi and Zelnicker, 1969)

questions about the processing of abstract visual properties. For example, can an

abstract relation like sameness "pop out" in the manner of a shape or color? Further,

are the visual processes underlying search in the traditional setting identical to those

in relation detection or are there new roles for mechanisms like working memory?

For example, a traditional visual search task requires that subjects simply remember

throughout a trial whether they have seen a target stimulus, but a same-different task

intuitively requires that features from past items in a scene be kept in memory for

comparison to new items.

The key dependent variables in the same-different paradigm are subjects’ accuracy

and reaction time (RT). Subjects are typically told to respond by declaring "same"

or "different" as fast as possible. For example, (Donderi and Zelnicker, 1969) tested

subjects on a same-different task with visual stimuli having 2 to 13 items (e.g. Fig.2.1,

bottom panels, shows 7 items) at a stimulus onset asynchrony (SOA) of 50 ms. They

found that accuracy was high for all numbers of items and, importantly, reaction

time for correct decisions was constant at about 1.3 s. (Donderi and Zelnicker, 1969)
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concluded from their subjects’ constant reaction time that same-different judgments

occur in parallel across the visual field, without the need for visual search, at least in

the case of what the authors called "codable" items. A codable image item, according

to the authors, is one that is easily nameable or recognizable (e.g. like a letter or

digit). In their words, "[a] highly codable stimulus has a consistent association with

a single verbal response" (Donderi and Zelnicker, 1969, p. 197). The authors do

not elaborate further, but they likely want to distinguish between their stimulus

items (simple, easily describable shapes) and random curves, polygons, etc. In the

parlance of contemporary psychophysics, we might instead refer to codable items as

having hardwired features in the visual system. This distinction between codable and

non-codable stimuli was given a feature-based interpretation by (Treisman and Gelade,

1980) in the context of visual search. Note that (Donderi and Zelnicker, 1969) did

not systematically vary the types of items used in stimuli and so could not probe the

robustness of subjects to variance in item shape, color, etc. In short, systematicity

was not yet an object of experimental interest to (Donderi and Zelnicker, 1969) or

indeed many subsequent researchers.

(Donderi and Zelnicker, 1969) noted that subjects were faster on correct "different"

declarations than on correct "same" declarations, except when stimuli had 11 items.

The relative quickness of "different" judgments seems intuitive. Whatever parallel

process checks for "same" vs "different" can terminate as soon as a single mismatching

item is found. The relative fastness of correct "different" responses was later found,

surprisingly, to be somewhat anomalous by (Nickerson, 1972) and others. Often,

"same" judgments are faster than "different" judgments, though subjects are more

likely to make false "different" responses to "same" pairs than false "same" responses

to "different" pairs. Work by (Nickerson, 1968; Krueger, 1973b; Thomas, 1974)

suggested that this "fast-same" effect might arise from priming. For example, in

a same-different task with stimuli consisting of either 10 As or 9 As and one B, a
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subject will simply be exposed to the A item more, and may be primed to respond

more quickly when viewing a "same" stimulus, as it contains only the primed item.

However, even when stimuli are balanced so that items appear with equal frequency

throughout the task, the fast-same effect persists (Nickerson, 1968; Krueger, 1973b).

These paradoxical findings were explained in part by a model of (Krueger, 1978)

grounded in signal detection theory. Krueger hypothesized that in a single glance,

subjects can contrast two neighboring stimulus items to check for mismatching features.

The number of mismatching features is compared to two thresholds (see Fig. 2.2),

corresponding to three possible actions. If the number of mismatches is lower than

both thresholds, the observer will detect that the two items are the same and either

proceed to the next pair of items or declare the stimulus to be "same" if all previous

pairs have been checked. If the number of mismatches is higher than both thresholds,

the observer will detect that the two items are different and automatically declare the

image to be "different". However, if the number of detected mismatches is between

both thresholds, the pair of items is ambiguous and must be rechecked for mismatches.

Subjects in same-different tasks are known to recheck their decisions based on spurious

mismatches (Burrows, 1972; Krueger, 1973a; Silverman, 1973). Subjects recheck on

both "same" and "different" stimuli, as evidenced by the fact that subjects very often

know when they have made an error (Laming, 1968; Bamber, 1972; Bamber and Paine,

1973; Snodgrass, 1972).

(Krueger, 1978) used this signal-detection framework to explain the fast-same

effect by noting the way noise differentially affects "same" and "different" images.

For example, if both "same" and "different" images have the same distribution of

perceived differences but with different modes (Fig. 2.2a), then rechecking will be

equally likely for both types of images. This is because the proportion of samples from

both "same" and "different" stimuli in the ambiguous inter-threshold region is equal.

In the case of high perceptual noise, the distribution of perceived differences for "same"
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Figure 2.2 Impact of noise on a same-different observer in a signal detection paradigm.
(Krueger, 1978) explains how comparatively rapid same vs different judgments can occur
in light of both high variance in "same" images, from perceptual noise, and high variance
in "different" images, from experimental manipulation. The case in panel d is argued
to underlie the fast-same effect: the bulge in the "same" distribution makes observers
shift their thresholds rightward. The "same" distribution will likely have a positive skew
since these images have no true differences, only perceived ones. Since the skew causes
an asymmetry in the "same" distribution, more of the "different" distribution than the
"same" distribution will move into the ambiguous region. This will cause more rechecking
on "different" images. Figure taken from (Krueger, 1978).
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images has high variance (Fig. 2.2b), forcing the observer to slide his thresholds

rightward, thereby ambiguating more "different" samples and disambiguating more

"same" samples. The disambiguation of more "same" samples should result in less

rechecking of "same" stimuli and therefore faster "same" responses. Further, the

intrusion of the "different" distribution into the inter-threshold region will give rise to

more false "different" responses on "same" images. Fig. 2.2c depicts the opposite case,

in which experimentally-controlled variance in "different" stimuli is high, resulting in

faster "different" responses. Fig. 2.2d shows the realistic case of a positively-skewed

"same" distribution, with a bulge near the low end of perceived differences. Again, this

case will give rise to a faster "same" response and increased false "different" responses

because of the ambiguity of the "different" distributions. This case is realistic since

"same" images, by nature, will produce a small number of perceived differences, having

literally identical items. The opposite case is shown in Fig. 2.2e.

(Krueger, 1978) argues that the fast-same effect obtains in cases like Fig. 2.2d.

Subjects are prone to recheck items in both "same" and "different" stimuli, depending

on the number of perceived differences, but perceptual noise uniquely produces low

numbers of mismatched features in the "same" case, since identical items are physically

equivalent in the first place. This gives "same" a strong RT advantage over "different",

though it produces more false "different" responses on "same" stimuli.

Krueger used this theory to create a model which recapitulated known RT and

accuracy effects from the same-different literature on a data-set of binary images.

Like Krueger’s imagined observer, the model noisily samples items from a stimulus,

counts their mismatching pixels, and returns a judgment according to its thresholds.

Krueger’s model samples pairs of items in sequence, and thus runs somewhat counter to

(Donderi and Zelnicker, 1969)’s claims regarding the parallel nature of same-different

judgments. Further, Krueger sought to explain the fast-same effect, whereas (Donderi

and Zelnicker, 1969)’s produced the opposite result. On the issue of rapid parallel
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processing in same-different tasks, Krueger’s theory is silent. However, the fast-

different effect observed in (Donderi and Zelnicker, 1969) comports with Krueger’s

model. In Fig. 2.2d, we saw how high perceptual noise would favor a fast-same

judgment. Conceivably, this is just the type of noise that would arise in the case of

stimulus items for which there are no good hardwired features in the visual system, i.e.,

for non-"codable" items in the sense of (Donderi and Zelnicker, 1969). This suggests

the appearance of the fast-same effect for synthetic or generally unfamiliar items and

the fast-different effect for natural or familiar items. More recent evidence (Wiley,

Wilson, and Rapp, 2016) indicates that practice can improve subjects’ performance on

a same-different task with unfamiliar stimuli, effectively "coding" the stimulus items

over the course of the experiment.

The signal-detection approach of (Krueger, 1978) has received substantial empirical

support (Donderi, 1983), but it glosses over the mechanism used for comparing

individual items. Krueger’s model simply takes the Hamming distance between two

binary arrays and compares this distance to a threshold. However, it could be that the

two items agree on some "dimensions" (e.g. shape, color, etc.) but disagree on others,

and this partial matching might have an effect on the same-different judgment. It is

known, for example, that when subjects are asked to make a same-different judgment

according to a cued dimension, the task-irrelevant dimension can affect performance

on the task-relevant dimension (Hawkins and Shigley, 1972; Egeth, 1966; Hawkins,

McDonald, and Cox, 1973; Williams, 1974; Overmyer and Simon, 1985). These studies

indicate that RT for "same" judgments for a cued shape dimension increases when

the two items differ on the task-irrelevant color dimension. Likewise, reaction times

for "different" judgments for a cued shape dimension decreases when the two items

are different colors compared to when they are the same color.

Two models have been offered to explain the effect of task-irrelevant dimensions on

same-different tasks. (Eriksen and Schultz, 1979) proposed a "response competition"
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model, in which similarity between items across all dimensions, task-relevant or -

irrelevant, are computed gradually and in parallel. The similarity between two items

on a given dimension is conceived of as some continuous quantity which may exceed

a response threshold. A same-different judgment is produced as soon the relevant

similarity measure crosses threshold. If the comparisons on task-relevant and -irrelevant

dimensions produce incongruent results (i.e., "same" on one dimension vs. "different"

on the other), then a competing response is simultaneously primed. This competing

response delays the correct response.

(Eviatar, Zaidel, and Wickens, 1994) proposed an alternative "confluence" account,

which posited same-different judgments occur according to discrete stages instead of

a continuous flow of computations. Like the response competition model, items are

compared in parallel across all dimensions. However, only after comparisons across all

dimensions are complete is a second decision stage reached, in which response times

are facilitated by congruent comparisons and inhibited by incongruent comparisons.

The models agree that comparisons across all dimensions are computed simultane-

ously and in parallel, but they disagree about when the final same-different response

is activated, as measured, for example, by EEG (Zhang et al., 2013). There seems to

be more evidence in support of the confluence rather than the response competition

model (Donderi, 1983; Zhang et al., 2013), though for our purposes it suffices to note

the connection between dimensional congruency and RT. Same-different perception is

not unique to humans, and it is in frankly in non-human studies where the emergence

of systematicity is clearest. Same-different detection has been observed in non-human

animals, namely birds and primates(Katz and Wirght, 2006; Daniel, Wright, and Katz,

2015; Martinho III and Kacelnik, 2016), honeybees (Giurfa et al., 2001), and rats

(Wasserman, Castro, and Freeman, 2012). For a more detailed review of same-different

reasoning in animals, see Wasserman, Castro, and Freeman, 2012. Most of these stud-

ies involved some type of reinforcement learning, though the newly hatched ducklings
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(a) (b) (c)

Figure 2.3 Same-different reasoning in ducks (a) Martinho III and Kacelnik,
2016 tested the ability of day-old ducklings to imprint on the abstract relation
of visual sameness. During a training phase, newly hatched ducks were placed
in a chamber with a single pair of simple 3D shapes hanging from strings. The
objects either had the same/different color or same/different shape. Later, the
ducks were placed in the chamber with a novel pair of objects either obeying
or disobeying the observed relation from the training phase. (b,c) Number of
ducklings to follow the observed versus a novel relation in the testing phase.
In both the color and shape conditions, ducklings were significantly more
likely to follow the imprinted relation, even though the objects in the testing
phase were different than those of the training phase and despite having
imprinted on one example.

used in (Martinho III and Kacelnik, 2016) acquired a notion of same vs different from

a single training example. After imprinting on a single pair of same/different objects,

the ducklings preferred to follow novel objects obeying the same relation Fig. 2.3.

This indicates the ducklings could generalize a same-different rule to novel items with

essentially no training; that is, the ducks had a systematic understanding of an abstract

visual relation "for free". A particularly striking example of systematic same-different

understanding comes from the bee study of (Giurfa et al., 2001). A population of

honeybees was trained on a simple same-different task involving the matching of colors

or odors. Bees lighted at the base of a Y maze, where a visual or olfactory stimulus

was placed (Fig. 2.4). At the fork in the Y, a second stimulus was placed which was

either the same or different color/odor. The bees were reinforced to take one leg of

the fork depending on whether or not the observed relation was "same" or "different".

Gradually, the bees learned the pattern and were, remarkably, able to transfer their

knowledge to novel colors and odors. Much more remarkable, however, was the fact
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Figure 2.4 Systematic relation transfer in bees. (a) Bees entered a Y maze
and were confronted with an olfactory (left) or visual (right) stimulus. At the
fork in the Y, the same or a different stimulus was present. Depending on
the condition, bees either had to pursue the branch marked by the same or
the different stimulus to receive a reward. (b) Bees first learned the olfactory
condition and demonstrated a significant propensity to follow the cued relation.
Then, during a testing phase, bees were placed in the visual condition and
rapidly developed the correct preference for the cued relation, indicating they
had transferred relational knowledge from the olfactory to visual domain.

that bees could rapidly transfer their knowledge from olfactory same-different to visual

same-different. This suggests honeybees are capable of representing an extremely

abstract notion of sameness, one we might even call systematic. Keep in mind that

bees have neither a hippocampus nor an entorhinal cortex.

Same-Different Relations Under Transformation In a pure same-different

task, items in a visual scene are declared the "same" if they are physically identical

along a cued dimension. The ability to recognize identical items in a scene is evidently

very useful, though it is limited to very artificial settings. Most natural same-different

judgments involve items that are only identical up to changes in rotation, scale,

illumination or other transformations. For example, two road signs might seem

identical up to scale due to distance from a driving observer. While a portion of the

observer’s sameness judgment likely arises from the translation and scale invariance of

the ventral visual stream (Riesenhuber and Poggio, 1999), it cannot be completely
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explained by such invariances. For, invariant object recognition requires invariant

features for particular objects, whereas, as we will see below, humans seem to make

same-different judgments under transformation for arbitrary, novel objects. Instead,

the ability to detect same-different relations under transformation is akin to the

systematic understanding of a more-or-less universally applicable rule. Moreover,

when humans detect that objects lie in a given same-different relationship up to

transformation, they can still recognize that the items are not visually identical.

Hence, unlike in the case of pure invariance, no information is lost. In Fodorian

language, the constituents of the complex expression (that is, the relation) remain

computational accessible.

Classic work by (Shepard and Metzler, 1971) studied the capacity of humans to

detect identity under rotation for line drawings of 3D objects. Eight subjects were

each shown 1600 pairs of images (Fig. 2.5) depicting strings of 10 cubes in a 3D

space and asked to determine if the strings were congruent up to rotation. Matching

image pairs were constructed by rotating cube-strings either in the 2D viewing plane

("plane" condition) or in depth ("depth" condition). Non-matching image pairs were

constructed by both a rotation and a reflection, so that the objects could not be

rotated into congruency. Subjects were asked to respond as quickly as possible.

Overall, accuracy was quite high, at 96.8%, and although the authors do not

report accuracy for the "plane" vs "depth" condition, these marginal accuracies must

have both been over 90%. The key finding from this study was that subject RT

per stimulus pair was a robustly linear function of the angular difference between

each image in both the "plane" and "depth" conditions. Somewhat surprisingly, the

function relating RT to angular difference in the "depth" condition had lesser slope

than the corresponding function in the "plane" condition, indicating that subjects

could detect identity under depth rotation at large angular deviations faster than

under plane rotation.
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Figure 2.5 Mental rotation. Three stimuli from a rotation matching experiment. In
the top panel, the two block-strings can be rotated in the picture plane into congruence.
In the middle panel, the two images can be rotated in depth into congruence. In the lower
panel, the images are congruent, but only up to a rotation and a reflection. Figure taken
from (Shepard and Metzler, 1971).

Shepard and Metzler conclude that subjects mentally rotate images in real time to

test for congruency. Indeed, their subjects reported in post-experiment interviews that

"they attempted to rotate one end of one object into congruence with the corresponding

end of the other object [and] discovered that the two objects were different when,

after this ‘rotation,’ the two free ends still remained noncongruent". (Shepard and

Metzler, 1971, p.703). The linearity of RT, indicating active mental rotation, is a

rather robust finding, having been replicated by (Cooper, 1975; Cooper, 1976; Cooper

and Shepard, 1973; Shepard and Cooper, 1982). These studies further demonstrated

that the linearity of RT was independent of subjects’ being explicitly told to use

mental rotation strategies.

Despite these numerous replications, mental rotation and mental imagery in general

remain somewhat controversial. For example, these phenomena cannot be completely

"visual" per se as similar effects have been observed in congenitally blind human
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subjects (Marmor and Zaback, 1976; Carpenter and Eisenberg, 1978). Furthermore,

attempts to replicate mental imagery phenomena in non-human animals, like pi-

geons, parrots and monkeys, have been largely unsuccessful (Hollard and Delius,

1982; Burmann, Dehnhardt, and Mauck, 2005; Nekovarova et al., 2013), except in

the case of sea lions (Mauck and Dehnhardt, 1997; Stich, Dehnhardt, and Mauck, 2003).

A more recent exploration of the ability to detect same-different relations under

transformation was conducted by (Fleuret et al., 2011). Fleuret and colleagues

compared humans and machines on a synthetic visual reasoning test (SVRT) involving

classes of stimuli each structured by one of twenty-three visual relations (see Fig. 2.6

for examples). Only some of these classes of stimuli involved "same-different under

transformation" rules, and we focus on only these stimuli here. For example, one of

the test’s "problems" involved distinguishing stimuli featuring two items that were

the same up to translation, scaling and rotation from stimuli disobeying this rule (Fig.

2.6). In general, all stimuli involved black closed curves with wiggly edges on a white

background, and each of the 23 problems was designed to require relational- rather

than feature-based judgments. That is, Fleuret and colleagues attempted to make

the stimuli varied enough so that problems could not be solved by simple template

matching strategies. In other words, the authors were implicitly probing what we have

called "systematic" relational understanding.

Twenty subjects took the SVRT by using the computer interface shown in Fig.

2.6c. On each trial, a new stimulus was displayed in the top panel and subjects were

told to place each new stimulus into one of the two category boxes in the lower panels.

Trials were unspeeded. Feedback was provided after each trial according to a subject’s

categorization consistency. Correctly classified stimuli remained in the category boxes

as a mnemonic device. Trials continued either until the subject made seven correct

responses in a row, resulting in "success", or until the subject saw 35 trials without
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Figure 2.6 The Synthetic Visual Reasoning Test. Stimuli and user interface from
(Fleuret et al., 2011). a) Stimuli from the "same-different" problem (SVRT 1). In the
top panel, the two items are congruent. Items in the bottom panel are incongruent. b)
Stimuli from the "inside-outside" problem (SVRT 4), with the top panel as a positive
example and the bottom, negative. Note that this problem is not a "same-different up
to transformation" problem. c) Stimuli appeared in the top section of this user interface.
Subjects had to drag the stimulus into one of two boxes labeled Category 1 and Category
2. They were provided with feedback as to the consistency of their decisions. The last
several correct classifications were displayed in the lower boxes as a mnemonic aid. All
panels taken from (Fleuret et al., 2011).
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"success", resulting in "failure". Each of the twenty subjects did all 23 problems.

Four problems proved particularly difficult for subjects, though performance on the

remaining 19 was strong, taking an average of 6.27 ± 0.85 trials before learning. Out

of all 23 problems, 7 of them were "same-different up to transformation" problems:

problems 1, 5, 16, 19, 20, 21 and 22. Of these problems, only two, problems 16 (12

subjects failed) and 21 (9 subjects failed), were hard for subjects. Problem 16 used

stimuli with bilateral symmetry about a vertical axis and problem 21 used stimuli in

which two items were identical up to scale, translation and rotation.

(Fleuret et al., 2011) also tested two standard machine learning algorithms, Ad-

aboost (Freund and Schapire, 1995) and a support vector machine (SVM) with a

Gaussian kernel, on the SVRT. Only Adaboost (see Fig. 2.7) performed somewhat

acceptably. The authors measured the testing error rate of Adaboost as a function of

the number of training samples (Fig. 2.7a) and also as a function of three increasingly

sophisticated pre-processing techniques (Fig. 2.7b): 1) numbers of pixels in rectan-

gular windows of varying size, 2) edge statistics and 3) wavelet coefficients. Though

performance improved with more samples and richer features, only 7 problems had

less than 6% error at 10,000 examples with the most sophisticated features. Further,

4 of the "same-different up to translation" problems noted above remained above 25%

error at this number of training examples and feature type. Fleuret and colleagues

noted the special difficulty of these problems and emphasized the comparative success

of human subjects.

Yet, it is somewhat difficult to compare human and machine performance on this

task, since there is no balanced measure of learning rate. Arguably, human subjects

have had a lifetime of experience solving such problems, so they may have come to

the experiment having already seen millions of samples. Moreover, the human visual

system likely incorporates far more sophisticated features than those used by Adaboost
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Figure 2.7 Blackbox algorithms on SVRT. Boosting performance on the SVRT
from (Fleuret et al., 2011). a) The left panel depicts the error rates for Boosting using
feature group 1 (see main text) for various training set sizes on a log scale. The authors
grouped problems into three clusters (blue, green, red), corresponding to their difficulty.
b) The right panel shows boosting performance with 10,000 training samples for three
increasingly rich feature representations (see main text). Again, problems are grouped into
three sets by difficulty. Figures taken from (Fleuret et al., 2011)

in (Fleuret et al., 2011).

As we will see in Sec. 2.3, the result of (Fleuret et al., 2011) generalizes to more

sophisticated learning machines inspired by the feedforward sweep of the visual cortex.

The large difference between humans and machines on this task, suggests that hu-

mans may detect relations using mechanisms wholly different from those employed by

traditional statistical learning methods, i.e., feature-based classifiers. Two candidate

mechanisms, attention and working memory, are explored in more detail in following

section.

Spatial Relations Two items in a scene can be the same or different independent

of their location. For example, (Donderi and Zelnicker, 1969) used stimuli with

items scattered at random locations (Fig. 2.1), whereas (Shepard and Metzler, 1971)

placed items at two fixed locations (Fig. 2.5). Simply put, a same-different relation

incorporates no spatial information.

However, there are many visual relations for which spatial information is key.

When one notices a pen on a table, or a cat beneath a chair, one has recognized
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that items in a visual scene exist in a particular spatial configuration. We refer to

this subset of visual relations as spatial relations. Spatial relations disregard the

sameness/difference of the items in the relation and simply rely on the given items’

satisfying a spatial rule. Moreover, as any two items can conceivably exist in an

infinite number of spatial relations, whatever mechanism humans employ to detect

such relations must be extremely flexible. It must be able to apprehend arbitrary

objects in more-or-less arbitrary relationships.

There is substantial evidence that the apprehension of spatial relations requires

attention (Hummel and Stankiewicz, 1998; Logan, 1994; Logan and Sadler, 1996). For

example, (Logan, 1994) asked subjects to detect one of four spatial relations between

items in a cluttered scene. Subjects were asked questions like "Is there a dash above

a plus?" before viewing an image containing dashes and pluses bundled into pairs.

Stimuli having the cued relation contained at least one dash above a plus. 24 subjects

were randomly asked to detect above, below, left, and right relations over the course

of 512 trials. The display size and number of items were varied together. (Logan,

1994) chose dash and plus items for stimuli since they have been argued to "pop out"

preattentively in a field of distractors (Treisman and Patterson, 1984; Treisman and

Souther, 1985; Treisman and Gormican, 1988). However, (Logan, 1994) found that

when subjects were asked to detect spatial relations between these items, instead of

just the items themselves, RT increased linearly with display size, indicating subjects

employed attentional search. In a control experiment for which subjects simply had to

detect the presence of a dash among distractors, RT remained constant with display

size. Additionally, RT tended to decrease when subjects were cued to the location of

the pair of stimulus items obeying the target relation. Logan concluded that attention

was required to detect spatial relations, a claim later supported by (Moore, Elsinger,

and Lleras, 1994; Rosielle, Crabb, and Cooper, 2002; Evans and Treisman, 2005) and

(Holcombe, Linares, and Vaziri-Pashkam, 2011).
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Although (Logan, 1994) and subsequent studies demonstrated attention is necessary

to detect spatial relations, they remained largely agnostic on exactly how such an

attentional mechanism should function. Having shown that relation detection requires

serial search through a cluttered scene, these authors implicitly invoked a moving

window or "spotlight" of attention, but they only describe its movement through

a scene and not its local relation detection mechanism. For, even if an attentional

window is correctly placed on two items potentially obeying a spatial rule, there must

be some subsequent routine designed to recognize the given relation.

A taxonomy of such routines was provided by (Franconeri et al., 2012) (see Fig.

2.8). Franconeri and colleagues grouped routines for spatial relation detection into

two types depending on whether the attentional window selected one or multiple

items at a time. For instance, suppose the cued relation is "Cross Left of X" (Fig.

2.8a). An attentional mechanism selecting multiple items simultaneously could place a

spotlight over both the cross and X and then compare this attended region to a stored

template (Fig. 2.8b). This type of attention would rely on templates composed of

hardwired features that happen to resemble the given instance of the spatial relation.

However, detecting relations purely with templates is rather inflexible, requiring

one template for every pair of objects in every spatial relation. This combinatorial

explosion of templates is a classic flaw of connectionist systems trying to encode

feature relations (Fodor and Pylyshyn, 1988). So, while there is some evidence for the

existence of hardwired visual features for certain frequently occurring spatial relations

(VanRullen, 2009), the template approach seems critically limited by its inflexibility

and wastefulness.

This wastefulness can be slightly reduced by attaching a coordinate system to the

attentional spotlight. In this case, multiple items could be selected by the spotlight,

but only one needs to be matched to a template. For example, if the window of

attention is fixed on both the cross and the X, then the window’s coordinate system
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Figure 2.8 Shifting attention for flexible visual relation processing. Six
attentional window strategies according to (Franconeri et al., 2012). a) A window will be
centered on one of two items, a cross and an x, to test for a left-right relation. b) One
solution is to make the attentional window encompass both items and match the items to a
template resembling their arrangement. c) If the window has a coordinate reference frame,
then the origin can be placed over one item and template matching can be performed on
the other. d) To avoid using templates for the relation, the window could instead allow
features from the two items to bind-by-synchrony with units representing the relation. e)
If multiple spotlights are available, each one could focus on an item and index its location.
f ) However, it the window can only encompass a single item at a time, it might instead
shift from one item to another and store the direction of the shift in working memory.
g) Or, it might encompass both items to get coarse arrangement information (horizontal
vs vertical) and then zoom to one item, recording the direction of the zoom in working
memory. Figure taken from (Franconeri et al., 2012)
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can encode which side of the window is the left (Fig. 2.8c). Whatever item occurs on

the left of the window can then be identified with a template as in Fig. 2.8a. This

hybrid of templates with spatial reference frames could presumably be implemented

by lateral occipital complex (LOC) neurons which are sensitive to both object identity

and location (Edelman and Intrator, 2000; DiCarlo and Maunsell, 2003; DiCarlo

and Cox, 2007). Like the pure template matching approach in Fig. 2.8a, the hybrid

approach still requires that the attentional window select both objects at once since

the relation between the items is only defined with respect to the window’s reference

frame. Note that this method remains quite inflexible: it still requires templates of

particular objects in a given relation.

A flexible representation of spatial relations could be achieved by a dynamic

network with separate detectors for object identity and location. This network would

bind the location of an object to its identity by synchronizing the activity of the

corresponding object/location detectors (Fig. 2.8d). After objects are bound to their

location by synchrony, a subsequent process computes the spatial relation. This

"binding-by-synchrony" approach only needs as many templates as the total number

of objects and relations to be represented, whereas the pure template model needs as

many templates as the product of the number of objects and relations (Hummel and

Biederman, 1992; Malsburg, 1999). Observe that the binding interpretation of spatial

relations still requires attention to be directed both objects simultaneously. Only then

can the process of binding-by-synchrony select the precise objects to be compared

among distractors in a cluttered scene. A similarly flexible method of spatial relation

detection was proposed by (Pylyshyn, 1989a) in the form of the FINST model and

its multiple spotlights (Fig. 2.8e). Instead of using a separate collection of location

detectors, the multiple spotlights model can tag the locations of multiple objects by

tracking the location of several attentional windows.

(Franconeri et al., 2012) distinguishes the above interpretations of attention from
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those which only select one object at a time. Some studies have supported the single-

object hypothesis by showing that the ability to localize an object in the first place

requires focused attention (Treisman and Gelade, 1980; Evans and Treisman, 2005)

and that focused attention tends to suppress information from outside the spotlight

(Luck et al., 1997; Treisman, 1996; Reynolds, Chelazzi, and Robert Desimone, 1999).

An attentional mechanism only focusing on one object at a time must shift its spotlight

in order to compute a spatial relation. (Franconeri et al., 2012) argues these "shift"

models can work in two ways. First, the spotlight can shift from one object to another

while the direction of the shift is stored in working memory (Fig. 2.8f). In the example

of the cross to the left of an X, the ordered sequence of events "X feature activation",

"leftward attentional shift" and "cross feature activation" could be stored in working

memory, after which a secondary executive process could deduce from this sequence

the cued spatial relation. The direction of the attentional shift could be rightward, but

only if the executive decision process can flip the sequence of events to appropriately

match the target relation. Second, the attentional window could instead begin with a

large aperture containing both objects and then zoom in to one object. The initial,

global interpretation of the scene could extract coarse information about the object

identities and the overall shape of their arrangement. Next, the spotlight would shrink

its aperture and move leftward, storing the change in spotlight size and direction

in working memory. If, after this move to local attention, a plus feature detector

is activated, an executive process could extract the spatial relation by querying the

stored information in working memory (Fig. 2.8g). Both the simple left-right shift

and the global-local shift detect spatial relations with a combination of a moving

attentional spotlight and working memory. Like binding-by-synchrony, these shift

accounts create flexible representations of spatial relations between arbitrary objects.

(Franconeri et al., 2012) investigated these different attentional mechanisms in

four EEG experiments, in which subjects were asked to detect left-right relationships.
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There is substantial evidence that shifts of attention to one side of the visual field

result in greater negativity in electrode sites on the contralateral side (Luck, 2012).

(Franconeri et al., 2012) showed that this electrophysical correlate of attentional

shifts accompanied their subjects’ relational judgments, even after they demonstrated

that the individual stimulus items (colored circles) could be detected preattentively.

This distinctive EEG signal occurred even when subjects were dissuaded from using

attentional shifts by a difficult dual task. Contralateral negativity during relation

detection was even stronger on a harder task involving left-right relations between

more complicated shapes.

The authors conclude that left-right relation detection relies on attentional shifts.

Further support for a shifting spotlight of attention was provided in a recent follow-

up experiment by (Yuan, Uttal, and Franconeri, 2016). These results run counter

to the conclusions of (Hayworth, Lescroart, and Biederman, 2011), who used an

fMRI adaptation paradigm to claim that spatial relations were represented without

attentional shifts in the manner of binding-by-synchrony, although they did not

specifically look for electrophysiological correlates of attention. (Franconeri et al.,

2012) defend the global-to-local interpretation of attention (Fig. 2.8g) over the simple

left-right shift. They argue that such an interpretation is consistent with global

processing biases (Navon, 1977) and with our intuition that spatial relations are

detected by selecting relevant objects simultaneously, since this is true for the first

stage of the global-to-local method. Yet, it is unclear how a global-to-local attentional

routine could extract accurate object identities in the first, global step, in the presence

crowding (Whitney and Levi, 2011) effects and illusory conjunctions (Treisman and

Gelade, 1980). Asserting that the initial joint representation of both objects can

disentangle their respective features leads to a reduction to the template matching

case of Fig. 2.8a.

One observer lacking any attentional mechanism at all was the Adaboost algorithm
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taking the SVRT in (Fleuret et al., 2011). Perhaps in consequence, its average

performance on those 16 problems incorporating spatial relations (e.g. Fig. 2.6b)

lagged behind that of human subjects. Interestingly, Adaboost’s average performance

on same-different-up-to-transformation problems (see Sec. 2.2.1) and spatial relation

problems were roughly equivalent, indicating that these types of problems were

essentially of equal difficulty for the algorithm. Humans, on the other hand, performed

slightly significantly better on spatial relation problems (average of 5.68 trials until

learning) than on same-different problems (average of 6.67 trials until learning).

Often, in a spatial relations psychophysics experiment, subjects are asked to

compare a visual scene with a sentence. This experimental design is natural since

linguistic syntax and the semantics of words like above and below can be intuitively

mapped to the "visual syntax" of a structured scene. Inspired by the psycholinguistic

literature on spatial words (Clark, 1973; Miller and Johnson-Laird, 1976; Talmy, 1983;

Levelt, 1984; Herskovits, 1986; Garnham, 1989; Vandaloise, 1991), numerous studies

have compared the linguistic description of spatial relations with their manifestation

in visual stimuli.

Early work by (Clark, 1972) compared RT of subjects performing an above-below

task to the predictions of models designed to match pictures with sentences. Subjects

were given sentences like "A is above B" or "B isn’t above A" and asked to determine

the truth or falsity of the sentence from a visual scene with objects A and B. Clark

concluded from 11 experiments that sentences and pictures were both encoded like

logical propositions and that subject RT resulted from a serial process of comparing

corresponding parts between sentence and picture propositions. Importantly, no

evidence was found that subjects’ reaction time resulted from transforming a "base"

sentence into a new version. For example, the authors claimed that subject RT on

the "A isn’t above B" condition did not result from, say, checking for "B is above A"

and then transforming it to the negative form for comparison. This distinguishes the
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results of (Clark, 1972) from work in transformational grammar (Miller, 1962) which

showed grammaticality judgments take more time as sentences deviate from a "base"

representation by grammatical transformations. This work, too, was later called into

question when it was found that RT was largely predicted by sentence length, and not

by number of intermediate transformations (Bever, 1988).

Later, various studies compared the way different spatial relations (e.g. absolute vs

relative location) are apprehended in both vision and psycholinguistics (Logan, 1995;

Logan and Sadler, 1996), how the acceptability of linguistic descriptions of spatial

relations is influenced by scene structure (Regier and Carlson, 2001), and how the

correspondence between linguistic and visual representations changes in the presence

of distractors (Carlson and Logan, 2001). A prominent focus in contemporary research

on this topic is the way in which language and vision both encode spatial relationships

asymmetrically. This asymmetry is easy to see in the linguistic case. For instance, in

the sentence "The square is to the left of the circle," one item, the square, is singled

out as the subject as the sentence, whereas the circle is only defined in relation to

the subject. Asymmetry is also manifest in the preference of certain descriptions of a

spatial relation over others: it feels more natural to say "The bike is to the right of

the building" than "The building is to the left of the bike" (Talmy, 1983).

