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Personal data is under constant threat in the modern world — from corporations looking to profit

from over-collection and sale of personal data, to criminal interests who steal data for ransom, iden-

tity theft, and personal and corporate secrets. In response to the alarming rise in the exploitation

of data, governments worldwide have begun enacting privacy legislation to give users more control

over their personal data. However, there are technological constraints to making current systems

compliant. Legacy systems are unlikely to have been designed with privacy considerations in mind.

As such, it is difficult to instrument them in order to support the degree of transparency and access

that are mandated by privacy legislation. Even if systems are instrumented to support user control

over their data, they are still vulnerable to insider attacks and large-scale data breaches. The only

fool-proof method to protect against such breaches is to use encryption for private data. However,

plain encryption reduces the utility of outsourcing data, in that it does not allow the user to operate

on their own data without downloading all of it. Then we turn to cryptographic primitives such as

fully-homomorphic encryption (FHE), structured encryption (STE), property-preserving encryption

(PPE) and oblivious RAM (ORAM). These primitives have all been widely studied and used to build

systems that support various degrees of operation over encrypted data. Each of them also offers

different trade-offs in efficiency and security. The security of these primitives can be quantified in

terms of the leakage i.e., meaningful information that is visible to an adversarial server. In this

thesis, we describe work that advances the state-of-the-art in compliant and secure databases. We

present: (1) a tool that will largely automate GDPR access requests on legacy databases, thereby

reducing the manual work required to deal with custom schema and application logic; (2) a general

leakage suppression framework for structured encryption schemes that support updates to the data

structure, and, (3) efficient leakage suppression techniques for dictionary encryption schemes that

do not support updates to the underlying dictionary structure.
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Chapter 1

Introduction

1.1 Motivation

In the past decade or so, the pace of data generation has been growing exponentially. The to-

tal volume of data/information created, captured, copied, and consumed worldwide in 2010 was 2

zettabytes1, and it is projected to grow to over 180 zettabytes in 2025 [41]. With wearable technolo-

gies and socially connected devices and applications, the nature of the data generated is also more

fine-grained and personal. Data is also lucrative — with purposes ranging from commercial such as

advertisements or promotions, to feedback and behavioral data to fine-tune products and services.

Given the crucial importance and value of data, it is naturally prone to exploitation in many forms.

Legitimate service providers could collect far more customer data than necessary to provide services,

and criminal interests could steal data from any of the many services that collect them. The large

data breaches that have made headlines over the past decade [59] are but a symptom of a deeper

issue — the systems that collect and manipulate user data were not designed with long-term user

privacy or data security in mind. As a society and scientific community there are several ways to

deal with this ever-present and ever-growing challenge.

Governments can enact data privacy legislation with monetary consequences for non-compliance.

This is already in motion around the world, ranging from the European Union’s GDPR [32], to

similar legislations in Brazil [64], California [22], China [83], India [42] and Thailand [35]. As

a reaction, corporations are being forced to examine their privacy practices, which would most

commonly manifest in our daily lives as a popup on every website asking for consent to use cookies.

However, the solution is not as simple as that — data is a complicated subject, and there are

technological challenges to compliance. For instance, the GDPR enshrines a “Right of Access” which

allows any user to request their data from a system, and a “Right to be Forgotten” that allows the

user to ask to be removed from that system. While new systems can be designed to incorporate these

access requirements, older systems in operation today are built on legacy infrastructure, and cannot

11 zettabyte = 1 billion terabytes!
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immediately support the identification and retrieval of such user data. It is therefore important

to create both design principles and tools for new systems while simulateously retrofitting existing

applications to be compliant.

While legislation and the threat of punishment can help speed up the adoption of privacy-friendly

technologies, we still have to deal with the threat of insider access to data and large-scale data

breaches. One solution is to use cryptography to secure data. However, the use of cryptography

must not take away from the utility of that data. In particular, it is desirable to still support

operations over the encrypted data. Current cryptographic solutions to this challenge use primitives

such as fully-homomorphic encryption (FHE), structured encryption (STE) and oblivious RAM

(ORAM). Each of these primitives present various trade-offs in expressivity, efficiency and security,

are being widely studied in the research community.

1.2 Our Contributions

This thesis describes the following contributions to compliant and secure databases.

� Retroactive GDPR Compliance. We study the question of fulfilling a data access request

from a data subject on a legacy database. In order to fulfill such a request, the data owner

must be able to identify the data relevant to a data subject in the application database. This

is not an easy task, especially when database schemas do not follow strict normal forms, and

there are application-specific conventions for how data is related across tables. We posit that

when the schema is not sufficiently informative, the application query logs can serve as a

source of information about implicit relationships between the data. We present a mostly-

automated tool, GDPRizer, that can take as input a schema, a query log and some coarse

annotations from a database administrator (DBA) to extract data relevant to a data subject

from a database. We conclude from our experiments with 3 commonly-used web applications

that a fully automated solution is unlikely to exist, but our tool significantly reduces the

manual effort required to facilitate a data access request.

� Leakage Suppression for Structured Encryption. Structured encryption schemes en-

crypt data structures in such a way that they can be privately queried. Like all sub-linear

query time solutions, STE allows a persistent adversarial server to derive some information

about the input data. This derived information is referred to as the leakage of the STE scheme.

To address this, a line of work on leakage suppression was recently initiated that focuses on

techniques to mitigate the leakage of STE schemes. A notable example is the query equality

suppression framework (Kamara et al. CRYPTO’18 ) which does not reveal to the server if two

queries to the data structure are equal. The framework takes as input a dynamic scheme (one

that supports changing data) and produces a static scheme. It was left as an open question to

design a solution that could yield dynamic constructions. We present a dynamic query equality

suppression framework that transforms volume-hiding weakly-dynamic STE schemes that leak
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the query equality into new fully-dynamic constructions that do not. We then use our frame-

work to design three new fully-dynamic STE schemes that are “almost” and fully zero-leakage

which, under natural assumptions on the data and query distributions, are asymptotically

more efficient than using black-box ORAM.

� Practically Efficient Leakage Suppression. The query equality leakage is a critical part of

a structured encryption scheme’s leakage profile. It has been used for cryptanalytic attacks [68],

and it is correlated with other leakage patterns. The efficiency costs of hiding the query equality

are quite high. For instance, our dynamic query equality suppression framework, when applied

to volume-hiding multi-map schemes, is orders of magnitude more inefficient when compared

to an optimal encrypted multi-map scheme. We design new techniques to suppress the query

equality leakage, focussing on efficiency and practicality. We present a dictionary transform

that suppresses the query equality leakage of any static dictionary data structure, and use it

to design the first query equality suppressed dictionary scheme with optimal query complexity.



Chapter 2

Compliant Databases

In the recent years, governments around the world have introduced privacy legislation in order to

give end users greater control over the use of their data. The most prominent of these has been the

European Union’s General Data Protection Regulation (GDPR) [32], which provides protection for

the generators of personal data, or data subjects by codifying their rights such as the right to access

and the right to erasure. Other laws such as the California Consumer Privacy Act (CCPA) [22] or in

Virgina’s Consumer Data Protection Act (VCDPA) [84, S59.1-573] also contain similar provisions.

Countries such as China [83], India [42], Brazil [64] and Thailand [35] have also enacted legislation

that will allow their citizens to receive information about and control how their data is processed.

For the research community, privacy legislation and its impacts on the systems that are currently

in place is a subject of great interest. Prior work has analyzed the impact of GDPR on storage

systems [75], and in particular, database systems [77]. Their results indicate that strict compliance

adversely affect the efficiency of existing database systems. Given the efficiency costs of compliance,

the monetary costs to non-compliance [9], and the rising scale of data breaches, it is the need of the

hour to come up with better solutions for systems that currently store user data. With this view,

we study retrofitting GDPR compliance for legacy databases.

In order to satisfy data access or erasure requests, a database administrator (DBA) will have to

identify all the data pertaining to the individual in an existing database. This can be a daunting task,

especially when the databases themselves have not been designed with compliance considerations

and therefore lack the necessary secondary indexes or metadata to look up data by the associated

individual [77]. In this work, we investigate what it takes to provide mostly-automated tools that

assist DBAs in GDPR-compliant data extraction for legacy databases. We find that a combination

of techniques is needed to realize a tool that works for the databases of real-world applications,

such as web applications, which may violate strict normal forms or encode data relationships in

application-specific ways. Our tool, GDPRizer, relies on foreign keys from the database schema,

query logs that identify implied relationships, and coarse-grained annotations provided by the DBA

to extract an individual’s data from a database. In a case study with three popular web applications,

4
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GDPRizer achieves 100% precision and 96–100% recall. GDPRizer saves work compared to hand-

written queries, and while manual verification of its outputs is required, GDPRizer simplifies the

process of privacy compliance for legacy databases.

2.1 Overview

Consider the classic TPC-H benchmark: its supplier and customer tables identify individuals, who

are linked to orders, parts, and addresses stored in other tables. To satisfy a data access request

on behalf of a customer, the DBA must (at least) query the tables connected to customer via

either direct foreign keys, such as orders, or via indirect ones, such as lineitem. These queries

require more than a simple transitive closure over foreign keys. Querying all tables connected

via foreign keys might return more data than required (e.g., revealing the personal details of a

supplier to a customer); data might need post-processing to remove internal or private details; or

data might be missing, as applications have imperfect foreign key specifications in their schema.

These challenges show up in the databases of real-world web applications, such as Lobsters [57] and

HotCRP [53]. The goal of our tool, GDPRizer, is to generate a set of queries that extract or delete

an individuals’s information in accordance with data access requests. GDPRizer must be practical

for real applications’ databases, whose schemas have evolved over time and are often messy.