(Roth and Franconeri, 2012) studied how language could bias the movement of an

attentional window in a spatial relation detection task. Forty-five subjects participated

in two experiments in which a given relation was cued with a sentence (e.g. "The red

circle is left of the green circle"), one of the relation items was briefly displayed on the

screen, followed shortly by the second item, after which the subject was told to check

for the truth or falsity of the sentence as fast as possible (see Fig. 2.9). Left-right and

above-below relations were tested. The authors found that RT was significantly faster

when the first item to appear during a task was the sentence’s subject. For example,

the response to "The red circle is left of the green circle" is facilitated if the first item to
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Figure 2.9 Language and visual relations. Stimuli from a spatial relations task
testing for linguistic biases. Subjects were given a sentence describing a spatial relation.
First, a fixation dot appeared for subjects (top panel) Then, a colored circle would appear
at one of the two central spots. The two possible locations for this initial dot removed
confounds of absolute location. Finally, a second colored dot appeared, and subjects were
asked to judge whether the cued relation obtained. Subjects showed an RT advantage
when the cued dot was the subject from the cued sentence. Figure taken from (Roth and
Franconeri, 2012)

appear is the red circle. In other words, a shift of attention from red to green resulted

in faster relation detection than vice versa. (Roth and Franconeri, 2012) concludes

that the visual representations of spatial relations, like their linguistic counterparts, are

encoded asymmetrically. This result was replicated in subsequent studies by (Michal

and Franconeri, 2014) and (Michal et al., 2016). (Roth and Franconeri, 2012) hints

at a stronger claim as well, stating that the detection of visual relations might be

impossible without a linguistic faculty to back it up (see (Loewenstein and Gentner,

2005) and (Dessalegn and Landau, 2008) for details).

Our sudden focus on language may seem a bit out of place. However, a visual

relation is a syntactically structured expression: it has real constituents (the objects

in the relation) and the meaning of the full expression is compositionally determined

by the identities of the objects and the rule connecting them. Formally speaking, an

image depicting (CIRCLE left of SQUARE) is not so different from the utterance

44



"circle left of square". The express purpose of this chapter, in fact, is to subsume

the study of visual relations into the framework of (Fodor and Pylyshyn, 1988), who

considered language the most obviously systematic aspect of human behavior, but

whose right to this phenomenon was not exclusive. Is it possible that the faculty of

language, specialized as it is to deal with syntax, is also involved in the processing

of other "syntactical" expressions from other sensory modalities? In fact, there is a

burgeoning branch of machine learning devoted to the learning of joint linguistic-visual

representations, the discipline of visual question answering (VQA). Though it is still

in its infancy, the co-study of language and visual relations could be very fruitful (see

Ricci, Cadene, and Serre, Submitted for a review)

Although we have only begun to emphasize attention in the current section, it is

equally relevant to the previous discussions of various same-different relations. Shifting

attention in the same-different paradigm would store two items in working memory,

and, instead of extracting a spatial arrangement from attentional movement, could

compare the attended items before and after the shift.

Equally important to all of the visual relations discussed here is the role of working

memory. Indeed, it is difficult to imagine how a shifting spotlight of attention could

detect relations without working memory. Models of visual working memory typically

agree that mnemonic capacity can be quantified both by the number of items stored

in memory and the precision with which each item is represented. However, they differ

in how memory resources are allocated to these two demands. Slot-based models posit

two distinct types of mnemonic resources, a fixed number of registers in which items

can be stored and a precision of item representation within each slot. These resources

are separate, so that a fixed maximum number of items, typically about 4 (Luck

and Vogel, 1997), can be stored in memory, regardless of each object’s complexity

(Miller, 1956; Cowan, 2001; Awh, Barton, and Vogel, 2007; Zhang and Luck, 2008).

Alternative models describe the number of storable items and the precision of item
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representation in terms of one continuously divisible resource (Wilken and Ma, 2004;

Alvarez and Cavanagh, 2004; Fougnie, Asplund, and Marois, 2010).

The allocation of memory resources is particularly important in the study of the

mnemonic representation of spatial relations, since it is unclear if these relations,

perhaps encoded by attentional shifts, should be placed in a memory slot alone or

somehow attached to the objects in the relation. In the case of Fig. 2.8f, are "plus

activation", "leftward attentional shift", and "cross activation" given three separate

slots in memory? Or is the attentional shift simply attached to the activation of one

or both object detections?

(Clevenger and Hummel, 2014) addressed this question for the restricted case of

slot-based models in a psychophysics experiment testing for visual relational memory

capacity. The authors tested three models of relational memory, each predicting a

different number of allocated slots, s, given the same number of objects and relations.

According to the first model, every item in a scene is multiplexed with its whole set

of relations to every other scene item. If a scene has n items, then by this account,

memorizing all relations in the scene should take s = n slots. Each slot would hold

information like "Item 1; larger, left, ...". This model assumes that working memory

load is independent of the number of item relations to be memorized, a somewhat

dubious claim. According to the second model, slots in working memory hold ordered

pairs of items with a relational tag: "left(Item 1, Item 2)" would encode "Item 1 is

to the left of Item 2". If there are n items in a scene, r relations to be recognized,

then this account demands as many slots as there are combinations of item pairs

and relations, s = r(n2 − n). A final model, the so-called "stacked relation" model,

assumes that every pair of items is multiplexed with every relevant relation. When

relations are "stacked" with every pair of items, then every slot can store, for example,

"left+larger(Item 1, Item 2)". This single slot now encodes the fact that Item 1 is

both left of and larger than Item 2. In this manner, the number of slots needed for
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Figure 2.10 Working memory for visual relations. Stimulus presentation from
(Clevenger and Hummel, 2014). After a 100 ms fixation period, a scene with 2-4 colored
polygons appeared for 2000 ms. Following a 500 ms polygonal mask, subjects were
questioned about a spatial relationship (pictured " blue polygon right of red polygon"),
allowed to respond and given feedback. Note that the 2000 ms SOA was more than long
enough for the deployment of attention and even multiple serial eye fixations.

relational processing reduces to the number of item pairs, s = n2 − n.

Next, (Clevenger and Hummel, 2014) defined the probability that an observer

with working memory could correctly recall a given visual relation as a function of

s and compared human performance on a relational memory task to each of the

three above accounts. 63 participants viewed a scene depicting 2, 3 or 4 colored

polygons in a spatial arrangement for 2000 ms, followed by a 500 ms polygonal mask

(Fig. 2.10). After the mask, subjects were queried about a particular relationship

between two of the scene’s polygons. Accuracy was measured as a function of the

total number polygons in the scene. The authors then fit the three candidate models

to subject performance and found a substantially better fit for the stacked relation

model. (Clevenger and Hummel, 2014), verified that their subjects actually stored

relations in memory, instead of computing them after the fact from absolute locations,

in a second control experiment.

(Clevenger and Hummel, 2014) concluded that their subjects stored pairs of

polygons in working memory slots together with their relevant relations. However,

the study was limited in several ways. First, the authors never explicitly tested for
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the recall of more than n = 2 objects or more than r = 1 relations at a time. It could

be argued that subjects must have remembered n > 2, r > 1 objects and relations

since they were asked to recall random relations on each trial and still performed

better than chance, indicating they remembered more than single pairs. Yet, the study

as it was conducted only fully probed the "writing" aspect of working memory, by

demonstrating arbitrary binary relations could had been stored in memory on each trial.

It did not, however, fully probe the "reading" aspect of visual memory. For example,

perhaps many stacked relation items can be stored in memory but recalling more than

a single relationship at once is exceptionally difficult. Perhaps this difficulty could be

alleviated by certain task designs, like with different attentional cues before stimulus

presentation. Moreover, when the authors construct a function for probability of recall,

they assume that the mnemonic load imposed by a given scene only depends on the

number of objects and relations and ignore ensemble statistics of the scene. What if, for

instance, remembering a scene of 4 green polygons is harder than remembering scene

of 4 multi-colored polygons? By focusing exclusively on the number of objects and

possible relations and ignoring actual image features, (Clevenger and Hummel, 2014)

only partially addressed the question of memory resource allocation. The trade-off in

resource allocation between slots and precision likely depends on more than relations.

Additional aspects of this trade-off were explored by (Franconeri, Alvarez, and

Enns, 2007; Brady, 2011; Brady and Tenenbaum, 2013), and (Brady and Alvarez,

2015). (Franconeri, Alvarez, and Enns, 2007) found subjects could attend to a variable

number of locations in a scene, depending on the spatial precision demanded by

the task. When a search task required fine spatial resolution and a cue indicated

target location with high precision, then only a few objects could be attended to

simultaneously. When the task required coarser resolution and the cue indicated

target location with lower precision, more locations could be attended to. Importantly,

the total number of objects in the scene remained constant. Despite this constancy,
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(a) (b) (c)

Figure 2.11 Context effects in working memory for composite images. Stim-
ulus and error patterns from (Brady and Alvarez, 2015). a) Subjects were shown a set
1-6 of colored disks equidistant from a central point. The disks disappeared briefly, and
subjects were then asked to recall the color of each disk in a random order by using a
slider. b) Pattern of errors for a particular 1-disk stimulus. Errors are measured in degree
of deviation from true values in HSV color space. c) The same plot, but for a particular
3-disk stimulus. Notice that the angular variance for subject responses is much narrower.
Brady and colleagues seek to explain how context among multiple items affects memory
allocation. Figure taken from (Brady and Alvarez, 2015).

the division of attention could be flexibly modified by different cues. While neither

strictly about working memory nor relations, the study of (Franconeri, Alvarez, and

Enns, 2007) does demonstrate the importance of cue type for the visual analysis of a

cluttered scene. As attention is speculated to interface with working memory in order

to detect spatial relations, cue type could have an indirect effect on working memory

capacity as well. The experiments of (Clevenger and Hummel, 2014), modified to

incorporate the cueing paradigm of (Franconeri, Alvarez, and Enns, 2007), might

demonstrate a cue-dependent flexibility of mnemonic resources.

Furthermore, (Brady and Alvarez, 2015) provide evidence that ensemble statistics

of a visual scene affect how it is stored in working memory. Subjects were briefly

shown images of 1-6 colored circles and then asked to report the exact color of each of

the circles in a random order. Their subjects made errors highly inconsistent with

a model of working memory based only on the number of scene items. For example,

subjects consistently found certain 3-item stimuli to be much easier to recall than

others. Moreover, certain 3-item stimuli were easier to recall than some 1-item stimuli.

The pattern of errors was neither explained by a model based on numbers of individual

items, nor on models based on a chunking strategy that unitized multiple items into
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one memory representation (Halford, Wilson, and Phillips, 1998). Instead, errors

were best explained by a hierarchical model incorporating both information about

individual items and how they could be grouped into various chunks. Further evidence

that visual memory stores items not as indivisible units but as hierarchically structured

objects was provided by (Brady, 2011) and (Brady and Tenenbaum, 2013). While

these results are not strictly about spatial relations, it is easy to see how they could be

applied to a spatial rule paradigm. How, for instance, would the results of (Clevenger

and Hummel, 2014) have changed if polygon colors had been systematically varied in

light of (Brady and Alvarez, 2015)’s findings? And what would a model of working

memory look like that allowed for structured, hierarchical representations of objects?

The psychophysics literature reviewed so far suggests important roles for attention

and memory in the detection of visual relations. Though some relations, seemingly, can

be detected pre-attentively (recall (Donderi and Zelnicker, 1969)), most cases require

serial attention and the storage of intermediate computations in working memory.

Both attention and working memory have extensive neuroscientific literatures, though

this material does not typically explore relational processing. We review some of the

neuroscientific studies dealing with visual relations in the next section.

2.2.2 Neuroscience

There is a substantial literature on the neural basis of attention (see (Petersen and

Posner, 2012) for review and (Harris and Thiele, 2011) for related literature on

cortical rhythms as a basis for attention) and working memory (see (Constantinidis

and Klingberg, 2016)), though a comparatively little amount of this literature deals

with visual relations specifically. Moreover, most studies of the neural foundation of

relational processing rely on somewhat coarse imaging data rather than circuit-level

or single-cell analyses, so neuroscientific theories of visual reasoning are typically only

based on brain regions activated during relational psychophysics. However, there
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is still much for the modeler to glean from this literature. The three main topics

discussed in this section are 1 ) whether or not different brain regions are activated

during different types of visual relations, 2 ) to what extent these different regions

are hemispherically organized, and 3 ) how much of this hemispheric organization

arises from different receptive field sizes in the ventral and dorsal streams of the visual

cortex.

In the last section, we saw how subjects in (Brady and Alvarez, 2015) performed

an experiment in which locations had to be matched to colors ( Fig. 2.11). A natural

question is how information from two modalities, spatial location and color, can be

integrated into one judgment. There is evidence that posterior cortical regions are

specialized to hold only particular modalities in working memory (Zeki and Shipp,

1988; Jonides et al., 1993; Courtney et al., 1996). These specialized regions then

converge (Fuster, 1997) on prefrontal cortex (PFC) where it is speculated that diverse

modalities are integrated in working memory. For example, prefrontal cortex has been

shown to hold both spatial and object information in working memory (Rao, Rainer,

and Miller, 1997; Rainer, Asaad, and Miller, 1998b; Rainer, Asaad, and Miller, 1998a).

Prabhakaran et al. (2000) tested the role of PFC as a spatial and verbal integrator

in an fMRI study with 6 subjects which involved some simple relational processing.

In a key experiment from this study, subjects viewed a stimulus with four pairs of

parentheses and four capital letters (Fig. 2.12). The stimulus disappeared for either

5000 ms (the "delay" condition) or 250 ms (the "no-delay") condition, during which

time subjects were told to keep the previous display in memory. After this delay,

one pair of parentheses enclosing a letter reappeared on the display. Subjects were

asked both whether the reappeared parentheses were at some parentheses location

from the previous display and if the new letter was in the previous display, regardless

if it reappeared in the right location. In the "bound" condition, the initial display

depicted parentheses enclosing letters across the visual field. In the "separate" con-
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dition, the initial display simply had letters arranged horizontally at the center of

the visual field. In the "bound" condition, letters and parentheses were bound by a

spatial relation, namely, co-location. (Prabhakaran et al., 2000) were curious which

brain regions were activated when the task required recognition of this relation and

the subsequent "binding" of verbal to location information. They found that the

maintenance of working memory in the "bound" condition resulted in significantly

more right prefrontal activation than in posterior regions. Control experiments testing

for preferential activation of prefrontal cortex to either spatial or verbal information

showed no effect. The opposite was found for posterior regions, subregions of which

would selectively activate to different stimulus modalities. The emphasis placed by

(Prabhakaran et al., 2000) on integrating verbal and spatial information is interesting

in light of the aforementioned results (Section 2.2.1) connecting linguistic and visual

representations of spatial relations.

It could be argued that the results of (Prabhakaran et al., 2000) do not directly

bear on visual relations since the task only required memory and not any reasoning.

However, a similar result was found by (Kroger et al., 2002) with a task for which

relational complexity could be parametrically varied. Subjects were shown Raven’s

progressive matrices which varied in relational complexity and difficulty (Fig. 2.13).

Relational complexity was varied by making the solution to the matrix problem depend

on more items (e.g. Fig. 2.13a depends on one item, while Fig. 2.13b depends on two).

Relational complexity was balanced with difficulty, which was controlled by adding

more distractors (see Fig. 2.13c). The authors found that both increased relational

complexity and difficulty led to increased activation in parietal and dorsolateral pre-

frontal cortex. However, only high levels of relational complexity selectively activated

anterior left prefrontal cortex. They concluded that this specific brain region was

involved in the integration of complex relations among stimuli, though their result

runs somewhat counter to that of (Prabhakaran et al., 2000) who implicated right
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(a) (b)

Figure 2.12 Pre-frontal cortex as spatial and verbal integrator. Example stimuli
from a two-factor spatial relations design of (Prabhakaran et al., 2000). Subjects had to
remember 4 spatial locations marked by parentheses and 4 letter identities from an initial
stimulus displayed for 2000 ms. In the "bound" condition, parentheses and letters appeared
at the same location. In the "separate" condition, parentheses could appear anywhere on
the stimulus, but letters were always centrally displayed along the horizontal axis. Either a
250 ms or 5000 interstimulus period occurred, according to the delay vs no-delay condition,
followed by the appearance of a letter and a single pair of parentheses. The appearing
letter was always enclosed by the appearing parentheses, even in the "separate" condition.
Subjects were asked to determine if both the new parentheses and new letter had appeared
in the first stimulus. Notice that, when letters reappear, they are lower case, so letter
identity just be remembered, and not just a particular orthographic symbol. Figure taken
from (Prabhakaran et al., 2000).
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(a) (b) (c)

Figure 2.13 Visual relations in progressive matrices. Raven’s progressive matrices
used in the spatial relations task of (Kroger et al., 2002). a) Each cell in the matrix contains
a single item and the angular relations among these single items across the matrix comprise
the relationship to be completed by the subject. b) Same as a, but with two items per cell.
Now there are two relations to be recognized: the angle of the triangular item and the
vertical position of the ball. c) Panels a and b varied by relational complexity, but panel c
shows how difficulty can be increased while maintaining relational complexity. There are
numerous items per cell, but only one of them is meaningful for the inter-cell relations.
However, subjects still need to search for relations among all items, and spurious relations
could still be detected. Figure taken from (Kroger et al., 2002).

prefrontal cortex instead of left. It may be that (Prabhakaran et al., 2000)’s result

depends on the integration of specifically verbal and spatial information, or it may be

that the experiment in (Kroger et al., 2002) was not properly balanced for difficulty,

since subjects would have to check distractors for possible relational relevance as well.

Later work by (Golde, Cramon, and Schubotz, 2010) further explored the role of

PFC as a relational integrator, this time compared to the premotor cortex (PMC).

Like (Prabhakaran et al., 2000), this study sought to distinguish two brain regions

according to their computational role and sensory preference. While the PMC is

traditionally conceived of as dealing largely with action-related information, it has

been implicated in some abstract reasoning tasks (Knauff et al., 2003; Goel and Dolan,

2004). (Golde, Cramon, and Schubotz, 2010) imaged the PFC and PMC with fMRI

while subjects completed two types of Raven’s progressive matrices. For some of these

matrices, the pattern depended on the serial ordering of matrix elements. For others,
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solution depended on information distributed non-sequentially throughout the matrix.

The authors also varied whether or not the matrix depicted concrete (photographic)

or abstract (synthetic) images. Though both PFC and PMC were equally activated by

the solution of matrices depicting abstract and concrete relations, only the PFC was

strongly activated by solutions requiring the integration of relational information. The

PMC, on the other hand, was activated by solutions that required serial reasoning.

The authors conclude that the PMC is specialized for the concatenation of elements in

a visual relation, whereas the PFC is required for integrating relations across a visual

scene. Thus, claim the authors, PFC and PMC are differentiated by computational

function and not by domain selectivity.

The above studies compared brain regions along an integrative/non-integrative

task axis. Another axis along which visual relations tasks are divided is the so-called

categorical-coordinate distinction. A categorical relation is a spatial relation that

requires the observer to recognize general arrangements like above, below, etc. Coordi-

nate relations, on the other hand, require precise metrical judgments. Noticing that a

fork is to the left of a knife is the detection of a categorical relation; noticing that the

fork and knife are roughly separated by 20 cm is the detection of a coordinate relation.

Humans have shown performance advantages for categorical judgments over precise,

metrical judgments (Kosslyn et al., 1989; Hummel and Holyoak, 2003; Gentner, 2010).

There is evidence that the detection of categorical and coordinate relations relies

on two different hemispherically segregated networks. (Kosslyn et al., 1989) reported

that their subjects displayed a left hemispheric advantage for categorical relations and

a right hemispheric advantage for coordinate relations in an experiment with stimuli

presented in either visual hemifield. Though (Kosslyn et al., 1989) backed up their

findings with computer simulations, their results were subsequently called into question

as artifacts of task difficulty (Slotnick et al., 2001) or spatial resolution (Sergent, 1991).
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Yet, strong evidence for the hemispheric dichotomy has come from studies showing

impairment to coordinate processing after damage to right parietal cortex (Hannay,

Varney, and Benton, 1976; Laeng, 1994) and impairments in left-right judgments

following left posterior parietal lesions (Mayer et al., 1999). A joint fMRI/lesion study

by (Amorapanth, Widick, and Chatterjee, 2010) supported the hemispheric dichotomy,

though the authors emphasized that the distinction was one of degree rather than

kind.

This dichotomy is thought to arise from each hemisphere’s spatial frequency tuning

and the way this tuning recruits neurons of different receptive field (RF) sizes. (Hinton,

McClelland, and Rumelhart, 1986) and (Eurich and Schwegler, 1997) have argued that

the spatial resolution of a neural network is increased to the degree that the borders

of its neurons’ RFs overlap the interiors of other RFs. Conversely, networks with little

RF border overlap will benefit categorical judgments over precise metrical judgments

(Prinzmetal, 2005). Consider for example, RFs depicted in Fig. 2.14. Each gray disk

represents the RF of a single neuron and the ensemble of 3 neurons divides the visual

field into 7 regions labeled a− g. Consequently, a small stimulus traversing the path γ

would elicit 7 different population responses indicating stimulus location. This division

of space arises, for example, from neuron 3’s boundary overlapping the interiors of

neurons 1 and 2. The ensemble in Fig. 2.14 is relatively suited for coordinate relational

detection because of its high spatial resolution, much like the neurons with large,

overlapping RFs in monkey parietal cortex (Motter and Mountcastle, 1981; Motter

et al., 1987). The extreme case of little boundary overlap would occur when all neurons

have perfectly overlapping RFs. In this case, space would only be divided into 3 regions

corresponding the interior of the overlapping receptive fields and the exteriors marked

by a and g in Fig. 2.14. This new ensemble would be relatively suited for categorical

judgments since it functions like a digital position detector: the ensemble is activated

if a stimulus on γ lies in the overlapping RFs and is inactive otherwise. The ensemble
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Figure 2.14 Spatial acuity from highly overlapping receptive fields. Three
receptive fields demonstrating high spatial resolution for overlapping RF boundaries. RFs
overlap to create 7 different population responses, including a and g for responses above and
below the ensemble. A particle moving along the path γ will elicit 7 responses according
to its spatial location. Figure from (Eurich and Schwegler, 1997).

could therefore make categorical, rather than graded, judgments. Additionally, it has

been argued that ensembles with large, overlapping RFs8 tend to be sensitive to low

spatial frequencies, whereas those with little overlap select for high frequencies (Laeng

et al., 2011). So, we should expect, somewhat paradoxically, fine spatial resolution in

ensembles sensitive to low frequencies and coarse spatial resolution (and thus better

categorical detection) in networks selecting for high frequencies.

(Ivry and Roberston, 1998) has argued that the left and right hemispheres select

for high and low spatial frequencies, respectively. Thus, the lateral dichotomy for

categorical vs coordinate relations could arise from the spatial frequency preferences

and RF sizes of each hemisphere. Moreover, (Laeng et al., 2011) has proposed that

attentional cues can encourage left or right hemispheric processing leading to facilita-

tion of categorical or coordinate relation detection. (Laeng et al., 2011) tested this
8An ensemble does not need to have large RFs in order have high spatial resolution (Eurich

and Schwegler, 1997), though increased RF size does promote boundary overlap under reasonable

assumptions.
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hypothesis an a categorical/coordinate relation experiment based on evidence that

attention to larger/smaller image portion selectively recruits the right/left hemisphere

(Delis, Robertson, and Efron, 1986; Fink et al., 1996; Fink et al., 1997; Hübner,

1998; Hübner and Studer, 2009; Robertson and Kim, 1999; Yamaguchi, Yamagata,

and Kobayashi, 2000). Subjects were asked to make either categorical (rotated vs

non-rotated) or coordinate (distance between two image items) judgments while RT

was measured. First, an image appeared on a display depicting two animals. Then,

the animals disappeared and were replaced by a square which either accurately or

inaccurately predicted the location of the animals when they were to reappear. The

squared cue was varied in size, with the small square intended to promote a small at-

tentional aperture, and the large one intended for a larger aperture. When the animals

reappeared on the screen, subjects on categorical trials were told to report whether

the animals remained in a given categorical relation seen in the initial presentation.

On coordinate trials, they had to report whether the distance between the animals

changed. The authors found that small cues decreased RT of correct judgments on

categorical trials, and increased RT on coordinate trials. Large cues had the opposite

effect. (Laeng et al., 2011) argued that this effect arose from the way attention

recruited different hemispheres during the task. Big cues, they argued, engaged the

low-frequency selective right hemisphere preferentially. This spatially distributed

attention recruited more overlapping RFs resulting in higher spatial resolution and

faster RT. On the other hand, small cues promoted more focused attention, led to

more left hemisphere activation and the recruitment of fewer, less overlapping RFs,

and therefore better categorical detection.

These results were bolstered by further work by (Ham et al., 2012) who found a

connection between categorical vs coordinate processing and the size of an attentional

aperture as measured by BOLD signal in early visual cortex in humans. Unlike in

the experiment of (Laeng et al., 2011), subjects were given no exogenous attentional
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cue. Yet, (Ham et al., 2012) still found that cortical activity was diffuse during a

coordinate task and focused during a categorical task. This effect was the strongest in

V3, but insignificant in earlier areas.

2.2.3 Computational Models

These physiological studies largely support the psychophysical literature we discussed

earlier: visual relations can be detected with an attentional window with neural

correlates as early as V3 together with working memory in PFC and PMC. Further,

the work of (Eurich and Schwegler, 1997; Laeng et al., 2011) regarding receptive field

sizes and attentional apertures, sheds light on how one of the basic requirements for

relational detection, localization, might function. However, physiological evidence is

only as good as the computational model that explains it. For example, the study

of biological object recognition has benefited immensely from fruitful comparisons to

models like HMAX (Riesenhuber and Poggio, 1999; Serre, Oliva, and Poggio, 2007)

and feedforward neural networks in general (Hong et al., 2016).

Yet, there have been surprisingly few attempts at the modeling of visual relation

detection, perhaps because a definition of good performance has not yet emerged.

There are notable exceptions, which we review here. The next section of this chapter

will be a detailed study of CNNs and so-called "relation networks", so we will save a

description of those models for later. For now, we will simply describe some models of

mostly historical interest.

Explicit relational units Encoding visual relations with neurons selecting for

particular objects in particular relations is inflexible and computationally expensive.

In such a model, relations are only encoded "implicitly" in every output neuron. A

more flexible solution is to use two sets of neurons, one for objects and one explicitly
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for relations, whose combined activity represents a given scene structure. For instance,

to detect a cat above a dog, the "explicit relation" neural network would activate

its cat, dog and "above" units simultaneously. Whereas the implicit approach would

require rn(n− 1) output neurons to detect r (asymmetric) binary relations among

n objects, the implicit model reduces the number to n(n − 1) + r, similarly to the

working memory model of (Clevenger and Hummel, 2014).

A notable (not necessarily visual) formalism incorporating explicit relation units

is the semantic cognition model of (Rogers and McClelland, 2004) (Fig. 2.15). The

model is a 4-layer feedforward neural network with two separate sets of input units

representing semantic items and binary relations between them. The goal of the

model is to complete relational statements like "Robins can " with a correct attribute

like "fly". Middle layers of the network encode both a representation of each scene

item and their relational semantics. The whole model is trained by supervision with

backpropagation of error. Training examples of relations are provided to the model

by simultaneously activating an input item and an input relation together with the

correct completion attribute. After training, the model can represent similarities

between categories, so that selecting either "Robin is " or "Salmon is " will both

result in "living".

However, without an explicit formal semantics and corresponding notions like set

inclusion, the model cannot answer questions like "If there are both boys and girls in

city X, are there more children or more boys?" (Halford, Wilson, and Phillips, 2010).

Further, the model struggles to represent composite propositions like "Robin ISA

AND Salmon ISA ". The simultaneous output activation of "bird" and "fish" leaves

ambiguous the question of which, between robins and salmon, are birds and which

are fish. Composite propositions are notoriously difficult to represent in connectionist

systems lacking a combinatorial syntax and semantics (Fodor and Pylyshyn, 1988).

There are some connectionist systems, like the structured tensor analogical reasoning
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Figure 2.15 Hardcoded relational processing in a neural network. A four-
layer feedforward network for learning relations from (Rogers and McClelland, 2004).
The network is designed to complete relational expressions like "Canary can " with an
attribute like "fly". The model is then said to understand that "canary" and "fly" obey the
relationship "can". The model depends on two types of input units, one for item labels and
one for explicit relational units. Training consists of activating a unit from each of the input
types and providing the correct output. Intermediate layers learn to correctly associate
items, relations and attributes. However, the model has trouble in representing composite
relationships simultaneously (see main text). Figure from (Rogers and McClelland, 2004).
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model (STAR) of (Halford, Wilson, and Phillips, 1998), that can represent composite

propositions, but only by resorting to the wasteful, inflexible templates that plague

feedforward networks. Additionally, because relations and scene items are always

provided to the semantic cognition model as simultaneous inputs during training, the

network can only represent relations with respect to particular objects. It cannot

detect a familiar relation between new objects. This suggests such a model would be

critically limited in the detection of spatial relations, which often involve completely

novel objects, but in familiar arrangements.

Relations from binding The computational expense of a connectionist model is

typically measured in the number of neurons and training samples it needs to achieve a

desired accuracy. As we have emphasized, connectionist systems for relation detection

have high costs by both these measures. One method of alleviating this cost is to

encode relations not by neurons but by new types of neuronal activity. If neurons are

allowed dynamic activity, for example in the form of spikes, then relations could be

represented by synchronizing the activity of units representing different items in the

relation. This is the basis for so-called binding-by-synchrony models, which we first

described with respect to the shifting attention experiment of (Franconeri et al., 2012).

Biological neurons are known to synchronize their firing rates in various circumstances,

and this correlated activity has been speculated to play a role in attention (Robertson,

2003), perceptual grouping, (Farid, 2002) and consciousness (Leeuwen, 2007). Greater

detail will be provided in Ch. 3.

There are numerous computational models which attempt to represent relational

structure by binding-like mechanisms, for example (Doumas, Hummel, and Sandhofer,

2008), (Shastri, 1999), (Sougné, 1999) (Hummel and Biederman, 1992), (Lades et al.,

1993), and (Hummel and Holyoak, 2003). Binding models represent a somewhat

underdeveloped area of research. As of yet, no binding-by-synchrony model has been
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shown to work for natural images. Moreover, the synchronization of neural firing

is an emergent, parallel process across a network, and does not involve a serially

shifting window, as we have seen from psychophysical and neuroscientific evidence.

And, though neuronal synchrony has been implicated in many important psychological

phenomena, no rigorous computational demonstration linking synchrony to behavior

has yet been offered. We take some steps at alleviating this in Chs. 4 and 5.

Relations from attentional routines Computational studies more in line with

contemporary psychophysics assert that relations should be extracted by a serial

attentional routine. Theoretical work by (Ullman, 1984) emphasizes attentional

routines as a key middle ground between perception and higher order cognition, in

both humans and potential computational models.

Ullman defends a set of basic attentional operations which he claims must underlie

relational reasoning. First, attention must be able to shift its focus from one image

region to another. The studies of (Franconeri et al., 2012) and (Yuan, Uttal, and

Franconeri, 2016) support this claim, and evidence from patients with simultagnosia

shows that the inability to shift attention causes severe deficits in visual reasoning

(Hécaen and Ajuriaguerra, 1954). Ullman also emphasizes the role of shifting attention

in controlling RT in visual search and recognition (Eriksen and Schultz, 1977; Posner,

Nissen, and Ogden, 1978; Tasal, 1983), visual change sensitivity (Shulman, Remington,

and Mclean, 1979), and short-term visual working memory (Sperling, 1960; Shiffrin,

McKay, and Shaffer, 1976).

Second, locations across a scene must be indexed in a manner that can guide a

shifting focus. By indexing, Ullman refers to some process by which spatial locations

are highlighted for distinguishing properties and assigned a coordinate which can

be fed to an attentional window. For example, features that pop-out in a cluttered

scene (Treisman and Gelade, 1980) are rapidly assigned indices readable by attention,
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Figure 2.16 Perceptual grouping as a visual routine. Six interlocking objects.
(Ullman, 1984) uses this example to explain why perceptual grouping must be an elemental
operation for any attentional routine. Without the ability to disentangle these interlocking
curves into six discrete objects, numerosity judgments will be impaired. Figure from
(Ullman, 1984).

regardless of their location in the visual field. Other features are only assigned an

index when the focus of attention is close to them.

Next, Ullman claims that image regions must be perceptually grouped or bound.

For example, to count the number of closed curves in Fig. 2.16, it helps to unitize

each enclosed region into a single object. Non-grouping strategies, like simple shifts

of attention, are unsuited for images like Fig. 2.16, where the borders of objects

intertwine in complicated ways. Uniting these curves requires grouping spatially

disparate regions of each curve into a cohesive figure. It is difficult to see, for example,

how visual relations depending on numerosity could be detected without a perceptual

grouping mechanism. Numerosity requires the detection of unitized "wholes", instead

of unbound bags of features. A related requirement for an attentional routine, says

Ullman, is the ability to trace contours. This ability would aid in the detection of

closed curves and in texture segregation (Jolicoeur, Ullman, and Mackay, 1984).

Finally, says Ullman, the computations from these attentional operations must be

stored ("marked", in his words), in memory. When the complete attentional routine
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finishes scanning a scene, the intermediate results in memory can be integrated into a

final judgment, similar to the way the PFC is thought to integrate visual information in

working memory in relational detection (Golde, Cramon, and Schubotz, 2010; Kroger

et al., 2002).

We have seen several of these theoretical requirements appear before in practical

relation processing experiments: (Franconeri et al., 2012) found evidence for the serial

shifting of attention, the visual search experiments of (Donderi and Zelnicker, 1969)

must require some sort of location indexing, and integration of information in working

memory played key part in the work of (Golde, Cramon, and Schubotz, 2010). Others

of Ullman’s desiderata seem less necessary. While perceptual grouping might aid in

numerosity judgments, it seems like unbound bags of features might suffice for spatial

relation detection, especially when objects are spatially separated. The same could be

said of contour tracing. From the literature we have reviewed so far, the hard core of

Ullman’s list seems to be 1) shifting attention, 2) location indexing and 3) working

memory.

While (Ullman, 1984) outlined some key theoretical components of an attentional

system for visual reasoning, he did not actually construct a functioning model. Such a

model was later designed by (Kopp, 1994) and used to assign linguistic descriptions to

scenes using a shifting saccadic mechanism. The model (Fig. 2.17) can learn spatial

relations like "right" and "above" by supervision on simple binary scenes paired with

linguistic descriptions. The scene items, though just simple binary patterns, are

given fanciful names, like CAT. Like the so-called "what and where" pathways of the

visual cortex (Schneider, 1969; Ungerleider and Haxby, 1994), semantic and spatial

information flow through model in two segregated channels. The "what" channel takes

in a cropped version of the scene, according to the current focus of attention, and

subsamples it. This coarse object representation is then encoded by a two-layer neural

network whose output is fed to a correlation matrix which matches visual/spatial
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activity to simultaneous linguistic input.

The "where" channel first locates the two objects by finding regions of the retina

with maximal activity. Once the centroids of these regions have been detected by

lateral inhibition, an attentional window likened to saccadic eye movement randomly

jumps back and forth between them. The direction of saccadic movement is constrained

to only move up, down, left, right or not at all. Saccades fix a small attentional

window on the retina which crops the scene so that it can be fed to the semantic

pathway. Upon each saccade, the coordinates of the attentional window are fed to a

second neural network where the direction of saccadic movement is classified. The

output of this classification then converges on the correlation matrix. The model is

trained by providing simple binary scenes with strings like "DOG RIGHT_OF CAT",

which are parsed by a simple encoding network and then fed to the correlation matrix.

The correlation matrix encodes the co-occurrence of linguistic and visual/spatial

information.

During a test phase, the model is run in time and allowed to "describe" a scene by

finding the linguistic template that has the highest correlation with the visual/saccadic

information in the matrix (Fig. 2.17). Note that, like many of the authors we have

encountered so far, (Kopp, 1994) has made an explicit connection between visual

relations and linguistic description. His model only works because of a learned

correlation between linguistic representations of direction and saccadic movement.