Our work shows that high accuracy and complete data extraction hinges upon solving two chal-

lenges. First, GDPRizer must identify how data is related across tables, and ensure that a data

access request returns rows from all relevant tables. Missing a relationship between tables results in

missing rows in the output, can make the data access request fall short of legal compliance. Yet, the

dependencies can be non-obvious, as an application might e.g., encode a relationship using particu-

lar attribute values. For example, HotCRP indicates co-authorship on a paper via an entry in the

PaperConflict table, with the conflictType column set to a special numeric constant indicating

a “co-authorship” conflict type. GDPRizer should—with suitable inputs—understand this sort of

dependency. Second, GDPRizer must avoid extracting too much data. Even though a table may

store or reference data associated with an individual, returning that data might overreach. For

example, an author’s data access request in HotCRP should return reviews for their papers, but the

Review table rows also contain the identity of the reviewer. To preserve reviewer anonymity, the

rows returned to an author must have the reviewer ID erased.

GDPRizer relies on two key ideas to solve these challenges: a relationship graph analysis helps

identify implicit dependencies across tables, and schema-oriented customizations limit the data

extracted based on coarse-grained schema annotations provided by the DBA. Depending on the

application, GDPRizer uses up to four types of input: (i) explicit foreign keys, if present; (ii) a log

of runtime queries the application executes, which helps infer relationships between the columns;

(iii) schema annotations that specify connections between tables that are connected by implicit

data or those whose relationships cannot be inferred from queries or foreign keys; and (iv) schema

annotations that specify what connections across tables to prune, and how to filter the extracted
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data. GDPRizer uses these inputs to traverse the database contents, extracting the information

required to satisfy a data access request. It also provides warnings to the DBA if the extracted data

might be incomplete.

2.1.1 Our Contributions

We implemented a prototype of GDPRizer and evaluated it with a synthetic schema (TPC-H)

as well as three real applications: Lobsters [57], a Reddit-style news aggregator application that

declares some foreign keys in its schema; HotCRP [53], a conference paper review application without

any explicit foreign keys; and WordPress [8], a popular blogging platform with a non-traditional,

performance-optimized schema. Our experiments show that GDPRizer achieves 62–100% precision

(fraction of extracted records that are correct) and 66–100% recall (fraction of records extracted)

without manual input for these applications. Manual customizations increase this to 100% precision

and 96–100% recall.

In summary, we make the following key contributions:

1. We investigate what satisfying data access requests over legacy schemas entails, and what

information beyond existing RDBMS abstractions (such as foreign keys) is needed.

2. We describe an algorithm to traverse a database schema and extract the information needed

to satisfy a data access request.

3. We present GDPRizer, a tool that implements this algorithm and interactively guides a devel-

oper or DBA in generating the queries for data access requests.

4. We evaluate a GDPRizer prototype, demonstrating high accuracy on three real web applica-

tions’ databases, and compare GDPRizer to custom GDPR compliance plugins for the Word-

Press blogging platform.

GDPRizer’s automation is fundamentally limited by the fact that legacy databases’ schemas may

fail to reflect key application semantics. However, our work shows that it is possible to much reduce

the manual labor required to satisfy data access requests.

2.2 Background and Related Work

High-profile data breaches and an increasing interest in consumer privacy regulation have led to a

glut of new privacy laws in recent years. Failure to comply with these laws can lead to reputational

damange, revenue loss, and substantial fines [9].

Data Access Requests. Most privacy laws grant individuals the right to request a copy of

their data from those who store or process it, and to ask for its removal. In the GDPR, for example,

these rights of a “data subject” (a natural person) are codified in Articles 15 (“Right to Access”) and

17 (“Right to Erasure”). Other laws contain similar provisions, such as the CCPA’s and VCDPA’s

“Right to Know”. We refer to the power granted by these provisions as a data access request. A

data access request requires the party controlling the data (a “data controller” in GDPR lingo) to

identify all information they hold about the requester. Satisfying the request requires care, as the
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data returned must not violate the privacy of other individuals [32, Art. 15, S4], so post-processing

of the data identified is typically required.

Web Applications. Privacy laws have a broader scope than just web applications, but their

impact is particularly serious for organizations that operate web services. Web applications often

use a database backend coupled with stateless frontend logic. Popular frameworks like Ruby on

Rails [4] and Django [7] use a relational database for storage by default. Yet, legacy web applica-

tions’ schemas were developed without attention to data access requests, and the relational storage

paradigm’s strength—organizing records by type in tables—fundamentally mixes different individu-

als’ data. This makes the task of identifying the data associated with an individual complicated and

application-specific. Working out what information a data access request needs to return requires

application developers or DBAs to navigate application-specific table and column names, as well as

underspecified or implicit relationships that indicate records’ association with individual users. This

requires substantial manual, error-prone labor for many applications.

One might be tempted to believe that abstractions for relating entities across tables (such as

foreign keys) could help. While this is true in theory—a data access request is, essentially, a recur-

sive traversal of related entities from a starting entity in a table—real-world application schemas

frequently fail to conform to third normal form (3NF) or lack the required keys. For example, we

studied nine open-source web applications, ranging from chat plugins to social networks, blogging

and conference review platforms1 and found that only two of them specify foreign keys in their

schema.

Compliance plugins. For some popular frameworks, application-specific, third-party privacy

compliance plugins are available. For example, the WordPress blogging platform’s plugin registry

lists dozens of GDPR plugins related to cookie consent [82] or GDPR compliance [30, 65]. However,

such plugins can have serious deficiencies (as we will show in S2.7.5), but the DBA must blindly

trust their correctness. For custom web applications or less popular frameworks, no such plugins

are available.

Other approaches to compliance. Some researchers have proposed entirely new database

systems [74, 54] or storage hardware [44] to achieve privacy compliance. While helpful for future

deployments, these systems do not help legacy databases comply with data access requests. Other

research has studied the performance costs of adding metadata structures (e.g., secondary indexes)

to existing databases to help satisfy data access [77, 75]. These techniques come with high overhead

and without any automation. Odlaw [58] helps retrofit data access requests to legacy databases

by building a graph of foreign key dependencies across tables and providing a graphical interface

for DBAs to identify relevant data for a data subject. However, Odlaw assumes that the database

schema contains explicit foreign keys, which many real applications lack.

1Lobsters [57], ghChat [10], Schnack [73], an Instagram clone [76], Socify [61], HotCRP [53], Commento [27],
PrestaShop [72], and OpenCart [66].
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Figure 2.1: GDPRizer overview: schema, query log, and customization inputs configure the
GDPRizer to handle data access requests for individual users. On request, GDPRizer queries the
database and post-processes the data retrieved.

2.3 GDPRizer

We present GDPRizer, a tool that retrofits compliance with data access requests onto legacy

databases. GDPRizer explores a trade-off between fully manual, application-specific scripts that

must be written with great care and human effort, and automated—but likely imperfect—general-

purpose solutions. Our goal is to investigate the degree of automation that a tool can provide for

data access requests over legacy databases, while minimizing any manual inputs.

At a very high level, GDPRizer uses the database schema and a query log the application to

extract semantic relationships between columns in the database. It then uses these relationships and

manual customizations to generate a configuration that helps the tool satisfy data access requests

for an individual by querying the database (Figure 2.1).

2.3.1 Automated Relationship Detection

A well-formed database schema in 3NF will indicate semantic relationships between tables via foreign

keys: a foreign key indicates that the source table references objects in the destination table. This

information is crucial to serve a data access request. Such a request starts with a data subject ID

(DS ID), which typically corresponds to a row in some table—e.g., customer or supplier in TPC-H,

since both customers and suppliers are data subjects under laws like the GDPR. A foreign key into
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Figure 2.2: Relationship graph of HotCRP [53]. Boxes correspond to tables, round vertices to
columns, and edges to foreign keys in the schema or joins observed in the queries. Since HotCRP
lacks foreign keys, this graph is identical to HotCRP’s join graph (S2.4).

the table that contains data subjects indicates that records in another table are associated with the

data subjects. A transitive foreign key (often) indicates the same about an object that is two or

more steps away from a data subject table. When present, GDPRizer therefore uses foreign keys to

detect data related to an individual data subject. However, practical application database schemas

often lack FKs. Any real-world GDPR compliance solution therefore has to tackle challenges such

as lack of referential integrity and implicit or conditional relationships between columns.

If the database schema lacks sufficient information about foreign keys, GDPRizer uses alternate

sources of information to identify relationships between tables. One such source is the set of queries

made to the database at application runtime. The idea behind using application queries is that a

runtime join between two tables frequently implies a foreign key relationship between these tables,

particularly if the destination column is a table’s primary key column. For example, TPC-H joins

customer.c custkey with orders.o custkey for a query that summarizes a customer’s order infor-

mation, matching the foreign key constraint between the two columns. While joins on non-foreign

key columns are possible, they are fairly rare in practical web applications. Keeping this in mind,

GDPRizer uses application query logs to supplement the relationship information provided by ex-

plicit foreign keys in the schema. Query logs are easy for DBAs to obtain (e.g., by sampling some

fraction of runtime queries, or by enabling query logging).

Relationship Graph. Together, the foreign keys (if present) and the joins observed in a query

log constitute GDPRizer’s relationship graph, a raw, unprocessed set of known relationships between

columns across tables. Each column in the database is represented by a vertex in this graph. The

relationships between a pair of columns—foreign key constraints or joins—are represented by an

edge between the columns. A table is represented by multiple, grouped vertices in the relationship

graph. Figure 2.2 shows GDPRizer’s relationship graph for HotCRP.

Data Extraction. When GDPRizer receives a data access request, it traverses the relationship

graph to extract data relevant to the data subject. The traversal begins at the key column that

contains the data subject’s primary identifier. GDPRizer then proceeds to extract records directly

or indirectly connected to this key column. In other words, GDPRizer explores the transitive closure

of all the connected tables in the graph to extract the relevant data.



10

2.3.2 Manual Customizations

However, GDPRizer (and likely any general-purpose tool) needs additional input to identify application-

specific semantic structure in the database. When the generated graph fails to express some aspects

of the application semantics, GDPRizer allows for a domain expert, such as the application devel-

oper or DBA, to intervene and customize either the relationship graph itself, or the data output

after traversal. We aim to minimize this intervention in GDPRizer, but our case studies show that

a modicum of manual input is often required. GDPRizer’s customizations fall into four categories:

(1) Edge pruning. The relationship graph for a practical application sometimes contains

relationships that are not relevant to a data access request. This can happen because the application

joined columns that are not semantically related, or because there exists a foreign key that connects

internal application data rather than user data. For GDPRizer to ignore these irrelevant relationships

when it extracts the data, the relationship graph itself needs customizing. To achieve this, GDPRizer

supports edge pruning annotations, which allow the DBA or developer to indicate that all edges (i.e.,

relationships) incident on a particular column should be ignored.