The model also has a very simple form of memory, in the form of the correlation

matrix, which, like memory models discussed earlier, multiplexes relational (in this

case locational) information with object information. Further, Kopp’s model focuses an

attentional window on one object at a time, just like the human visual system, according

to (Franconeri et al., 2012). However, because saccades are randomly generated and

training data is balanced so that visually-identical but linguistically-different scene

descriptions appear equally often (e.g. there are as many "DOG RIGHT_OF CAT
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Figure 2.17 An early attentional model of visual reasoning. The spatial relation
detection model of (Kopp, 1994), designed to match strings of English with simple binary
scenes. The model is roughly inspired by the ventral and dorsal streams of the visual
cortex. The model’s "what" path (beginning top leftward arrow) encodes the pixel data
from an attentional window on the scene with a two-layer neural network terminating on
the columns of an array designed to correlate visual activity with linguistic representations.
The dorsal stream locates scene items by lateral inhibition, randomly saccades between
the items in one of 5 pre-wired directions, then uses saccade coordinates to classify the
directions of attentional shifts. These directions are encoded by a 1-layer neural network
and then passed to the correlation matrix. Strings of English from the output layer are
trivially parsed and encoded with 1-layer network, now terminating on the rows of the
correlation matrix. The model is run in time and the matrix row with maximal activity
after a given time is chosen as the most likely scene interpretation. Figure from (Kopp,
1994).
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as CAT LEFT_OF DOG), it can only represent symmetric relations. The saccadic

system of the model does not incorporate the linguistic asymmetry of subject vs

object, and therefore we would not expect it to recapitulate the RT results of (Roth

and Franconeri, 2012). Moreover, the system can produce redundant descriptions like

"CAT RIGHT_OF FROG UNDER FLY OVER FROG", since there is no executive

control of saccades. This severely limits the system’s use in cluttered scenes where,

not only are relevant objects difficult to isolate, but executive attentional control is

required to avoid task-irrelevant comparisons.

Nevertheless, the model of (Kopp, 1994) incorporates many of (Ullman, 1984)’s

desiderata and much of the psychophysical/neuroscientific literature we reviewed

earlier. Another model, radically different in construction, but similar in principle,

was offered by (Chikkerur et al., 2010). Their Bayesian inference model of attention

was not explicitly designed to detect spatial relations, but simply to simultaneously

identify and localize objects in a cluttered scene. The authors showed how, merely by

performing inference on the joint distribution of object identity and location, they

could explain both spatial and feature-based attention. The former emerged from

their Bayesian theory as a means of reducing uncertainty in shape information; the

latter, as a means of reducing spatial uncertainty. They used this model to explain

some key findings in the attentional literature: pop-out effects, attentional modulation

of neuronal tuning curves, and patterns of eye fixations. (Chikkerur et al., 2010), like

(Kopp, 1994) emphasized the role of attention in serially locating single objects at a

time. Moreover, their model was designed to work in clutter, which we already noted

as a key limitation in (Kopp, 1994)’s early model. Combining the Bayesian model of

(Chikkerur et al., 2010) with a working memory could result in a better-functioning,

more mathematically principled version of Kopp’s original model.
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2.3 Systematicity deficits in feedforward neural net-

works

Consider the images on Figure 2.18(a). These images were correctly classified as two

different breeds of dog by a state-of-the-art convolutional neural network (CNN; He

et al., 2015). This is quite a remarkable feat because the network must learn to extract

subtle diagnostic cues from images subject to a wide variety of factors such as scale,

pose and lighting. The network was trained on millions of photographs, and images

such as these were accurately categorized into one thousand natural object labels,

surpassing, for the first time, the accuracy of a human observer for the recognition of

one thousand image categories on the ImageNet classification challenge (Deng et al.,

2009).

Now, consider the SVRT image on the left side of Figure 2.18(b). On its face,

it is quite simple compared to the images on Figure 2.18(a). It is just a binary

image containing two three-dimensional shapes. Further, it has a rather distinguishing

property: both shapes are the same up to rotation. The relation between the two

items in this simple scene is rather intuitive and obvious to human and non-human

observers. Recall the striking example from Martinho III and Kacelnik (2016), in

which newborn ducklings were shown to imprint on an abstract concept of "sameness”

from a single training example at birth (Figure 2.18(b), right panel). Yet, as we will

show in this study, CNNs struggle to systematically learn this simple visual relation.

Why is it that a CNN can accurately categorize natural images while struggling to

recognize a simple abstract relation? That such task is very difficult for contemporary

computer vision algorithms is known. Earlier, we discussed the results of Fleuret et al.

(2011) who showed that black-box classifiers fail on most tasks from the synthetic visual

reasoning test (SVRT), a battery of twenty-three visual-relation problems, despite

massive amounts of training data. More recent work has shown how CNNs, including
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"Labrador Retriever" "Same"

(a) (b)
"Golden Retriever"

Figure 2.18 Object recognition and visual reasoning in machines and
minds.(a) State-of-the-art convolutional neural networks can learn to cate-
gorize images (including dog breeds) with high accuracy even when the task
requires detecting subtle visual cues. The same networks struggle to learn the
visual recognition problems shown in panel (b). (b) In addition to categorizing
visual objects, humans can also perform comparison between objects and
determine if they are identical up to a rotation (left). The ability to recognize
"sameness” is also observed in other species in the animal kingdom such as
birds (right). The geometric figures are adapted from (Shepard and Metzler,
1971), and the image with a duckling is taken with permission from Martinho
III and Kacelnik (2016).

variants of the popular LeNet (LeCun et al., 1998) and AlexNet (Krizhevsky, Sutskever,

and Hinton, 2012) architectures, could only solve a handful of the twenty-three SVRT

problems (Ellis, Solar-lezama, and Tenenbaum, 2015; Stabinger, Rodríguez-Sánchez,

and Piater, 2016). Similarly, Gülçehre and Bengio (2013), after showing how CNNs

fail to learn a same-different task with simple binary "sprite” items, only managed to

train a multi-layer perceptron on this task by providing carefully engineered training

schedules.

However, these results are not entirely conclusive. First, each of these studies only

tested a small number of feedforward architectures, leaving open the possibility that

low accuracy on some of the problems might simply be a result of a poor choice of

model hyper-parameters. Second, while the twenty-three SVRT problems represent

a diverse collection of relational concepts, the images used in each problem are also

visually distinct (e.g., some relations requiring stimuli to have three items, while other

require two). This makes a direct comparison of difficulty between different problems
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challenging because the performance of a computational model on a given problem

may be driven by specific features in that problem rather than the underlying abstract

rule. To our knowledge, there has been no exploration of the limits of contemporary

machine learning algorithms on relational reasoning problems. Additionally, the issue

has been overshadowed by the recent success of novel architectures called "relational

networks” (RNs) on seemingly challenging "visual question answering” benchmarks

(Santoro et al., 2017).

In this section9, we probe the limits of feedforward neural networks, including

CNNs and RNs, on visual-relation tasks. Our goal is to demonstrate that these neural

architectures fail to learn and understand these relations systematically. That is,

learning and generalization of these relations depends strongly on nuisance parameters

having no bearing on the relation. In Experiment 1, we perform a performance

analysis of CNN architectures on each of the twenty-three SVRT problems, which

reveals a dichotomy of visual-relation problems: hard same-different problems and

easy spatial-relation problems. This result suggests that systematicity deficits depend

on the nature of the relation. In Experiment 2, we introduce a novel, controlled, visual-

relation challenge called parametric SVRT (PSVRT), which we use to demonstrate

that the unsystematic sensitivity of CNNs to nuisance parameters in visual relations.

In particular, we suggest that CNNs solve these problems via rote memorization of all

possible spatial arrangements of individual items. In Experiment 3, we examine two

models, the RN and a novel Siamese network, which simulate the effects of perceptual

grouping and attentional routing to solve visual relations problems. We find that the

former struggles to learn the notion of sameness and tends to overfit to particular

relation features, but that the latter can render seemingly difficult visual reasoning

problems rather trivial.
9A shorter version (Ricci, Kim, and Serre, 2018) of this section is to appear in the Proceedings of

the 40th Annual Conference of the Cognitive Science Society.
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Overall, our study suggests that a critical reappraisal of the capability of current

machine vision systems is warranted. Naturally, for each visual relation problem, there

exists some feedforward network which solves the problem, owing to the universal

approximation abilities of these models (Cybenko, 1989). Therefore, our critique

is ultimately cast in terms of efficiency. We argue that quantitative measurement

of systematicity in neural systems should rest on a comparison of architectural or

learning efficiency between humans and machines. We further argue that mechanisms

for individuating objects and manipulating their representations, presumably through

feedback processes that are absent in current feedforward architectures, are closing

this efficiency gap and more closely approximating the systematic visual reasoning

abilities of biological intelligence.

2.3.1 Experiment 1: A dichotomy of visual-relation problems

The SVRT challenge

The Synthetic Visual Reasoning Test (SVRT) is a collection of twenty-three binary

classification problems in which opposing classes differ based on whether or not images

obey an abstract rule (Fleuret et al., 2011) (for a discussion of human ability on this

task, see Sec. 2.2.1). For example, in problem number 1, positive examples feature two

items which are the same up to translation (Figure 2.19), whereas negative examples

do not. In problem 9, positive examples have three items, the largest of which is in

between the two smaller ones. All stimuli depict simple, closed, black curves on a

white background.

For each of the twenty-three problems, we generated 2 million examples split evenly

into training and test sets using code made publicly available by the authors of the

original study at http://www.idiap.ch/~fleuret/svrt.
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Figure 2.19 Sample images from the twenty-three SVRT problems. For each
problem, three example images, two negative and one positive, are displayed
in a row. Problems are ordered and color-coded identically to Figure 2.20.
Images in each problem all respect a certain visual structure (e.g., in problem
9, three objects, identical up to a scale, are arranged in a row.). Positive
and negative categories are then characterized by whether or not objects in
an image obey a rule (e.g., in problem 3, an image is considered positive if
it contains two touching objects and negative if it contains three touching
objects.). Descriptions of all problems can be found in (Fleuret et al., 2011).
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Hyper-parameter search

We tested nine different CNNs of three different depths (2, 4 and 6 convolutional

layers) and with three different convolutional filter sizes (2×2, 4×4 and 6×6) in the

first layer. This initial receptive field size effectively determines the size of receptive

fields throughout the network. The number of filters in the first layer was 6, 12 or 18,

respectively, for each choice of initial receptive field size. In the other convolutional

layers, filter size was fixed at 2×2 with the number of filters doubling every layer. All

convolutional layers had strides of 1 and used ReLU activations. Pooling layers were

placed after every convolutional layer, with pooling kernels of size 3×3 and strides of

2. On top of the retinotopic layers, all nine CNNs had three fully connected layers

with 1,024 hidden units in each layer, followed by a 2-dimensional classification layer.

All CNNs were trained on all problems. Network parameters were initialized using

Xavier initialization (Glorot and Bengio, 2010) and were trained using the Adaptive

Moment Estimation (Adam) optimizer (Kingma and Ba, 2015) with base learning

rate of η = 10−4. All experiments were run using TensorFlow (Abadi et al., 2016).

Figure 2.20 shows a ranked bar plot of the best-performing network accuracy for

each of the twenty-three SVRT problems. Bars are colored red or blue according

to the SVRT problem descriptions given in (Fleuret et al., 2011). Problems whose

descriptions have words like "same” or "identical” are colored red. These Same-

Different (SD) problems have items that are congruent up to some transformation.

Spatial-Relation (SR) problems, whose descriptions have phrases like "left of”, "next

to” or "touching,” are colored blue. Figure 2.19 shows positive and negative samples

for each of the corresponding twenty-three problems (also sorted by network accuracy

from low to high).

The resulting dichotomy across the SVRT problems is striking. CNNs fare uniformly

worse on SD problems than they do on SR problems. Many SR problems were learned

satisfactorily, whereas some SD problems (e.g., problems 20, 7) resulted in accuracy
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Figure 2.20 SVRT results. Multiple CNNs with different combinations of
hyper-parameters were trained on each of the twenty-three SVRT problems.
Shown are the ranked accuracies of the best-performing network optimized for
each problem individually. The x-axis shows the problem ID. CNNs from this
analysis were found to produce uniformly lower accuracies on same-different
problems (red bars) than on spatial-relation problems (blue bars). The purple
bar represents a problem which required detecting both a same-different
relation and a spatial relation.

not substantially above chance. From this analysis, it appears as if SD tasks pose a

particularly difficult challenge to CNNs. This is consistent with results from an earlier

study by Stabinger, Rodríguez-Sánchez, and Piater (2016).

Additionally, our search revealed that SR problems are equally well-learned across

all network configurations, with less than 10% difference in final accuracy between the

worst and the best network. On the other hand, deeper networks yielded significantly

higher accuracy on SD problems compared to smaller ones, suggesting that SD

problems require a higher capacity than SR problems. Experiment 1 corroborates

the results of previous studies which found feedforward neural networks performed

badly on many visual-relation problems (Fleuret et al., 2011; Gülçehre and Bengio,

2013; Ellis, Solar-lezama, and Tenenbaum, 2015; Stabinger, Rodríguez-Sánchez, and

Piater, 2016; Santoro et al., 2017) and suggests that low accuracy cannot be simply

attributed to a poor choice of hyper-parameters (like learning rate, etc.).
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We will emphasize again that results like this do not suggest that SD problems are

impossible to learn in CNNs, as long as the architectures available to the model are

sufficiently varied. Our results so far concern less a property of neural architectures

than a property of visual relations themselves. Naturally, there is a connection between

the nature of visual relations and the structure of machines capable of understanding

them, a connection strongly reminiscent of the correspondence of formal languages

with the automata capable of recognizing them (see Hopcroft, Motwani, and Ullman,

2008 for a detailed introduction). Future work should formalize this symmetry.

Though useful for surveying many types of relations, the SVRT challenge has two

important limitations. First, different problems have different visual structure. For

instance, Problem 2 ("inside-outside”) requires that an image contain one large item

and one small item. Problem 1 ("same-different up to translation”), on the other hand,

requires that an image contain two items, identically sized and positioned without one

being contained in the other. In other cases, different problems simply require different

number of items in a single image (two items in Problem 1 vs. three in Problem 9).

This confound leaves open the possibility that image features, not abstract relational

rules, make some problems harder than others. This confound makes it difficult to

tease apart deficits in systematic understanding from perceptual deficits10. Instead, a

better way to compare visual-relation problems would be to define various problems on

the same set of images. Second, the ad hoc procedure used to generate simple, closed

curves as items in SVRT prevents quantification of image variability and its effect

on task difficulty. As a result, even within a single problem in SVRT, it is unclear

whether its difficulty is inherent to the classification rule itself or simply results from

the particular choice of image generation parameters unrelated to the rule.
10For example, perhaps some objects in the SVRT data set are hard to perceive for a given

architecture because of poor visual acuity caused by an infelicitous choice of subsampling rate, kernel

size, etc.
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Figure 2.21 The PSVRT challenge. (a) Four images show the joint categories
of SD (grouped by columns) and SR (grouped by rows) tasks. Our image
generator is designed so that each image can be used to pose both problems by
simply labeling it according to different rules. An image is Same or Different
depending on whether it contains identical (left column) or different (right
column) square bit patterns. An image is Horizontal (top row) or Vertical
(bottom row) depending on whether the orientation of the displacement
between the items is greater than or equal to 45◦. These images were generated
with the baseline image parameters: m = 4, n = 60, k = 2. (b), (c), (d)
Six example images show different choices of image parameters used in our
experiment: item size (b), number of items (c) and image size ((d), the size of
an invisible central square in which items are randomly placed). All images
shown here belong to Same and Vertical categories. When more than 2 items
are used, SD category label is determined by whether there are at least two
identical items in the image. SR category label is determined according to
whether the average orientation of the displacements between all pairs of
items is greater than or equal to 45◦.
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2.3.2 Experiment 2: Quantitative measurement of the system-

atic understanding of spatial-relation and same-different

problems

The PSVRT challenge

To address the limitations of SVRT, we constructed a new visual-relation benchmark

consisting of two idealized problems (Figure 2.21) from the dichotomy that emerged

from Experiment 1: Spatial Relations (SR) and Same-Different (SD). Critically,

both problems used exactly the same images, but with different labels. Further,

we parameterized the dataset so that we could systematically control various image

parameters, namely, the size of scene items, the number of scene items, and the size

of the whole image. Items were binary bit patterns placed on a blank background.

For each configuration of image parameters, we trained a new instance of a single

CNN architecture and measured the ease with which it fit the data. Our goal was to

examine how hard it is for a CNN architecture to learn relations for visually different

but conceptually equivalent problems. For example, imagine two instances of the same

CNN architecture, one trained on a same-different problem with small items in a large

image, and the other trained on large items in a small image. If the CNNs can truly

learn the "rule” underlying these problems, then one would expect the models to learn

both problems with more-or-less equal ease. However, if the CNNs only memorize the

distinguishing features of the two image classes, then learning should be affected by

the variability of the example images in each category. For example, when image size

and items size are large, there are simply more possible samples, which might put a

strain on the representational capacity of a CNN trying to learn by rote memorization.

In other words, we equate a sensitivity in learning ability to non-rule-related image

properties with a deficit in visual systematicity.

In rule-based problems such as visual relations, these two strategies can be dis-
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tinguished by training and testing the same architecture on a problem instantiated

over a multitude of image distributions. Here, our main question is not whether

a model trained on one set of images can accurately predict the labels of another,

unseen set of images sampled from the same distribution. Rather, we want to un-

derstand whether an architecture that can easily learn a visual relation instantiated

from one image distribution (defined by one set of image parameters) can also learn

the same relation instantiated from another distribution (defined by another set of

parameters) with equal ease by taking advantage of the abstractness of the visual

rule. Evidence that CNNs use rote memorization of examples was found in a study by

Stabinger and Rodriguez-Sanchez (2017), who tested state-of-the-art CNNs on variants

of same-different visual relation using a dataset of realistically rendered images of

checkerboards. Stabinger and Rodriguez-Sanchez (2017) found that CNN accuracy

was lower on data sets whose images are rendered with higher degrees of freedom

in viewpoint. In our study, we take a similar approach while using much simpler

synthetic images where we can explicitly compute intra-class variability as a function of

image parameters. This way, we do not introduce any additional perceptual nuisances

such as specularity or 3D rotation whose contribution to image variability and CNN

performance is difficult to quantify. Because PSVRT images are randomly synthesized,

we generate training images on-line without explicitly reusing data, and there is no

hold-out set in this experiment. Thus, we use training accuracy to measure the ease

with which a model learns a visual-relation problem.

Methods

Our image generator produces a gray-scale image by randomly placing square binary

bit patterns (consisting of values 1 and −1) on a blank background (with value 0).

The generator uses three parameters to control image variability: the size (m) of each

bit pattern or item, the size (n) of the input image and the number (k) of items in
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an image. Our parametric construction allows a dissociation between two possible

factors that may affect problem difficulty: classification rules vs. image variability.

To highlight the parametric nature of the images, we call this new challenge the

parametric SVRT or PSVRT.

Additionally, our image generator is designed such that each image can be used to

pose both problems by simply labeling it according to different rules (Figure 2.21). In

SR, an image is classified according to whether the items in an image are arranged

horizontally or vertically as measured by the orientation of the line joining their

centers (with a 45◦ threshold). In SD, an image is classified according to whether or

not it contains at least two identical items. When k ≥ 3, the SD category label is

determined by whether or not there are at least 2 identical items in the image, and

the SR category label is determined according to whether the average orientation of

the displacements between all pairs of items is greater than or equal to 45◦. Each

image is generated by first drawing a joint class label for SD and SR from a uniform

distribution over {Different, Same}×{Horizontal,Vertical}. The first item is sampled

from a uniform distribution in {−1, 1}m×m. Then, if the sampled SD label is Same,

between 1 and k − 1 identical copies of the first item are created. If the sampled SD

label is Different, no identical copies are made. The rest of k unique items are then

consecutively sampled. These k items are then randomly placed in an n× n image

while ensuring at least 1 background pixel spacing between items. Generating images

by always drawing class labels for both problems ensures that the image distribution

is identical between the two problem types.

We trained the same CNN repeatedly from scratch over multiple subsets of the data

in order to see if learnability depends on the dataset’s image parameters. CNNs were

trained on 20 million images and training accuracy was sampled every 200 thousand

images. These samples were averaged across the length of a training run as well

as over multiple trials for each condition, yielding a scalar measure of learnability
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called "mean area under the learning curve” (mean ALC). ALC is high when accuracy

increases earlier and more rapidly throughout the course of training and/or when it

converges to a higher final accuracy by the end of training.

First, we found a baseline architecture which could easily learn both same-different

and spatial-relation PSVRT problems for one parameter configuration (item sizem = 4,

image size n = 60 and item number k = 2). Then, for a range of combinations of item

size, image size and number of items, we trained an instance of this architecture from

scratch. If a network learns the underlying rule of each visual relation, the resulting

representations will be efficient at handling variations unrelated to the relation (e.g., a

feature set to detect any pair of items arranged horizontally). As a result, the network

should be equally good at learning the same problem in other image datasets with

greater intra-category variability. In other words, ALC will be consistently high over

a range of image parameters. Alternatively, if the network’s architecture doesn’t allow

for such representations and thus is only able to learn prototypes of examples within

each category, the architecture will be progressively worse at learning the same visual

relation instantiated with higher image variability. In this case, ALC will gradually

decrease as image variability increases.

The baseline CNN we used in this experiment had four convolutional layers. The

first layer had 8 filters with a 4×4 receptive field size. In the rest of convolutional

layers, filter size was fixed at 2×2 with the number of filters in each layer doubling

from the immediately preceding layer. All convolutional layers had ReLU activations

with strides of 1. Pooling layers were placed after every convolutional layer, with

pooling kernels of size 3×3 and strides of 2. On top of retinotopic layers, all nine

CNNs had three fully connected layers with 256 hidden units in each layer, followed

by a 2-dimensional classification layer. All network parameters were initialized using

Xavier initialization (Glorot and Bengio, 2010) and were trained using the Adaptive

Moment Estimation (Adam) optimizer (Kingma and Ba, 2015) with base learning
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rate of η = 10−4. All experiments were run using TensorFlow (Abadi et al., 2016). To

understand the effect of network size on learnability, we also used two control networks

in this experiment: (1) a ’wide’ control that had the same depth as the baseline but

twice as many filters in the convolutional layers and four times as many hidden units

in the fully connected layers and (2) and a ’deep’ control which had twice as many

convolutional layers as the baseline, by adding a convolutional layer of filter size 2×2

after each existing convolutional layer. Each extra convolutional layer had the same

number of filters as the immediately preceding convolutional layer.

We varied each of three image parameters separately to examine its effect on

learnability. This resulted in three sub-experiments (n was varied between 30 and

180 while m and k were fixed at 4 and 2, respectively; m was varied between 3 and 7,

while n and k were fixed at 60 and 2, respectively; k was varied between 2 and 6 while

n and m were fixed at 60 and 4, respectively). To use the same CNN architecture over

a range of image sizes n, we fixed the actual input image size at 180 by 180 pixels by

placing a smaller PSVRT image (if n < 180) at the center of a blank background of

size 180 by 180 pixels. The baseline CNN was trained from scratch in each condition

with 20 million training images and a batch size of 50.

Results

In all conditions, we found a strong dichotomy in the observed learning curves. In

cases where learning occurred, training accuracy abruptly jumped from chance-level

and gradually plateaued. We call this sudden, dramatic rise in accuracy the "learning

event”. When there was no learning event, accuracy remained at chance throughout a

training session and the ALC was 0.5. Strong bimodality was observed even within a

single experimental condition in which the learning event took place in only a subset of

10 randomly initialized trials. This led us to use two different quantities for describing

a model’s performance: (1) mean ALC obtained from learned trials (in which accuracy
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crossed 55%) and (2) the number of trials in which the learning event never took place

(non-learned). Note that these two quantities are independent, computed from two

complementary subsets of 10 trials.

In SR, across all image parameters and in all trials, the learning event immediately

occurred at the start of training and quickly approached 100% accuracy, producing

consistently high and flat mean ALC curves (Figure 2.22, blue dotted lines). In SD,

however, we found that the overall ALC was significantly lower than SR (Figure 2.22,

red dotted lines).

In addition, we have also identified two main ways in which image variability affects

learnability. First, among the trials in which the learning event did occur, the final

accuracy achieved by the CNN at the end of training gradually decreased as image

size (n) of the number of items (k) increased. This caused ALC to decrease from

around 0.95 to 0.8. Second, increasing image size (n) also made the learning event

decreasingly likely, with more than half of the trials failing to escape chance level

when image size was greater than 60 (Figure 2.22, gray bars). We call this systematic

degradation of performance accompanied by the increase in image variability the

"straining effect”. In contrast, increasing item size produced no visible straining effect

on the CNN. Similar to SR, learnability, both in terms of the frequency of the learning

event as well as final accuracy, did not change significantly over the range of item

sizes we considered.

The fact that straining is only observed in SD, and not in SR and that it is only

observed along some of the image parameters, n and k, suggests that straining is not

simply a direct outcome of an increase in image variability. Using a CNN with more

than twice the number of free parameters (Figure 2.22, purple dotted lines) or with

twice as many convolutional layers (Figure 2.22, brown dotted lines) as a control did

not qualitatively change the trend observed in the baseline model. Although increasing

network size did result in improved learned accuracy in general, it also made learning
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Figure 2.22 Mean area under the learning curve (ALC) over PSVRT image parameters.
ALC is the normalized area under a training accuracy curve over the course of training
on 20 million images. Colored dots are the mean ALCs of learned trials (trials in which
validation accuracy exceeded 55%) out of 10 randomly initialized trials. Shaded regions
around the colored dots indicate the intervals between the maximum and the minimum
ALC among learned trials. Gray bars denote the number of non-learned trials, out of 10
trials, in which validation accuracy never exceeded 55%. Three model-task combinations
(CNN on SR (blue), CNN on SD (red), wide CNN control on SD (violet) and deep CNN
control on SD (brown)) are plotted, and each combination is explored over three image
variability parameters: item size, image size and number of items.

less likely, yielding more non-learned trials than the baseline CNN.

We also rule out the possibility of the loss of spatial acuity from pooling or

subsampling operations as a possible cause of straining for two reasons. First, our

CNNs achieved the best overall accuracy when image size was smallest. If the loss of
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spatial acuity was the source of straining, increasing image size should have improved

the network’s performance instead of hurting it because items would have tended to

be placed farther apart from each other. Second, as we will show in Experiment 3.2,

an identical convolutional network where objects are forcibly separated into different

channels does not exhibit any straining, suggesting that it is not the loss of spatial

acuity per se that makes the SD problem difficult, but rather the fact that CNNs lack

the ability to spatially separate representations of individual items in an image.

We hypothesize that these straining effects reflect the way positioning of each

item contributes to image variability. A little arithmetic shows that image variability

is an exponential function of image size as the base and number of items as the

exponent. Thus, increasing image size while fixing the number of items at 2 results in

a quadratic-rate increase in image variability, while increasing the number of items

leads to an exponential-rate increase in image variability. Image variability is also an

exponential function of item size as the exponent and 2 (for using binary pixels) as

the base.

The comparatively weak effects of item size and item number shed light on the

computational strategy used by CNNs to solve SD. Our working hypothesis is that

CNNs learn "subtraction templates”, filters with one positive region and one negative

region (like a Haar or Gabor wavelet), in order to detect the similarity between

two image regions. A different subtraction template is required for each relative

arrangement of items, since each item must lie in one of the template’s two regions.

When identical items lie in these opposing regions, they are effectively subtracted by the

synaptic weights. This difference is then used to choose the appropriate same/different

label. Note that this strategy does not require memorizing specific items. Hence,

increasing item size (and therefore total number of possible items) should not make

the task appreciably harder. Further, a single subtraction template can be used even

in scenes with more than two items, since images are classified as "same” when they
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have at least two identical items. So, any straining effect from item number should

be negligible as well. Instead, the principal straining effect with this strategy should

arise from image size, which increases the possible number arrangements of items.

Taken together, these results suggest that, when CNNs learn a PSVRT condition,

they are simply building a feature set tailored to the relative positional arrangements

of items in a particular data set, instead of learning the abstract "rule” per se. If a

network is able to learn features that capture the visual relation at hand (e.g., a feature

set to detect any pair of items arranged horizontally), then these features should, by

definition, be minimally sensitive to the image variations that are irrelevant to the

relation. This seems to be the case only in SR. In SD, increasing image variability

lowered ALC for the CNNs. This suggests that the features learned by CNN are

not invariant rule-detectors, but rather merely a collection of templates covering a

particular distribution in the image space.

2.3.3 Experiment 3: Is object individuation needed to solve

visual relations?

Our main hypothesis is that CNNs struggle to learn systematically visual relations in

part because they are feedforward architectures which lack a mechanism for grouping

features into individuated objects. Recently, however, Santoro et al. (2017) proposed

the relational network (RN), a feedforward architecture aimed at learning visual rela-

tions without such an individuation mechanism. RNs are fully-connected feedforward

networks which operate on pairs of so-called "objects” (Figure 2.23; for concision,

we will refer to a neural network consisting of a CNN feeding into an RN as just an

"RN"). These objects are simply feature columns from all retinotopic locations in

a deep layer of a CNN, similar to the feature columns found in higher areas of the

visual cortex (Tanaka, 2003). These feature vectors will sometimes represent parts of

the background, incomplete items or even multiple items because the network does
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not explicitly represent individual objects. This makes the "objects" used by an RN

rather different from those discussed in the psychophysical literature, where perceptual

objects are speculated to obey gestalt rules like boundedness and continuity (Spelke

et al., 1994). Santoro et al. (2017) emphasize that their model performed well even

though it employs this highly unstructured notion of object: "A central contribution

of this work is to demonstrate the flexibility with which relatively unstructured inputs,

such as CNN or LSTM [long short-term memory] embeddings, can be considered as a

set of objects for an RN.”

In particular, the RN was able to outperform a baseline CNN on the "sort-

of-CLEVR” challenge, a visual question answering task using images with simple

geometric items (see Figure 2.24(a) for examples of sort-of-CLEVR items). In sort-of-

CLEVR, scenes contain up to six items, each of which has one of two shapes and six

colors. The RN was trained to answer both relational questions (e.g., "What is the

shape of the object that is farthest from the gray object?”) and non-relational questions

(e.g., "Is the red object on the top or bottom of the scene?”).

However, the "sort-of-CLEVR” tasks suffers from three important shortcomings.

First, the number of possible items is exceedingly small (6 colors × 2 shapes =

12 items). Combined with the fact that the authors used rather small (75 × 75)

images, this means the total number of sort-of-CLEVR stimuli was rather low, at least

compared to PSVRT stimuli. The small number of samples in sort-of-CLEVR might

have encouraged the RN to use rote memorization instead of actually learning relational

concepts. Second, while the authors trained the RN to compare the attributes of

scene items (e.g., "How many objects have the same shape as the green object.”), they

did not examine if the model could learn the concept of sameness, per se (e.g.,"Are

any two items the same in this scene?”). Detecting sameness is a particularly hard

task because it requires matching all attributes between all pairs of items. Third,

sort-of-CLEVR stimuli are not parameterized as they are in PSVRT; one cannot
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Figure 2.23 A comparison between a relational network and the proposed Siamese
architecture. (a) A relational network (panel (a), top half) is a fully-connected, feedforward
neural network which accepts pairs of CNN feature vectors as input. First, the image is
passed through a CNN to extract features. Every pair of feature activations ("objects") at
every retinotopic location in the final CNN layer is passed through the RN. The outputs of
the RN on every pair of activations is then summed and passed through a final feedforward
network, producing the decision. Depending on the spatial resolution of the final CNN layer
and the receptive field of each unit, the object representations of an RN may correspond to
a single scene item, multiple items, partial items or even the background. (b) In contrast,
objects in our Siamese network are forced to contain a single item. First, we split stimuli into
several images, each containing a single item. Then, each of the images is passed through a
separate CNN (here, Channel 1 and Channel 2), producing a representation of a single
object. These objects are then combined by concatenation into a single representation
and passed through a classifier. The network simulates the effects of the attentional
and perceptual grouping processes suspected to underlie biological visual reasoning (see
Discussion).
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systematically vary image features while keeping the abstract rule fixed. Thus, it is

difficult to say whether the success of RNs arises from their ability to flexibly learn

relations among arbitrary objects (as is hypothesized for humans (Franconeri et al.,

2012)) or rather their ability to fit particular image features.

Crucially, without a parameterized dataset, it is difficult to evaluate the authors’

claim regarding the efficacy of "relatively unstructured” objects in visual reasoning

problems. Since the objects used by RNs are simply feature columns, they have a

fixed receptive field. Thus, the success of RNs on sort-of-CLEVR might be due to

felicitously sized and arranged items instead of actual relational learning. For, if

image features are allowed to parametrically vary, such spatially rigid representations

might fail to correctly encode individual objects whenever, for instance, multiple,

small and tightly-arranged items fall within the same receptive field or when a large,

irregularly-shaped item spans multiple receptive fields.

Our goal in Experiment 3 was to re-evaluate relational networks on sort-of-CLEVR

when these handicaps are removed. To that end, we performed four sub-experiments.

First, we trained RNs on a bona fide same-different task using versions of sort-of-

CLEVR missing certain color-shape combinations in order to see if the model would

overfit to training item attributes (see (Johnson et al., 2017) for a similar demonstration

in a different visual reasoning problem). Such over-fitting would indicate that the RN

merely memorizes particular item combinations instead of learning systematic rules.

Second, we trained RNs on a sort-of-CLEVR same-different task in which certain

locations for objects were left out in order to see if the model would overfit to training

item locations. Third, we tested an RN on PSVRT in order to evaluate the ease with

which the model can fit data when scene items systematically vary in appearance and

arrangement. As in Experiment 2, we measured mean ALC in order to see if the RN’s

object representations alleviated the straining found in CNNs.

Finally, we compared the performance of the RN on PSVRT to that of an idealized
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model using ground-truth object individuation. Our new model is a "Siamese” network

(Bromley et al., 1994) which processes each scene item in a separate (CNN) channel

and then passes the processed items to a single classifier network. This model

simulates the effects of attentional selection and perceptual grouping by segregating

the representations of each item. Unlike an RN, whose object representations may in

fact contain no item, multiple items or incomplete items, object representations in the

Siamese network contain exactly one item.

Methods

Sub-experiment 3.1: Relational transfer to novel attribute combinations

Here, we sought to measure the ability of an RN to transfer the concept of sameness

from a training set to a novel set of objects, a classic and very well-studied paradigm in

animal psychology (see (Wright and Kelly, 2017) for a review) and thus an important

benchmark for models of visual reasoning. We used software for relational networks

publicly available at https://github.com/gitlimlab/Relation-Network-Tensorflow. Like

the original architecture used by Santoro et al. (2017), our RN had four convolutional

layers with ReLU non-linearities and batch normalization. We used 24 features for

each convolutional layer, fewer than those used by (Santoro et al., 2017), but sufficient

for good training accuracy. These convolutional layers were followed by two four-layer

MLPs, both with ReLU non-linearities. These MLPs had 256 features each, again

fewer than those in (Santoro et al., 2017), but sufficient for fitting the data. The final

classification layer had a softmax nonlinearity and the whole network was optimized

with a cross-entropy loss using an Adam optimizer with learning rate η = 10−4 and

mini-batches of size 64. The original authors did not report receptive field sizes or

strides. Our RN used receptive field sizes of 5× 5 throughout the convolutional layers

and had strides of 3 in the first two convolutional layers and strides of 2 in the next

two. There was no pooling. We confirmed that this model was able to reproduce the
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results from (Santoro et al., 2017) on the sort-of-CLEVR task.

We constructed twelve different versions of the sort-of-CLEVR dataset, each

one missing one of the twelve possible color × shape attribute combinations (see

Figure 2.24(a)). Images in each dataset only depicted two items, randomly placed on

a 128 × 128 background. Half of the time, these items were the same (same color and

same shape). For each dataset, we trained the RN architecture to detect the possible

sameness of the two scene items while measuring validation accuracy on the left-out

images. We then averaged training accuracy and validation accuracy across all of the

left-out conditions.

Sub-Experiment 3.2: Relational transfer to novel locations Next, we mea-

sured the ability of a relational network to transfer the concept of sameness to

novel spatial arrangements of objects. We used exactly the same network as in Sub-

experiment 3.1 except that strides were set to 1 to reduce information loss throughout

processing. However, we now generated two new versions of sort-of-CLEVR in which

each item was entirely contained in one high-level receptive field of size 17× 17. The

"far" data set forced each of the two items in the same-different relation to lie in

different receptive fields. The "close" data set forced the items to be in same high-level

receptive field. We hypothesized that the RN could not generalize to either of these

data sets if trained on the other. Because the RN’s comparator mechanism is wholly

dependent on the arbitrary retinotopic grid created by the convolutional layers, there is

no inherent reason the RN should systematically transfer its knowledge about objects

with one relation to the grid to another set of objects with a differing relation to this

grid.

Further, to confirm that the grid of high-level receptive fields was truly the

determining factor in RN performance rather than the combined CNN-RN system, we

trained the model to detect the sameness of objects (not constrained by a retinotopic
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grid) while keeping the convolutional layers random.

Sub-experiment 3.3: Relational Networks on PSVRT For this experiment,

we trained an RN on our Experiment 2 with PSVRT stimuli and observed whether

the straining effect found in CNNs was alleviated in RNs. For this sub-experiment,

we used the exact architecture from sub-experiment 3.1, but increased the number of

units to the original values from (Santoro et al., 2017) in order to give the RN the

best possible chance of learning the very difficult PSVRT task. The convolutional

layers had 32, 64, 128 and 256 features, the first MLP had 2,000 units in each layer,

and the final MLP had 2,000, 1,000, 5,000 and 100 units in its four layers. We focused

only on same-different learning and only varied image size from 30 to 180 pixels since

this produced the strongest straining effect in CNNs. Item size was fixed at 4 and the

number of items was fixed at 2. We trained on 20 million images, using ten randomly

initialized trials. As in Experiment 2, we measured mean ALC as well as number of

non-learned trials. Before training on the whole spectrum of image sizes, we ensured

that the RN was capable of fitting the data when item size was 4 and image size was

60.

Sub-experiment 3.4: The need for perceptual grouping and object individu-

ation Here, we introduce a Siamese network which processes scene items individually

in separate CNN "channels” (Figure 2.23(a)). First, we manually split each PSVRT

stimulus into several images, each of which contained a single item. These images

were then individually processed by two copies of the same network (mimicking, in a

sense, the process of sequentially attending to individuated objects). For example, if

one stimulus contained two objects in the original PSVRT, our new stimulus would be

presented to the Siamese network as two separate images. The scene items retained

their original location in each image so that item position varied just as widely as in the

original PSVRT. These images were then individually processed by each CNN channel,
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using the same architecture as in Experiment 2. This resulted in two object-separated

feature maps in the topmost retinotopic layer (Figure 2.23(b)). These feature maps

were then concatenated before being passed to the fully-connected classifier layers.

This Siamese configuration is essentially an idealized version of the kinds of object

representations resulting from psychological processes such as perceptual grouping

and attentional selection. Because convolutional layers in this configuration are now

constrained to process only one object at a time, regardless of the total number of

objects presented in an image, the network can completely disregard the positional

information of individual objects and only preserve information about their identities

under comparison.

Results

Sub-experiment 3.1: Relational transfer to novel attribute combinations

From the sort-of-CLEVR transfer task, we found that the RN does not generalize on

average to left-out color-shape attribute combinations (Figure 2.24). Since there are

only 11 color-shape combinations in any given setup, the model did not need to learn

to generalize across many items. As a result, the RN learned orders of magnitude

faster than the CNNs in Experiment 2; e.g., average training accuracy (solid red)

exceeded 80% within 50,000 examples. However, while the average training accuracy

curve rose rapidly to around 90%, the average validation accuracy remained at chance.

In other words, there was no transfer of same-different ability to the left-out condition,

even though the attributes from that condition (e.g., cyan square) were represented

in the training set, just not in that combination (e.g., cyan circle and green square;

Figure 2.24a).
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(a) (b)
Figure 2.24 Attribute hold-out reveals lack of systematic relational reasoning
in RNs. (a) Sample items used during training and testing in Experiment 3.
We trained relational networks (RNs) on twelve two-item same-different data
sets each missing one color-shape combination from sort-of-CLEVR (2 shapes
× 6 colors). Then, we tested the model on the left-out combination. The
top and middle rows of panel (a) show two possible pairs of items when the
left-out combination is "cyan square”. Row 1 shows a cyan circle and row
2 shows a green square. However, only in the test set is the model queried
about images involving a cyan square (e.g., the "same” image in row 3). Note
that, during training, the model observes each left-out attribute, just not in
the left-out combination. (b) Averaged accuracy curves of an RN while being
trained on the sort-of-CLEVR data sets missing one color-shape combination.
The red curve shows the training accuracy. The blue dashed line shows the
accuracy on validation data with the left-out items.
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Figure 2.25 Mean ALC of the Siamese network on SD and SR tasks and
the RN on SD over image sizes. Unlike for CNNs, mean ALC curves of
the Siamese network exhibit no significant straining. The network learns
equally well on all datasets with different image variability parameters. The
significant difference between SD and SR conditions observed with CNNs is
no longer present in the Siamese network. In contrast, the RN exhibits a
strong straining effect that is qualitatively similar to CNNs, with the average
ALC as well as the probability of learning decreasing as image size increases.
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Sub-experiment 3.2: Relational transfer to novel object locations We found

that the RN struggles to transfer its knowledge about sameness in particular locations

to new locations. Fig. 2.26a depicts the training and testing accuracy of the RN

in two conditions, one in which the model was trained on the "far" data and tested

on the "close" data (blue curves) and the opposite setting (red curves). Naturally,

the RN can fit the training data in both cases. However, when the model tried to

generalize to data in which objects were contained within a single receptive field,

accuracy oscillated erratically between 50 and 90 %. This is to be expected, since

the RN comparator operates between high-level feature columns and not within them.

Nevertheless, the fact that accuracy was often significantly above chance in this

condition means that some information about the sameness relation must be encoded

in the convolutional features, at least when the system is trained in this manner.

Transfer from the "close" to the "far" condition is much worse, hovering between 55

and 60 % for the duration of training. One interpretation of this result is that the

RN learns to extract the sameness signal with the convolutional layers and simply

pass it unperturbed to the final decision layer, essentially transforming the rest of the

system into a glorified identity function. The comparator operating between high-level

feature columns is thereby disabled, preventing systematic transfer to the held-out

locations. Next, to emphasize that the RN is simultaneously too elaborate (in the

sense that the "perceptual" convolutional layers are irrelevant) and too weak (in the

sense that the network displays the deficits in systematicity we have already noted)

for use in relational reasoning, we trained the network while keeping its convolutional

layers random. Fig. 2.26b shows the model learning the same-different task of Sub-

Experiment 3.1 (without held-out attribute combinations) when the convolutional

layers were learned (blue curves) and left random (red curves). There is evidently

no need to train the convolutional layers, since performance is functionally identical

in both conditions. Again, this is to be expected, since any injective mapping from
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(a) (b)

Figure 2.26 Location systematicity deficits in RNs. (a) A relational net was
trained on one of two same-different sort-of-CLEVR data sets: a "far" set in
which the two objects were forced to lie entirely in two separate high-level
receptive fields and a "close" set in which the objects were constrained to lie
within the same receptive field. The same model was trained on one (solid lines;
blue for "far" and red for "close") and tested on the other (dashed lines; blue
for "far" and red for "close"). In neither case could the network generalize
to held out data, indicating that the system’s comparator mechanism is
arbitrarily constrained by the arrangement of its high-level receptive fields.
(b) To emphasize that an RN is really only as good as its comparator, we also
trained the system on same-different sort-of-CLEVR without any held-out
data but while keeping the CNN part fixed. The system learns as easily as
before.

the input to the comparator mechanism will, by definition, preserve the veridical

same-different relation between the items. Even a random mapping will do.

Sub-experiment 3.3: Relational Networks on PSVRT We found that the RN

exhibits a qualitatively similar straining effect to increasing image size (Figure 2.25,

pale blue dotted lines). Similar to CNNs in Experiment 2, the mean ALC of learned

trials gradually decreased as image size increased, together with the observed likelihood

of learning out of 10 restarts. Since the top retinotopic feature vectors that are treated

as "object representations" in RN have rather large, fixed and highly overlapping

receptive fields, the RN is strained just as easily as regular CNNs. In order to

accommodate this fixed architecture, the RN must learn a dictionary of features
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that captures all arrangements of items for a given image size condition. This is an

increasingly difficult feat as the image size grows, straining the model heavily until it

simply cannot learn at all in the final condition (image size 180× 180).

Sub-experiment 3.4: The need for perceptual grouping and object individ-

uation The mean ALC curves for the Siamese network on PSVRT were strikingly

different from those of the CNN in Experiment 2 (Figure 2.25, first and second rows).

Barely any straining effect was observed on the SD task, and the model learned within

5 million examples across all image size parameters in either the SD or SR tasks. In

SD, since objects are individuated by fiat, the network need not learn all possible

spatial arrangements of items. The network must simply learn to compare whichever

two items reach the classifier layers through the two CNN channels. This greatly

simplifies the SD problem, alleviating straining. In both SD and SR, the Siamese

network can learn to flexibly represent the task-relevant properties of each object

such that learnability is not at all influenced by image variability. In other words, a

feedforward network, once endowed with object individuation, can easily construct

invariant feature representations with which arbitrary objects can be related.

This result implies that object individuation makes visual relation a rather trivial

problem for feedforward networks. In informal experiments (data not shown) we

found that even very shallow Siamese networks (e.g. with one convolutional layer)

could still learn SD much faster than baseline CNNs. Naturally, we do not intend our

Siamese network as a bona fide solution to visual reasoning, but rather as a proof of

the efficacy of object individuation in visual reasoning problems. A genuine visual

reasoning model would be able to dynamically select and group features in the scene

(see Discussion section).
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Discussion

Recent progress in computational vision has been significant. Modern deep learning

architectures can discriminate between one thousand object categories (He et al., 2015)

and identify faces among millions of distractors (Kemelmacher-Shlizerman et al., 2016)

at a level approaching – and possibly surpassing that of human observers. While these

neural networks do not aim to mimic the organization of the visual cortex in detail, they

are at least partly inspired by biology. Modern deep learning architectures are indeed

closely related to earlier hierarchical models of the visual cortex albeit with much better

categorization accuracy (see Serre, 2015; Kriegeskorte, 2015, for reviews). Further,

CNNs have been shown to account well for monkey inferotemporal data (Yamins et al.,

2014) and human lateral occipital data (Khaligh-Razavi and Kriegeskorte, 2014; Guclu

and Gerven, 2015). In addition, deep networks have been shown to be consistent with

a number of human behaviors including rapid visual categorization (Kheradpisheh

et al., 2016; Eberhardt, Cader, and Serre, 2016), image memorability (Dubey et al.,

2015), typicality (Lake, Salakhutdinov, and Tenenbaum, 2015a) as well as similarity

(Peterson, Abbott, and Griffiths, 2016) and shape sensitivity (Kubilius, Bracci, and

Op de Beeck, 2016) judgments.

Concurrently, a growing body of literature has been highlighting key dissimilarities

between current deep network models and various aspects of visual cognition. One

prominent example is adversarial perturbation (Goodfellow, Shlens, and Szegedy,

2015), a type of structured image distortion that asymmetrically affects CNNs and

humans. Although barely perceptible to a human observer, adversarial perturbation

renders an image unrecognizable to a CNN, even though the same CNN can correctly

recognize the unperturbed image with high confidence. Another example is the poor

generalization of CNNs in conditions that pose no difficulty to human observers, such as

learning novel object categories with minimal supervision or when the parts of a familiar

object are shown in unfamiliar but realistic configurations (Lake, Salakhutdinov, and
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Tenenbaum, 2015b; Saleh, Elgammal, and Feldman, 2016; Erdogan and Jacobs, 2017).

Direct evidence for qualitatively different feature representations used by humans and

CNNs was shown in (Ullman et al., 2016; Linsley et al., 2017).

The present study adds to this body of literature by demonstrating feedforward

neural networks’ fundamental inability to efficiently and robustly learn visual relations.

Our results indicate that visual-relation problems can quickly exceed the representa-

tional capacity of feedforward networks. While learning feature templates for single

objects appears tractable for modern deep networks, learning feature templates for

arrangements of objects becomes rapidly intractable because of the combinatorial

explosion in the requisite number of templates. That notions of "sameness” and stimuli

with a combinatorial structure are difficult to represent with feedforward networks has

been long acknowledged by cognitive scientists (Fodor and Pylyshyn, 1988; Marcus,

2001).

Compared to the feedforward networks in this study, biological visual systems excel

at detecting relations. Fleuret et al. (2011) found that human observers are capable of

learning rather complicated visual rules and generalizing them to new instances from

just a few training examples. Participants could learn the rule underlying the hardest

SVRT problem for CNNs in our Experiment 1, problem 20, from an average of about

6 examples. Problem 20 is rather complicated as it involves two shapes such that "one

shape can be obtained from the other by reflection around the perpendicular bisector of

the line joining their centers.” In contrast, the best performing CNN model for this

problem could not get significantly above chance from one million training examples.

This failure of modern computer vision algorithms is all the more striking given the

widespread ability to recognize visual relations across the animal kingdom. Previous

studies showed that non-human primates (Donderi and Zelnicker, 1969; Katz and

Wirght, 2006), birds (Daniel, Wright, and Katz, 2015; Martinho III and Kacelnik,

2016), rodents (Wasserman, Castro, and Freeman, 2012) and even insects (Giurfa et al.,
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2001) can be trained to recognize abstract relations between training objects and then

transfer this knowledge to novel objects. Contrast the behavior of the ducklings in

(Martinho III and Kacelnik, 2016) with the RN of Experiment 3, which demonstrated

no ability to transfer the concept of same-different to novel objects (Figure 2.24) even

after hundreds of thousands of training examples.

There is substantial evidence that visual-relation detection in primates depends on

re-entrant/feedback signals beyond feedforward, pre-attentive processes. It is relatively

well accepted that, despite the widespread presence of feedback connections in our

visual cortex, certain visual recognition tasks, including the detection of natural object

categories, are possible in the near absence of cortical feedback – based primarily

on a single feedforward sweep of activity through our visual cortex (Serre, 2016).

However, psychophysical evidence suggests that this feedforward sweep is too spatially

coarse to localize objects even when they can be recognized (Evans and Treisman,

2005). The implication is that object localization in clutter requires attention (Zhang

et al., 2011). It is difficult to imagine how one could recognize a relation between two

objects without spatial information. Indeed, converging evidence (Logan, 1994; Moore,

Elsinger, and Lleras, 1994; Rosielle, Crabb, and Cooper, 2002; Holcombe, Linares,

and Vaziri-Pashkam, 2011; Franconeri et al., 2012; Ham et al., 2012) suggests that the

processing of spatial relations between pairs of objects in a cluttered scene requires

attention, even when individual objects can be detected pre-attentively.

Another brain mechanism implicated in our ability to process visual relations is

working memory (Kroger et al., 2002; Golde, Cramon, and Schubotz, 2010; Clevenger

and Hummel, 2014; Brady and Alvarez, 2015). In particular, imaging studies (Kroger

et al., 2002; Golde, Cramon, and Schubotz, 2010) have highlighted the role of work-

ing memory in prefrontal and pre-motor cortices when participants solve Raven’s

progressive matrices which require both spatial and same-different reasoning.

What is the computational role of attention working memory in the detection of
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visual relations? One assumption (Franconeri et al., 2012) is that these two mechanisms

allow flexible representations of relations to be constructed dynamically at run-time via

a sequence of attention shifts rather than statically by storing visual-relation templates

in synaptic weights (as done in feedforward neural networks). Such representations

built "on-the-fly” circumvent the combinatorial explosion associated with the storage

of templates for all possible relations, helping to prevent the capacity overload that

plagues feedforward neural networks.

Humans can easily recognize when two objects are the same up to some transfor-

mation (Shepard and Metzler, 1971) or when objects exist in a given spatial relation

(Fleuret et al., 2011; Franconeri et al., 2012). More generally, humans can effortlessly

construct an unbounded set of structured descriptions about their visual world (Geman

et al., 2015). Mechanisms in the visual system such as perceptual grouping, atten-

tion and working memory exemplify how the brain learns and handles combinatorial

structures in the visual environment with small amount of experience (Tenenbaum

et al., 2011). However, exactly how attentional and mnemonic mechanisms interact

with hierarchical feature representations in the visual cortex is not well understood.

Given the vast superiority of humans over modern computers in their ability to detect

visual relations, we see the exploration of these cortical mechanisms as a crucial step

in our computational understanding of systematic visual reasoning.
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Chapter Three

Neural mechanisms of systematicity:

Oscillatory systems and visual

cognition

We1 have already learned from Fodor and Pylyshyn, 1988 that the modeling of

systematicity in neural systems is principally a problem of implementation. That

systematic behavior can arise in neural networks is assured2, but how that behavior

comes about is a mystery. We have already argued that attention and working

memory must be key components, and, indeed, there are already interesting new

models exploiting these mechanisms for rule-like generalization on static images

(Linsley et al., 2018). Before these mechanisms can operate properly, however, we

must ensure that visual representations of items in a complex scene are sufficiently

organized to avoid the catastrophic failures found in "attentional" models like the

RN (See Sec. 2.3.3). Perceptual grouping is in many ways a prerequisite of visual

reasoning. Reasoning, after all, acts on objects.

To that end, we will pick up on a particular historical trend in the neural modeling of
1Sec. 3.1 of this chapter has been published as Alamia et al., 2019.
2That is, unless one believes that the hardware of the mind is not made of neurons. See Gallistel

and King, 2009 for interesting counterproposals.

103



perceptual grouping and of cognition more generally. This is the trend, beginning with

Edelman, von der Malsburg, Crick and others, which contends that a temporal code

created by dynamic neurons is the ideal means for the flexible organization of perceptual

objects. Their rejection of purely rate-based codes proceeds like this. Modulo extra-

classical receptive field effects (Angelucci and Shushruth, 2013), an increased spiking

rate of a neuron indicates the presence of a given stimulus (see Tsodyks and Markram,

1997 for exceptions), and this rate is largely determined by the pattern of anatomical

connections defining the network in which the neuron is embedded. These connections,

however, only change at a timescale slower than that of active behavior. How then are

flexible, context-dependent notions like the demonstrative "this" (i.e. "No, not that

object. This object!") encoded in neural activity? More generally, how does neural

activity flexibly recombine the raw features output by anatomical connections at a

timescale fast enough to support active cognition?

According to proponents of temporal coding, it is the higher order temporal

statistics of dynamic neurons that encode these on-the-fly properties, not just the

rate. A common claim by this camp is that the "glue" of perceptual organization, the

thing that binds raw features into perceptual objects, is the temporal correlations

either between spiking neurons or between a spiking neuron and a macroscopic signal

like LFP. These neural activities and macroscopic signals in turn display rhythmic

or oscillatory activity thought to structure not only perceptual grouping, but also

attention and working memory. Being transient and context-dependent, as opposed

to anatomical, these oscillatory mechanisms could potentially implement the flexible,

rule-based cognitive routines theoretically required for systematic thought.

The debate between rate-coding theorists and temporal-coding theorists is long,

technical and ongoing, and our goal is not to recapitulate it in detail here. Nevertheless,

the idea that cognitive processes are grounded in unexplored neural territory is enticing,

particular for the computational modeler, since it opens to the door to models
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categorically different from the rate-based formalisms which continue to dominate

both computational neuroscience and machine learning. So far, the temporal coding

proponents have competed with their rate coding counterparts at a disadvantage, not

having a robust and fully-developed machine learning apparatus at their side in the

way that the latter scholars inherited rate coding/McCulloch Pitts models like the

CNN.

The rest of this dissertation will be devoted to justifying and building machine

learning formalisms based on the principles of oscillatory coding. We will begin

by connecting the previous chapter to the current one by presenting an experiment

implicating oscillatory coding in visual reasoning. This experiment shows that the

dichotomy previously explored between spatial relation and same-different problems

manifests as different oscillatory signatures in human EEG recordings. Next, we will

briefly discuss the neuroscientific literature on oscillatory coding, particularly its role

in "binding-by-synchrony", "communication-through-coherence" and visual working

memory. The rest of the chapter will propose a general theoretical framework for the

modeling of these phenomena in the form of the Kuramoto model (Kuramoto, 1975).

A technical exposition of this model will be provided followed by a description of

relevant learning algorithms. This technical diversion will provide the groundwork for

subsequent chapters, in which the Kuramoto model is used to model the oscillatory

phenomena described here including those related to visual reasoning.

3.1 Oscillatory dynamics in visual relation detection.

In Chapter 1, we hypothesized that feedforward networks generally performed better

on spatial relation (SR) vs same-different (SD) detection since the latter intuitively

places a greater strain on attention and working memory. In this section, we will

test this hypothesis directly for human subjects. We proceed in two steps. First, we
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recapitulate the results of Sec. 2.3.2 on a new stimulus set suitable to human subjects

and used in previous studies (Hollard and Delius, 1982; Delius and Hollard, 1987).

Second, we recorded EEG responses in human subjects performing SR and SD tasks

on this data while ensuring tasks stimuli in both conditions were balanced for difficulty.

We found that the SD condition resulted in both different evoked potentials and

higher activity in oscillatory components in the occipital-parietal areas associated with

attentional and mnemonic processes. These findings provide a biological reflection of

our computational intuition from Sec. 2.3.3. Further, though there have been previous

electrophysiology studies concerning visual reasoning (Franconeri et al., 2012; Luck,

2012; Hayworth, Lescroart, and Biederman, 2011; Yuan, Uttal, and Franconeri, 2016;

Golde, Cramon, and Schubotz, 2010; Amorapanth, Widick, and Chatterjee, 2010;

Zhang et al., 2013), the current experiment is the first to our knowledge to explicitly

compare spatial vs same-different judgments.

3.1.1 Experiment 1: Spatial relations vs Same-different on

perceptually relevant stimuli

We first extended the results of Kim et al., 2018 for our novel stimulus set: we trained

two separate CNN architectures to solve an SD and an SR task using the same stimulus

set. The input to these networks was a 50× 50 image in which two hexominoes (width

and height of 2 to 5 pixels) were displayed at opposite sides of the screen (see Fig.

3.1)a. We chose these shapes since they exhibit enough variability to be difficult to

memorize but are not completely random like PSVRT shapes. They have also been

used in pigeon studies on same-different reasoning by Hollard and Delius, 1982 and

Delius and Hollard, 1987.

The network consisted of 6 convolutional layers. Each layer contained 4 channels

of size 2x2, with stride of 1. All convolutional layers used a ReLu activation function

with stride of 1 and were followed by pooling layers with 2x2 kernels and a stride of

106



Figure 3.1 Network performance on perceptually meaningful visual relations
problems.Simulations stimuli and results. A) The stimuli were the same in
the simulations and in the human experiments. The items were displayed at
opposite sides of the screen (either 45◦ and 225◦ or -45◦ and -225◦). Both item
positions were jittered by a random amount in both the x and y axis (∆x
and ∆y in the picture) to make the task non-trivial for human participants
(i.e. preventing participants from performing the SR task considering only
the relative position of one item and its closest diagonal, thus ignoring the
spatial relationship between the two items). The items used are hexominoes
(right panel). Minimum and maximum item height and width are 1.2◦ –
3.6◦ and 1.2◦ – 2.7◦ of visual angle respectively, and 2 to 5 pixels used for
the simulations (image size was 50 × 50 pixels). B) Accuracy of the CNN
network on the same-different (SD; light red) and spatial relationship (SR;
blue) tasks, and of a Siamese network trained on the SD task (dark red).
The Siamese network mimics segmentation in a feedforward networks, by
separating the items in two distinct channels of the network. The left panel
shows the training curves for each network (accuracy over epochs during
training); we stopped the training when the validation accuracy reached 90%.
In the right panel the test accuracy, evaluated using novel items never used
for training, reveals that the CCN seem to only learn the abstract rule for
the SR but not for the SD task, as shown in a previous study. Conversely,
the Siamese network can solve the SD task, demonstrating that segmentation
is the missing process in the CNN to successfully accomplish the task. In
both panels we show average values ± SE over 10 repetitions using different
random initializations.
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1. Eventually, two fully connected layers with 128 units preceded a two-dimensional

classification layer with a sigmoid activation function. As a regularizer we set a

dropout rate of 0.3 in each layer of the network. We used binary cross-entropy as a

loss function, the Adaptive Moment Estimation (Adam) optimizer 36 and a learning

rate of 10e-4. Each simulation was run over 20 epochs with batch size of 50. All

simulations were run in TensorFlow.

The networks were trained to classify whether the two hexominoes were the same

or not (SD task) or whether they were aligned more vertically or more horizontally

with respect to the midline (SR task).

Data was split into 1000 training and 1000 testing stimuli and networks were trained

on 10 random initializations. We report the mean accuracy and standard deviation

over these 10 repetitions in Fig. 3.1. Our results are consistent with those from Kim

et al., 2018: a CNN appears to be able to learn the abstract rule (as measured by the

network’s ability to generalize beyond the shapes used for training) for SR tasks much

more easily than SD tasks. The effortless ability of humans and other animals to learn

SD tasks suggest the possible involvement of additional computations that are lacking

in CNN, like object individuation, mediated by attention and working memory.

This hypothesis is supported by the results obtained by our simulations with

a Siamese architecture, in which each item is processed separately and eventually

combined before being passed to a classifier, similar to that of Sec. 2.3.3. The Siamese

network had the same exact convolutional architecture as described above; additionally,

the difference between features-vectors of each separate input was feed to the classifier

to perform the SD task. This model mimics the effect of selective attention and item

segregation by feeding to the network each item separately. Performance is depicted

in Fig. 3.1b. Evidently, these mechanisms, automated by the Siamese network, can

be very effective.

Next, we test the prediction that SD and SR tasks relies on different computational
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mechanisms in humans, by recording EEG signals from a pool of 28 participants (14 of

which tested on a pilot experiment –fig. S5) performing the same SD and SR tasks.

3.1.2 Experiment 2: EEG markers of visual reasoning

Participants completed 16 blocks using the same stimuli as those used to train CNNs

3.1: in half of the blocks they were asked to report whether the two hexominoes were

the same or not (SD conditions), in the other half whether the hexominoes were more

vertically or horizontally aligned (SR conditions). The two conditions were interleaved

in a block design. Participants were required to answer after one second from stimulus

onset in order to disentangle motor from visual components in the EEG recordings

(Fig. 3.2a). The QUEST algorithm was used to assure that participants’ accuracy

was matched between the two tasks and remained constant throughout the whole

experiment. This was done by adjusting two experimental parameters trial by trial

(i.e., the hexominoes eccentricity in SD blocks, ρ, and the angle from the diagonal in

SR blocks, θ; see Fig. 1A and S1). Maintaining a comparable accuracy between the

two tasks reduces the potential for confounds in the electrophysiological analysis due

to differences in performance. We confirmed the absence of any substantial behavioral

difference between the SD and SR tasks (Fig. 3.2b) with a Bayesian ANOVA on both

accuracy (BF10 = 0.361, error < 0.001%) and RT (BF10 = 0.317, error < 0.89%).

In addition, we also investigated each condition separately (Fig. 2B), comparing

the difference between ‘same’ and ‘different’ trials (in SD blocks) and ‘vertical’ and

‘horizontal’ trials (in SR blocks) in both RT and accuracy. All comparisons revealed

overall no differences between tasks, except for the accuracy of vertical and horizontal

trials in the SR condition, in which the BF proved inconclusive (accuracy: SD - BF10

= 0.39, error < 0.012%; SR - BF10 = 1.80, error < 0.001%; RT: SD - BF10 = 0.333,

error < 0.01%; SR - BF10 = 0.34, error < 0.01%).

After having confirmed that performance was equal in the two tasks, we charac-
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Figure 3.2 Comparative psychophysics on two visual relations problems.
Participants experimental design and behavioral results. A) At the beginning
of each trial a black fixation cross was displayed for 350ms. After 2 stimuli
were shown for 30ms, participants waited an additional 970ms before providing
the answer. The response was cued by the fixation cross turning blue. After
the response, the color of the fixation cross provided feedback: green if the
response was correct, red otherwise. B) Humans perform the SD and SR
tasks with comparable levels of performance. In the left and right panels
are shown the averages ± SE for accuracy and reaction times, respectively.
Each pair of connected markers represent an individual subject. The results
for the same-different (in red) and spatial relationship (in blue) conditions
are further break down for each condition separately (same-different and
vertical-horizontal). BF indicates the Bayes factor against the null hypothesis
(difference between the two conditions).
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terized the evoked potentials (EP) in each task. First, we estimated the difference

between SR and SD conditions considering 7 midline electrodes (Fig. 3.3). The results

of a point-by-point t-test corrected for multiple comparisons revealed a significant

difference in central and posterior electrodes (mostly Pz and CPz) between 250ms

after the onset of the stimuli and the response cue, and the opposite effect in frontal

electrodes (FCz and Fz) from 750ms to 1000ms, as confirmed by the topography

(Fig. 3.3). Overall, these results indicate larger potentials in visual areas during

the SD task than in the SR. Previous studies have shown a relation between EP

amplitude (particularly P300 and late components) with attention (Krusemark, Kiehl,

and Newman, 2016; Van Voorhis and Hillyard, 1977) and visual working memory (Kok,

2001; McEvoy, Smith, and Gevins, 1998; Fabiani, Karis, and Donchin, 1986). Our

results are thus consistent with a larger involvement of executive functions in the SD

vs. SR task. In the following we investigated whether this hypothesis is corroborated

by corresponding oscillatory effects in the time-frequency domain.

We performed a time-frequency analysis to try to identify differences between

conditions observed in specific frequency bands commonly related to executive functions

(e.g., visual working memory). For this purpose, we computed a baseline-corrected

log-scale ratio between the two conditions (as shown in Fig. 3.4a), averaging over all

electrodes. Remarkably, a point-by-point 2-tailed t-test corrected with cluster-based

permutation test 16 revealed a significantly larger activity in the low beta-band (16-

24Hz) in the SD condition between 250 and 950ms after stimuli onset (Fig. 3.4b).

We further quantify the magnitude of the effect by computing the effect size of a

one sample t-test against zero averaging per each participant the values within the

significant region (t(13)=2.571, p=0.023, Cohen’s d=0.687). The topography of the

effect spread mostly over parietal and occipital regions Fig. 3.4c), mimicking the

topography of the EPs analysis. As previously, these results confirm the prediction that

the SD task may involve additional computational mechanisms beyond feedforward
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Figure 3.3 ERP results. Each panel represents the difference between ERPs
elicited in the SD and SR conditions for the 7 midline electrodes. Shown in red
are the points for which a difference was found that differs significantly from
zero. The results reveal a significant difference from 250ms after stimuli onset
until the response cue (at 1000ms) in central parietal regions, and an opposite
effect after 750ms in frontal regions. In the bottom-right panel the topography,
computed over the 250ms – 1000ms interval, confirmed a larger activity in
the SD than in the SR condition (positive difference, warmer colors) in the
central-parietal regions, and an opposite effect (negative difference, colder
colors) in the frontal regions (and –although not significant– also included
occipital regions).
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computations, possibly indexed by the oscillatory processes identified here.

3.2 Oscillatory coding in visual cognition generally

3.2.1 Binding by synchrony

The visual world is made of objects and those objects are made of features. Features

are often shared between objects, yet we have little trouble saying which features

are bound to which things, given enough time (Treisman and Gelade, 1980). Yet,

how the appropriate assignment of features to objects occurs in neural machinery

is something of a mystery, and this mystery has come to be known as "the binding

problem" (see Treisman, 1996 for an old but valuable review). The solution offered by

contemporary computer vision models is to simply learn many feature conjunctions

so that, for example, a scene depicting "red circle and green square" can always be

distinguished from one depicting "red square and green circle" with the use of shape-

color conjunction detectors. However, as we have seen in Ch. 1, the strategy of learning

numerous conjunctions that define a relation is the very definition of non-systematic

cognition, and this strategy has a concrete effect on learning performance.

An alternative solution is that features are bound together when the neurons rep-

resenting those features coordinate their temporal activity. In the simplest conception,

"red square" would be represented by synchronous spiking of a "red" neuron and

a "square" neuron. This is the so-called "binding-by-synchrony" (BBS) hypothesis.

Following theoretical speculation by Edelman, 1978 and Pearson, Finkel, and Edel-

man, 1987, this hypothesis found empirical support from Gray and Singer, 1989, who

simultaneously measured single-unit activity and LFP and cat striate cortex during

the viewing of an oriented bar. The authors found that neural populations excited by

a preferred stimulus fired in rhythmic bursts (Fig. 3.5a), each internally around 35-45

Hz, and that these bursts were in tight anti-phase with an oscillating LFP signal. The
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Figure 3.4 Time-frequency results. A) The difference between SD and SR
power spectra is shown in the first panel. White lines indicate the onset of
the fixation cross, the stimuli and the response cue. B) The second panel
shows the corresponding t values (when testing the difference against zero).
We observed a significant region in the low beta band (16-24Hz), between
250ms and 950ms after stimulus onset. C) The topography of the significant
time-frequency window reveals the involvement of occipital-parietal regions.
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(a) (b)

Figure 3.5 Synchrony for long-distance neuronal communication in cat visual
cortex. (a) Multi-unit array (MUA) and local field potential (LFP) responses
to an optimal bar stimulus. Lower traces are peak activity at an expanded
timescale. Observe oscillation in LFP with anti-correlated bursting in MUA
recording. (b) In a later study, Gray and colleagues examined the emergence
of this oscillatory effect as a function of the gestalt quality of the observed
stimulus. Columns correspond to stimulus depicted in small squares at the
top: broken bars moving in opposite directions; broken bars moving in the
same direction; a single elongated bar. Rows depict autocorrelation and cross-
correlation for recorded units in each condition. Observe the pronounced
periodic correlations in the second and third conditions but not the first.

authors speculated that this oscillatory activity could arise from mutual excitation and

recurrent inhibition (see Buzsaki and Wang, 2012 for implementations) and further

that, "the phase of the oscillatory response may be used as a further dimension of

coding in addition to the amplitude and duration of the response." The authors later

explicitly cast their result as a form of binding by synchrony when they showed that

the degree of synchrony in response to a stimulus with two bars increased to the extent

that those bars seemed to form a single object (Fig. 3.5b).