(2) Adding missing edges. On the other hand, even after using information from both the

schema and the runtime queries, the relationship graph may still be missing relationships. For

example, the relationship graph for WordPress has no edge between the table with user information

and the table that holds comments, even though it is clear from the application semantics that

they contain related columns. When tables appear to be disconnected in the relationship graph,

GDPRizer will prompt the DBA to manually “connect” the disjoint components. GDPRizer uses

a datatype-matching heuristic to suggest edges (column relationships) that might have semantic

significance. The DBA considers the list of suggestions and adds the missing relationships.

(3) Data-dependent and conditional relationships. The most complex customization may

be necessary if the application has implicit or conditional relationships that cannot be expressed in

terms of the existing columns. This happens e.g., if a second column indicates the “type” (semantic

meaning) of a foreign key that is present; for example, this occurs with paper conflict types in

HotCRP: co-author conflicts have different semantics for data access requests than other conflicts.

To address this, the DBA provides an input that transforms the data such that the relationship is

direct and explicit. In particular, GDPRizer supports the creation of views that contain rows from a

source table only if a predicate over the rows holds true. These views become part of the relationship

graph, replacing other tables and edges, and GDPRizer uses them for data extraction.

(4) Output filtering. Once GDPRizer has completed the relationship graph traversal and

queried the database, it may be necessary to filter the resulting records to remove personal informa-

tion of other individuals (e.g., reviewer details on HotCRP) or unrelated data (e.g., internal supplier

information in TPC-H). The DBA specifies columns to filter from the output by annotating the

schema, and GDPRizer removes or rewrites these columns.

GDPRizer only needs to be configured once and the manual customizations are one-off for a given

database. Once a relationship graph is setup, GDPRizer saves the customizations as a configuration

for all future data access requests, essentially creating an application-specific GDPR compliance tool



11

with less effort than would have been necessary to write the queries manually.

2.4 Relationship Graph

When GDPRizer receives a data access request, it identifies all data relevant to the individual making

the request (the “data subject”). GDPRizer assumes that the data subject is uniquely described by

a row in a primary table. This is common: many applications have a users table with their users’s

details, or represent individuals as rows in tables associated with their role (e.g., TPC-H’s customer

and supplier, or Lobsters’s invited users in invitations and registered users in users). Other

entities in the database refer to these primary table rows, establishing a relationship. For example,

TPC-H has rows in the order table refer to customers by their unique key in the customer table (a

foreign key constraint). GDPRizer can assume that these related rows might also be relevant to the

customer, so GDPRizer must identify and use the relationship between customer.c custkey and

order.o custkey to eventually be able to extract the data. GDPRizer represents these relationships

as edges in the relationship graph. The relationship graph combines relationships specified explicitly

in the database schema with inferred relationships determined from application execution.

Foreign keys. The most reliable source of relationships in a database is the database schema.

If the schema is well-formed and in 3NF, it contains all the foreign key constraints in the database,

i.e., all by-key relationships between columns across tables. In TPC-H, for example, there exists

a foreign-key constraint between customer.c custkey and order.o custkey. These constraints

can be conceptualized as a graph whose vertices are columns, and whose edges are foreign-key

constraints. We refer to this graph as the foreign-key graph, and it forms one of the bases of the

relationship graph. However, as previously discussed, many real-world database schemas fail to

conform to strict 3NF, so the foreign key graph alone is insufficient. GDPRizer must be capable of

inferring relationship information that is missing in the database schema.

Inferring relationships. One possible heuristic for inferring column relationships might be to

compare the column names and datatypes. However, there are no standard naming conventions,

and even though foreign keys sometimes follow specific naming schemes, it is hard for GDPRizer to

determine the application-specific naming convention in use. Another approach, which requires less

human effort, is to use the application semantics expressed in runtime queries to infer relationships

within the database. For example, if the application joins two columns in the database at runtime,

GDPRizer can infer that the columns are likely related, as the application assumes that they share

data values. GDPRizer’s approach is therefore to use query log of the application, provided by the

developer or DBA, to identify columns that are joined at runtime. Such a log is easy to obtain, e.g.,

by enabling query logging in the database, or by instrumenting the application’s DB access code.

(Note that the log does not need to be complete—a sample is often sufficient.) These resulting

inferred relationships can also be represented as a graph, and we refer to this graph as a join graph.

Finally, GDPRizer combines the foreign-key graph with the join graph to create the relationship

graph.. Figure 2.2 shows the relationship graph of the HotCRP conference review application. Since
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HotCRP lacks foreign key constraints in its schema, this relationship graph is identical to the join

graph.

2.5 Graph Traversal

Given the relationship graph, GDPRizer uses it to retrieve a data subject’s records from the database.

This requires GDPRizer to traverse the relationship graph, starting with a row in the primary table,

and to generate meaningful queries as the traversal proceeeds.

A näıve graph traversal, which traverses all the edges, might extract too much or too little data:

1. if several paths from the primary table to another table exist, each of them could lead to a

different set of extracted rows, which might be too much data; and

2. since there are (usually) no edges between the columns of the same table, the graph consists

of many disconnected components, as shown by the colors in Figure 2.3. Then any edge-

based traversal that begins in one component will fail to extract data from the unreachable

components.

GDPRizer addresses these challenges with heuristics based on proximity and implied relationships,

as explained in the following.

To avoid overextraction and duplicate data, GDPRizer only visits each column once. When

multiple paths to a column are available, GDPRizer picks the shortest one. Prioritizing in this

way makes sense because, intuitively, columns that are “closer” to the starting column, i.e., the

primary key of the primary table in the relationship graph, are more relevant to the data subject.

Therefore, GDPRizer traverses the graph in breadth-first manner than the depth-first manner from

the starting column. To address the second challenge, GDPRizer traverses the graph via two types

of relationships in the graph (Figure 2.3):

� relationship edges, based on foreign keys or application joins, such as the edge between columns

A and B; and

� implied relationships between the columns of the same table, e.g., columns B and C.

GDPRizer uses the relationship edges for data extraction, and the implied relationships to connect

the components of the graph. Figure 2.3 shows a high-level overview of the graph traversal.

Relationship edges. Whenever possible, GDPRizer follows the graph’s relationship edges. For

example, in Figure 2.3, column A is the primary key column of the primary table and therefore

the graph traversal’s starting column. It follows that the columns accessible by a relationship edge

from A, like B and E, are directly related to the data subject since they were joined in the query

set or have a foreign key. For columns not directly linked to the primary key of the primary table,

GDPRizer uses their distance from the starting column as a metric to decide which paths to explore.

We call a column’s distance from the starting column its proximity. Computing the proximity helps

GDPRizer traverse columns nearer the starting column before ones that are further away, and ensures

that it prefers shorter paths over longer ones. The proximity also naturally imposes a direction on

the traversal of the edge between any two columns—the traversal proceed from the column closer
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to the starting column to the column that is further away. GDPRizer uses a standard breadth-first

traversal (BFT) from the starting column to compute the proximity of columns in that component

of the graph. Starting the BFT from A, the proximity of columns B and E is 1, the proximity of

F is 2 and that of G is 3. Notice that after exploring these columns, there are no more relationship

edges to traverse, and the BFT cannot continue.

Implied relationships and inferred proximity. So far, GDPRizer has visited only one

component of the graph, containing the columns A,B,E, F and G. To continue the traversal through

the remaining disconnected components, GDPRizer chooses a secondary starting column for each of

the components, and repeats the distance computation from this secondary starting column.

To choose the starting column in a component, GDPRizer relies on another proximity-based

heuristic. Having already computed the proximity for the columns in the connected component that

contains the starting column, GDPRizer now considers the untraversed siblings of these traversed

columns. (Two columns are siblings if they belong to the same table.) This set of untraversed siblings

must be part of disconnected components, as they would have been traversed already if they were

connected to the starting column component. GDPRizer uses implied relationships between siblings

to infer the proximity of an untraversed sibling column: it sets the proximity of an untraversed

column to the minimum proximity over all its siblings +1. In Figure 2.3, columns C,D, J are siblings

of B,E,G respectively. Then their proximities are set as shown due to the implied relationship

between siblings. Setting the proximity in this manner is equivalent to traversing an (implied)

relationship edge from the sibling with minimum proximity. Note that GDPRizer only uses implied

relationships if no relationship edges to the column existed, i.e., if the column is untraversed. After

this augmentation, GDPRizer continues with the proximity rule used for the first component, and

picks the column with the minimum proximity as the secondary starting column. GDPRizer then

repeats a breadth-first traversal using the relationship edges in that component. The secondary

starting columns in the figure are then C,D, J and the respective BFTs are indicated on the graph.

This process of using the relationship edges and the implied relationships alternately continues until

GDPRizer has traversed all the columns in the graph, or no more viable sibling columns exist.

Data extraction. GDPRizer’s data extraction proceeds alongside the graph traversal. GDPRizer

starts by issuing a query for the all records associated with the data subject identifier (DS ID) in

the primary table, and then associates the value of DS ID with the starting column. In subsequent

steps, for each relationship edge between columns A and B, traversed as A→ B, column A already

has some associated value that was queried in the previous step of the traversal. GDPRizer issues

a SQL query for all the records with this value in column B, as the relationship edge requires the

values of A and B to be identical. This process repeats for all relationship edges. When GDPRizer

uses an implied relationship, say from B to C, it already knows the value for B (which the traversal

reached via the relationship edge from A to B). GDPRizer queries the records with that value in

B and obtains the matching values in sibling column C. These associated values then initiate the

traversal (and thus, data extraction) in that component of the graph. Finally, GDPRizer combines

the output of all the SQL to produce the data associated with the data subject.
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Figure 2.3: An example graph traversal. Column A is the primary column of the primary table (*).
Each column is annotated with its proximity. The first BFT is marked in blue. Subsequent BFTs
after using implied relationships are marked in green, orange and yellow.

2.6 Customizing the Graph Traversal

In practice, application databases’ structure may have semantic properties that the relationship

graph fails to capture. GDPRizer offers manual customization options to modify the relationship

graph and the extracted data. These options are semi-automated: the developer or DBA adds

customizations either in response to prompts from GDPRizer (e.g., if there are disconnected com-

ponents of the relationship graph that GDPRizer’s traversal cannot reach) or after inspecting the

data returned by GDPRizer’s extraction.

2.6.1 Graph customization

GDPRizer supports three graph customizations: (i) edge removal or pruning; (ii) edge addition;

and (iii) vertex addition.

Edge Pruning. When a database schema contains columns that GDPRizer should not use

to extract data, a DBA can annotate the columns to avoid traversal (and further data extraction)

via these columns. For instance, in the HotCRP database, the conflicts on a paper link rows in the

Paper table to conflicted individuals’ records via a relationship to PaperConflict, which in turn has

a relationship with ContactInfo. GDPRizer should not extract information about the conflicted

individuals. To avoid this, the DBA might prune the contactId column in the PaperConflict

table, removing all edges incident on it. In our experiments, edge pruning was the most commonly

needed customization for application databases.

Edge Addition. Edge addition becomes necessary when the relationship graph lacks edges to

some tables in the schema. This happens if the tables are neither related via any foreign keys, nor

did they ever get joined by application queries. In such cases, GDPRizer will prompt the DBA to
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“connect” these tables to the rest of the relationship graph. The prompt provides a list of plausible

edges based on matching column datatypes and primary key constraints.

Vertex Addition. Vertex addition is the most complex customization GDPRizer supports. It

is required when the database contains conditional or implicit relationships. These relationships

are computed programmatically, rather than being expressed as simple foreign keys or joins. One

example of this is how HotCRP represents the co-author relationship on a paper. A co-author is

specified using a row in the PaperConflict table, with the conflictType column set to a specific

bitfield value. Based on this relationship, GDPRizer must extract the data for papers that a user

has co-authored. Rows with other conflict types (e.g., institutional, advisor-advisee) also have

relationships with the Paper and ContactInfo tables, but GDPRizer should refrain from extracting

their data.

To support this, GDPRizer allows a DBA to add a virtual column to a database table, effectively

defining a view. The virtual column transforms the implicit or conditional constraint into an explicit

column i.e., a vertex in the relationship graph. The virtual column is derived from a source column,

and GDPRizer copies all edges of the source column to the virtual column. In the case of HotCRP,

the DBA provides GDPRizer with the query to create a view of the Paper table that contains a row

for each co-author user ID, and bases co-author ID column on the source column leadContactId.

Hence, GDPRizer copies all the relationships of the leadContactId to the virtual co-authors column.

The graph traversal then uses the view in place of the Paper table.

2.6.2 Output customization

GDPRizer must also take care to avoid returning internal information or the information of other

data subjects as part of the data it extracts for a data access request. For this purpose, and to

reduce unnecessary output, GDPRizer supports post-processing of the data extracted.

Filtering. After the data is extracted, GDPRizer allows the DBA to filter out any unnecessary

columns from the output using filtering annotations. This is expressed as a list of columns to drop

or rewrite in the output. In order to reduce manual input, GDPRizer automates filtering for one

specific kind of type: a mapping table, which is a table that consists entirely of relationship columns

(i.e., all columns are foreign keys). For example, in HotCRP, the PaperTopic table maps paper ids

to the topic ids that they concern, but contains no other information. Since GDPRizer will return

records from both the Paper and the TopicArea tables, it is unnecessary to return the mapping

table records as well. Consequently, GDPRizer automatically drops such mapping tables from the

output.

Roles. Finally, GDPRizer supports roles, which allow applying different customizations by data

subject type. In TPC-H, for instance, customer rows or supplier rows can represent data subjects

who can issue data access requests, but GDPRizer should return different information depending on

whether the request originated with a customer or a supplier. The customer’s primary table is the

customer table and the supplier’s primary table is the supplier table. GDPRizer’s graph traversal

must account for these varied roles in the database, and avoid extracting more data than is necessary
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for each role. Therefore, GDPRizer allows the DBA to specify multiple roles, each associated with a

different primary table and set of per-role customizations, which specify a custom traversal for each

role. Since roles are application-specific, GDPRizer requires manual input to specify them and their

customizations.

2.7 Evaluation

We evaluated GDPRizer with a synthetic benchmark (TPC-H) and with three real web applications

(Lobsters [57], HotCRP [53], and WordPress [8]). Our evaluation seeks to answer these questions:

1. Does GDPRizer correctly handle data access requests over real web applications’ databases?

(S2.7.2)

2. How many manual inputs do applications require? (S2.7.3)

3. What impact do manual customizations have on GDPRizer’s correctness, and when are they

required? (S2.7.4)

4. How does GDPRizer compare to the third-party GDPR compliance plugins available for some

applications? (S2.7.5)

Setup. We prototyped GDPRizer in approximately 1, 200 lines of Python. Our implementaiton

uses moz-sql-parser [2] to parse SQL queries. Since this parser can only handle some subset of SQL-

92 queries, GDPRizer skips over the queries that moz-sql-parser cannot handle. This only affects a

small number of queries.

Accuracy measurements. We measure GDPRizer’s accuracy for four applications: TPC-H,

HotCRP, Lobsters, and Wordpress. None of these applications currently have native support for

data access requests. Hence, they lack a ground truth on the data that should be returned for each

data subject. We used our knowledge of the applications to determine the data that we believe a data

access request should return. We studied the application’s schema and for each table in its database,

we manually wrote a set of “ground truth” queries. For Wordpress, which has publicly-available

GDPR plugins, we compare our results to the data extracted by these plugins.

We then compare the rows that GDPRizer extracts with the rows included in these ground

truths. To measure GDPRizer’s accuracy, we compute precision and recall relative to the ground

truth. We denote precision by P , recall by R and define them as follows:

P =
tp

tp + fp
, R =

tp

tp + fn
,

where tp, fp, fn, respectively are the number of true positives, false positives and false negatives

in GDPRizer’s results. We calculate both metrics for each table. Table-level analysis helps us

measure the performance of GDPRizer on different parts of the database and uncover any specific

shortcomings. For each application, we run data access requests for all data subjects in the database

and report accuracy results averaged over all data subjects.

Inflated averages. Before we discuss our results, we consider a problem that could skew the

precision and recall metrics when a majority of data subjects have no data in certain tables.
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Suppose that GDPRizer’s extraction should avoid querying a table T for any data subject with

a particular role, e.g., the customer table for suppliers. If GDPRizer queries T for data subjects

with no data in T , the database will return no data, and hence GDPRizer would appear to have

100% precision. For such data subjects, GDPRizer did the right thing—extracting no data—but

for the wrong reasons. Specifically, in this example, GDPRizer extracts no data because T had no

matching records, not because GDPRizer did not query it. Averaging over a large number of such

data subjects, gives us an inflated averaged precision value, which is an issue. A similar issue can

occur with recall. Therefore, to ensure our results meaningfully report GDPRizer’s correctness, we

exclude the set of data subjects with no data in T from our reported averages.

2.7.1 Applications

We evaluate our prototype with the TPC-H benchmark and three applications: HotCRP, Lobsters

and Wordpress. While TPC-H serves as a sanity check, the three applications evaluate GDPRizer’s

real-world performance. In this section, we describe the setup of each application: how we populate

the application database, how we collect its queries, and how we establish the ground truth.

TPC-H. The TPC-H benchmark models data and events between suppliers and customers in a

warehousing system [5]. We generated 100MB of data, consisting of 150 customers and 10 suppliers.

TPC-H’s 22 SQL queries contain a total of 62 joins, and the schema has 13 foreign-key contraints [6,

Fig. 2]. GDPRizer can use the foreign-key relationships, but also successfully extracts them from

the queries.

We run experiments for the customer and supplier roles. For a customer, the customer table is

the primary table and its primary key, c custkey, the primary column. The ground truth consists of

queries for each table except the supplier and partsupp tables. We excluded these tables because

supplier contains supplier’s private information (e.g., account balance), while the partsupp table

contains sales information of a supplier, such as supply cost and available quantity. For suppliers,

supplier is the primary table and its primary key, s suppkey, the primary column. From the

ground truth, we exclude data from the customer, lineitem, and orders table, since customer

details and order processing details of the warehouse do not concern suppliers.

Lobsters. Lobsters is a link aggregator page, similar to HackerNews [1] or Reddit [3]. Its

database has 25 tables which describe user posts, comments, votes, taggings, moderations, filters,

etc. Lobsters comes with a sample dataset for 44 users, and we use this to populate the database.

We created three additional users and logged the queries generated during interactions with the

application. We attempted to exercise all possible actions in Lobsters and collected 3, 960 queries.

We extracted 41 edges from foreign-key constraints in the Lobsters schema and 2 additional edges

from joins in the queries.

For Lobsters, the users table is the primary table and its id column the primary column. We

included 23 queries in the ground truth, covering 17 tables. We excluded 8 tables that contain

Lobsters’s Ruby-on-Rails metadata rather than user data (e.g., ar internal metadata, keystores

and, schema migrations).
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Figure 2.4: Relationship graph of Wordpress. For visual clarity we only show the columns which
have edges on them. Edges in green are those added manually and edges in red are those that
are pruned from the graph. Notice that pre-customizations, the graph contains four disconnected
components.

HotCRP. HotCRP is a conference peer review application [53] and its database has 24 tables.

In our experiments, we use an anonymized HotCRP dataset from an actual conference. The dataset

contains data of 1, 273 authors and 507 papers. We also use a sample of 251 queries. Since HotCRP’s

schema lacks foreign-key constraints, GDPRizer uses the queries to build the relationship graph

(Figure 2.2). GDPRizer extracts 30 edges in total. We set ContactInfo as the primary table and

its primary key, contactId, as the primary column. For the ground truth, we wrote 17 queries

that extract data from 12 tables and exclude data from 12. Tables excluded are either application

management tables such as Settings, MailLog, FilteredDocument, and Mimetype or mapping

tables such as PaperTopic.