These and other results played into a later theoretical framework developed in
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Malsburg, 1994, the so-called "correlation theory of brain function". Here, von der

Malsburg formalized the role of spike-time correlations as a binding mechanism and

claimed the mechanism only functioned properly in the presence of dynamical, "fast"

synapses. These dynamical synaptic conductances would change at a much faster

scale than learning in the anatomical or "slow" synapse, thereby enabling the type

of flexible representation of information on the fly we argued above could support

systematic cognition. Von der Malsburg would go on to demonstrate the efficacy

of these dynamical synaptic models over the course of several models (Bienenstock

et al., 1987; Lades et al., 1993), arguing that the evolving neural topologies caused by

dynamical synapses were themselves interesting data structures capable of resolving the

binding problem. Fast synaptic plasticity continues to be an active area of theoretical

research (Masse et al., 2019).

The binding-by-synchrony hypothesis is not without its critics (see Shadlen,

Movshon, and Hughes, 1999 for a skeptical review). Indeed, the requisite synchrony

for bound objects is not always electrophysiologically forthcoming, as demonstrated

by Lamme and Spekreijse, 1998; Roelfsema, Lamme, and Spekreijse, 2004; Palanca

and DeAngelis, 2005; Chen et al., 2014. Nevertheless, more recent results from Martin

and Heydt, 2015 take steps to resolve these findings with the older theories of Gray

and others, providing evidence from macaque visual cortex that synchronous binding

occurs instead for "proto-objects", simple representations indicating only the presence

of a given object in a rough location and distinguished form other proto-objects by a

tag or index manifest as oscillatory phase (for a series of interesting psychophysical

studies on proto-objects, see Pylyshyn and Storm, 1988; Pylyshyn, 1989a; Pylyshyn,

1989b; Pylyshyn, 1994; Burkell and Pylyshyn, 1997; Feldman and Tremoulet, 2006;

Pylyshyn, 2004).
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3.2.2 Communication through coherence

In Ch. 1, we used the relation net to demonstrate the pitfalls of attention without

grouping. The features of objects within a single high-level receptive field tend to be

merged and relations between the objects are subsequently lost. Since anatomical

hardware is limited, one solution to this problem is to use a single neural population

to represent multiple objects at different times. Conceivably, a downstream population

could selectively attend to a single object as long as it was attentive at the correct

moment. This selective routing could in turn support the type of flexible cognition

which we have associated with systematic reasoning.

This is the essence of Pascal Fries’ "communication by coherence" (CTC) theory,

which claims that brain "communication structure is mechanistically implemented by

the pattern of coherence among neuronal groups, that is, the pattern of phase-locking

among oscillations in the communicating neural groups." The essence of the idea is the

following. Neural populations activated during focused attention have been reported

to oscillate at the so-called "gamma" rhythm (30-70 Hz) (Fell et al., 2003). This

oscillation in turn modulates the input gain of the population, controlling when it will

be sensitive to incoming information (Cardin et al., 2009; Siegle, Pritchett, and Moore,

2014). Any other population wishing to transmit information to this rhythmically

active ensemble must therefore time its spikes to the moments of maximal sensitivity.

Hence, optimal communication should occur when both the sending and receiving

populations are internally synchronized (e.g. in the case of V1 and V2 in visual

cortex, (Jia, Tanabe, and Kohn, 2013; Zandvakili and Kohn, 2015)) and externally

synchronized with one another (Fig. 3.6).

Though a compelling hypothesis, CTC has not proven easy to computationally

model, since it has traditionally conflicted with other theories about cortical oscillations

and their role in attention (Lisman and Idart, 1995). A promising recent model of

McLelland and VanRullen, 2016 has partially resolved these competing theories with a

117



Figure 3.6 Communication through coherence. Each row depicts overlapping
excitatory (red) and inhibitory (blue) traces for three neuronal populations.
The top and bottom traces are for populations representing an apple and a
pear, respectively. The center traces are for a third population seeking to
rout information from the other two populations. The peak of excitation in
the apple-representing population is phase-locked with that of the selecting
population so that information can be routed before the onset of inhibition
decreases the output of the former and the receptivity of the latter. Excitation
in the pear population, however, is too late in the cycle, so that the selector
is insensitive to its output.

demonstration of visual attention based on oscillatory coding in a network of integrate-

and-fire neurons. It is difficult, however, to see how such a model could be adapted to

more complex stimuli or be trained for other tasks.

3.2.3 Working memory

Both BBS and CTC employ the phase of rhythmic activity as a sort of tag or index

indicating which neurons correspond to a given thing in the world. We end this section

by briefly noting the utility of this indexing mechanism for working memory, where it

would function as a memory address or hash. A notable model of this sort was proposed

by Raffone and Wolters, 2001. Their system (Fig. 3.7) consisted of several excitatory

pyramidal assemblies encoding features of a given object which were connected through

a hidden layer to collection of IT-like assemblies with global inhibitory connections.

The authors found that emergent rhythmic activity in the network tended to segment
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(a) (b)

Figure 3.7 Phase coding for working memory. (a) A hierarchical network
is constructed consisting of several internally excitatory assemblies acting
as feature detectors (diamond ensembles with afferents) subject to global
inhibition from high-level units (white units below; only one shown). An
impinging stimulus sets the network into persistent rhythmic activity, with
populations representing individual objects coming to occupy different phase
"slots" due to inhibitory competition in the manner of Malsburg and Schneider,
1986 (See. Sec. 5.1 for details). (b) As the number of simultaneously activated
assemblies is increased, it becomes more difficult for the network to apportion
activity into temporal slots and eventually representations begin to interfere,
similar to the case of slot-based working memory.

object representations into different temporal slots. The fidelity of retrieved object

representations from recurrent activity decreased as the number of stored objects

increased, indicating a capacity of about 3-4 objects consistent with slot-based theories

of visual working memory (Luck et al., 1997). Electrophysiological evidence for a

synchrony-based mechanism for visual working memory has not been forthcoming,

though there have been promising recent results implicating combined rate-phase

coding (Brzezicka, Mamelak, and Rutishauser, 2020).

3.3 Kuramoto: Paradigm of synchrony

Is there a general computational framework that could capture these neuroscientific

phenomena? Innumerable dynamical systems give rise to synchronous behavior, but

not all of them are suitable to the type of neuroscientific and machine learning settings
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which interest us. As far as neuroscience is concerned, we must find a model which

could presumably support the types of phase-coding theorized by Fries, 2005 and

which would ideally be able to describe a wide range of neuro-dynamical regimes.

From a machine learning perspective, it is paramount that we avoid complicated

biophysical modeling, not knowing in advance what aspects, for example, of neuron

morphology are actually computationally useful. In short, we must determine the

smallest extension to the standard artificial neural network toolbox which still allows

us to model interesting neural-dynamical phenomena and hopefully make interesting

machines that alleviate the limitations discussed in Ch. 1.

Luckily, oscillatory phenomena in complex systems is a vast area of research, so

we are not at a loss for inspiration. Even luckier, a collection of important results due

to Winfree, Malkin, Kuramoto (see Izhikevich, 2007, ch. 10 for a review) and others

ensures that a huge swath of these systems can be reduced to a single archetype.

Through the so-called "phase reduction" method, it can be shown that complicated

oscillatory systems can be reduced to a canonical, easily parametrizable format in which,

remarkably, every oscillator can be described by a one-dimensional phase variable.

From its conception, phase reduction has become an indispensable method for the

study of dynamical systems, including in computational neuroscience (Ermentrout

and Kopell, 1984; Ermentrout and Kopell, 1991; Guckenheimer and Holmes, 1991;

Tass, 20007; Brown, Moehlis, and Holmes, 2004). One particularly simple version

of a "phase-reduced" model is the celebrated Kuramoto model (Kuramoto, 1975),

variations of which will occupy us for the next two chapters.

3.3.1 Phase reduction

Consider a dynamical system of the form

ẋ = f(x, t), (3.1)
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where x ∈ Rm and f is a generally non-linear equation of motion. If the system

has a single limit cycle γ = x0(t), then we refer to the system as an oscillator and

we refer to Rm as the oscillator’s state space. Denote the period of the oscillator

by T and its frequency by ω = 1
T
. Oscillators are ubiquitous in the natural world,

notably in neuroscience, where the famous integrate-and-fire, Hodgkin-Huxley and

FitzhHugh-Nagumo neuron formalisms (see Izhikevich, 2007) are tried and true models

of oscillatory neural dynamics. In neuroscientific applications, m can be quite large.

It is not uncommon for single units to be modeled with hundreds or even thousands

of compartments. Many of these dimensions will be of little use to us, since we are

principally concerned with simple scalar measures of overall coherence in a population

of neurons.

Luckily, the periodicity of the oscillator simplifies the situation considerably as

long as we remain near the limit cycle. To that end, we choose an arbitrary point

x′ ∈ γ and define the phase function θ = Θ(x) for all x ∈ γ by setting Θ(x′) = 0 and

declaring that θ advances at a constant rate as x winds around γ:

θ(t) = ωt. (3.2)

Because θ advances at a constant rate around γ, we can use θ to denote a given state

of the oscillator on the limit cycle by writing x(θ) (as opposed to x(t)). See Fig. 3.8

for a diagram of conversion to a phase variable on an oscillator’s limit cycle.

A point on γ can be pushed off the limit cycle if it is acted upon by some external

perturbation, for instance, interaction with other oscillators, so we must therefore

extend Θ(x) to points away from γ. To that end, we will assign the same θ to all

points x in the basin of attraction of γ which eventually converge to the same x0(θ(t)).

We call a set of points converging to the same phase on the limit cycle an isochron.
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Figure 3.8 Phase reduction for a single oscillator. (a) The membrane poten-
tial of a FitzHugh-Nagumo oscillator set into periodic activity by sufficient
input current. (b) The state of the neuron has two dimensions, membrane
potential (x axis) and the status of a potassium activation gate (y axis). The
activity of the neuron through time can be represented by a closed curve
(limit cycle) in this state space since the unit is periodic. (c) If the period
of the neuron is T , then we can imagine the phase θ of the unit advancing
at a constant rate between an arbitrary point on the periodic limit cycle, for
instance the spike. (d) This correspondence between high(er)-dimensional
neuron state and phase indicating only relative position on the limit cycle has
the effect of "de-warping" the limit cycle into a circular phase cycle moving
at constant speed. Figure taken from Izhikevich, 2007
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Following this logic, we differentiate θ(t) to get

θ̇ =
d

dt
Θ(x(t))

= ∇x=x(t)Θ(x) · d
dt
x(t)

= ∇x=x(t)Θ(x) · f(x(t)) (3.3)

Therefore, we must choose Θ(x) so that ∇x=x(t)Θ(x) · f(x(t)) = ω everywhere in

the basin of attraction. Defined in this way, the phase of all points in the basin

advances at the constant frequency θ̇ = ω and the previously m-dimensional dynamics

of the oscillator have been reduced to a single dimension. A closed form for Θ(x) is

often difficult to acquire except in very simple cases, so numerical approximations are

typically used (Kralemann, Pikovsky, and Rosenblum, 2011; Kralemann, Pivovsky,

and Rosenblum, 2014).

Oscillators are interesting objects on their own, but our concern here is less single

oscillators and more the dynamics of interconnected systems of n oscillators. In these

systems, the behavior of a single oscillator is determined not just by its own intrinsic

equation of motion f but also the influence of its neighbors. Does the reduction to a

single phase variable for a given oscillator still hold under the influence of the rest

of the system? Θ(x) is not generally injective, so that we cannot reconstruct a given

state xj from its phase alone. However, if x remains near the limit cycle, we can

approximate it by x0(θ). Hence, if the interaction with the rest of the system is weak

enough that no x is displaced too far from γ, we can always reduce the system from

n × m (number of oscillators × dimension of oscillator state) dimensions to n × 1

(number of oscillators × one phase dimension) dimensions. This is the essence of

phase reduction theory.

Considering a single oscillator with state x, we may formalize this intuition by

introducing the phase response function

g(θ; δ) = Θ(x0(θ) + δ)− θ (3.4)
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which measures the deviation in phase resulting from the perturbation of a point on

the limit cycle x0(θ) by an impulse δ ∈ Rm. The new phase of the perturbed oscillator

is well approximated by the Taylor series

Θ(x0(θ) + δ) = Θ(x0(θ)) +∇xΘ(x)|x=x0(θ) · δ +O(|δ|2)

= θ +∇xΘ(x)|x=x0(θ) · δ +O(|δ|2) (3.5)

when the magnitude of the impulse |δ| is small. Substituting into Eq.3.4 gives

g(θ; δ) ≈ ∇xΘ(x)|x=x0(θ) · δ

= Z(θ) · δ, (3.6)

where Z(θ) is the phase sensitivity function. In words, the change in phase caused by

a small impulse to the oscillator at its limit cycle is approximated by a projection of

the impulse onto the gradient of Θ. Again, the exact calculation of Z(θ) is difficult

and but good numerical methods are available (Ermentrout, 1996).

Now, suppose we have a dynamical system n interacting oscillators described by

the combined state vector X ∈ Rn×m and obeying the equation of motion

Ẋ = F (X, t) + εP (X, t) (3.7)

where the components of F represent the intrinsic dynamics of each of the n oscillators,

P represents the external influence of the system on each oscillator, and ε is a scalar

small enough so that the influence of P on any oscillator is not so strong as to perturb

it far from its limit cycle. The dynamics of the system’s phases are then given by

˙θ(t) =
d

dt
Θ(X(t))

= ∇XΘ(X)|X=X(t) · (F (X(t)) + εP (X(t), ))

= ω + ε∇XΘ(X)|X=X(t) · P (X(t), t), (3.8)

where ω is the vector of intrinsic frequencies according to Eq. 3.3. Note that final

expression still depends on the original state variables X. If we assume that ε is small
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enough, then we can approximate X(t) by a nearby point X0(θ(t)) on the limit cycle

and having the same phase as X(t); i.e. Θ(X(t)) ≈ Θ(X0(t)). Then

∇XΘ(X)|X=X(t) · P (X(t), t) ≈ ∇XΘ(X)|X=X0(θ(t)) · P (X0(θ(t), t))

== Z(θ(t)) · P (X0(θ(t)), t), (3.9)

where Z is the phase sensitivity function defined above. Putting this all together, we

have

θ̇ = ω + εZ(θ) · P (θ, t)

= ω + εχ(θ, t). (3.10)

We have thereby reduced the n × m-dimensional system in Eq. 3.7 to an n × 1

dimensional system in phase alone. The dynamics are governed by ω, a vector of

intrinsic frequencies indicating the rate at which each oscillator would advance around

the unit circle in the absence of the rest of the network, and χ, a coupling term which

controls how the phase an oscillator is influenced by those of its neighbors.

Despite its lower dimensionality, the phase-reduced system can still be probed for

interesting behaviors in the original system. See Nakao, 2016 for an excellent review

of phase reduction.

The Kuramoto Model

The coupling term χ in Eq. 3.10 is very general, so it is useful to study some special

cases. A typical case studied by Hoppensteadt and Izhikevich, 1997 and others is

when χ is a sum of odd functions depending on pairwise phase differences θi − θj:

χ(θ) =
∑
i,j

χij(θi − θj) (3.11)

In that case, we can express χ by a sine series

χ(θ) =
∑
i,j

Kc,ij

∞∑
c=1

sin(c(θi − θj)) (3.12)
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where Kc,ij is the cth Fourier coefficient of χij. If we only take the first Fourier

coefficient and substituting into Eq. 3.10, we arrive at the very simple oscillatory

system

θ̇j = ωj + ε
∑
i,j

Kij sin(θi − θj). (3.13)

This is the celebrated Kuramoto model, the subject of enormous interest in com-

putational physics, computational neuroscience and mathematical biology since its

proposal in Kuramoto, 1975. The system has remained so captivating for the manner

in which it describes the emergence of coordinated (i.e. synchronous) activity in

a generally heterogeneous population. Specifically, under certain conditions on the

intrinsic frequencies, ω, and the coupling matrix, K, the system gradually evolves from

a random initial state towards one in which all oscillators share a common frequency

and similar phase. Indeed, this sort of "order from chaos" is very much the guiding

spirit of the whole study of complex systems, where the Kuramoto model has played

a central role. We briefly review some of the interesting behaviors of the Kuramoto

model here, though the model is still an active area of research.

Kuramoto himself studied a simple mean-field version of the model in which

Kij = K
n
was constant and ω was a random sample from n i.i.d. random variables

with unimodal density g(ω) symmetric about 0. He then defined the so-called global

order parameter

r =
∣∣reψ∣∣ =

∣∣∣∣∣ 1n∑
j

eiθj

∣∣∣∣∣ (3.14)

which is 1 exactly when all oscillators share a common phase and approaches 0 for

large n when the θj are uniformly distributed. Clearly, when K = 0, r ≈ 0 for all

t since there is no pressure to synchronize. Conversely, when K is very large, the

influence of the rest of the network will dominate the intrinsic behavior of single

oscillators, resulting in complete phase locking, r = 1, as t → ∞. Where does the

transition from r = 0 to r = 1 occur?

Taking n large and using a continuity equation (Griffiths, 1999) description of the
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Figure 3.9 Phase locking in the mean-field Kuramoto model. The instan-
taneous state of a Kuramoto model with mean-field coupling is depicted
for three coupling strengths K. The yellow-tipped vector is the mean field,
whose length, r, is the global order parameter measuring the coherence of the
system. For low K, the system is disordered forever. For middling K, the
system begins to frequency-lock, with a macroscopically significant number
of oscillators advancing around the unit circle at the same rate and similar
phase. For large K, all units couple into this cluster.

system, Kuramoto solved for the stationary density on ρ(θ) and from this determined
r → 0 if K ≤ 2

πg(0)

r → 1 if K > 2
πg(0)

(3.15)

Therefore, the mean-field Kuramoto model undergoes a phase transition at K =

Kc = 2
πg(0)

from disorder when coupling is weak to global synchrony when coupling

is strong. Kc is large when the mode g(0) is small, which is precisely the case that

intrinsic frequencies have large variance. Intuitively, these heterogeneous oscillators

should be hard to synchronize, so the coupling strength must be made correspondingly

strong (see Acebrón et al., 2005 for a detailed derivation of Kuramoto’s original result).

Surprisingly little is known about the emergence of synchrony in the general model

of Eq. 3.13. Numerous studies have considered the onset of synchrony on complex

graphs with non-constant coupling (Arenas and Albert, 2008; Lopes et al., 2016),

uniform negative couplings (Ciobotaru et al., 2018), mixed positive and negative

couplings (Hong and Strogatz, 2011), purely local couplings (Ha, Li, and Xue, 2013),

adaptive Hebbian interactions (Timms and English, 2014; Ha, Noh, and Park, 2016;
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Ha, Lee, and Li, 2018; Bronski et al., 2016), stochastic Langevin dynamics (Sakaguchi,

1988; Sakaguchi, Shinomoto, and Kuramoto, 1988), linearized interactions (Roberts,

2008), and quenched random couplings (Daido, 1987; Daido, 1992; Daido, 2000). By

"quenched" we mean a type of randomness which is not subject to model dynamics. For

instance, Daido was the first to study the case of the Kuramoto model with Gaussian

interactions, a system which he analogized to spin glasses in the study of magnetism

(Nishimori, 2010). The validity of this analogy is the subject of ongoing controversy

(Bonilla, Pérez Vicente, and Rubí, 1993; Iatsenko, McClintock, and Stefanovska, 2014;

Ottino-l and Strogatz, 2018). Nevertheless, quenched random couplings are still a good

model of oscillatory interactions in numerous real-world systems, especially neural

networks, where disordered couplings are the product of learning and the encoding of

information.

Global synchrony is by no means the only macroscopic behavior of interest in the

Kuramoto model. In particular, numerous studies have examined the emergence of

multi-polar synchrony, in which the Kuramoto model separates into clusters which

are internally synchronous but mutually desynchronized (Schaub et al., 2016; Smith

and Gottwald, 2019). Multi-polar synchronization is particularly interesting for our

case since the phases of synchronous clusters could act as tags or indices for the type

of "communication-by-coherence" mechanism theorized by Fries, 2015.

The study of macroscopic behaviors in the Kuramoto model would be considerably

easier if the density of phases after a burn-in period assumed some simple form. A

magnetic spin system, like an Ising model, assumes a Gibbs density when the system

reaches equilibrium, and phase transitions in this system occur where derivatives of

the normalizing constant of this density (the partition function) are discontinuous

(Ruelles, 2004). Certain similarities between the Kuramoto model and these magnetic

formalisms prompted (Hemmen and Wreszinski, 1993) to pose an equilibrium analysis

of the Kuramoto model in which the system was said to minimize a given energy
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function during its evolution. Perez-Vicente and Ritort, 1997, for their part, noted

that the equilibrium formulation of Hemmen and Wreszinski, 1993 was only valid as

long as probability currents at the boundaries of [−π, π] were zero3. This issue seems

to have been mostly resolved by Gupta, Campa, and Ruffo, 2014a; Gupta, Campa,

and Ruffo, 2014b who situated the Kuramoto model in a more general system with

inertia and noise:

mθ̈j = −µθ̇j +
∑
i

Kij sin(ψ − θj) + µωj +
√
µηj(t), (3.16)

where m is a scalar mass, µ is a friction constant, r is the global order parameter, ψ

is the phase of the mean field (see Eq. 3.14), and ηj is an uncorrelated noise process

with variance T :

〈ηi(t), ηj(t′)〉 = 2
T√
m
δijδ(t− t′). (3.17)

As before, we let ω ∼ g for a symmetric, unimodal density g with variance σ. Then,

the triple (m,T, σ) defines a point in the generalized model parameter space depicted

in Fig. 3.10. When m = 0, we are in somewhat familiar Kuramoto territory: we either

have the original formulation for T = 0 or the stochastic Langevin model cited earlier

for T > 0 (Sakaguchi, 1988; Sakaguchi, Shinomoto, and Kuramoto, 1988). The authors

demonstrate the model only obeys detailed balance and reaches equilibrium in the case

that σ = 0. In this case, the model is equivalent to a classical XY system of magnetic

spins (Tong, 2012) and has the fabled Gibbs distribution at equilibrium. Detailed

balance is violated when σ > 0 in which case the system is out of equilibrium. One

may imagine ω as an external driver of the system, forcing it away from equilibrium.

The complicated Eq. 3.16 is likely of interest to physicists on its own merit, but

we mainly include here for the implications it has about learning in these systems.

Namely, when σ = 0, the system has a Gibbs distribution at equilibrium, and we are
3In other words, one can cast the Kuramoto model as an equilibrium model with Gibbs-distributed

phases as long as the system always evolves from a state in which all phases lie in one half-circle.
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Figure 3.10 Parameter regimes of a generalized Kuramoto model. Regimes of
the Kuramoto-type model given by Eq. 3.16 are plotted in a three-dimensional
parameter space. The model is synchronized inside the region bounded by the
blue surface and is desynchronized elsewhere. Phase transition boundaries for
different model regimes (details in Gupta, Campa, and Ruffo, 2014a, Fig. 1,
caption) are denoted by red lines. When σ is zero, the model reduces to the
Brownian Mean Field (Chavanis, 2014) system, in this case an equilibrium
XY spin model interacting with a heat bath. For non-zero σ, the system
transitions to the non-equilibrium Kuramoto (T = 0) or noisy Sakaguchi
(T > 0) model. Figure taken from Gupta, Campa, and Ruffo, 2014a.
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free to use the unsupervised density fitting methods of the probabilistic graphical

modeling literature. We are out of luck in the case that σ > 0 and must resort to

supervised learning and direct backpropagation of error through the flow of θ. This

distinction forms the theoretical dichotomy of Chs. 4 and 5.

3.3.2 Neuroscientific applications of the Kuramoto model

More often than not, studies of the Kuramoto model begin with a reflexive statement

on the system’s ubiquity in the natural world. These statements would grow tiresome

if the omnipresence of the model were not so striking and so surprising. Our focus in

this section is a brief review of the purely neuroscientific applications of the Kuramoto

model, but a listing of other sorts of applications is warranted. See Arenas and Albert,

2008 for summaries of Kuramoto applications to genetic networks (Garcia-Ojalvo,

Elowitz, and Strogatz, 2004), circadian rhythms (Fukuda et al., 2007), population

dynamics (Blasius, Huppert, and Stone, 1999), parallel computing (Korniss et al.,

2000), data mining (Miyano and Tsutsui, 2007), consensus formation (Pluchino, Latora,

and Rapisarda, 2004), wireless communication networks (Diaz-Guilera et al., 2009),

decentralized logistics (Lämmer et al., 2006), power-grids (Filatrella, Nielsen, and

Pedersen, 2008), laser arrays (Strogatz and Mirollo, 1993), finance (Onnela et al.,

2003), and world trade (Garlaschelli et al., 2007).

Neuroscientific applications of the Kuramoto model often rely on the emergence

of synchrony to test for the functional connectivity of brain regions. For example,

Honey and Sporns, 2008 used a Kuramoto dynamics with weights taken from macaque

connectivity data (Fig. 3.11) to investigate the influence of specific lesions. Synchrony

in the system was used to "[understand] how rapidly, and in which region order,

the cortical network [would] synchronize from a randomly perturbed initial state."

Their study indicated that brain regions with a large number of out-going connections

stabilized earlier than loosely connected regions. The authors found that correlations
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(a) (b)

Figure 3.11 The Kuramoto model for the understanding functional connectiv-
ity in cortex. (a) Connectivity matrix for macaque cortex. (b) Correlations in
the time-course of synchronization between cortical regions. This correlation
matrix was found to agree closely with similar correlations in BOLD signal
from monkey cortex.

between the order in which regions synchronized agreed closely with similar correlation

measures from BOLD measurements in monkey cortex. Later studies examined similar

dynamics in cat (Gómez-Gardeñes et al., 2010) and human (Villegas, Moretti, and

Muñoz, 2014; Schmidt et al., 2015) cortex. Several studies have used the Kuramoto

model to study patterns in functional connectivity in human cortex during resting

state. Cabral et al., 2012, for example, simulated neural activity and the resultant

hemodynamic response with a Kuramoto-like model and found that weak coupling

created patterns of functional connectivity similar to those reported in schizophrenic

patients. A subsequent study by the same first author (Cabral et al., 2014) found that

the Kuramoto model could be used to simulate transient frequency synchronization at

between 8-30 Hz seen in human MEG data during a resting state. Schmidt et al., 2015,

for their part, used the Kuramoto model to demonstrate how overlapping neighborhood

structure in complex networks could mimic patterns in functional connectivity as
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(a) (b)

Figure 3.12 Phase reduction on a Hodgkin-Huxley system. (a) Hansel and
colleagues used four Fourier modes for approximating the phase coupling
function in a system of two Hodgkin-Huxley units. Depicted here is the
effective coupling function for several values of input current. For low currents,
the neurons will synchronize. Beyond a critical input current, however, an
extra fixed point emerges (inset) and the neurons will not synchronize. Phase
reduction has been used here to predict an unintuitive phase transition. (b)
Firing rate of the system as a function of coupling strength. Dots are from
numerical simulations and the straight line is the analytical prediction from
phase reduction. The two diverge beyond a critical coupling since the weak
coupling condition on which phase reduction depends is broken.

measured in human fMRI and DTI data.

Other studies use Kuramoto oscillators to model individual neurons. For instance,

Hansel, Mato, and Meunier, 1993 used phase reduction to model networks of Hodgkin-

Huxley neurons as Kuramoto-like oscillators. The authors used four Fourier modes

from Eq. 3.10 in their approximation and showed how the reduced system could predict

the onset of bistability and out-of-phase locking (Fig.3.12) Later, Kitzbichler et al.,

2009, showed that the patterns of transient phase-locking in the Kuramoto model

near the critical points strongly resembled the correlations in human MEG data taken

during resting state. Breakspear, Heitmann, and Daffertshofer, 2010 went on to argue

that the Kuramoto model could be used to model behavior characteristic of cortical

activity in the beta regime (Freyer et al., 2009), that regime which characterized

same-different processing in Sec. 3.1.
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3.3.3 Current approaches to optimizing the Kuramoto model

Analytical expressions for the degree of synchrony in the general Kuramoto model–with

potentially random, frustrated (Zanette, 2005) and arbitrary frequency distributions–

are not forthcoming4. As a result, there have been numerous attempts to instead

develop empirical methods for the determination of parameter regimes giving rise to

global synchrony. Often, these methods treat the study of global synchrony as an

optimization problem in which intrinsic frequencies and couplings must be gradually

adapted to maximize a synchrony-dependent fitness (or minimize a desynchrony-

dependent loss).

An early study by Gleiser and Zanette, 2006 sought to maximize phase-locking

in the Kuramoto model by rewiring an Erdös-Rényi graph (Erdös and Rényi, 1959)s.

Every T time-steps, the empirical frequency of each oscillator was calculated

Ωj =
1

T − t′

∫ T+t

t

θ̇(t′) dt′ (3.18)

Then, for each oscillator indexed by i, the link (i, j) to the unit j having the farthest

empirical frequency from i as measured by |Ωi − Ωj| was replaced with (i, k) where k

had the closest intrinsic frequency. The coupling strength on these links was constant

and experimentally varied. The authors found that the system gradually evolved

towards a small-world structure as it adapted to produce greater global synchrony

(Fig. 3.13). Interestingly, the model was found to synchronize at much lower coupling

strengths than in the all-to-all coupling case (e.g. 3.15).

Later work by Tanaka and Aoyagi, 2008 sought to optimize both couplings and

intrinsic frequencies using gradient descent, assuming positive, symmetric, couplings.

When intrinsic frequencies and total coupling strength were held fixed, the authors

found that a randomly initialized network would gradually develop links between
4However, see Ott and Antonsen, 2008 and Gottwald, 2015 for some exciting recent developments

on that front.
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(a) (b)

Figure 3.13 Early results concerning optimal graphs for synchrony. (a) Every
T steps of a Kuramoto dynamics, Gleiser and Zanette adjusted the adjacency
matrix in the underlying graph according to the nearness of oscillator intrinsic
frequencies. Plotted here is the clustering coefficient of the graph for large
t as a function of coupling strength r. Note that maximal clustering occurs
for middling coupling strengths. Clustering is lesser for weak and strong
coupling strengths because, in the former case, rewirings which would increase
clustering have little effect on synchrony anyway, and, in the latter case,
rewiring is unnecessary since strong couplings enforce synchrony easily. (b)
The graph distance, d, between oscillators is plotted as a function of time
for different coupling strengths. In all cases, d decreases asymptotically,
indicating the graph is becoming more small-world like.
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(a) (b)

Figure 3.14 Couplings between disparate oscillators encourages synchrony.
(a) A small network of oscillators was constructed with all-to-all coupling. The
network is depicted here with oscillators ordered from left to right by intrinsic
frequency, as indicated by grayscale value. The weight matrix optimized
for synchrony is plotted in the second panel. Note that oscillators with
greatly different intrinsic frequencies tend to be strongly connected. (b) In a
second demonstration, the authors also optimized intrinsic frequencies. When
coupling strength was low, oscillators converged to a single value (left panel),
and when coupling strength was high, oscillators converged to two clusters.
Figure from Tanaka and Aoyagi, 2008

oscillators having disparate intrinsic frequencies, prefiguring numerous future results

in the literature (Fig. 3.14). If instead both couplings and intrinsic frequencies were

optimized, a large total coupling strength encouraged intrinsic frequencies to split into

two groups, while a small coupling strength forced frequencies to converge to a single

mode.

The first result of Tanaka and Aoyagi, 2008 was replicated in several experiments

by Markus Brede (Brede, 2008a; Brede, 2008b; Brede, Stella, and Kalloniatis, 2018).

Contrary to previous work, Brede optimized complex graphs encouraging synchrony

by random search. Starting from a random initial connectivity, an average global

order parameter was calculated by

r̄ =
1

T − t′

∫ T

t′
r(t) dt. (3.19)

A random link was then switched and r̄ was recalculated. If the resulting average

global order was higher than before the switch, it was kept, and it was otherwise

ignored. Intrinsic frequency distributions were fixed. Consistently, oscillators of

disparate intrinsic frequencies came to link to one another over the course of the
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Figure 3.15 Structured graphs encourage synchrony across a range of coupling
strengths. Brede optimized a complex graph with 100 nodes for which the
probability of connection between two nodes was .035. Coupling strength was
fixed at σ∗ = .07. The graph was optimized for a single vector of intrinsic
frequencies. Then, he plotted the average coherence of the system (Eq. 3.19)
across a range of coupling strengths compared to a random baseline. Increased
training iterations, T , created uniformly more coherent dynamics across the
range of couplings considered.

optimization. Brede found that, although the network was optimized for a single

coupling strength, it still gave rise to greater coherence across a range of coupling

strengths (Fig. 3.15).

Optimization of Kuramoto parameters marks an important step in the empirical

understanding of oscillatory systems and their potential role in neural function. The

introduction of optimization techniques into the study of these systems is especially

tantalizing since it mimics the development of learning methods for feedforward

networks which helped establish today’s fruitful and exciting dialogue between deep

networks and visual cortex (Eberhardt, Cader, and Serre, 2016; Yamins et al., 2014;

Nayebi et al., 2018). Nevertheless, the methods we have so far described either rely

on certain model restrictions like symmetric, positive couplings which eliminate the

more exotic regimes of Kuramoto dynamics (e.g. potential glassy states) or employ

indirect techniques like random search.

Our intention in the subsequent chapters will be the development of direct learning
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methods relying on the gradient of certain macroscopic system quantities with respect

to model parameters and which do not place any restrictions on those parameters. In

short, we will exploit the prevalence and strength of contemporary machine learning

methods to do deep learning on the Kuramoto model. The technical description of

the Kuramoto model we have just provided has laid the groundwork for our ultimate

goal of making a learning system which could conceivably model those mysterious

oscillatory functions described in this chapter’s beginning: binding by synchrony,

communication by coherence, and phase coding more generally. We turn to this sort

of modeling next.
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Chapter Four

Kosterlitz machines

The1 formal models of phase-coding we have reviewed, descriptive and informative

as they are, cannot learn. This is a serious limitation for any model with pretenses

towards biological plausibility, since the best predictors of neural activity, especially

in visual cortex, are invariably neural networks optimized for task performance and

not hardwired to mimic cortical activity directly (Yamins et al., 2014; Nayebi et al.,

2018). Our challenge is then to devise a neural architecture whose dynamics mimics

the CTC mechanism of gating by coherence and can be adapted to a given task by

standard machine learning methods.

This chapter proposes one solution to this challenge, what we will call the Kosterlitz

machine2 (KM), based on models from the equilibrium regime of Eq. 3.16 (see Ch.3.

Fig. 3.10). Relying on the fact that such a system obeys detailed balance and is

therefore Gibbs-distributed at equilibrium, we can attempt to model this distribution

directly so that it comes to resemble a target distribution of phases. In the CTC

framework, this type of learning would be of use to downstream neural populations

looking to model the distribution of phases of afferent populations to which the
1Material from this chapter was presented as Ricci, Windolf, and Serre, 2019 and is the subject of

a manuscript in preparation with co-authors Charles Windolf and Thomas Serre.
2The model we propose is based on the classical XY model from statistical physics, one of whose

famous investigators is Brown University’s Michael Kosterlitz.
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Figure 4.1 Learning a generative model of vector arrays. Our goal in this
chapter is to construct a hierarchical graphical model in stochastic neurons
have both a rate and a phase. The result will be a system for which hidden
units function as latent phase-based codes for generating angular data.

downstream ensemble could be entrained. More generally, the method outlined in

this chapter can be applied to the unsupervised learning of arbitrary 2D vector fields

(Fig. 4.1). A Kosterlitz Machine is at first glance a 2D generalization of the famous

Boltzmann Machine (Ackley, Hinton, and Sejnowski, 1985), itself an adaption of the

Ising and n-vector models of statistical physics. An important difference between the

KM and these other formalisms is that neurons in the KM have both a magnitude

and direction. In statistical terms, this magnitude encodes the confidence that a given

feature is present in the neuron’s receptive field; in physical terms, as we will see,

this confidence is a dynamical coupling which can force the system to separate into

non-interacting ensembles in the manner of Malsburg, 1994. This is the first of several

peculiarities that differentiates the KM from its analogues in statistical physics.