Wordpress. WordPress is a popular blogging platform and content management system [8]. A

key feature of WordPress is its plugin architecture, which allows users to add additional functional-

ity to their WordPress installation. For example, the WooCommerce [16] plugin adds e-commerce

functionality, allowing users to host online shops. The base WordPress database has 12 tables which

describe users, comments, posts, terms and their taxanomies, and other metadata. The WooCom-

merce plugin adds 27 new tables to the base database to support online shops. We investigate

how GDPRizer performs on the base installation of WordPress and how it adapts to the updated

database when WooCommerce is added. We generated sample data for 46 users using another Word-

Press plugin, FakerPress [40]. For WooCommerce, we manually generated sample data. As with

Lobsters, we logged the queries generated by users during their interactions with the WordPress site

and attempted to replicate all possible actions. Overall, we collected 9, 301 queries.

As the WordPress schema does not specify any explicit foreign keys, the relationship graph

includes 5 edges identified from joins in the queries (Figure 2.4). We treat wp users as the pri-
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# edges in
fk-graph

# edges in
join-graph

# common
edges

Pre-cust.
precision avg

Pre-cust.
recall avg

Post-cust.
precision avg

Post-cust.
recall avg

TPC-H
(cust)

13 13 13 0.68 1 1 1

TPC-H
(supp)

Same as for customer 0.62 1 1 1

Lobsters 41 17 15 0.69 0.99 1 1

HotCRP 0 30 0 0.88 0.76 1 0.96

Wordpress
(base)

0 5 0 1 0.66 1 1

Wordpress
(plugins)

0 11 0 1 0.69 1 1

Figure 2.5: Relationship graph statistics and high-level results for GDPRizer’s performance by
application: GDPRizer achieves 62% or higher precision and 66% or higher recall without any manual
input, and 100% precision and recall with manual input, except for HotCRP. Values reported here
averaged over per-table values, which in turn are averages over individual data subjects.

mary table and its id column the primary column. For the base installation, we included 6 queries

over 6 tables in the ground truth. As usual, we excluded the tables which contain data not di-

rectly related to users. There are 6 such tables, wp links, wp terms, wp termmeta, wp options,

wp term relationships and wp term taxonomy. For the WooCommerce plugin’s 27 new tables, we

included 9 new queries in our ground truth, covering 9 of the new tables.

2.7.2 High-level Accuracy Results

We first consider the accuracy of GDPRizer’s results on a per-application basis, and both with and

without manual customizations. Each application contains many data subjects and tables, and we

aggregate the per-table and per-data subject results by averaging. A good result for GDPRizer

would show high precision and recall both with and without manual customization.

Figure 2.5 shows the results. GDPRizer’s relationship graphs have 5–43 edges depending on the

application. Except for the synthetic TPC-H benchmark, all applications rely on the join graph to

populate their relationship graph. Only Lobsters has explicit foreign keys, of which the join graph

captures 15. But 26 foreign-key constraints are not reflected by the Lobsters join graph, which

illustrates that it is helpful for GDPRizer to use explicit foreign keys when available. Without any

manual customizations to the graph, GDPRizer achieves at least 62% precision and 66% recall for all

the applications. Individual metrics reach 100% for some applications, but no application sees both

perfect precision and recall. Since privacy compliance is all-or-nothing, this would be insufficient in

a practical setting. The final columns in Figure 2.5 illustrate that, with some inputs from the DBA,

GDPRizer achieves perfect precision and recall for all applications except HotCRP, whose recall is

96%. The reason for this imperfect recall is that there are two paths into the TopicArea table in

HotCRP’s relationship graph. GDPRizer ignores the longer path, and hence under-extracts from

TopicArea. However, TopicArea only contains public information (the paper topic categories), so

a DBA could plausibly just annotate the table to indicate that GDPRizer should always return it

in its entirety.
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# cols
added

# cols filtered
(total cols
in schema)

# edges
added

# edge pruning
annotations
(total edges

in rel. graph)

TPC-H (cust) 0 0 (61) 0 4 (13)

TPC-H (supp) 0 0 (61) 0 7 (13)

Lobsters 0 0 (192) 1 19 (43)

HotCRP 1 18 (200) 2 11 (30)

Wordpress
(base)

0 0 (94) 3 1 (5)

Wordpress
(w/ plugins)

0 0 (288) 9 2 (11)

Figure 2.6: Good GDPRizer performance requires annotating a subset of columns. Edge pruning
annotations are most common.

2.7.3 Manual Customizations Needed

While minimal input from the DBA is desirable, it is often necessary, our experiments have shown

that some manual input is usually necessary. We now investigate the inputs required for the four ap-

plications. We believe that, given the relationship graph and suggestions from GDPRizer, any DBA

with some background knowledge of the database should be able to identify these customizations.

Figure 2.6 summarizes the customizations we make for each application.

Columns added. Adding “virtual” columns helps GDPRizer deal with data-dependent or

conditional relationship, but is rarely required. The only application that requires this customization

is HotCRP. HotCRP does not store the contact IDs of paper authors in the Paper table, since papers

can have an arbitrary number of co-authors. The exception to this is the lead author, whose ID

HotCRP stores in the leadContactId column of Paper. Rather than storing co-authors as separate

rows in an authors table with one row per (paperID, authorID) combination, HotCRP combines this

information with information about conflicts of interest for a paper. (This makes sense because each

co-author naturally has a conflict of interest for reviewing their own paper.) Specifically, HotCRP

has a PaperConflict table, whose rows represent co-authorship if the conflictType column takes

specific values. To handle this, the DBA defines a virtual column in GDPRizer. This adds a new

column, named v author to the Paper table, which is a direct foreign key into the ContactInfo table

(i.e., v author stores the contact IDs of the co-authors of a paper). This results in a new relationship

graph vertex, v author, which captures the author relationship and lets GDPRizer traverse the

relationship graph in its usual way. Since v author behaves like the Paper.leadContactId column,

we adopt the edges of Paper.leadContactId to connect v author to the rest of the graph. Finally,

we populate it with co-authorship information from the PaperConflict table.

Edges pruned. Edge pruning is the most common customization, and the one that affects the

most tables and columns. Ideally, the reasons for pruning should be easily evident to a DBA. In our

example applications, pruning annotations fall into three categories.

Tables without user relevance. The first kind of pruning prevents GDPRizer from extracting

application data that is irrelevant to users. A DBA identifies all such internal tables and annotates all
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columns in these tables with incident edges for pruning.2 For example, in Lobsters, we annotate three

columns in management tables; in HotCRP, we annotate four columns; and in the base WordPress

installation, we prune one column, while with the WooCommerce plugin, we prune another column

that represents global product permissions. Note that these prunings are unnecessary if the DBA

decides to return data from these tables—in that case, they can leave the edges as is. In our

experiments, we considered data in management tables irrelevant and removed their data from the

ground truth, so it was natural to prune the edges into these tables.

Other data subjects’ information. The second kind of edges pruned are edges into tables that

contain personal information of other data subjects. Privacy laws require avoiding to return personal

information of other individuals when satisfying a data access request, meaning that such information

cannot be returned by GDPRizer. For example, in TPC-H, if the data subject is a customer, we

prune all the edges into tables with supplier data, whereas for a supplier-role data subject, we prune

all the edges into tables with customer data. For a customer, we prune edges into the the supplier

and the partsupp tables, whereas for a customer, we prune edges into the customer, lineitem and

order tables (see S2.6).

Avoiding over-extraction. The third kind of edge prunings is more involved and requires the

DBA to identify individual edges which might extract incorrect data. For example, in Lobsters, we

prune the story id column from six tables to stop GDPRizer from retrieving information about

stories that a data subject might have “acted upon” but does not “own”. For instance, we prune

votes.story id to avoid information on stories that a data subject voted on but has not written

(although GDPRizer still extracts the vote records themselves). Another example of this kind of

pruning occurs in HotCRP, where we prune Paper.shepherdContactId to stop GDPRizer from

extracting paper details of papers which a data subject shepherded, but did not write. We prune

six columns of this type in HotCRP. The pruning annotations of this third type require a DBA to

carefully consider and inspect GDPRizer’s output, and to potentially iterate a few times until the

output is correct.

Edge additions. Edge additions provide GDPRizer with missing relationships in the relation-

ship graph. This customization is crucial if an application’s schema lacks foreign keys and the join

graph provides incomplete information. This may occur, e.g., because application developers opti-

mize for faster queries by computing joins in application code; because they try to improve scalability

by avoiding joins that require taking locks on multiple tables; or because the application simply never

needs the joined data. In our applications, between one and nine edges not captured in the join graph

needed adding. In Lobsters, we add an edge between users.id and messages.author user id to

capture the private messages that a data subject wrote. Lobsters lacks this edge because its schema

avoids having two foreign keys between the same pair of tables (users and messages), but the

relationship nevertheless exists. In HotCRP, we add an edge between ContactInfo.contactId and

ReviewRating.contactId, to capture the review ratings a user contributed. We also add an edge

2A table-granularity annotation would make this easier, and we plan to add such an annotation to GDPRizer in
the future.
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between PaperTopic.topicId and TopicArea.topicId to capture papers’ actual topics.

Wordpress has the least well-connected join graph, likely due to join-avoiding query optimiza-

tions. The relationship graph for the base Wordpress setup contains four disconnected components

(Figure 2.4). To connect these components, we manually add the following three edges to the graph:

� wp users.ID ↔ wp comments.user id

� wp users.ID ↔ wp posts.post author

� wp comments.ID ↔ wp commentmeta.comment id

These relationships are fairly obvious when considering the semantics of the WordPress application

and the column names, but they are hard for GDPRizer to determine automatically. With the

WooCommerce plugin, we add six more edges in addition to the above. These edges essentially

connect disconnected tables that have user IDs to the wp users table. For example, we connect

wp wc payment tokens.user id to wp users.id to capture a user’s payment tokens. In addition, we

connect wp users.id to the five columns in WooCommerce table, all with columns called users id.

GDPRizer recognizes the disconnected components and helps identifying the possible connecting

edges based on datatypes; ultimately, it’s the DBA’s responsibility to know that columns named

user id map to wp users.id.

Output filtering. GDPRizer’s output filtering removes columns that contain sensitive data

from the output. How often this customization is required depends on the application semantics; in

the applications we looked at, only HotCRP requires filtering. For example, we filter 18 (out of 42)

columns of the PaperReview table. These columns contain reviewer-specific information such as the

reviewer’s user ID, the reviewer’s qualifications, their private comments to the program committee,

etc. Relative to the total number of columns in the database (200 in HotCRP), filtering affects only

a small number of columns. We now discuss in detail the impact of customizations on GDPRizer.

2.7.4 Impact of Customizations

We now evaluate how the individual customizations affect the accuracy of GDPRizer for the four

applications. Generally, output filtering and edge pruning improve precision, while vertex and edge

additions improve recall. Most applications benefit a lot from a single type of customization, while

the others improve accuracy in smaller, but still important, ways. We present the results as stacked

bar charts (Figures 2.7–2.9), with the blue part of the bar representing fully-automated extraction

using GDPRizer’s relationship graph only. Each customization stacks atop the blue bar and other

customizations, indicating its relative impact. Our graphs show averages, by table, over the data

subjects benchmarked, but we also indicate the minimum (i.e., worst-case) per-data subject precision

and recall with a yellow cross (no customizations) and a green dot (all customiations). A good result

for GDPRizer would show the minimum at 100% with customizations enabled.

TPC-H. For the customer role, all the tables have 100% recall before pruning and all but

four of them have 100% precision. The four tables with < 100% precision are part, supplier,

partsupp, and lineitem. After we prune the edges for tables that are irrelevant to customers,

precision increases to 100% (see Figure 2.7a). For example, after we prune supplier.s suppkey and
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supplier.s nationkey, GDPRizer stops extracting suppliers’ information and hence it’s precision

for the supplier table improves from 0% to 100%. The supplier role shows similar results, except

that pruning edges to three tables with customer-related data increases precision to 100% (Figure

2.7b).
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Figure 2.7: Precision of GDPRizer for TPC-H for data subjects with different roles: customers (a)
and suppliers (b). Edge pruning improves both precision and recall (no other customizations are
required for TPC-H).

Lobsters. We summarize our results for Lobsters in Figure 2.8. The figure only includes

the tables that have sub-optimal precision/recall before customizations. After pruning, GDPRizer

achieves 100% precision on all the tables (Fig. 2.8a) and 100% recall on all but the messages table,

for which the recall is 92% (Fig. 2.8b). The reason for this imperfect recall is a missing edge

between users.id and messages.author user id. Once we add the missing edge, GDPRizer’s

recall improves to 100%.

HotCRP. Figure 2.9 shows how precision and recall on HotCRP improve with successive cus-

tomizations. Without customizations, per-table precision is at least 95%; with the pruning and

filtering described earlier, precision improves to 100%. However, our experiments show that without

any customizations, recall can be as low as 8% (Paper). The reason for the low recall value is the

special encoding of the author information in the PaperConflict table. This in turn affects the

recall of other tables that contain paper-related information, such as PaperConflict, PaperOption,

and PaperReview. Once we add the v author column to the Paper table, recall improves to 100%

on all these tables. After these customizations, ReviewRating (99%) and TopicArea (13%) are the

only tables left with imperfect recall. The missing relationship between tables is a missing edge be-

tween ContactInfo.contactId and ReviewRating.contactId. With that edge added, GDPRizer

retrieves review ratings. The recall of TopicArea remains imperfect (96%) even after we add the

edge between PaperTopic.topicId and TopicArea.topicId. This is because the relationship graph

of HotCRP has two paths into TopicArea, one of which represents the topic areas for papers that

a data subject submitted, while the other represents the areas of review interest of a data subject

(meaningful only for program committee members). Since the former path is longer than the latter,

GDPRizer ignores the former path and misses any topic areas associated with submitted papers

that aren’t also the data subject’s preferred review areas.

WordPress. For the base installation of WordPress, prior to customizations, GDPRizer achieves



24

A
ve

ra
ge

d 
P

re
ci

si
on

0.00

0.25

0.50

0.75

1.00

co
mmen

ts

do
main

s

hid
de

n_
sto

rie
s

mes
sa

ge
s

mod
era

tio
ns

rea
d_

rib
bo

ns

sa
ve

d_
sto

rie
s

su
gg

_ta
gg

ing
s

us
ers

vo
tes

(a) Precision.

A
ve

ra
ge

d 
R

ec
al

l

0.00

0.25

0.50

0.75

1.00

co
mmen

ts

do
main

s

hid
de

n_
sto

rie
s

mes
sa

ge
s

mod
era

tio
ns

rea
d_

rib
bo

ns

sa
ve

d_
sto

rie
s

su
gg

_ta
gg

ing
s

us
ers

vo
tes

(b) Recall.
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Figure 2.8: Precision (a) and recall (b) for Lobsters tables with successive customizations. Edge
pruning yields the largest improvement in precision, while manual edge addition is necessary to reach
100% recall on messages.
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(b) Recall.
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Figure 2.9: Precision (a) and recall (b) for HotCRP tables with successive customizations. Edge
pruning and filtering improve precision, while the virtual column handling co-authorship is essential
for recall.

perfect precision for all tables. However, it only achieves perfect recall on two tables, wp users and

wp usermeta. For other tables with user data, such as wp comments and wp posts, recall is 0%

because wp users and wp usermeta are in a component that is disconnected from the rest of the

relationship graph (Figure 2.4). Therefore, GDPRizer’s traversal starting from the wp users table

is unable to reach these tables, and hence extracts no data from them. Manually adding the missing

edges to connect the components improves the recall to 100%, however. We see similar results for

WordPress with the WooCommerce plugin: the original relationship graph has many disconnected
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[82] [30] [65] GDPRizer
wp user X X X
wp usermeta X X X
wp posts X
wp postmeta X
wp comments X X X X
wp commentmeta X X X

Figure 2.10: Comparison of GDPRizer with existing GDPR plugins for WordPress. For a table T ,
green boxes represent complete extraction of data while red represent no extraction.

components, but after edge addition, recall improves to 100% for all tables. We conclude that edge

additions are crucial for GDPRizer to support applications with disconnected components in the

their relationship graph (e.g., because the application avoids join queries).

2.7.5 Comparison with GDPR Compliance plugins

WordPress’s extensive collection of third-party plugins includes several plugins which are designed to

aid administrators with GDPR compliance. Some of these plugins also support data access requests,

and we compare GDPRizer to three of these existing GDPR plugins: GDPR Compliance and Cookie

Consent[82], The GDPR Framework by Data443[30], and WP GDPR Compliance[65]. These plugins

are quite popular: the first two have been installed over 30, 000 times and the last one over 200, 000

times.

We assess whether these plugins capture the information specified in our ground truth. The

results for the base installation are in Figure 2.10 and those with the WooCommerce plugin in

Figure 2.11. We find that GDPRizer successfully identifies user information from all the tables in

the ground truth, while the existing plugins miss out on some of the tables. For example, all plugins

fail to extract information from wp posts. This may happen because the plugins are designed to

serve data access requests from internet users who may have interacted with the WordPress site,

but who do not have their own accounts on it (e.g., casual commenters). But this illustrates that

installing a plugin may be insufficient to achieve true compliance; GDPRizer, working at the level

of the database schema, offers a broader set of options to the DBA.

Finally, with the WooCommerce plugin enabled, all plugins again miss out on data in some of

the tables. This might be due to an oversight on the part of the plugin developers, or due to a

different understanding of what information must be returned to users to comply with the GDPR.

For example, some of the tables included in our ground truth, such as download log and api keys,

contain backend information meant for the application and rather than end-users, even though this

information is tied to a data subject. Under the GDPR, this information (e.g., download events)

must nevertheless be returned because it is identifiably associated with a data subject—a nuance

that may have escaped the plugin developers, but which puts the plugins’ users at risk of violating

the GDPR.
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[82] [30] [65] GDPRizer
customer information X X ∼ X
order information X X ∼ X
order to product X X X
order to coupon X
download log X
webhooks X
api keys X
download permissions X
payment tokens X

Figure 2.11: Comparison of GDPRizer with existing GDPR plugins for WordPress with the
WooCommerce plugin. For a table T , green boxes represent complete extraction of data, red repre-
sent no extraction, and yellow represent partial extraction.

2.8 Conclusions

We explored retrofitting data access compliance onto legacy databases. The current state-of-the-art

is to either use manual effort, or build plugins for specific applications. Given the sheer number

of user-facing applications, it is worth asking if the process can be automated, or even partially

automated. Our goal in building our data compliance tool, GDPRizer, was to understand the

trade-offs between automation and manual effort in data access compliance. We started out with

the basic components that we could expect for real-world applications—a database and a query

log—and studied general-purpose approaches to compliance using these inputs. However, each

real-world application we studied required a small but specific amount of manual customization

from a DBA. Although this is much less effort than a completely manual solution, it still requires

human intervention. The trade-off between manual effort and automation is worth exploring further,

possibly along the lines of more “specialized” general-purpose tools. For instance, in web applications

built using a framework such as Ruby on Rails or Django, there exists an Object Relational Model

(ORM) that maps application objects to database tables. Further, there are standard conventions

for table names and schema that could be exploited to decrease the amount of human effort required.

While there are more questions to be explored in this regard, we believe it unlikely that a fully-

automated solution exists. However, with the growing amount of privacy legislation, even partially

automated solutions will go a long way in making the transition smoother for legacy systems.

GDPRizer partially automates data access compliance using information present in the schema

and query log of an application. We analyzed the performance of GDPRizer with several applica-

tions and identified common customizations that were necessary for GDPRizer to extract user data

correctly. We show that GDPRizer, along with the manual customizations, achieves compliance on

the applications that we studied. We conclude that any compliance solution for legacy databases

will require some manual effort from a domain expert, but the degree of effort can be minimized.



Chapter 3

Encrypted Databases

Cryptography offers many solutions for users to retain control over their private but outsourced data.