A principal benefit of the KM is the manner in which it intuitively embeds

mechanistic descriptions of phase coding, like gating by coherence, within the statistical

framework of probabilistic graphical models. Casting oscillatory neural dynamics

in probabilistic terms allows us to abstract away from the complicated microscopic

behavior of individual neurons and focus instead on high-level macroscopic processes,

like inference. For example, the level of coherence of units within a given receptive field

140



is closely related to the statistical confidence the target unit has in the presence of a

given feature appearing in the data. Further, we will show that the decoupling behavior

induced by the neural amplitudes can be cast as a form of variational inference.

The Kosterlitz Machine is in many ways a synthesis of existing models, so we will

do well to review those systems first. We will then lay out two versions of the system

depending on which types of neuron magnitudes are allowed. We will demonstrate

how these systems can be efficiently trained and stacked to form deep hierarchical

neural networks. Across several experiments, we will show how perceptual grouping

in the KM can be cast as conditional inference and communication through coherence

takes the form of a prior on latent phases. Finally, some future directions will be

discussed.

4.1 Equilibrium oscillatory systems in image process-

ing

Though it lacks any notion of phase, perhaps the most famous machine learning system

inspired by equilibrium statistical mechanics is the celebrated Boltzmann Machine

(BM) (Ackley, Hinton, and Sejnowski, 1985), a classical method of non-parametric

density estimation which remains the subject of a good deal of interest for its connection

to the study of spin glasses (Nishimori, 2010) and Hebbian learning in neural systems

(Reichert, 2014). Most of theoretical framework for the phase-based systems we will

describe are inherited from the BM, so we will briefly review this framework here.

The interested reader can consult Fischer and Igel, 2014 for more details on BMs

and Wainwright and Jordan, 2008 for a voluminous review of probabilistic graphical

models more generally.

A Boltzmann Machine (Fig. 4.2) is a Markov random field (MRF) taking random

values on {0, 1}n (or {±1}, depending on the author) on an undirected graph G =
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(a) (b)

Figure 4.2 Boltzmann machines. (a) A Boltzmann machine is a binary-
valued Markov random field parameterized by a weight matrix W and a
vector of biases b. The Gibbs density on model configurations implies that the
conditional distribution on a single unit’s state given the rest of the network is
Bernoulli distributed with parameter controlled by a sigmoidal function of the
unit’s input (second equation). (b) A restricted Boltzmann machine (RBM)
splits the graph into two layers so that units are conditionally independent
within a layer and the "hidden" layer functions like latent codes for generating
"visible" data according to a learned dictionary of features, M .

{V,E}. The log-likelihood of a random configuration X is given by

log p(X = x|Λ = {W, b}) = −β(xTWx+ bTx)− F (W, b) (4.1)

= −βE(x;W, b)− F (W, b),

where W ∈ Rn×n is a symmetric matrix of synaptic weights or couplings, b ∈ Rn is a

vector of biases or firing thresholds, F is a constant called the system’s free energy,

and β is a free parameter controlling the entropy of X. The parameters of the BM

are collected into Λ. We call the component of the log-likelihood depending on x the

energy of x and denote it by E(x).

Suppressing the dependence on Λ, we note that the joint distribution on X is given
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by

p(X = x) = e−βE(x)−F

=
1

Z
e−βE(x), (4.2)

where F = logZ. Eq. is therefore a Gibbs or Boltzmann distribution with inverse

temperature parameter β = 1
T
and partition function Z, which contains all of the

essential information about X’s distribution and normalizes its density:

Z =

∫
x

e−βE(x) dx. (4.3)

The physicist will now recognize a BM machine as simply an Ising model with an

external field parametrized by b and potentially disordered interactions, W .

A Boltzmann machine is used to model a target distribution D by adapting Λ by

maximum likelihood estimation:

Λ∗ = arg max
Λ

Ex∼D [log p(x; Λ)] (4.4)

Unfortunately, computing Λ∗ by gradient ascent involves calculating the partition

function Z and the complexity of this calculation is generally exponential in the

number of units in the MRF. Instead, the gradient is approximated by either sampling

or variational methods which we will discuss in more detail below.

Typically, these approximations are facilitated by constraining Λ to lie in some

feasible set which expedites sampling or variational inference. The most common

restriction is to assume that X is partitioned into two or more ensembles which are

internally conditionally independent. For instance, we may partition X by X =

[Xv : Xh], where : denotes concatenation, and call the corresponding sets of vertices,

Vv, Vh ⊂ V , the visible and hidden partitions, respectively. We may then restrict W

to be an off diagonal block-matrix of the form

W =

 0 1
2
M

1
2
MT 0

 (4.5)
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where M ∈ Rn×m. Biases are partitioned similarly. In this case, weights between

units in a partitioned are removed, G is made bipartite, and one can check that

p(Xv|Xh) =
∏

j p(Xj|Xh) and vice versa for Xh. We call this system a restricted

Boltzmann machine (RBM). This can be generalized to any number of partitions.

RBMs are in general much easier to train than general Boltzmann machines and

are additionally interesting for their interpretation as a multi-layer generative neural

network (Fig. 4.2b). For example, if a data distribution X ∼ D takes values on

{0, 1}n, then we can construct a hierarchical generative model of the data with a visible

partition X1 taking values in {0, 1}n and hidden partitions {X`}L`=2 by performing

maximum likelihood estimation on the marginal distribution

p(X1 = x1|Λ) =

∫
x2,...,xL

p(x1, . . . , xL; Λ) dx2 . . . dxL.

Now, the random variables X2 function as latent factors generating the data X1, X3

functions as latent factors generating X2, and so on. When L > 2 we refer to this

system as a deep restricted Boltzmann machine (DRBM)3.

Though they are currently outperformed by newer density estimation methods,

like Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), Boltzmann

machines and their derivatives have remained an important object of study for both

machine learning practitioners and computational neuroscientists for their intuitive

connection to neural systems. For example, just from Eq. 4.1 we can demonstrate

that each unit in a BM functions as a linear-nonlinear neuron (Ostojic and Brunel,

2011) with a sigmoidal activation function. Further, the derivative of the network’s

log-likelihood with respect to a given synapse is a function of only the activities on

the pre- and post-synaptic sides of that weight, making the learning algorithm for

Boltzmann machines entirely local in addition to being unsupervised. This circumvents
3This is not the same as a deep belief network (DBN), which is a hierarchical generative model

on a directed graph. See Salakhutdinov and Larochelle, 2010 for a comparison between DBNs and

DBMs.
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(a) (b)

Figure 4.3 Directional unit Boltzmann machines. (a) A directional unit
Boltzmann machine (DUBM) is a probabilistic graphical model in which
units take values on the circle. Zemel and colleagues trained their system
to memorize three simple patterns (top panel) and then retrieved the stored
inputs by annealing the system from a random starting configuration. The
middle panel shows convergence from a random state to the first pattern. The
bottom panel shows convergence to the second pattern. Notice that uniform
rotations of a configuration are equally likely. (b) In a second demonstration,
the authors trained the model to learn the angular position, µ, of a robot arm
with forearm A and upper arm B. Angles α and β were provided as input
and µ was the target output.

the use of a global supervisor (as in the case of CNNs) or an additional discriminator

network (as in the case of GANs).

The earliest adaptation of the Boltzmann machine framework to a phase-based

system came in the form of directional-unit Boltzmann machines (DUBMs) (Zemel,

Williams, and Mozer, 1995), which replaced the binary neural states of the BM with

circular states represented by a phase variable θ ∈ [0, 2π] with periodic boundaries.

Just as the Boltzmann machine is the data scientific analogue of the Ising model,

the DUBM is analogous to classical XY model described in Sec. 3.3.1. Zemel and

colleagues trained a small, two-layer DUBM’s on a pattern completion task and a task

involving the rotation of a robot arm (Fig. 4.3), emphasizing that the magnitude of a
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Figure 4.4 Phase as an inhibitory envelope. Reichert and Serre conceived of
neural phase in their system as an inhibitory envelope suppressing spikes, as
in the left panel. When two of these bursting units integrate at a synaptic
terminal (middle panel), their resulting postsynaptic rate is a function of
their phase difference (right panel). Minimal rate is achieved when afferents
are π out of phase.

unit’s expected value increased to the degree that afferent units "agreed" in phase.

The magnitude of the unit’s expected state can therefore be interpreted as a measure

of confidence in predicted the phase of units in its receptive field which is close to 0

when the units are completely desynchronized and 1 when the units are synchronized.

However, since the unit states themselves always have magnitude 1, this [0, 1]-valued

confidence measure does not actually play a role in the evolution of the stochastic

system.

Nearly twenty years later, Reichert and Serre, 2013 proposed a similar system in

which unit states had both a phase and bona fide binary magnitude. Such a system

might be expected to display categorically different behavior than that of Zemel,

Williams, and Mozer, 1995 since neural magnitudes and the confidences they encode

more directly influence the system’s evolution. The authors likened the magnitudes of

their model neurons to the rate of a traditional McCulloch-Pitts unit and analogized

the phase variable to the phase of a periodic inhibitory envelope on the unit’s spikes.

The system was trained only indirectly: real-valued weights were simply taken from a

traditional DRBM trained on binary scenes of a few shapes or digits. The authors

then affixed the trained system with additional phase variables on every unit. Reichert
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and Serre, 2013 proposed a stochastic update rule by which each unit would update

its extended state given activity from neighboring units. This update rule was a

complicated function of both the magnitude of the unit’s weighted inputs and the

sum of pointwise moduli of the afferent activities.

The system was evaluated by "clamping" a given binary stimulus to the visible layer

of the network, initializing it with random phases and then updating the stochastic state

of the whole network in parallel using the aforementioned update rule. Surprisingly,

although Reichert and Serre, 2013 had not trained the system for segmentation, the

authors found that stochastic updating in this manner caused the clamped image to

spontaneously group into perceptually meaningful segments (Fig. 4.5), a phenomenon

they likened to the hypothesized "binding by synchrony" mechanism described in

Sec. 3.2.1. Further, the authors noted that their interpretation of neural phase

the timing of an inhibitory envelope provided a natural gating mechanism during

synaptic integration: units would destructively interfere to the degree that their

envelopes were out of phase. Reichert and Serre provide little explanation of their

Figure 4.5 Spontaneous "binding by synchrony" in a phase-based deep net-
work. Reichert and Serre found that when a deep Boltzmann machine was
trained on binary images like those in the left panels, its weights could be
used to encourage a spontaneous "binding by synchrony" in a similar system
(right panels).

remarkable finding, except to intuit that "units gradually decouple" (Reichert and

Serre, 2013, p. 4) over the course of stochastic updating. Moreover, their two-step
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procedure of training a binary DRBM and then affixing it with a novel stochastic

updating procedure unfortunately divorced the system’s microscopic dynamics from

its macroscopic statistical meaning. For example, it is common to refer to a traditional

Boltzmann machine as a stochastic recurrent neural network since samples of the

system are often acquired by Gibbs sampling which requires the sequential activation

of units which in turn send their states to other units, and so on. However, the

sequential activation of units over the course of Gibbs sampling defines a Markov chain

whose invariant distribution is known. The dynamics of Reichert and Serre, 2013, if

they carry out Gibbs sampling at all, do so on a distribution which is unknown. In

particular, no joint distribution or energy functional is provided by the authors.

Consequently, the behavior of the system, surprising as it is, is rather difficult to

explain. Personal correspondence with the authors also indicated that the conditions

under which satisfactory "binding by synchrony" would occur in the model were not

always clear. This is to be expected, as the system was not trained end-to-end to

perform perceptual grouping with phase. Our goal in the subsequent sections will be

to rigorize the model of Reichert and Serre, 2013 in an attempt to both stabilize and

explain their results. The result will be an end-to-end trainable model of phase-based

perceptual grouping in which units have both a random phase and magnitude.

4.2 Kosterlitz Machines

We define a Kosterlitz machine (Fig. 4.6a) as a Markov random field with a random

configuration Z taking values in Cn×m according to the Gibbs density

p(Z = z; Λ) =
1

Z
e−E(z;Λ), (4.6)

where Λ is a set of parameters as before. Again, we partition Z into two sets

Z = [Zv : Zh], where Zv ∈ Cn and Zh ∈ Cm are called the "visible" and "hidden"

states, respectively. Below, visible units will be indexed by j and hidden units will be
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(a) (b)

Figure 4.6 Kosterlitz machines. (a) A (restricted) Kosterlitz machine is a
generalization of a DUBM in which units have amplitude in addition to a
phase. (b) Deeper hierarchies can be trained for richer representations of
data.

indexed by k. We may think of Zh as a latent code serving to generate the data Zv

according to the model p(Zv|Zh; Λ). As before, this partitioning can be generalized,

resulting in a deep KM (Fig: 4.6b). Henceforth, we will drop the distinction between

a random variable and its sample and simply denote all random states with lower case

letters.

This generative model will be fit to samples X from some data distribution D

taking values in Cn by computing the maximum likelihood parameters

Λ∗ = arg max
Λ

Ex∼D [log p(zv; Λ)] . (4.7)

When we maximize marginal log-likelihood, we find that partial derivatives with
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respect to parameters λj have the form

∂ log p(zv; Λ)

∂λj
=

∂

∂λj
log

(
1

Z

∫
zh

e−E(zv ,zh;Λ) dzh

)
=

∂

∂λj
log

(∫
zh

e−E(zv ,zh;Λ) dzh

)
− ∂ logZ

∂λj

= − 1

Zp(zv; Λ)

∫
zh

∂E(zv, zh; Λ)

∂λj
e−E(zv ,zh;Λ) dzh +

1

Z

∫
zv

∫
zh

∂E(zv, zh; Λ)

∂λj
e−E(zv ,zh;Λ) dzv dzh

= −
∫
zh

∂E(zv, zh; Λ)

∂λj

p(zv, zh; Λ)

p(zv; Λ)
dzh +

∫
zv

∫
zh

∂E(zv, zh; Λ)

∂λj
p(zv, zh; Λ) dzv dzh

= Ep(zh|zv)

[
−∂E(zv, zh; Λ)

∂λj

]
− Ep(zv ,zh)

[
−∂E(zv, zh; Λ)

∂λj

]
(4.8)

=

〈
− ∂E(zv, zh; Λ)

∂λj

〉
data
−
〈
− ∂E(zv, zh; Λ)

∂λj

〉
model

(4.9)

The "data "expectation in Eq. (4.8) is taken with respect to the conditional distribution

of the hidden units given the visible units and the "model" expectation is with respect

to the full joint. Calculating the second expectation in (4.8) requires computing the

partition function, which is typically intractable. Consequently, this expectation is

usually replaced by a statistic acquired either by running a k-length Gibbs sampling

chain or by variational approximation. The former procedure for computing Λ∗ by

approximating the gradient of log-likelihood with k steps of Gibbs sampling is called

k-step contrastive divergence (CD-k).

So far, the basic framework we have described is identical to that of a Boltzmann

machine, or indeed any MLE application for some marginal distribution. Next, we

describe some peculiar features of KMs that arise from the multi-dimensional state

space of their units and their energy in two cases, the first of which is a direct

rigorization of Reichert and Serre, 2013 and the second of which is a generalization to

non-binary unit magnitudes.
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4.2.1 Bernoulli Kosterlitz Machines

Being a sort of Ising model, the traditional Boltzmann machine has Bernoulli-

distributed units typically taking values in {0, 1}. These "up-down" states inherited

from the physics literature have a satisfying statistical meaning in the context of the

generative model described above: a hidden unit’s achieving a 1/0 state represents the

machine’s confirmation/rejection of a particular latent hypothesis about the data. In

this spirit, each unit in a Bernoulli Kosterlitz Machine (BKM) takes random values on

S1 ∪ {0}, and we represent its state by the complex number z = reiθ, where r ∈ {0, 1}.

We call the modulus rj the "rate" of zj since if all phases are constant, then the

neuron reduces to the traditional rate-coding McCulloch-Pitts unit with a sigmoidal

activation. We may now think of r as encoding the confirmation or rejection of a latent

hypothesis about the data and θ as encoding a particular instance of this hypothesis.

In other words, r says "if" a hypothesis is true and θ says "how" it is true.

Next, we let Λ = {W, b}, where W ∈ C(n+m)×(n+m) is again a complex Hermitian

block matrix of the form

W =

 0 M

M∗ 0

 (4.10)

and b ∈ Rn+m is partitioned into two sets [bv : bh]. If r = [rv : rh] is the vector of

moduli of z (e.g. |zj| = rj), then we choose the BKM energy

E(z; Λ) = −1

2
z∗Wz − bT r

= −Re (z∗hM
∗zv)− bTv rv − bTh rh. (4.11)

The block form of W ensures that all units within a visible/hidden partition are

conditionally independent and gives a KM the structure of a two-layer neural network.

When a KM has this bipartite structure, we call it a restricted KM (RKM). Below, it

is understood that all KMs are RKMs.

Observe that, if a weightmjk = cjke
iγjk connects visible and hidden units zj = rje

iθj
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and zk = rke
iθk , then this two-unit configuration decrements the BKM’s energy by

rjcjkrk cos(θj−θk−γjk)+bjrj+bkrk =


0 rj = rk = 0

cjk cos(θj − θk − cjk) + bj + bk rj = rk = 1

bi ri = 1, rl = 0, i 6= l

Hence, the (j, k) pair is at its least energetic when both units are on and θj − θk = γjk.

When M is real, this occurs when the (j, k) pair is synchronized.

Our goal is to learn maximum likelihood parameters for the marginal density

p(zv;M, b). Letting xk = ake
iαk =

∑
j zjmjk be the input to hidden unit k, we find

this marginal density has the form

p(zv;M, b) =
1

Z

∫
zh

e−E(zv ,zh;M,b) dzh

=
1

Z

∫
zh

eRe(
∑

j,k zk mjkzj)+
∑

j bjrj+
∑

k bkrk dzh

=
e
∑

j bjrj

Z

∫
zh

e
∑

k rkak cos(θk−αk)+
∑

k bkrk

=
e
∑

j bjrj

Z

∫
z1

· · ·
∫
zm

∏
k

erkak cos(θk−αk)+bkrk dz1 · · · dzm

=
e
∑

j bjrj

Z

∏
k

∫
zk

erkak cos(θk−αk)+bkrk dzk

=
e
∑

j bjrj

Z

∏
k

∫
θk

∑
rk

erkak cos(θk−αk)+bkrk dθk

=
(2π)me

∑
j bjrj

Z

∏
k

(1 + ebkI0(ak))

=
e
∑

j bjrj

Z

∏
k

(1 + ebkI0(ak))

=
1

Z
e
∑

j bjrj+
∑

k log(1+ebk I0(ak))

=
1

Z
eG(zv ;M,b) (4.12)

where we have absorbed constants into the partition function. G is typically called

the model’s marginal free energy.
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M plays the role of a synaptic weight matrix and b a vector of biases or spiking

thresholds in this network. This can be observed by denoting the input to a visible

unit zj by xj = aje
iαj =

∑
k zkmjk and the vector of visible units besides zj by z−j

and calculating the conditional density p(zj|z−j, zh; Λ):

p(zj|z−j, zh; Λ) =
p(z; Λ)∫

zj
p(z; Λ) dzj

=
1
Z
e−E(zj ,z−j ,zh;Λ)

1
Z

∫
zj
e−E(zj ,z−j ,zh;Λ) dzj

=
eRe(zj

∑
k zkmjk)+bjrj∫

zj
eRe(zj

∑
k zkmjk)+bjrj dzj

=
eRe(zjxj)+bjrj∫

zj
eRe(zjxj)+bjrj dzj

=
1

Zj
erjaj cos(θj−αj)+bjrj , (4.13)

where

Zj =

∫ 2π

θj=0

∑
rj=0,1

erjaj cos(θj−αj)+bjrj dθj

= 2π(1 + ebjI0(aj)),

and I0 is a modified Bessel function of the first kind of degree 0. Note that zj|zh is

nearly distributed as a von Mise random variable4, save the mass at rj = 0. Hence,

we say that a random variable zj with density Eq. 4.13 is Bernoulli-von Mises

distributed and write zj ∼ BVM(αj, aj). Neuroscientifically speaking, we may imagine

the calculation of the conditional distribution as a form of synaptic integration (Fig.

4.7) in which the phases of pre-synaptic units constructively or destructively interfere

at the post-synaptic terminus. Destructive interference is caused by a desynchronous
4We say that a random variable θ is von Mises distributed if it takes values on the circle according

to the density 1
2πI0(a)

ea cos(α−θ) where I0 is a modified Bessel function of the first kind with degree 0.

The von Mises density is symmetric about the central angle α and its dispersion is controlled by the

concentration parameter a.
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Figure 4.7 Phase-based gating at the KM synapse. Two units, z1 and z2

synapse onto a third. The random state of the target unit is parameterized
by the integrated activity x = aeiα. These parameters define a Bernoulli-von
Mises distribution from which the actual state is sampled.

receptive field and results in low post-synaptic amplitude, which Zemel, Williams, and

Mozer, 1995 likened to a measure of statistical confidence.

We can sample states of unit j in two steps. First, we sample from the rate

marginal p(rj|xj) with Bernoulli parameter

p(rj|xj) =

∫ 2π

θj=0

p(rj, θj|xj) dθj

=
ebjrjI0(rjaj)

(1 + ebjI0(aj))
. (4.14)

Then, conditioned on the rj sample, we sample from θj:

p(θj|rj, xj) =
p(rj, θj|xj)∫ 2π

θj=0
p(rj, θj|xj) dθj

=
1

2πI0(rjaj)
erjaj cos(θj−αj) (4.15)

Note that θj|rj is indeed von Mises distributed with central angle αj and concentration

parameter rjaj . In particular, θj is uniform on the circle when rj = 0. The conditional
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(a) (b)

Figure 4.8 Marginal and conditional distributions of BKM units. (a) Here
we plot the likelihood that a given unit has state r = 1 given the magnitude
of postsynaptic input, a, (the "concentration" parameter of the Bernoulli-von
Mises density) for several values of the unit’s bias, b. The likelihood of firing
increases with a and the rate of increase is heightened with larger biases.
(b) Next, we show the density on postsynaptic angle θ conditioned on the
magnitude r. When r = 0, θ is uniform on the circle (although 0-magnitude
units have no phase anyway). The mean angle, α, is the angle of integrated
postsynaptic activity and its variance is controlled by a: larger a means less
noise.

densities on hidden units are computed identically. Fig. (4.8a) shows how the 1 or

"on" state is achieved only with strong input when biases become large. Fig. (4.8b)

depicts the density on θj given rj = 1 for various input magnitudes aj. Observe that

the mean angle for a unit is the angle of its post-synaptic activity. The variance on

this angle decreases as the post-synaptic amplitude increases.

We now calculate the learning signal in Eq. (4.8)and observe that

∇ME = −z∗hzv (4.16)

∇bvE = −rv (4.17)

∇bhE = −rh. (4.18)

Substituting into Eq. (4.8) and denoting the difference in phase between unit j
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and unit k by φjk, we find the magnitude and phase of the derivative of the BKM

log-likelihood with respect to a specific weight mjk = cjke
iγjk to be

∣∣∇mjk
Ex∼D [log p(x; Λ)]

∣∣2 = (〈rjrk cos(φjk − γjk)〉data − 〈rjrk cos(φjk − γjk)〉model)
2 +

(〈rjrk sin(φjk − γjk)〉data − 〈rjrk sin(φjk − γjk)〉model)
2

(4.19)

arg∇mjk
Ex∼D [log p(x; Λ)])] = arctan

(
〈rjrk sin(φjk − γjk)〉data − 〈rjrk sin(φjk − γjk)〉model

〈rjrk cos(φjk − γjk)〉data − 〈rjrk cos(φjk − γjk)〉model

)
(4.20)

Below, we will describe how to approximate this derivative either by using samples

from the "data" and "model" distributions or with a variational mean field approach.

Even before laying out the details of these approximations, we can gain some

insight into the learning rule by considering the first case of approximation by sam-

pling. Suppose we have data-driven samples z(d)
v ∼ D and z

(d)
h ∼ p(zh|zv) as well

as z(m)
v , z

(m)
h ∼ p(zv, zh) from the model’s full just distribution. Then, writing the

samples as complex exponentials, the derivative5 at the weight mjk is approximately

¯
z

(d)
k z

(d)
j −

¯
z

(m)
k z

(m)
j = r

(d)
k r

(d)
j ei(θ

(d)
k −θ

(d)
j ) − r(m)

k r
(m)
j ei(θ

(m)
k −θ(m)

j )

If units j and k are synchronized in both the data and model samples then the

imaginary part of the derivative disappears and the update reduces to the regular

Boltzmann machine learning rule whereby the weight is increased if r(d)
j r

(d)
k > r

(m)
j r

(m)
k

and decreased otherwise. Intuitively, the learning rule is trying to increase the strength

between data element j and latent unit k if empirical evidence from the data set

indicates j and k are more correlated than expected by the model. The strength

of the weight is decreased if they are less correlated than expected. If instead the

magnitudes of the samples are all 1 but the samples are out of phase, the magnitude
5Note that we are using complex notation only for convenience and nowhere are we taking complex

derivatives. For example, Eq. 4.11 is not holomorphic.
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(a) (b)

Figure 4.9 Sampling approximations to the BKM gradient. (a) Magnitude
of weight derivative as approximated by samples from the data and model
distributions.0 emph(b) Angle of weight derivative as approximated by samples
from the data and model distributions.

of the derivative of the weight is approximately

2(1− cos(φ
(d)
jk − φ

(m)
jk ))

which is minimal when the φ(d)
jk = φ

(m)
jk and maximal when φ(d)

jk = φ
(m)
jk + π (Fig. 4.9a).

In other words, if the phase relationship between a data element and a latent factor

differs depending on whether or not samples are driven by the data or the model, then

the strength of the weight is increased. This underscores the fact that only relative

phase relationships between the data and latent factors matter to the model. The

likelihood of any sample is invariant up to a constant phase shift.

Finally, the argument of the weight derivative, assuming samples have magnitude

1, can be visualized as a two-dimensional vector field

¯
z

(d)
k z

(d)
j −

¯
z

(m)
k z

(m)
j = ei(θ

(d)
k −θ

(d)
j ) − ei(θ

(m)
k −θ(m)

j ) =
(

cos(φ
(d)
jk )− cos(φ

(m)
jk ), sin(φ

(d)
jk )− sin(φ

(m)
jk )

)
(4.21)

whereby the second equals sign we mean "is represented in R2 as". We plot this vector

field in 4.9b. Again, when φ(d)
jk = φ

(m)
jk , the argument of the derivative of 0.
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4.2.2 Gaussian Kosterlitz Machines

Like hidden units in a Boltzmann machine, those in a BKM encode with their states

the belief in the presence of a particular hypothesis about the data. The BKM

goes one step further than a Boltzmann machine in also declaring that a hypothesis

about the data can be true (i.e. rk = 1) in any (continuous) number of qualitatively

different ways (zk = eiθk , θk ∈ [0, 2π]). We can extend this thinking yet again by

replacing the binary truth values of model units with continuous variables encoding

the graded confidence in the truth value of a particular hypothesis. To that end, we

let z = [zv : zh] ∈ Cn+m such that |zj| = rj ∈ R for all j and define the energy

E(zv, zh; Λ) = {W, b}) =
1

2
(z − b)∗(I −W )(z − b)

= Re ((zh − bh)∗M∗(zv − bv)) + (4.22)

(zh − bh)∗(zh − bh) + (zv − bv)∗(zv − bv) (4.23)

[Make note about variance] where W is block off-diagonal with blocks M,M∗ as in Eq.

(4.10) and b = [bv : bh] is now a complex vector in Cm+n. Note that the state space

of each unit is now C instead of the semi-discrete space of BKM units. A Markov

random field with this energy is distributed according to a multivariate complex

normal distribution (Andersen et al., 1995) with mean b and precision (I −W ), and

we therefore refer to this model as a gaussian Kosterlitz machine (GKM) and write

z ∼ CNm+n(b, (I −W )−1).

In particular, each visible (correspondingly, hidden) unit conditioned on its input

is a bivariate normal random variable in Cartesian coordinates with density,

p(zj|xj) =
1

2π
e−

1
2

(zj−xj)(zj−xj), (4.24)

where xj =
∑

kmjk(zk − bk) + bj = aje
iαj . In polar coordinates, this yields

p(rj, θj|xj) =
1

2π
rje
−(r2j+a2)/2+rjaj cos(θj−αj) (4.25)
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As before, we are primarily interested in probability densities on rj and θj|rj. Inte-

grating Eq. (4.25) with respect to θj gives

p(rj|xj) = rje
−(r2j+a2j )/2I0(rjaj), (4.26)

which we recognize as the density of a Rice random variable. Probability densities

of rj for several values of the modulus of the input are depicted in Fig. 4.10. Rician

distributions are used to model the phenomenon of multi-path interference in signal

propagation, whereby a signal traveling to a receiver along several paths interferes

with itself. We say that the signal is subject to "fading" when this interference is

destructive and the magnitude of the signal at the receiver is attenuated. Under this

interpretation, a receptive field in a GKM functions like a collection of paths by which

a single phase message is to be sent to the post-synaptic unit. Disagreement among

these channels functions like multi-path interference, subjecting the receiving unit to

Rician fading (Rice, 1948).

The conditional density on phase is given by

p(θj|rj, xj) =
p(rj, θj)

p(rj)

=
1

2π
rje
−(r2j+a2j )/2+rjaj cos(θj−αj)

rje
−(r2j+a2j )/2I0(rjaj)

=
erjaj cos(θj−αj)

2πI0(rjaj)
,

so that θj|rj is again von Mises distributed. We may calculate the learning signal for

Eq. (4.8) by differentiating Eq. (4.22) with respect to M ,

∇ME = (zh − bh)∗(zv − bv) (4.27)

and bv, bh,

∇bvE = −M(zh − bh)− (zv − bv)

∇bhE = −M∗(zv − bv)− (zh − bh). (4.28)
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Figure 4.10 Gaussian Kosterlitz Machines have Rician rates. Here, we plot
the density on a single GKM unit’s magnitude, r, for several values of input
magnitude, a. For the connection to Rician fading, see the main text.

As with the BKM, we approximate these gradients with the methods described in Sec.

4.2.4.

4.2.3 Mean field approximation and fast synapse dynamics

Sampling from an MRF in order to get approximate gradients like Eq. 4.2.4 or

calculate the posterior in a multi-layer hierarchical system can be very slow. Instead

of drawing a stochastic sample from the model, we can deterministically optimize a

network configuration which is "close enough" to a true sample. If we constrain the

optimization to be over distributions which are simpler than the true distribution,

then this variational approach can not only accelerate inference and learning but also

give us insight into model dynamics (Zemel, Williams, and Mozer, 1995; Salakhutdinov

and Larochelle, 2010).

The variational approximation proceeds as follows. Suppose our model has a true

density p which is hard to sample from. This typically arises because variables in the

network interact in some nontrivial way that prevents the density from being factored.

In the case of the Kosterlitz machine, this interaction comes from the term Re(1
2
z∗Wz)

which cannot be written as a sum of energies contributed by single phase variables.
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Instead, we will choose some feasible set C of simpler distributions and optimize

q∗(z) = arg min
q∈C

KL(q ‖ p)

= arg min
q∈C

H(q, p)−H(q) (4.29)

= FMF

where KL(· ‖ ·) is the Kullback-Leibler divergence and H(·) and H(·, ·) are the entropy

and cross entropy functionals respectively. In the context of this minimization problem,

we refer to Eq. 4.29 as the variational free energy. If we specify that the feasible set

for the optimization is the set of fully-factoring densities C = {q : q(z) ≥ 0,
∫
z
q(z) =

1, q(z) =
∏

j qj(zj)} then we call q the mean field approximation to p. This name is

inherited from the physics literature where an approximation involving non-interacting

magnetic spins implicitly assumes spins are only influenced by the average (mean)

behavior of their neighbors (Tong, 2012, Sec. 5.2.1).

For our purposes, however, this type of approximation is primarily interesting

because of the insight it gives into the network’s dynamics. In both the stochastic and

deterministic settings, the model evolves to minimize its mean-field free energy, which

we will calculate explicitly here for the case of the BKM. Our variational approximation

will come from the set of fully factoring Bernoulli-von Mises distributions:

C =

{
q(z) =

∏
j

qj(zj) : qj(zj = rje
iθj) =

1

1 + I0(aj)
eajrj cos(θj−αj)

}
(4.30)

After some algebra and relying on the fact expectations over q factor nicely, we find

that the variational mean-field free energy of a BKM is

FMF = −
∑
j,k

I1(aj)I1(ak)

(1 + I0(aj))(1 + I1(ak))
cos(αj − αk − γjk) +

bjI0(aj)

1 + I0(aj)
+

bkI0(ak)

1 + I0(ak)
+H(qj(aj, ak))

(4.31)

= −
∑
j,k

f1(aj, ak) cos(αj − αk − µjk) + f2(aj) + f2(ak),
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where I0 and I1 are modified Bessel functions of degree 0 and 1 and where we have

collected functions of mean field magnitudes aj and ak into multiplicative and additive

components f1 and f2. Note that 0 ≤ f1 ≤ 1. Minimizing FMF gives rise to the

gradient system

∂FMF

∂αi
=
∑
k

f1(ai, ak) sin(αi − αk − γik) (4.32)

∂FMF

∂ai
=
∑
k

∂f1(ai, ak)

∂ai
cos(αi − αk − γik) +

∂f2(ai; bi)

∂ai
. (4.33)

We recognize Eq. 4.32 as a form of the Kuramoto model with 0 intrinsic frequencies

and random phase shifts arising from the angles of weights γjk (similar to Kundu et al.,

2017). Most importantly, the Kuramoto flow has dynamical couplings in the form of

f1(ai, ak) and resembling those of Picallo and Riecke, 2011; Timms and English, 2014;

Ha, Noh, and Park, 2016; Ha, Lee, and Li, 2018. The dynamics of the couplings are

given by Eq. 4.33.

We can better understand the relationship between synchrony in this system and

the dynamical couplings by plotting the f1-dependent part and f2-dependent part of

Eq. 4.33 separately. In Fig. 4.11a, the f1-dependent part of the coupling dynamics is

plotted as a function of the current strength of a mean field magnitude ai and the

current difference in phase between unit i and unit k. Two phenomena are apparent.

Most notably, the function is minimized when units i and k are π out of phase. In

this case, ∂FMF

∂ai
is negative so that the coupling between i and k is weakened. In other

words, units gradually decouple to the degree that those units tend to be out of phase.