The simplest of these solutions is to securely encrypt all data before uploading to any external cloud

provider or service. However, this simple approach makes it impossible to perform any operations

or computation on the data without downloading all of it. In particular, simple encryption does

not support search or query capabilities over the encrypted data. The ability to efficiently search

and query encrypted data has the potential to change how users store and process data and help

increase the wide-scale deployment of end-to-end encryption. A key requirement for any practical

encrypted search solution is handling search queries in sub-linear time. Sub-linear encrypted search

can be achieved based on several cryptographic primitives, including property-preserving encryption

(PPE), structured encryption (STE) and oblivious RAM (ORAM). Each of these primitives have

been heavily investigated and are known to achieve different trade-offs between efficiency, expressive-

ness and security. In this thesis, we study structured encryption, which offers real-world efficiency

and flexible trade-offs of functionality and security. STE is used to design encryption schemes for

data structures, which in turn can be used to design bigger encrypted systems such as relational

databases [46, 51].

3.1 Overview

In this work, we present new techniques to enhance the security of existing structured encryption

(STE) schemes. STE schemes encrypt data structures in such a way that they can be privately

queried. Special cases of STE include searchable symmetric encryption (SSE) and graph encryption.

Like all sub-linear encrypted search solutions, STE allows a persistent adversarial server to derive

some information about the input data. This derived information is referred to as the leakage of

the STE scheme. To address this, a line of work on leakage suppression was recently initiated that

focuses on techniques to mitigate the leakage of STE schemes. A notable example is the query

equality suppression framework (Kamara et al. CRYPTO’18 ) which does not reveal to the server if

two queries to the structure are equal. The framework takes as input a dynamic scheme (one that

27
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supports changing data) and produces a static scheme. It was left as an open question to design a

solution that could yield dynamic constructions.

We propose a dynamic query equality suppression framework that transforms volume-hiding

weakly dynamic STE schemes that leak the query equality into new fully-dynamic constructions that

do not. We then use our framework to design three new fully-dynamic STE schemes that are “almost”

and fully zero-leakage which, under natural assumptions on the data and query distributions, are

asymptotically more efficient than using black-box ORAM.

However, our zero-leakage schemes are still inefficient as compared to more leaky, but optimally

efficient structured encryption schemes. We then explore if it is possible to have more efficient

STE schemes which still suppress the query equality. Our final contribution in this thesis is a

practically efficient replica-based query equality suppression technique. The technique is based

on the observation that an STE scheme could use information about the client’s overall query

distribution in order to create an encrypted data structure that optimizes query complexity and

correctness, while still hiding the query equality pattern. We present a data transform that replicates

an input dictionary according to a distribution, and use it to design a scheme that has optimal query

complexity while suppressing the query equality.

3.2 Background and Related Work

Structured encryption Structured encryption was introduced by Chase and Kamara in [28] as

a generalization of searchable symmetric encryption (SSE) [79, 29]. Several aspects of STE and SSE

have been studied including dynamism [49, 48, 26, 63], expressiveness [24, 69, 33, 45, 46], locality and

I/O-efficiency [25, 14, 26, 31, 15], security [80, 19, 34, 20, 12] and cryptanalysis [43, 23, 52, 87, 56, 18].

Leakage. All sub-linear encrypted search primitives leak information which has motivated the

study of leakage attacks to investigate the real-world security of these primitives. In 2015, Naveed,

Kamara and Wright [62] described data-recovery attacks in the snapshot setting against schemes

that leak data equality and order. In 2012, Islam, Kuzu and Kantarcioglu [43] described a query-

recovery attack against schemes that leak query co-occurrences (i.e., whether two keywords appear

in the same document). The IKK attack was subsequently shown not to work in the standard

adversarial model [23] but followup work described attacks in stronger adversarial models where

the adversary is assumed to either know or choose a fraction of the client’s data [23, 18]. The

known-data attacks of [23] exploit co-occurrence leakage and require a large fraction of known data

whereas the attacks of [18] require a smaller fraction of known-data and exploit response length

leakage; making them applicable to ORAM-based solutions as well. The chosen-data attacks of

[87] exploit the response identity (i.e., identifiers of the files that contain the keyword) whereas the

recent attacks of [18] only exploit response lengths; again, making them applicable to ORAM-based

solutions. Several works have also described leakage attacks on the profiles of known oblivious and

encrypted range schemes [52, 56, 38, 39]. In [12], it is shown that highly-efficient STE schemes with
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zero-leakage queries can be achieved in the snapshot model.

Leakage suppression. Recently, Kamara, Moataz and Ohrimenko initiated the study of leakage

suppression [50], which are methods to diminish and eradicate the leakage of STE schemes. There

are two kinds of leakage suppression techniques: compilers and data transformations. Compilers take

an STE scheme and transform it into a new scheme with similar efficiency but with an improved

leakage profile. An example is the cache-based compiler (CBC) of [50] which is a generalization

of the seminal Square Root ORAM construction of Goldreich and Ostrovsky [36]. The CBC takes

any rebuildable STE scheme that leaks the query equality and possibly some other pattern patt,

and transforms it into a new scheme that leaks only the non-repeating sub-pattern of patt. The

non-repeating sub-pattern of a leakage pattern is the leakage it produces when queried only on

non-repeating query sequences.

Data transformations change plaintext data structures in such a way that leakage is less harmful.

The simplest example of a data transformation is padding, which mitigates response length leakage,

but more sophisticated approaches include the clustering-based techniques of Bost and Fouque [21]

and the transformation that underlies the PBS construction [50], both of which mitigate volume

leakage. Recently, Kamara and Moataz also introduced computationally-secure transformations (as

opposed to the previously mentioned approaches which are information-theoretic) to mitigate volume

leakage [47]. In follow up work, Patel, Persiano, Yeo and Yung [71] proposed new volume-hiding

constructions that achieve better query and storage efficiency.

Dynamic leakage suppression. The main advantage of suppression compilers over transforma-

tions is that they can be applied to large classes of schemes. For example, the CBC can be applied to

any rebuildable STE scheme and, furthermore, [50] shows that any semi-dynamic STE scheme can

be made rebuildable. An STE scheme is semi-dynamic if it supports additions but not deletions, and

it is fully-dynamic if it supports both. The main limitation of the techniques from [50] is that they

only produce static schemes even if the base construction is dynamic. While static STE schemes

have several applications, dynamic schemes allow the encrypted data structure to adapt to changing

data, which is more useful from a practical standpoint.

Oblivious RAM. Oblivious RAM was first proposed by Goldreich and Ostrovsky [36]. Several

aspects of ORAM have been studied and improved in the last twenty years including its communi-

cation complexity, the number of rounds and client and server storage [67, 86, 37, 55, 78, 81, 34, 70].

Another line of work initiated by Wang et al. [85] considers the design of oblivious data structures,

without making use of general-purpose ORAM techniques. These constructions are typically more

efficient than using general-purpose ORAM but are usually static or require setting an upper bound

the structure at setup time.
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3.2.1 Our Contributions

We first address the main problem left open by [50] which is to design a dynamic leakage suppression

framework for the query equality. As we will see, solving this open problem results in three new low-

and zero-leakage dynamic constructions that, under natural conditions on the data and queries, are

asymptotically more efficient than black-box ORAM simulation.

Dynamic leakage suppression. The suppression framework of [50], which includes the CBC and

the rebuild compiler (RBC), can be used to compile any semi-dynamic STE scheme that leaks the

query equality into a new scheme that does not. But, as discussed, this framework can only produce

static schemes; i.e., it does not preserve the (semi-)dynamism of the base scheme. In this work, we

propose dynamic variants of the CBC and RBC that suppress the query equality while preserving

the dynamism of the base scheme.

Designing such compilers is challenging for several reasons. For example, consider that if the

base scheme leaks the response length as well as the operation identity pattern (i.e., whether an

operation is a query or an update), the adversary can learn the query equality as follows. Suppose

that the largest response length observed is n and that it occurs at some time t. Furthermore,

suppose that at time t + 1 an update operation occurs and that at some time t′ > t + 1 another

query occurs with response larger than n. For some datasets and query distributions, it would be

reasonable for the adversary to infer that the two queries are for the same value which, effectively,

is the query equality. Unfortunately, all currently-known fully-dynamic STE schemes leak both the

response length and the operation identity patterns.

Our approach, therefore, is to start with schemes that do not leak the response length like PBS

[50] and AVLH [47]. The challenge in using these schemes, however, is that they are not dynamic

but only semi-dynamic or mutable (i.e., they only support edit operations). To address this, our

compilers are designed to work with these limited forms of dynamism but this requires overcoming

a set of additional technical challenges like “upgrading” the base scheme’s dynamism from semi-

dynamic or mutable to fully-dynamic without leaking any additional information.

Almost-zero leakage constructions. We apply our compilers to three base multi-map encryp-

tion schemes to construct dynamic zero- and almost zero-leakage multi-map encryption schemes. Our

first construction results from applying our compilers to the PBS construction of [50]. This results

in a dynamic variant of the AZL scheme [50] which, given a sequence of operations (op1, . . . , opt),

reveals nothing on operations (op1, . . . , opt−1) and then reveals the sum of the operations’ response

lengths on operation opt. Similarly, our second construction results from applying our compilers to

a variant of PBS and is a dynamic variant of the FZL scheme of [50]. This scheme has zero-leakage

queries but only achieves probabilistic correctness. Our third construction, which results from ap-

plying our compilers to the AVLH construction of [47], also has ZL queries but achieves perfect

correctness. We show that all three schemes are asymptotically more efficient than state-of-the-art

black-box ORAM simulation under natural assumptions.
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However, leakage-suppressed encrypted structures are significantly less efficient than their leakier

counterparts. In fact, there exist asymptotically optimal constructions of both encrypted dictionaries

and multi-maps that leak both the query equality and the volume patterns (e.g., Πdyn
bas [[26]]). In order

for leakage suppression to be practical, it is necessary to develop efficient techniques and explore the

various trade-offs that leakage suppression introduces into structured encryption schemes.