Conversely, the coupling is strengthened to the degree that units are in phase. These

coupling dynamics are dampened as ai grows large. Recall that ai is inversely related

to the circular variance of a Bernoulli-von Mises distribution. Hence, if qi has low

noise, then the dynamical coupling ai remains largely constant; if qi is noisy, then it

is either attracted to or repulsed by unit k according to their phase difference. The

f2-dependent part of Eq. 4.33 has a similar effect (Fig. 4.11b). If i has a negative
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(a) (b)

Figure 4.11 Fast synapse dynamics in BKM evolution. (a) Here, we plot
the f1-dependent part of the mean-field dynamics in Eq. 4.33. The value of
yik = ∂f1(ai,ak)

∂ai
cos(αi − αk) is plotted as a function of ai and αi − αk. As αi

and αk approach π out of phase, yik becomes increasingly negative, decreasing
ai and thereby decoupling the phases of units i and k according to Eq. 4.32.
As the phases synchronize, however, the opposite obtains, and the functional
connection strengthens. The magnitude of either effect decays as a function of
both ai and ak. (b) Next, we show the contribution to fast synapse dynamics
from the f2-dependent portion of Eq. 4.33 for bi ≈ 6.3. We see that the value
of ∂f2(ai;bi)

∂ai
decreases as a function of ai, eventually becoming negative and

serving to decouple the units as in the previous panel. As bi decreases the
initial hump flattens and eventually becomes concave up.

bias, the unit is decoupled from its neighbors; if it has a positive bias, it is attracted

to its neighbors; and, in either case, the coupling is kept constant to the degree that

i has low variance. In sum, the observation of Reichert and Serre, 2013 that units

tend to gradually decouple into independent sub-groups was well-founded, and the

mean-field dynamics helps explain why.

This mean-field approach casts new light on the model neuron used in Kosterlitz

Machines and their predecessors in Reichert and Serre, 2013. Recall that the latter

authors likened unit magnitudes to rates in the traditional McCulloch-Pitts neuron

and unit phases to the timings of inhibitory envelopes for use in gating. Now, we see

that unit magnitudes have yet another interpretation as dynamic or "fast" synapses.
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Fast synapses have been the subject of numerous biological (Fiebig, Herman, and

Lansner, 2020) and theoretical (Picallo and Riecke, 2011) investigations, including in

the context of energy-based models (Bienenstock et al., 1987) like our current case.

Dynamical synapses also played a famous role in Malsburg, 1994’s correlation theory

of brain function, in which they served to gradually decouple desynchronous neural

assemblies, like our present case.

4.2.4 Approximating the gradient of log-likelihood

As we mentioned earlier, calculation of the exact log-likelihood gradient of a KM is

typically intractable since the "model" expectation in Eq. is taken over all possible

configurations of the network. It is typical in the energy-based model literature to

approximate these gradients with sample statistics or variational approximations. The

exact mix of stochastic and deterministic approximations to the gradient is more an

art than a science, so we have simply adapted the one popular method for training

deep Boltzmann machines (Salakhutdinov and Larochelle, 2010) to the particular case

of KMs.

Recall that the derivative of the log likelihood of a KM with respect to an arbitrary

parameter λj is

∂ log p(zv; Λ)

∂λj
=

〈
− ∂E(zv, zh; Λ)

∂λj

〉
data
−
〈
− ∂E(zv, zh; Λ)

∂λj

〉
model

The derivation is at Eq. 4.2.4. When training a deep model, we will replace the "data"

expectation with statistics taken from an approximate mean-field posterior and we

will replace the "model" expectation with statistics taken from a k−length Gibbs

sampling chain. Variational inference for the first part of the gradient is typically more

efficient, however, since we expect the posterior to be unimodal when the model is

driven by the data so that the mean-field free energy to be minimized quickly. When

approximating the full joint distribution, unimodality is less assured, and we resort to
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sampling instead.

For a two-layer model, it suffices to use Gibbs samples to approximate both parts of

the gradient; i.e. it suffices to use CD-K. Let (z∗hzv)
(k) be the k-th sample of z∗hzv from

a Gibbs sampling chain (starting from a data point x ∼ D) over the conditionals of

p(zv, zh). Since all zj are conditionally independent given zh and all zk are conditionally

independent given zv, this k-th approximation can be acquired by block sampling the

BKM layers:

p(zh|x) // p(zv|zh) // p(zh|zz)

k times

ff

Then, the CD-k approximation to the weight gradient of the log-likelihood of a BKM

is

∇M log p(zv; Λ) = (z∗hx)(1) − (z∗hzv)
(k). (4.34)

Depending on the application, the first term can be replaced by its mean value

Ep(zh|zv) [−z∗hx] since getting an unbiased estimate of this statistic is easy. Approxima-

tions to the bias gradients are made similarly. Often, setting k = 1 is sufficient for

simple tasks.

For deeper models, we will acquire data-dependent statistics by running mean-field

updates until convergence. Model-dependent statistics will still be acquired from

K-step contrastive divergence.

4.3 Experiments

Historically, energy-based models have been used in at least three important applica-

tions. The first is of course the modeling of a target distribution with the intention of

drawing novel samples from the distribution and understanding its latent structure as

manifest in the model’s learned features. The second is data completion, whereby a
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noisy or otherwise incomplete sample from the true distribution is used as the starting

point for a Gibbs sampling chain that travels to a nearby "clean" or "complete"

sample which is considered less of a statistical outlier than the noisy input (Geman

and Geman, 1984). A final application is to use the features learned by the model as

unsupervised pretraining for some downstream process, often classification (Hinton

and Salakhutdinov, 2006).

In this section, we will demonstrate all three of these applications using a KM, em-

phasizing in the latter two demonstrations the relevance to phase-coding. Throughout,

we will focus on the BKM, and all data sets have been recreated from Reichert and

Serre, 2013. First, we will show how a BKM can be made to fit data sets of simple

scenes. Progress in learning will be measured by approximating the log partition

function with annealed importance sampling (AIS) (Neal, 2001). The increased expres-

sivity of a deep BKM will then be demonstrated on a slightly more sophisticated data

set. Next, we will show how the BKM’s "denoising" ability can be used to transform

an image with random phases into one in which the distribution of phases come to

respect to the statistical structure observed in the training data. That is, the images

will come to "synchronize" into perceptually meaningful groups. In this way, we will

have transformed the "binding by synchrony" found by Reichert and Serre, 2013 into

bona fide conditional inference. Finally, we will show how a KM can be used to model

"communication through coherence" in the sense of Fries, 2005, whereby a downstream

population selects a single neural assembly from complex overlapping populations

by "entraining" to that assembly’s phase. In our model, this selection very naturally

takes the form of Bayesian inference.

4.3.1 Fitting a shallow BKM

First, we measured the ability of a two-layer BKM to fit a simple 32 × 32 images

of crossing bars. Six data sets were created according to whether or not there were
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1-6 crossing vertical and horizontal bars in an image (Fig. 4.12). These data are an

appropriate test bed for the system since their generative model is easy to specify. For

each horizontal bar, a uniform random phase is chosen. Then, that bar is placed at

a given column in the image that is not occupied by another bar. For any crossing

with another bar, a Bernoulli random variable determines which bar will be "on top".

This simple generative model gives us a rough idea of how many latent units we need

to express the data exactly. Each data set contained 20000 images split evenly into

training and testing sets. We used a BKM with 1024 visible units and 1024 hidden

Figure 4.12 A simple data set of crossing bars. Images are generated by
placing between 1 and 6 vertical and horizontal crossing bars. Each has
a random phase and crossings belong to one or the other bar with equal
probability.

units. Training lasted for 150 epochs and the data was split into mini-batches of size

64. We used persistent (Tieleman, 2008) CD-5 and a learning rate of .1.

Monitoring the progress of learning in energy-based models can be difficult. Al-

though the goal of learning is to increase the log-likelihood of samples in the training

set, actually measuring this log-likelihood is non-trivial since it technically requires

calculating the partition function. The partition function can be estimated by AIS,

but this is a costly process which involves getting good Gibbs samples from the

model numerous times over the course of a slow annealing schedule. Therefore, we

only estimate the log-likelihood every 15 epochs. We will supplement this direct

167



(a) (b)

Figure 4.13 Monitoring learning in a BKM.. (a) Log likelihood estimates
plotted for the training data for each data set. Estimations were calculated
by approximating the partition function with annealed importance sampling
(Neal, 2001) and using this to normalize the marginal density on visible
units given in Eq. 4.12 and evaluated on training data. (b) In parallel, the
likelihood ratio of training data to testing data was computed. Note that
the partition function cancels here so it can be calculated without numerical
tricks. A value close to one indicates that the model is not overfitting. Figure
here depicts the case of 4 bars.

measurement of learning with several indirect methods: plotting learned features,

monitoring overfitting by calculating a likelihood ratio involve training and test sets

and observing samples from the trained model.

Fig. 4.13a shows the AIS-estimated log-likelihood of the data over the course of

training for each of the six training data sets. Calculating the ratio of log-likelihoods

of a random training and testing batch over the course of training indicates that the

model does not substantially overfit (4-bar case depicted in Fig. 4.13b). In short, the

model has begun to approximate a density on the data.

Fig. 4.14 plots learned 25 random features for the 2-bar data set. We see

immediately that the network has learned a sensible dictionary of features typically

consisting of a few crossing bars to explain the data. Notice that the weights have

all evolved to be real-valued. We can see this directly from the histogram of weight

values (Fig.4.15). This is a sensible model of the data since a feature need only encode
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Figure 4.14 Learned bar features. 25 out of 1024 features are displayed here.
Notice that features are overwhelmingly real-valued. Weights were penalized
by an L1 penalty during learning to encourage interpretable features. In some
cases, features consisted of a single bar (e.g. row two, column one) and in
other cases were a mix over overlapping bars (e.g. row one, column three).

the location of a bar and the phase of that bar can be decided by the phase of the

hidden unit associated with that feature. Fig. 4.16 shows several samples from the

4-bar model acquired by running a Gibbs sampling chain for 1000 steps while the

network is annealed.

4.3.2 Fitting a deep BKM

It is now well-known that the addition of extra layers to a Boltzmann machine results

in a strictly better model of the data (Roux and Bengio, 2017; Salakhutdinov and

Larochelle, 2010). Deep BKMs are no exception, and we will demonstrate this fact on

a slightly more complicated data set involving 20× 20 images of three overlapping

squares and triangles (Fig. 4.17). Unlike the case of the bar images, where overlap

among image components was minimal, these shape images cannot be easily described
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(a) (b)

Figure 4.15 BKM weights for bar images are nearly real-valued. Plotted are
the histograms of real (a) and imaginary (b) parts of the weights (note the
scale of the x axis). For a possible explanation, see the main text.

Figure 4.16 Samples from a trained 2-layer BKM.

as a linear superposition of features. We should expect that an additional layer of

latent factors will help disambiguate the numerous overlaps in this new data set. For

this demonstration, we trained both a two-layer BKM and a three-layer BKM and

compared their performance over the course of training. The first two layers of the

three-layer architecture were identical to the simpler two-layer system, as were all of

the other learning parameters, so any improvement resulted from the additional layer.

In both cases, the first two layers contained 400 and 1024 units respectively. The

deep model had an additional layer of 512 units and was trained by greedy layerwise

pretraining followed by joint training of all units (for details, see Salakhutdinov and
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Figure 4.17 Overlapping shapes for a deep BKM. This data set was recreated
from Reichert and Serre, 2013 and consists of images with three overlapping
shapes (squares and triangles, the latter of which can be flipped upside down).
The data set is significantly harder to learn than the bars data set because of
the substantial, fundamentally ambiguous overlap among shapes.

Larochelle, 2010).

As before, we approximated log-likelihood during training using AIS for both

models (Fig. 4.18). Observe that the log-likelihood of the deep model is significantly

higher than the shallow counterpart. Since it has the pre-trained weights of the 2-layer

system, it begins cross-layer training with quite good likelihood. The addition of the

third layer evidently leads to a much better model of the data. Samples from the

shallow vs the deep model are plotted in Fig. 4.19.

4.3.3 Perceptual grouping as conditional inference

One limitation of the model of Reichert and Serre, 2013 is that its ability to sponta-

neously group image features into perceptually meaningful segments had no tangible

statistical interpretation. Consequently, this ability could not be encouraged by learn-

ing and remained somewhat unstable and inconsistent. Our current case is rather

different, since the model has been explicitly tasked with learning a joint distribution

on modulus and phase. Conditioned on one, we should expect the model to "paint in"

the other, as in the case of other energy-based models (Lu, 2018).
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Figure 4.18 Monitoring learning of a deep BKM. As before, we plotted the
approximate log-likelihood of data during training, now for both a shallow
and deep model. The deep model was trained by first training each pair of
layers on their own and then training the joint system. The 3-layer network
achieves much better log-likelihood than the shallow system.

Figure 4.19 Samples from a DKM. The DKM produces much more faithful
samples of the shape data set (right three images) than the shallow model
(left image).

We can observe this directly by conditioning the model from Sec. 4.3.1 trained on

4-bar images on the moduli of a given sample and then sampling the rest of the model

configuration as temperature is cooled according to an ad hoc annealing schedule.

Specifically, we take a given sample and force the magnitudes of the units in the visible

layer to assume the magnitudes of that sample and while stochastically updating both

the visible phases and the phases and moduli of the hidden layer over the course of

a 1000-step Gibbs sampling chain. Temperature is decreased linearly from 100 to 0
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Figure 4.20 Perceptual grouping as conditional inference. A Gibbs sampling
chain is run conditioned on the magnitudes of hidden units being fixed to
values representing the luminances of a given image. As the system is annealed,
the initially random input phases give way to structure learned from the
data. This conceptually similar to binding-by-synchrony, although the KM
framework ensures that the image at convergence is a maximum a posteriori
estimate under the learned density.

in order to approximate a maximum a posteriori estimate of the phases of the given

data sample at the end of the chain. The stages of this annealing process are depicted

in Fig. 4.20. In the left column, we see the clamped images with random phases used

to initialize the sampling chain. By step 500, the image has clustered into coherent

segments and by step 1000 these segments extend along the whole of each bar. Notice

that bar intersections are often ambiguous. In some cases, the model "commits" to a

sensible interpretation of this crossing (e.g. the green bar crossing the red bar at the
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upper left of the final image in the first column) and in other cases the phase at the

crossing is simply the mean of the two crossing bars. This is likely a limitation of a

two-layer generative model which can only account for occlusions by memorizing the

two possible orders of any two bars at any two locations (as opposed to deciding the

order by another step in the generative process; i.e. with another layer.)

When the generative model of the data is well-approximated by a network with real

weights (as in the case of the bar images), a notable benefit of this manner perceptual

grouping is its rotational symmetry. It is easy to demonstrate that the likelihood of a

given datum under the visible marginal is invariant up to a constant phase shift. This

differentiates the "grouping" abilities of this model from the "segmentation" abilities

of similar models, since the latter case typically involves precise segment labels as

opposed to the relationships among labels. In other words, the model proceeds by

recognizing familiar objects and then separating them into coherent clusters without

regard to the precise value of phase used for each cluster.

One obvious flaw in the conception of conditional inference over phase as a form

of perceptual grouping is that the model must be trained on pre-grouped images. We

address this flaw in Ch. 4 (at the cost of introducing a supervision signal), but for

now we can simply imagine that the veridical grouping signal contained in the data

comes from some source not made explicit here. For instance, perhaps the true phase

information comes in the form of optic flow which transforms the image into a 2D

vector field. Indeed, it is not uncommon to train complex-valued neural networks using

optic flow or other image gradients (Guberman, 2016). As we will discuss in the final

section of this chapter, future iterations of this model will make this interpretation of

the data explicit, perhaps by training on moving images.

174



4.3.4 "Communication by coherence" with a phase prior

Perceptual groups are only valuable inasmuch as they can be used to easily select

features being to this or that object in a computationally useful way. Fries, 2005’s

"communication by coherence" (CTC) theory, which we reviewed in Sec. 3.2.2, is one

such group-selection mechanism. According to Fries, a single neural population can ef-

ficiently represent multiple objects simultaneously by segregating their representations

in time rather than across anatomical space. If object A is represented by neurons

spiking at time θA with respect to some macroscopic oscillation (for example in LFP)

and object B is similarity represented at time θB, then a downstream population can

selectively attend to object A by entraining to the afferent population at phase θA

(see Sec. 3.2.2 for details).

We can simulate CTC in a Kosterlitz machine, and the resulting process has the

flavor of Bayesian inference. For example, imagine we perceptually group a stimulus

in the manner described in the previous section. After annealing the model to 0

temperature, the final layer approximates a maximum a posteriori estimate on image

z∗h = arg maxzh p(zh|zv). In particular, θ∗h = arg(z∗h) is the maximum a posteriori

estimate on latent phases. After this process as terminated, we imagine a downstream

population imposes by some means a hard prior distribution

p(zk = rke
iθk) ∝ δ(r∗ke

iθ′) (4.35)

on latent units encoding what phase θ′ the downstream population wants to attend

to. Flipping the model on its head, we can now conceive of the posterior p(zh|zv) as a

likelihood and compute the visible "posterior"

p(zv|zh) ∝ p(zh|zv)p(zh) (4.36)

which can be easily calculated by zeroing-out all latent units not having phase θ′ and

then performing a single backwards pass onto the visible layer.
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Figure 4.21 Communication by coherence in a Kosterlitz Machine. First,
the perceptual grouping procedure from the previous section is run. After
convergence, we imagine a downstream population multiplies the posterior
estimate on the data encoded in the hidden layer with a prior which masks all
but those units with a given phase. We then calculate the mean activities of
the visible layer conditioned on this masked posterior. The result is that all
shapes not represented in the hidden layer by the target phase are eliminated,
allowing the selected shape to be routed to the downstream population.

We carry out this process in Fig. 4.21, using the case of highly overlapping objects

and the deep model trained in Sec. 4.3.2 of this chapter. We see that this sort of

"Bayesian CTC", can be used to select particular neural assemblies at the data layer.

We could presumably add a third step to this algorithm in which the attended object

is then routed to the downstream population for this or that purpose (e.g. storage

in working memory). A similar method was described in Reichert and Serre, 2013,

but, again, since the model had no known joint distribution, an interpretation of the

attentional process as Bayesian inference was not possible.

4.4 Future work

In this chapter, we exploited the equilibrium nature of oscillatory systems lacking

intrinsic activity to develop a hierarchical probabilistic graphical model on phase data.

Through several simple simulations, we showed how shallow and deep versions of this

system could be used to learn a density on phase data, how the trained model gave
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rise to a sort of binding by synchrony, and how the system could hypothetically be

joined with other modules to carry out a CTC attentional selection. Much of what

we outlined in this chapter was simply a rigorization of Reichert and Serre, 2013,

and we noted several instances where our statistical reformulation shed insight on

model dynamics, including the emergence of fast synapse dynamics. Though early in

development, the framework presented here could be scaled to richer data without

terrible difficulty.

Before being scaled to more interesting problems, a careful examination of KMs’

practical and theoretical limitations is warranted. First among practical limitations

is the difficulty of learning, largely inherited from the Boltzmann machine literature

although common to many generative models. For instance, we saw earlier how even

the simple monitoring of learning requires costly numerical methods like annealed

importance sampling. Acquiring gradients for learning also requires numerical ap-

proximations which are rather slow. Should the Kosterlitz Machine be pursued as

an object of study in the future, these learning techniques should be modernized,

perhaps by exploiting Hamiltonian MCMC (Neal, 2001) for sampling or score matching

(Hyvarinen, 2005) for learning. We have no particular attachment to the Boltzmann

Machine framework either: other generative modeling approaches, like adversarial

training (Goodfellow et al., 2014) or Bayesian compressed sensing (Ji and Carin, 2010),

could also be adapted to the case of phase-coding units.

The clearest area for future work, however, is theoretical. Currently, the Kosterlitz

machine is designed to fit a density on 2D vector fields and so the system must

be fed these "pre-grouped" images during training. Yet, this is a far cry from the

intuitions of Malsburg, 1994, Fries, 2005 and others, who conceived of phase as a purely

representational mechanism not inherent in the data itself. A system which could learn

to "bind by synchrony" after having been trained only on typical real-valued images

would be much closer to this original spirit. It is difficult to imagine, however, how this
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would work for a generative model like the KM. How, for example, would phase play

a role in generative model of images themselves lacking phase? One could imagine a

generative model in which phase is ultimately killed by a pointwise modulus, but this

trick calls into question the role of phase in the first place. In light of this conceptual

difficulty, it is likely any future role for the KM as a model of perceptual processing will

be at the post-grouping level, for instance, as a module for "filling in" the phase left

out by prior mechanisms (as in Sec. 4.3.3) and switching between grouped assemblies

(see 4.3.4) which are themselves the output of earlier processes which carry out bona

fide phase-based grouping on traditional luminance-coded images.

In such a combined system, the statistical framework of the KM could presumably

still be brought to bear in order to understand this full processing pipeline. This

naturally leads us to the question of what type of model would fill the role of the

earlier module, that using phase to group luminance-coded images. We provided one

answer to this question in the next chapter.
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Chapter Five

Kura-Net

Non-equilibrium1 oscillatory systems for perceptual modeling are rather more numerous

than their equilibrium counterparts, owing to the generally non-equilibrium nature

of model neurons prevalent in computational neuroscience. Though it is rarely made

explicit by modelers, one way to summarize the theoretical benefit of non-equilibrium

systems is that they have the ability adapt without descending into chaos. This

intuition is made more rigorous in the study of complex systems where a distinction

is made between systems with rigid order (e.g. a ferromagnet) and chaotic systems.

Systems far from equilibrium, like spin glasses, in some sense straddle the boundary

between rigidity and order (Langton, 1990; Kauffman, 1992; Mitchell, Hraber, and

Crutchfield, 1993), and are therefore considered a good starting point for the modeling

of biological systems where regularity is just as important as the ability to adapt and

change (see Stein and Newman, 2013 for a good review).

In this chapter, we will develop a differentiable learning procedure for non-

equilibrium oscillatory systems. The result will be a neural network which we call

“Kura-Net". Our principal application will continue to be perceptual grouping of

image segments. Our focus will remain be the Kuramoto model, though we will now

allow for non-constant intrinsic frequencies. This is at once a more biophysically
1Material from this chapter was presented as Ricci et al., 2020 and is the subject of a manuscript

in publication with co-authors Yuwei Zhang, Minju Jung, Mathieu Chalvidal and Aneri Soni.
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realistic scenario and a more difficult one from a learning perspective. On the one

hand, biological neurons are governed by all sorts of intrinsic electrochemical processes

(Llinás, 2014) and these processes may very well play a role in computation. On the

other, the distribution on these intrinsically active neurons is hard to characterize at

a macroscopic level, so we must go without the simple statistical interpretations of

the system we enjoyed in the previous chapter. What’s more, the types of synchrony

speculated to underlie binding and selective attention will be harder to achieve in this

regime: heterogeneous intrinsic activities are difficult to homogenize.

Luckily, we have modern machine learning at our disposal. These techniques

will allow us to backpropagate directly through the flow of the Kuramoto model

and thereby estimate the dependence of synchronous behavior on model parameters.

Learning in this system differs significantly from the typical training scenario of neural

networks, since we will not learn Kuramoto couplings/intrinsic frequencies themselves

but rather a parametrized mapping from stimuli to Kuramoto couplings/intrinsic

frequencies. The actual locus of learning is this parameterized mapping, and the

Kuramoto parameters are merely outputs of this mapping. This makes learning

in Kura-Net closer in spirit to optimal control: couplings/intrinsic frequencies are

parameterized control variables which are optimized to guide the flow of phases.

The resulting model brings us closer to a goal stipulated in the previous chapter:

phase-based grouping directly on natural images. The Kosterlitz Machine, the reader

will recall, must be trained on pre-grouped images since it is difficult to construe phase

as a bona fide generative variable. Kura-Net circumvents this problem essentially

by learning a collection of synapses per image. These synaptic weights then link

up oscillators associated to every image pixel which then participate in a Kuramoto

dynamics. In a sense, these per-image weights are a continuation on the theme of fast

synapses. The learned function undergirding Kura-Net is then a stand-in for whatever

mysterious sub-synaptic biophysics transforms an impinging stimulus into an effective
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conductance.

The chapter will proceed as follows. First, we will review the existing literature

on non-equilibrium oscillator systems in image processing. Most of these systems use

hardwired dynamical parameters, and although recent work by Meier, Haschke, and

Ritter, 2014 and Finger and König, 2014 introduces a sort of learning, it does not

depend on oscillatory dynamics whatsoever. We will then introduce Kura-Net more

formally, noting its similarities to so-called “hypernetworks (Ha, Dai, and Le, 2014)

and the interpretation of its learning algorithm as a form of optimal control. Finally,

we will demonstrate Kura-Net in three experiments. The first is a recapitulation of

earlier work on the synchronizability of complex graphs (Brede, 2008a) in which we

learn a parametrized mapping from intrinsic frequencies to those couplings which

will synchronize them. The second will reveal some qualitative similarities between

Kura-Net and work by Brede, 2008a and others reviewed above. The third will

demonstrate a quantitative advantage of Kura-Net over a competing CNN on a sort

of same-different task. This experiment follows up on intuition established earlier

in this thesis and elsewhere by Fries, 2005, McLelland and VanRullen, 2016 that

phase-grouping can overcome systematicity deficits in CNNs during visual reasoning

(Alamia et al., 2020).

5.1 Non-equilibrium oscillatory systems in image pro-

cessing

Since the early speculations of Malsburg and Schneider, 1986, it has been generally

recognized that the benefit of oscillatory systems for perceptual and particularly visual

processing has been their ability to spontaneously partition into several synchronized

groups. Synchrony is typically measured by coherence in a phase variable, though

some researchers have investigated frequency-based grouping as well (Meier, Haschke,
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and Ritter, 2014). The main computational problem in this line of work has been

the understanding of network conditions which give rise to perceptually meaningful

synchronous groupings, tying this literature to the research on multi-polar synchrony in

oscillatory systems discussed in Sec. 3.3.1. These synchronous groups are interpreted

as being “tagged" by their uniform phase/frequency so that constituent features of the

group are bound into a coherent whole which can be selected en masse by downstream

attentional and mnemonic processes in the manner of Fries, 2005 and McLelland and

VanRullen, 2016. A hitherto secondary concern, though indeed the one that concerns

us most, is how to make these systems learn. What few trainable systems of coupled

oscillators exist typically involve ad hoc perceptual features acquired independent of

oscillatory dynamics, and the problem of generalizing learned oscillatory grouping

ability to new data is rarely considered.

Work on phase-based grouping in systems of coupled oscillators begins in earnest

with (Malsburg and Schneider, 1986) who were also the first to hypothesize a general

principle about network conditions giving rise to multiple synchronous groups. The

authors showed that networks of spiking neurons (Fig. 5.1a) representing perceptual

features (their application was auditory but the principle is modality independent)

would gradually separate into synchronized groups when the units were connected

by local excitatory and global inhibitory couplings. Units which were simultaneously

activated, presumably by a single component (e.g. word, object, etc.) of the input

stimulus, tended to mutually excite one another and gradually phase-locked at a

common spiking frequency. The total activity at any time is limited by global

inhibition so that synchronous groups representing different input components would

burst sequentially at non-overlapping intervals (Fig. 5.1b). These groups would

gradually decouple from one another according to fast synapses dynamics, which we

will recall form a pillar of von der Malsburg’s “correlation theory" Malsburg, 1994.

The notion of Malsburg and Schneider, 1986 that perceptual features only generate
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(a) (b)

Figure 5.1 Global inhibition and local excitation for phase grouping. (a) A
group of neural populations (numbered hexagons) were tuned to respond to
different perceptual features and then linked by local excitatory couplings
(thick black arrows). All of these units were innervated by a single inhibitory
unit (hexagon H) limiting the amount of total activity in the network at
any time. (b) Two of the representing populations, E11 and E1, begin model
dynamics by responding simultaneously to an input stimulus. This initiates
feedback inhibition from the H unit (bottom trace) which gradually forces
the E11 and E1 bursts into anti-phase. These relative timings serve as a tag
for the objects represented by each population.

synchronous activity in cortex when they belong to a single object physical object is

essentially the principle of binding-by-synchrony made experimentally famous by Gray

and Singer, 1989; Gray et al., 1989, as we discussed above. Gray’s and colleague’s

work was in fact explicitly modeled by Wang, 1994 in a system similar to that of

von der Malsburg. Similar to Gray and Singer, 1989’s findings from cat striate

cortex, Wang, 1994’s results indicated that Wilson-Cowan oscillators (Wilson and

Cowan, 1972) connected with local excitatory and global inhibitory connections would

phase-lock when those oscillators took input from two regions of an elongated bar.

When the bar was broken and the parts sufficiently separated, phase locking would

disappear, much like the result of Gray and Singer, 1989, but relying explicitly on

Malsburg and Schneider, 1986’s principle of balanced excitation and inhibition (Fig.
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(a) (b)

Figure 5.2 A computational model of Gray and Singer. (a) Using a sim-
ilar network to Malsburg and Schneider, 1986, Wang recreated the cross-
correlogram results of Gray et al., 1989. Top panels are input stimuli, and
white dots indicating locations of units between which cross-correlations
are calculated. As in the results of Gray and Singer, correlations display a
marked rhythmic undulation only in the case that bar parts are sufficiently
connected. If they are too far apart (panel C), this periodicity disappears
(dotted line for comparison). (b) Later, Terman and Wang, 1995 extended
this principle to simple images and showed how phase grouping à la Malsburg
and Schneider, 1986 could be used to select single objects, prefiguring a kind
of communication by coherence.

5.2a). Terman and Wang, 1995 extended this result to more complicated images (Fig.

5.2b) and provided mathematical guarantees for phase-locking. More recent work has

investigated segmentation in systems of coupled oscillators with couplings determined

by gestalt grouping rules (Yu and Slotine, 2009) and with sparse random connections

(Li and Li, 2011; Raiko and Valpola, 2011). In parallel, Meier, Haschke, and Ritter,

2013; Meier, Haschke, and Ritter, 2014 specifically investigated grouping capability of

the Kuramoto model.

To the author’s knowledge, only one paper Quiles et al., 2011 investigates the

ability of these non-equilibrium oscillatory systems to adapt “on the fly", in the

manner emphasized as the beginning of the chapter. There, the authors show how
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a downstream neural population can be used to selectively attend to individual

synchronized groups, much like in McLelland and VanRullen, 2016 and our own

demonstration in Sec. 4.3.4.

(a)

(b)

Figure 5.3 Learning to synchronize: earlier attempts. (a) Meier, Haschke, and Ritter,
2013 learned Kuramoto couplings which would synchronize images by computing coefficients
of a training set in a Gabor basis and then constructing a metric in this Gabor space
according to labels of image regions (see Meier, Haschke, and Ritter, 2013) for details. (b)
Finger and König, 2014, on the other hand, constructed coupling matrices by computing a
Grammian matrix from autoencoder features. The lower panel shows the evolution of their
system. Notice that phase is not a unique signature of image objects. Further, neither of
these examples learns how to synchronize by actually exploiting the Kuramoto dynamics.
Any resulting synchrony is purely incidental.

So far, none of the systems we have described can learn in any meaningful sense.

The typical locus of learning in neural models is the synapse, but, in the case of

most coupled oscillator systems, the synapse must be hand-tuned so that the system

synchronizes in a given manner (e.g. according to the objects in a particular image.).

A new image requires, in effect, new synapses. Hence, any attempt to model learning

in one of these systems must consider synapses themselves to be the output of some
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parametrized control function whose parameters are the true locus of learning. For

instance, Meier, Haschke, and Ritter, 2014 used a bank of Gabor filters as a control

function (Fig. 5.3a). Image locations were coupled according to the similarity of

their representation in this basis as measured by a metric learned by supervision.

More recently, Finger and König, 2014 replaced Gabor filters with features learned

by a simple auto-encoder and achieved fairly convincing image segmentation results

(Fig. 5.3b). One neurobiological interpretation of these parameters, in line with the

dynamical synapses of Malsburg and Schneider, 1986 and others, is that they control

synaptic conductance at a fast timescale as a function of an input stimulus. That

is, a stimulus arrives in the system and effects some dynamical process giving rise to

the effective synapses used in later computation. A second interpretation is that the

coupling function is itself a neural network whose outputs directly modulate the gain

of the synapses of a second network, similar to the model of feedback modulation of

V1 in Piëch et al., 2013.

Note, however, the difference between these learning algorithms and the optimiza-

tion procedures we discussed in Sec. 3.3.3. The latter line of research concerns the

optimization of network synchrony as a direct function of network dynamics. For

instance, we reviewed the method of Brede, 2008a in which network couplings were

adjusted depending on whether or not the current connectivity gave rise to a target

behavior over the course of numerical simulation of the dynamics. Indeed, this is the

gist learning in artificial neural networks as a whole. Instead, the nascent literature

on learning in oscillator systems for specifically computer vision purposes separates

the learning from the dynamics. Finger and König, 2014, for instance, generated

couplings based on an auto-encoder’s reconstruction loss and simply guessed that

these couplings would give rise to the grouping behavior they wished for. Here, the

insight is not learning through the dynamics, as it was for physicists like Brede, 2008a,

but rather the off-loading of learning onto a background process with couplings as its
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output.

In the next section, we propose a model which synthesizes these two ways of

thinking. Like Meier, Haschke, and Ritter, 2014 and Finger and König, 2014, it has a

trainable function that outputs the control variables determining network dynamics.

As with Brede, 2008a, it is trained according to a loss function posed on the outputs of

the dynamical evolution of the model. The whole system is end-to-end differentiable

and can be trained with standard machine learning software. As always, our focus

will be the Kuramoto model, for its generality, simplicity and neuroscientific relevance.

Interestingly, the resulting system, “Kura-Net" has a simple physical interpretation as

a Kuramoto model with quenched random parameters from a distribution which we

will shape by backpropagation. Kura-Net also helps us realize a goal we stated in Ch.

3, the construction of an oscillatory system for perceptual grouping on real-valued

images (as opposed to the pre-segmented training data required for the Kosterlitz

machine). The cost is that Kura-Net must be trained by supervision in the form of

pixel-wise masks, but the relevance of the resulting model to both computer vision

and computational physics makes this cost bearable.

5.2 Kura-Net

Let X be a random variable with sample space (Ψ,F). Let K = Rn×n be the space

of (not necessarily symmetric) n× n coupling matrices and Ω = Rn be the space of

n−long intrinsic frequency vectors. We replace the quenched random parameters of

Daido, 1987 with the parametrized control function

ΓΛ : Ψ→ K× Ω

ΓΛ(x) = (K,ω) (5.1)

where Λ is a collection of parameters. Here, we conceive of x as a latent representation

of the Kuramoto parameters (K,ω) so that ΓΛ functions like the reparameterization
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Figure 5.4 Kura-Net. A stimulus, x, is passed through the parametrized
control function, ΓΛ. The output is reshaped into a coupling matrix, K(x),
and a vector of intrinsic frequencies, ω(x). These parameters than determine
a T− long Kuramoto flow starting from a fixed initial phase. Each step
of these dynamics is evaluated by an instantaneous loss function f and the
integrated loss F is differentiated with respect to Λ in order to encourage a
target behavior.

trick used in the construction of gradient estimators (Maddison, Mnih, and Teh, 2019).

Depending on the application, we can also interpret x as a stimulus impinging on the

system and influencing the flow the dynamics. We model the control function ΓΛ as a

hierarchical neural network (Fig. 5.4) whose weight and bias parameters comprise Λ.

Notice that ΓΛ is not necessarily a probability density on K,ω. For each sample x

of the random variable X, we may the define equation of motion for the Kuramoto

model

θ̇i = ωi(x; Λ) +
∑
j

Kij(x; Λ) sin(θj − θi), (5.2)

where ωi is the ith component of ω(x) and so on. We have also made the dependence

of the dynamics on Λ explicit. Given an initial condition θ0, let Φθ0,Λ : R× [0, 2π]n →

[0, 2π]n denote the flow of the Kuramoto dynamics so that Φθ0,Λ(t) = θ(t) is the state

of the oscillator system at time t, having evolved from initial condition θ0. We will

evaluate each instantaneous θ(t) according to a loss function f(θ(t)) ≥ 0. Examples of

f include circular variance, 1− r(t), where r is the global order parameter (Eq. 3.14),

and more complicated functions encouraging specific numbers of partially synchronous

clusters (see Sec. 5.3.2). We refer to f as the “instantaneous loss". Details of relevant
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loss functions are provided below for each application. Gradients with respect to

control parameters Λ are acquired by differentiating the average value of the loss

function on the dynamics after a t′-long burn-in period until some time T :

F (x; Λ, θ0) =
1

T − t′

∫ T

t′
f(Φθ0,Λ(t)) dt (5.3)

Hence, learning in Kura-Net is a gradient descent version of Brede, 2008a. We refer

to F as the “integrated loss". Gradients ∇ΛF propagate in two steps. First, gradients

propagate backwards in time through the Kuramoto flow as a function of the initial

condition θ0 which is typically kept fixed during training. Once the sensitivity of the

integrated loss with respect to all time steps has been calculated in this way, gradients

are propagated down the layers of the control network ΓΛ.

Note Λ comprises Kura-Net’s only learnable parameters. In this sense, Kura-Net

belongs to the class of hypernetworks (Ha, Dai, and Le, 2014), models whose outputs

form the parameters for a second network such that the joint system is end-to-end

differentiable. It is also similar in spirit to so-called neural optimal control (Chalvidal

et al., 2020), in which a learned distribution on control functions is used to guide the

flow of a stimulus-dependent dynamical system.

5.3 Experiments

The following three experiments demonstrate the ability of Kura-Net to control

Kuramoto dynamics, particularly for use in the perceptual grouping relevant to visual

reasoning. We first replicate the results of Brede, 2008a, Tanaka and Aoyagi, 2008 and

others by showing that complex networks can be optimized to give rise to synchronous

Kuramoto dynamics for much weaker coupling strengths than expected in either the

all-to-all case (Eq. 3.15) or a random control. Our demonstration differs from this

earlier work since we directly learn the function from intrinsic frequencies to optimal

couplings. This demonstrates the utility of Kura-Net for the empirical study of general
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coupled oscillator systems.

We then turn to two perceptual grouping experiments. In the first, we only report

qualitative segmentation results and the in the second case we measure performance

against a competing feedforward baseline. Both cases used the same control network

ΓΛ which assumes the form of a convolutional neural network with input images x. In

the parlance of the previous section, we construe x as a random sample from some

image distribution D and ultimately giving rise to the quenched random Kuramoto

parameters ΓΛ(x) = (K,ω). The network consisted of three convolutional layers with

kernels of size 5× 5 and no pooling (Fig. 5.4). Convolutional layers were interleaved

with hyperbolic tangent activation layers. The first layer had 32 features and the

number of features doubled each layer. The output of the final convolutional layer

was subjected to a dropout rate of 50% during training. These features were passed

through a single linear layer with an output of dimension cn+n, where n is the number

pixels in the input and c is the number of neighbors of an oscillator. Even when

c� n, the parameters of the final linear layer can be too large to hold in memory. To

reduce memory load, we scale the dimensionality of the output down by a factor s

and apply the resulting linear map to cn+n
s

-sized sets of convolutional features s times

in parallel. The output is then reshaped appropriately. This saves memory at the

cost of reducing the expressivity of the network. The first cn dimensions of the CNN

output are reshaped into a kernelized coupling matrix K(x; Λ) with kernel width c

and a vector of intrinsic frequencies ω(x; Λ)

These parameters determined a Kuramoto flow which was run for T time-steps

from a random initial condition θ0 which was kept fixed throughout the experiment

(Simulations in which θ0 was randomized each trial were also run, but learning was

much more difficult. Since the transients associated with initial conditions dissipate

during the dynamics, use of randomized initial phases should be possible (Brede,

2008a; Brede, 2008b) if difficult to achieve in practice). Several masks were created
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for each image indicating the group belonging of each pixel. For instance, an image

with three target groups resulted in three binary masks acting as an indicator for each

object (e.g. bottom row Fig. 5.8). We denote the set of pixel indices j in group g by

Gg. These masks acted as a supervision signal for an instantaneous loss f which was

the difference of two terms, fsynch(θ) and fdesynch(θ), designed to encourage synchrony

within groups and desynchrony between groups respectively. Specifically, anM−group

image was evaluated by the loss instantaneous loss function

f(θ) = −(fsynch(θ)− fdesynch(θ))

= −


1

M

∑
g=1,...,M

Global order︷ ︸︸ ︷
1

|Gg|

∣∣∣∣∣∣
∑
j∈Gg

eiθj

∣∣∣∣∣∣− 1∏M
g=1 |Gg|

∑
j1∈G1,...jM∈GM

∑
(p,q)∈(j1,...,jM )

| cos(θp − θq)|2︸ ︷︷ ︸
Frame potential

 ,

(5.4)

where second-to-last sum is taken over all M -tuples of locations and the last sum is

taken over all pairs of indices from a given M -tuple (see Fig 5.8, right). The first

bracketed term is simply the global order parameter r for the oscillators in group

g (see Eq. 3.14). This term is maximized exactly when the oscillators in group g

are synchronized. The second bracketed term is the so-called frame potential and

is provably minimal when the M -tuple of phases (θj1 , . . . , θjM ) equidistribute the

unit circle (Benedetto and Fickus, 2003); i.e., for some permutation of (j1, . . . , jM),

θjk − θjk+1
= 2π

M
for each k. Put another way, the frame potential is minimized when

the complex exponentials zjk = eiθjk are a rotation of the M -th roots of unity2. The

2The frame potential gets its name from that fact that a collection of vectors {vi ∈ Rd}ni is a

minimizer of frame potential if and only if it forms a finite normalized tight frame of Rd. When d > 2,

the cosine difference is replaced by a general inner product. A frame is a generalization of a basis whose

elements are not necessarily linearly independent. A signal x ∈ Rd can be represented by coefficients

in the frame via the mapping x→ {〈x, vi〉}ni=1. The frame in some sense captures the energy of the

signal since by definition there exist scalars A,B such that A‖x‖ ≤
∑n
i=1 |〈x, vi〉| ≤ B‖x‖, which
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negative sign outside of Eq. 5.4 means that f is minimized when both the synchrony

term fsynch and desynchrony term −fdesynch are maximized. This is precisely the case

that groups are internally synchronized but as mutually orthogonal as possible. Since

we discretized the dynamics into T steps, the ultimate integrated loss was

F (x; Λ, θ0) =
1

T

T∑
0

f(Φθ0,Λ(t)) (5.5)

where Φ once again denotes a solution to the Kuramoto dynamics with initial (fixed

but random) condition θ0 and f is the instantaneous loss just described in Eq. 5.4.

5.3.1 Learning to synchronize on complex networks.

Understanding the emergence of synchrony on graphs with constant coupling is no

simple matter, but understanding synchrony on complex networks is harder still. By

complex networks, we mean graphs whose properties deviate significantly from both

regularity (e.g. lattices) and uniform randomness (e.g. an Erdös Rényi graph). These

mysterious structures are an active area of exciting research and are speculated to

be good models of real-world biological (Bashan et al., 2012) and social (Watts and

Strogatz, 1998) networks.

In Sec. 3.3.3, we saw how earlier researchers, like Gleiser and Zanette, 2006; Brede,

2008a; Brede, 2008b; Tanaka and Aoyagi, 2008; Brede, Stella, and Kalloniatis, 2018,

used numerical techniques to understand when synchrony emerges in these networks.

For instance, Brede, 2008a gradually transformed a random network to optimize

network synchrony by randomly switching links and keeping the new connectivity if it

led to improved global order (Eq. 3.14)). This procedure was run for a single intrinsic

frequency vector. Brede and others found that this sort of optimization procedure

guarantees that x can be reconstructed from the coefficients 〈x, vi〉 up to a given error. A frame is

tight when A = B and normalized when A = B = 1. When n = d, the frames of Rd are precisely the

orthonormal bases of Rd. The frame potential therefore measures the “degree" of orthogonality of a

collection of vectors in Rd.
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always resulted in increased connectivity between oscillators of disparate intrinsic

frequencies. This makes intuitive sense, since oscillators with similar frequencies

will synchronize anyway, and, since the number of links cannot increase, this limited

resource should be spent enforcing connectivity between units which would otherwise

desynchronize. This intuition was corroborated by theoretical work from Gottwald,

2015 and Kelly and Gottwald, 2011 who proved that increasing the correlation between

disparate oscillators, under mild conditions, would always increase synchrony.

Note that this type of optimized connectivity is not only relevant to the particular

case of Kuramoto dynamics. Recall from Sec. 3.3.2 how Honey and Sporns, 2008,

Gómez-Gardeñes et al., 2010 and others used the Kuramoto model merely as a tool

for understanding the more general issue of distributed communication in cortical

networks. In that sense, maximized global order simply implies that units are still

capable of communicating at long anatomical distances. This type of optimization

procedure could therefore be used to make predictions about patterns of connectivity

in the brain, particularly those optimized for task performance.

In this section, we replicate the experiment of Brede, 2008a, but now learn a

distribution on connectivity conditioned on intrinsic frequencies instead of a single

connectivity for a given intrinsic frequency vector. This distribution will be constrained

during training to have a fixed mean, p̄, so that the probability of two units’ being

connected does not change during optimization. Otherwise, an obvious optimal solution

would be a fully-connected network. We will then compare the synchronizability of

the optimized network to random (Erdös Rényi (Erdös and Rényi, 1959)) networks

with the same p̄ = .035. Any improvement in synchronizability will therefore arise

from non-random factors beyond first order graph statistics.
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To that end, we define a Kura-Net instance

ΓΛ : [−1, 1]100 → R100×100

ΓΛ : ω 7→ `, (5.6)

where ω is a vector of intrinsic frequencies uniformly distributed on [−1, 1]100 for a

graph of 100 oscillators and ` is a symmetric matrix. We model ΓΛ as a three-layer

multi-layer perceptron (MLP) whose layers are interleaved with rectified non-linearities.

Hidden layers each had 256 units. Λ are the weights and biases of this network.

We conceive of ` as a symmetric array of logits which are then centered by

`ij ← `ij −
(
〈`〉 − log

(
p̄

1− p̄

))
(5.7)

where 〈`〉 is the sample mean of `, to maintain a constant coupling probability. Logits

are then transformed into probabilities of connectivity via pij = 1

1+e−`ij
from which is

sampled3 a symmetric adjacency matrix A. This adjacency matrix then participates

in the Kuramoto dynamics defined by

θ̇j = ωj +
100∑
i

σ∗Aij(ω; Λ) sin(θi − θj), (5.8)

where σ∗ is a constant coupling strength set to .7, as in Brede, 2008a. We have made

the dependence of A on the Kura-Net input, ω, and the Kura-Net parameters, Λ,

explicit. We solved this equation with Euler’s method for T = 100 steps and a step

size of α = .1.

The result was a sequence of phase vectors {θ(t)}100
t=1 each of which was evaluated

according to its circular variance

1− r(t) = 1− 1

100

∣∣∣∣∣
100∑
j=1

eiθj(t)

∣∣∣∣∣ (5.9)

These circular variances were integrated via

F (ω; Λ) =
1

T − t′
T∑
t=t′

(1− r(t)) (5.10)

3We used the straight-through estimator (Yin et al., 2019) to maintain automatic differentiability.
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where t′ was a relaxation time set to 50. Batches of 256 intrinsic frequencies were

fed to Kura-Net for 40 iterations. Gradients were calculated using Pytorch autograd

software (Paszke et al., 2019).

We find that the loss decreases rapidly to 0 in around 20 batches at which

point there is a ricochet which quickly decays to 0 once again (Fig. 5.5a). Brede,

2008a and subsequent authors claimed that optimized networks featured strong

connectivity between oscillators of differing intrinsic frequencies and measured this

effect by calculating the probability, p−, of connectivity in the optimized graph between

units whose intrinsic frequencies had opposite signs and by computing

cω =

∑
i,j Aij(ωi − 〈ω〉)(ωj − 〈ω〉)∑

i,j Aij(ωi − 〈ω〉)2
(5.11)

where 〈ω〉 the sample mean of intrinsic frequencies. Contrary to this earlier work,

we find no correlation between these values (Fig. 5.5b, 5.5c). There was a gradual

increase of p− over training until a peak at around 25 iterations (shortly after the

bump in the loss curve), but it decayed steadily after that. Compare this to the

result of Brede, 2008a, who found that p− tended to 1 as synchronizability increased.

Further, we find no trend in cω whatsoever. Whatever strategy Kura-Net has found

to increase synchronizability, it is different from that proposed by Brede, 2008a.

(a) (b) (c)

Figure 5.5 Learning to synchronize on complex networks. (a) The loss
function, Eq. 5.10 decreasing over the course of 40 iterations. During
optimization, neither p− (b) nor cω (c) were found to increase, contra Brede.

We also find that Kura-Net learns synchronizable graph structures that generalize
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beyond the coupling strength, σ∗, used in training. We varied coupling strength σ

from 0 to 1.6 in 25 increments and measured the average synchrony during dynamics

of Kura-Net and a random control, again with the same probability of connectivity,

p̄ = .035. We averaged over 10 random ω and 10 initial phases for the dynamics.

Results are shown in Fig. 5.6. Brede, 2008a found much the same (compare to Fig.

3.15), though we note that our network synchronizes to much higher levels at much

lower coupling strengths at many fewer iterations than in his case.

Figure 5.6 Optimized synchrony across a range of coupling strengths. Here,
we reproduced the result of Brede, 2008a by showing Kura-Net optimized or
coupling strengths at σ∗ = .7 also produced better synchrony across a range
of coupling strengths than a random Erdös Rényi control. Average global
synchrony (Eq. 5.10) was calculated for 10 initial phase configurations and
intrinsic frequencies. Shaded regions are ± one standard deviation over initial
phase and intrinsic frequency samples.

We can get a little intuition about Kura-Net’s solution by averaging some statistics

of its output adjacencies. First, we see that the degree distribution of optimized

connectivities are approximately Gaussian (red bars, Fig. 5.7a). This differentiates

the optimized graphs from both the binomially distributed random control (blue

bars) and the fat-tailed distributions which characterize many naturally occurring

networks. Gaussian degree distributions have been reported in cortex, however

(Ivković, Kuceyeski, and Raj, 2012). Next, we plot the observed distribution of
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coupling probabilities (red, Fig. 5.7b) with the mean, p̄ indicated by the dashed blue

line. These probabilities seem to follow a power-law distribution with a large mode

close to 0 and a fat tail, suggesting the existence of a few units, on average, with

high connectivity. Finally, we depict the eigenspectrum of the symmetric, normalized

graph Laplacian (Gallier, 2019) for both optimized and control graphs. The random

controls tend to have eigenvalues, λ, close to 0, indicating weak connectivity and the

presence of numerous connected components in the case of the 0 eigenvalue. The

optimized graphs have a spectrum which is shifted rightward, as is characteristic for

highly synchronizable graphs (see Brede, 2008b).

(a) (b) (c)

Figure 5.7 Optimized graph statistics. (a) Degree distribution of optimized
graphs (red) and random control with same probability of connectivity. The
optimized degree distribution is markedly Gaussian with a mean at about 12.
The control distribution is binomial. (b) Here, we plot the distribution of
pij output by Kura-Net. The mode is overwhelmingly at 0 (it extends much
higher than shown), indicating that the graphs are very sparsely connected.
The distribution has a flat region centered around p̄ given by the dashed
blue line. This is followed by a long decaying tail, suggesting the presence
of a few highly connected oscillators. (c) The graph Laplacian operator is
given by L = D − A, where D is the degree matrix and A is the adjacency
matrix. The symmetric, normalized Laplacian is given by D−1/2LD1/2. The
spectrum of this operator is known to contain interesting information about
graph structure (Gallier, 2019). The lack of 0 eigenvalues compared to the
control network indicates the graph has become highly connected. Together
with the fact that the graph is sparsely connected indicates that the graphs
have evolved a small-world structure.

In this section, we chose to replicate and generalize the result of Brede, 2008a,
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along the way demonstrating that connectivity between disparate intrinsic frequencies

is not the only path to synchrony. However, we could very well have used Kura-Net

to study other aspects of synchrony on graphs. For instance, we could have examined

the opposite case of optimized intrinsic frequencies for random input couplings. We

might have also looked at directed graphs or negative couplings. Future work will

address these questions.

5.3.2 Texture Segmentation

Figure 5.8 Composite textures. Composite textures are shown in the first
three upper panels and their masks are shown directly below. The desynchrony
part of the loss is calculated by exhaustively comparing all k-tuples of locations
where k is the number of segments.

To qualitatively evaluate the performance of Kura-Net on a perceptual grouping

task, we trained it on a data set of 32× 32 images with composite textures (Fig. 5.8)

similar to the stimuli of Meier, Haschke, and Ritter, 2014. Images were divided into

k = 3, . . . , 5 randomly arranged Voronoi cells which were populated with textures

from the Describable Textures Database (Cimpoi, Maji, and Kokkinos, 2014). 10000

training and 10000 testing images were created for each setting of k. An instance

of Kura-Net was then trained on each of the k training sets. T was set to 8. The

dynamics were solved using Euler’s method with step size 6. The step size is large in

an absolute sense, since otherwise the coupling-dependent term in Eq. 3.13 is so small
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the model only evolves very little in 8 time steps. Fig. (5.9) shows an example of the

Figure 5.9 Texture segmentation in Kura-Net. Three, four and five text
stimuli are shown in the first column. Starting from a random initial condition,
the system evolves for 8 timesteps towards a phase segmentation of the
stimulus which closely matches the ground truth in the final column.

evolution of the trained model on test images for each k. By the 2nd time step, we

can observe that the system has self-organized into three or four coarse clusters. As

the system evolves, these clusters resolve into sharpened regions which closely match

the target groups depicted in the sixth column. By design, phases at convergence tend

to equidistribute the unit circle (Fig. 5.10).

An inspection of the intrinsic frequency vectors learned by the model is revealing.

Fig. (5.11) depicts a collection of input images x together with the intrinsic frequencies

output by the trained model ω(x). Notice that intrinsic frequencies on either side of

a texture boundary tend to have opposite sign. One interpretation of this result is

that the model has learned to place anti-correlated frequencies at these locations to

encourage desynchrony at texture edges. Connectivity in the model is local by design,

so there is only pressure to desynchronize phases at boundaries. It is tempting to

interpret this result as a corroboration of Tanaka and Aoyagi, 2008; Brede, 2008a;

Brede, 2008b who found that synchrony on complex graphs was encouraged by

connectivity between units of anti-correlated intrinsic frequencies. However, recall

that those authors investigated the optimal couplings for fixed intrinsic frequencies,
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Figure 5.10 Phase equidistribution in Kura-Net. Here, we run the trained
model on a three-segment image for 50 timesteps to allow more time for
convergence. The mean phases within a group come to equidistribute the unit
circle. Vertical lines are plotting artifacts from where oscillators crossed 2π.

whereas both are optimized in our case, and indeed for multi-modal synchrony and

not global synchrony. Of course, these results are mostly interesting for the perceptual

quality of the segmentation rather than for the quantitative segmentation performance

compared to a baseline. We turn to this type of experiment next.

5.3.3 A quasi-Same-Different problem

The moral of Ch. 1 was visual relation problems, like the same-different relation,

reveal certain deficiencies in CNNs. The results presented in and literature reviewed

in that chapter highlight the need for various dynamical mechanisms not found in

CNNs, notably attention, working memory, and perceptual grouping, the last of which

has occupied us for many pages now. Recall also that brute force implementations of

these mechanisms, like the relation net, suffer from their reliance on rigid, grid-like

arrays of convolutional features. When objects in the relation tend to be closer or

farther away than expected, these types of “attention" algorithms fail (see Sec. 2.3.3).

As noted by Fries, 2005, McLelland and VanRullen, 2016 and others, the case of

200



Figure 5.11 Learned intrinsic frequencies. For various input images (upper
panels), intrinsic frequencies output by the control network are displayed
(lower panels). Observe how pairs of clusters with opposite signs congregate
at texture boundaries.

mutually occluding and highly overlapping objects is exactly where a neural grouping

mechanism based on phase coding could prove useful.

In this experiment, we take a first step towards modeling the types of oscillatory

mechanisms speculated to underlie visual reasoning (see Ch. 3, Sec. 1). To that end,

we generated a data set of 36× 36 images each with two overlapping MNIST (LeCun,

Cortes, and Burges, 2010) digits. In half of the images, the two digits belonged to

the same class; in the other half, the digits belonged to different classes. We sought

to compare the performance of Kura-Net on a “quasi-" same-different task versus a

CNN baseline. Instead of prompting these models to classify the images directly, we

rather tasked the systems with segmenting the images as in the previous experiment

and then determined a “same" or “different" label based on the number of predicted
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segments. A “same" prediction was chosen if the model predicted two segments (a

background segment plus a single segment comprising the two same-class digits), and a

“different" prediction was chosen if the model predicted three segments (a background

segment and one for each digit). Digits were allowed to appear anywhere in the image,

and no restriction on digit overlap was enforced. This makes segmentation inherently

ambiguous.

Kura-Net produced a phase segmentation in the manner described above, although

we found increasing T to 15 produced better results. The CNN baseline output

phases directly and had almost exactly the same architecture as that used to produce

couplings and intrinsic frequencies in Kura-Net. The only architectural difference

between the two models was in the final linear layer, since it was shaped to produce

an output that was quadratic in image size for Kura-Net and linear in size for the

baseline. To compensate for Kura-Net’s increased number of parameters, we increased

the parameter s until Kura-Net’s linear layer was small enough so that both models

had approximately the same number of parameters (Kura-Net actually had fewer).

Both models were trained with the loss function of Eq. 5.4.

The continuous-valued output of both models was quantized by K-means for both

K = 2 and K = 3. Then, a silhouette score (Rousseeuw, 1987) was produced for

each K to measure the confidence of the segmentation. The more confident clustering

was chosen. The quasi-same-different accuracy was determined by calculating the

proportion of the data assigned the correct K value. To ensure that each model was

actually segmenting the data correctly (as opposed to putting the correct number

of clusters in the wrong place), we also measured the perceptual quality of the

segmentation using mean intersections-over-unions (mean IoU; Tan, 2005) and panoptic

quality (PQ) metric, an IoU metric normalized by the sum of false positive and false

negative segmentation predictions (see Kirillov et al., 2018 for details).

The qualitative performance of trained model is depicted in Fig. 5.12. As before,
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Figure 5.12 Kura-Net segmenting digits by class. We plot once again the
evolution of a trained Kura-Net, though this time we include both training
and testing examples. Further, the system must learn digit class features in
order to correctly segment.

the model evolves from a random state to fairly sharp segments, now respecting

the syntax of the sameness rule. Interestingly, we found that the model tended to

incorrectly desynchronize “same" digits only to synchronize them later in the dynamics

(e.g. Fig. 5.12, rows 2 and 4), concordant with theoretical evidence that partial

synchrony in numerous groups is often easier than in few groups (Pham and Slotine,

2007).

Loss curves for the CNN baseline and Kura-Net are shown in Fig. 5.13. Kura-Net

outperforms the baseline in both the training and testing regimes. Note however that

Kura-Net substantially overfits to the training set, indicating that Kura-Net has a

much greater effective capacity than the baseline. Improved regularization (by the

introduction of weight decay or properly optimized dropout rate) might eliminate

overfitting.

The comparative segmentation and quasi-same-different accuracies are collected

Table 5.1. Both models achieve comparable mean IoU and PQ scores, though Kura-

Net succeeds marginally in both cases. Kura-Net’s margin of improvement on the

final quasi-same-different measure is quite a bit larger, at about 10%. Digits often
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Figure 5.13 Kura-Net training. Loss curves on training (solid) and testing
(dashed) data for Kura-Net (purple) and a baseline (red). The baseline is the
same as Kura-Net with the Kuramoto dynamics removed.

Model/Data Mean IoU PQ qSD

Kura-Net 0.8405 0.9139 0.7176

Baseline 0.8012 0.9060 0.6125

Table 5.1

substantially overlapped (Fig. 5.14, first panel), and, according to the results of Sec.

2.3.3, this is precisely the scenario where a CNN should struggle. Note that the

substantial overlap of digits places a cap on the maximal possible segmentation scores,

since overlapping regions are inherently ambiguous. Both models consistently incurred

more false same detections than false different detections (25.21% vs 3.03% for Kura-

Net; 37.30% vs 1.45% for the baseline). This is either because the substantial overlap

of digits encourages the model to incorrectly synchronize the digits in impossibly

ambiguous cases or because of a problem in the loss of Eq. 5.4. We discuss this

possibility in the next section.
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Figure 5.14 Kura-Net quasi-Same-Different examples. From left to right,
successive panels show the input to the system, the phase after 15 timesteps of
evolution in the trained model, quantization according to the method described
in the main text, and ground truth masks. Note that the correspondence
between colors in the quantized and ground truth images do not matter, only
the degree of overlap between segments. Rows index true same, true different,
false same, and false different images.

5.4 Future work

In this chapter, we proposed an end-to-end differentiable learning method for the

Kuramoto model. The abilities of the resulting Kura-Net system were demonstrated

both on the problem of learning to synchronize complex networks and on various per-

ceptual grouping tasks, including one which we analogized to same-different reasoning.

The results presented here are promising but obviously early in development.

A clear area of future work is the refinement of perceptual grouping quality. Here,

there have been some recent developments. We can see from the second panel of

Fig. 5.14 that different digits are often very close in phase, even if the quantization

eventually comes to discriminate between them. That is, spurious synchronization

is a problem. Future work will investigate other loss functions for desynchrony. One

promising example comes from Cohn, 1960, who proposed the following potential

energy for maximizing the distances between electrical charges on a circle:

U(θ1, θ2) = − log(|2 sin(.5(θ1 − θ2))|). (5.12)

Cohn noted that such a potential is even, 2π-periodic, concave up on intervals

[2πk, 2π(k + 1)] for k ∈ Z and, crucially, obeys U ′(ε)/ε → −∞ as ε → 0. In

other words, the repulsive force felt between two oscillators increases super-linearly as
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the oscillators approach one another. Some simple tests with this desynchrony loss

have indicated that this strong repulsion does indeed promote well-spaced groupings

(Fig. 5.15)

(a) (b)

Figure 5.15 A logarithmic desynchrony potential. A single coupling matrix
was evolved for multimodal synchrony using the desynchrony potential of
Eq. 5.12 in two cases: (b) 30 oscillators to be synchronized into 3 groups
and (b) 500 oscillators to be synchronized into 10 groups. Again, only a
single coupling matrix is being optimized, so there is no control network. The
selection of an appropriate desynchrony loss is a topic for further research.

A second area of future work is the transformation of our current quasi-same-

different task into a genuine visual reasoning problem. So far, we have only measured

a sort of same-different-based clustering. This is of course rather different than the

visual relation tasks explored in Ch. 2, in which CNNs and related networks were

trained by a simple supervision loss on image labels. At present, it is unclear how

Kura-Net could be trained in this way. In experiments not reported here, we found

that simply passing phases through a classifier is insufficient, since the system learns

to encode the predicted label in seemingly random, desynchronized phases, essentially

eliminating the value of a synchrony-based system. Although one motivation for

investigating oscillatory systems was their hypothesized role in visual reasoning (e.g.

Alamia et al., 2019), it could very well be that their inclusion in future neural networks

will be only as a module meant to support perceptual organization as opposed to a
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complete system. Particularly intriguing would be an implementation of Kura-Net for

these purposes that made good on the intuition that non-equilibrium dynamics are

good for adaptation in the sense of Stein and Newman, 2013: could these adaptive

dynamics be used to model transient grouping and selective attention as in the spiking

model of McLelland and VanRullen, 2016 or the oscillatory system of Quiles et al.,

2011?

There are branches of science, however, where oscillatory systems are an end unto

themselves, and it is here that Kura-Net might have its most direct application. As we

mentioned above, Kura-Net could be used to study numerous aspects of synchrony on

graphs beyond the ones discussed in Sec. 5.3.1. Development of the method proposed

here could therefore be useful to understanding the emergence of synchrony in areas

as diverse as social networks, power grids, and laser arrays (see Arenas and Albert,

2008, Sec. 5 for a summary). Further, there is an alternative body of literature

concerning the estimation of coupling parameters from observed phases in oscillatory

systems (Kralemann, Pikovsky, and Rosenblum, 2011; Kralemann, Pivovsky, and

Rosenblum, 2014), for instance, central pattern generators in the spinal cord. A

solution to this problem would be of use to neuroscientists seeking to infer patterns

of functional connectivity among oscillating neurons. Existing methods depend on

a computationally taxing estimation of the probability densities on observed phases.

If, however, a Kura-Net-like system uses a control network to model these couplings

and the resulting coupling distribution is constrained by empirically relevant prior

knowledge (e.g. couplings should be sparse), then the earlier brute force methods

could be avoided.
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Chapter Six

Conclusion

This dissertation has two parts, a first part on systematicity in Ch. 2 and a long

second part on oscillatory neural networks in Chs. 4 and 5. The dissertation’s cohesion

depends on the connective tissue of Ch. 3, in which I describe the purported role

of cortical oscillations in systematic cognition. In this concluding section, we will

take inventory both of the thesis’ two main parts and the fulcrum of Ch. 3. Where

weaknesses are found, we will offer potential future directions.

In Ch. 2, we argued that the state-of-the-art model of image classification, the

CNN, is pathologically sensitive to non-syntactic image properties when attempting to

learn a visual relation discrimination task. We analogized this deficiency to a lack of

systematic cognition, inasmuch as systematicity is the ability to understand structured

expressions by virtue of their syntax alone. We used this deficiency to motivate

a search for neural mechanisms, namely attention, grouping and working memory,

which would improve the systematicity of neural machines. It is no coincidence

that these mechanisms are features of neural dynamics, that is, neural phenomena

operating on a timescale faster than long-term synaptic learning. Indeed, the whole

crux of Fodor and Pylyshyn, 1988 and of the theory of automata that clearly inspired

them, is that computation is efficient when it is done "on-the-fly", without storing

solutions in advance (for instance in the long-term storage medium of synapses). Since

systematicity ideally requires the understanding of an infinite number of expressions,
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long-term storage solutions are untenable, and the only real solution would seem to

be a set of flexible mechanisms for building new representations out of a dictionary of

fixed ones. Attention, grouping, and memory are three of these mechanisms.

In practice, it is very difficult to make this argument in the current machine learning

milieu. First of all, one must combat the folk science that the ability of deep networks

to learn highly selective and invariant object categories should support systematic

reasoning. Disregarding the fact that these networks do not even generalize on image

classification tasks the way they should (Szegedy, Zaremba, and Sutskever, 2013),

this folk science confuses template matching with reasoning, an error already pointed

out by Fodor and Pylyshyn, 1988. Only the latter involves complex expressions with

real constituents which are computationally accessible. For example, the complex

representation "The red object has the same shape as the green object" has "red

object" as an actual part so that the true proposition "There is a red object" can

be automatically deduced by mechanically separating the first part of the expression

from the second. This type of flexible, mechanical reasoning is exactly what one needs

for visually-informed behavior instead of just image classification. Next, there is the

vexing claim that "more layers" are all that is needed to solve the problem. There is

little explanatory merit to these claims in a day and age where it is recognized that

deep networks are merely a case of more general, infinite-layer systems (Knauf, 2018).

Far more interesting are the practical cases of small networks with known expressivity

bounds. How do we get these systems to perform well on a huge range of recognition

and reasoning problems at least as well as humans and animals? The results of Ch. 2

show we are far from solving this problem.

After the arguments of Ch. 3 (which, again, we will address below), we proposed

two new models. The first, the Kosterlitz Machine, is a probabilistic graphical model

with phases. After a mathematical exposition, we showed how it could be used to

formally mimic certain oscillatory processes in cortex. Its relevance to future modeling,
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however, is uncertain. Its primary practical limitation is the manner in which is must

be trained on data with phase, which avoids the main problem of using oscillations

as a purely representational mechanism. In the main text, we noted some ways of

getting around this problem by using optic flow from moving images. The actual

novelty of this system from a purely physics perspective is its use of unit magnitudes.

To the knowledge of the author, this is a novel development and should be explored

elsewhere.

The second proposed model was Kura-Net, more or less a neural network parametriza-

tion of the Kuramoto model. We demonstrated its utility for phase-based perceptual

grouping as well as for the study of functional connectivity in complex networks. This

system is still early in development and the various experiments shown in the main

text represent subtly different interpretations of the model. The greatest practical

limitation of this system is its prohibitive memory costs, imposed by the large coupling

matrix output of the control network. The sparser this matrix, the lesser the memory

cost but the worse the performance (or so it seems from early experiments). Future

work should examine whether there is a cheap and easy way to learn small-world graph

structures which are sparse and known to support synchrony in complex networks.

This practical limitation is also related to the somewhat modest performance gains

exhibited by Kura-Net over baseline CNNs. It is likely that the future alleviation of

technical limitations in training the system will result in better overall performance

compared to feedforward models. An important limitation from the perspective of

theoretical neuroscience is the relevance of this system to actual neural processes.

First, as noted above, weakly coupled neural networks are not representative of general

neurophysiology. Second, the interpretation of the control network as an abstraction

of the biophysics underlying fast synapses has not been worked out in detail. Future

work will address all of these problems but will also endeavor to align Kura-Net more

closely to work in which the Kuramoto model is unquestionably relevant, particularly
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in the study of functional connectivity.

The whole weight of the dissertation’s argument rests on Ch. 3, where the supposed

link between systematicity and neural oscillations is provided. Let me defuse the

tension surrounding this link immediately by admitting that I am not ideologically

committed to any role of cortical oscillations in cognition whatsoever. There are, of

course, convincing studies, some of them very recent, but our computational and

physiological understanding of cortical oscillations and their role in mental processing

is still early in development. Further, there are numerous interesting proposals for

making flexible cognitive machines out of neurally plausible hardware not involving

oscillatory dynamics. For instance, working memory models like that of O’Reilly

and Frank, 2006 are purely rate-based, as are the grouping models of Roelfsema and

Houtkamp, 2011. I will leave the adjudication between rate-based and oscillations-

based models to the neurophysiologists. This thesis only attempts to even the playing

field by giving scholars of neural oscillations machine learning methods which have

hitherto been exclusively enjoyed by the rate modeling camp. Whether or not these

systems reveal anything meaningful about neural processing is a separate question.

Overall, I hope that this dissertation is viewed as a continuation of the tradition in

computational neuroscience which attempted to link "strong" cognition (in the sense of

Fodor) and neural dynamics. In my view, this tradition, associated with Bienenstock,

Geman, von der Malsburg, and others is ripe for a new era of exploration in the

age of modern parallel computing. So far, this era has seen the ascendance of deep

rate-based models, and discussions of systematicity and other cognitive properties have

mostly been forgotten. It is a great irony that modeling in the 1980s and 90s, when

technical limitations were so numerous, would give rise to such diverse and interesting

formalisms as "neural gas" models (Martinetz and Schulten, 1991) and "dynamic

link architectures" (Lades et al., 1993), but that the modern age of computational

abundance would be accompanied by a stark conformity of thought. I hope that this
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thesis represents a first step in the rejuvenation of this older way of thinking.
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