Practical leakage suppression. We initiate the study of practical leakage suppression, and

explore some of the trade-offs that are possible in this setting. We introduce the query replication

transform, or QRT, to suppress the query equality, and present the first dictionary encryption scheme

with optimal query complexity which does not leak the query equality pattern. Our scheme, RPL,

uses information about the client’s query distribution at setup time, and trades off server storage in

order to improve query complexity. However, using information about the client’s query distribution

at setup can be tricky because the client need not follow the same distribution at query time. Even

when the client deviates from the distribution used at setup, our scheme must preserve the security

guarantee. This introduces a new trade-off into our design. We guarantee security by trading off

correctness, suppressing the query equality regardless of the client’s query distribution. We study the

efficiency and correctness properties of our scheme, and show that it has optimal query complexity.

3.3 Preliminaries and Notation

Notation. We denote the security parameter as k, and all algorithms run in time polynomial in k.

The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite binary strings

as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power set. We write

x ← χ to represent an element x being sampled from a distribution χ, and x
$← X to represent an

element x being sampled uniformly at random from a set X. The output x of an algorithm A is

denoted by x← A. Given a sequence v of n elements, we refer to its ith element as vi or v[i]. If S

is a set then #S refers to its cardinality. If s is a string then |s|2 refers to its bit length.

Sorting networks. A sorting network is a circuit of comparison-and-swap gates. A sorting net-

work for n elements takes as input a collection of n elements (a1, . . . , an) and outputs them in

increasing order. Each gate g in an n-element network SNn specifies two input locations i, j ∈ [n]

and, given ai and aj , returns the pair (ai, aj) if i < j and (aj , ai) otherwise. Sorting networks can be

instantiated with the asymptotically-optimal Ajtai-Komlos-Szemeredi network [11] which has size

O(n log n) or Batcher’s more practical network [17] with size O(n log2 n) but with small constants.

The word RAM. Our model of computation is the word RAM. In this model, we assume memory

holds an infinite number of w-bit words and that arithmetic, logic, read and write operations can

all be done in O(1) time. We denote by |x|w the word-length of an item x; that is, |x|w = |x|2/w.

Here, we assume that w = Ω(log k).
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Abstract data types. An abstract data type specifies the functionality of a data structure. It is

a collection of data objects together with a set of operations defined on those objects. Examples

include sets, dictionaries (also known as key-value stores or associative arrays) and graphs. The

operations associated with an abstract data type fall into one of two categories: query operations,

which return information about the objects; and update operations, which modify the objects. If

the abstract data type supports only query operations it is static, otherwise it is dynamic. We model

a dynamic data type T as a collection of four spaces: the object space D = {Dk}k∈N, the query

space Q = {Qk}k∈N, the response space R = {Rk}k∈N and the update space U = {Uk}k∈N. We also

define the query map qu : D×Q→ R and the update map up : D× U→ D to represent operations

associated with the dynamic data type. We refer to the query and update spaces of a data type

as the operation space O = Q ∪ U. When specifying a data type T we will often just describe

its maps (qu, up) from which the object, query, response and update spaces can be deduced. The

spaces are ensembles of finite sets of finite strings indexed by the security parameter. We assume

that R includes a special element ⊥ and that D includes an empty object d0 such that for all q ∈ Q,

qu(d0, q) = ⊥.

Data structures. A type-T data structure is a representation of data objects in D in some compu-

tational model (as mentioned, here it is the word RAM). Typically, the representation is optimized

to support qu as efficiently as possible; that is, such that there exists an efficient algorithm Query

that computes the function qu. For data types that support multiple queries, the representation is

often optimized to efficiently support as many queries as possible. As a concrete example, the dic-

tionary type can be represented using various data structures depending on which queries one wants

to support efficiently. Hash tables support Get and Put in expected O(1) time whereas balanced

binary search trees support both operations in worst-case O(log n) time.

Definition 3.3.1 (Structuring scheme). Let T = (qu : D×Q→ R, up : D× U→ D) be a dynamic

type. A type-T structuring scheme SS = (Setup,Query,Update) is composed of three polynomial-time

algorithms that work as follows:

� DS ← Setup(d): is a possibly probabilistic algorithm that takes as input a data object d ∈ D
and outputs a data structure DS. Note that d can be represented in any arbitrary manner as

long as its bit length is polynomial in k. Unlike DS, its representation does not need to be

optimized for any particular query.

� r ← Query(DS, q): is an algorithm that takes as input a data structure DS and a query q ∈ Q
and outputs a response r ∈ R.

� DS← Update(DS, u): is a possibly probabilistic algorithm that takes as input a data structure

DS and an update u ∈ U and outputs a new data structure DS.

Here, we allow Setup and Update to be probabilistic but not Query. This captures most data

structures but the definition can be extended to include structuring schemes with probabilistic
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query algorithms. We say that a data structure DS instantiates a data object d ∈ D if for all q ∈ Q,

Query(DS, q) = qu(d, q). We denote this by DS ≡ d. We denote the set of queries supported by a

structure DS as QDS; that is,

QDS
def
=

{
q ∈ Q : Query(DS, q) 6= ⊥

}
.

Similarly, the set of responses supported by a structure DS is denoted RDS.

Definition 3.3.2 (Correctness). Let T = (qu : D×Q→ R, up : D× U→ D) be a dynamic type. A

type-T structuring scheme SS = (Setup,Query,Update) is perfectly correct if it satisfies the following

properties:

1. (static correctness) for all d ∈ D,

Pr [ DS ≡ d : DS← Setup(d) ] = 1,

where the probability is over the coins of Setup.

2. (dynamic correctness) for all d ∈ D and u ∈ U, for all DS ≡ d,

Pr [ Update(DS, u) ≡ up(d, u) ] = 1,

where the probability is over the coins of Update.

Note that the second condition guarantees the correctness of an updated structure whether the

original structure was generated by a setup operation or a previous update operation. Weaker

notions of correctness (e.g., for data structures like Bloom filters) can be derived from Definition

3.3.2.

Basic data structures. We use structures for several basic data types including arrays, dictio-

naries and multi-maps which we recall here. An array RAM of capacity n stores n items at locations

1 through n and supports read and write operations. We write v := RAM[i] to denote reading the

item at location i and RAM[i] := v the operation of storing an item at location i. A dictionary

structure DX of capacity n holds a collection of n label/value pairs {(`i, vi)}i≤n and supports get

and put operations. We write vi := DX[`i] to denote getting the value associated with label `i and

DX[`i] := vi to denote the operation of associating the value vi in DX with label `i. A multi-map

structure MM with capacity n is a collection of n label/tuple pairs {(`i,vi)i}i≤n that supports get

and put operations. Similarly to dictionaries, we write vi := MM[`i] to denote getting the tuple

associated with label `i and MM[`i] := vi to denote operation of associating the tuple vi to label `i.

Multi-maps are the abstract data type instantiated by an inverted index. In the encrypted search

literature multi-maps are sometimes referred to as indexes, databases or tuple-sets (T-sets).
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Data structure logs. Given a structure DS that instantiates an object d, we will be interested

in the sequence of update operations needed to create a new structure DS′ that also instantiates

d. We refer to this as the query log of DS and assume the existence of an efficient algorithm Log

that takes as input DS and outputs a tuple (u1, . . . , un) such that adding u1, . . . , un to an empty

structure results in some DS′ ≡ d.

Extensions. An important property we will need from a data structure is that it be extendable [50]

in the sense that, given a structure DS one can create another structure DS 6= DS that is functionally

equivalent to DS but that also supports a number of dummy queries. We say that a structure is

efficiently extendable if there exist a query set Q ⊃ Q and a ppt algorithm ExtT that takes as input

a structure DS of type T and a capacity λ ≥ 1 and returns a new structure DS also of type T 1 such

that: (1) DS ≡ d; and (2) for all q ∈ Q \Q, Query(DS, q) = ⊥.We say that DS is an extension of DS

and that DS is a sub-structure of DS.

Cryptographic protocols. We denote by (outA, outB) ← ΠA,B(X,Y ) the execution of a two-

party protocol Π between parties A and B, where X and Y are the inputs provided by A and B,

respectively; and outA and outB are the outputs returned to A and B, respectively.

3.3.1 Structured Encryption

We recall the syntax definition of STE.

Definition 3.3.3 (Structured encryption [28]). An interactive structured encryption scheme Σ =

(Setup,Operate) consists of an algorithm and a two-party protocol that work as follows:

� (K, st,EDS) ← Setup(1k, λ,DS): is a probabilistic polynomial-time algorithm that takes as

input a security parameter 1k, a query capacity λ ≥ 1 and a type-T structure DS. It outputs

a secret key K, a state st and an encrypted structure EDS. If DS ≡ d0, it outputs an empty

EDS.

�

(
(st′, r),EDS′

)
← OperateC,S

(
(K, st, op),EDS

)
: is a two-party protocol executed between a

client and a server where the client inputs a secret key K, a state st and an operation op

and the server inputs an encrypted structure EDS. The client receives as output a (possibly)

updated state st′ and a response r ∈ R ∪ ⊥ while the server receives a (possibly updated)

encrypted structure EDS′.

If Σ also has a Rebuild protocol as defined below, we say that it is rebuildable,

�

((
st′,K ′

)
,EDS′

)
← RebuildC,S ((K, st) ,EDS): is a two-party protocol executed between the

client and server where the client inputs a secret key K and a state st. The server inputs an

encrypted data structure EDS. The client receives an updated state st′ and a new key K ′ as

output while the server receives a new structure EDS′.
1We consider that the inclusion of dummy queries in a query space does not impact the type of a structure.
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Operations. Note that an STE schemes usually supports more than a single operation and the

syntax above can be used (or extended) to capture this in one of two ways. The first is to notice

that the Operate protocol can take as input an operation op that describes one of a set of operations

and its operands. For example, if ΣDS = (Setup,Operate) supports both query and add operations,

then op can have the form op = (qry, q) to denote a query operation for q or op = (add, a) to

denote an add operation for a. The Operate protocol can then operate on EDS accordingly and

output ((st, r),EDS′), where r 6= ⊥ and EDS′ = EDS in the case of a query, and where r = ⊥ and

EDS′ 6= EDS in the case of an add. For notational convenience we will usually omit the flags qry

or add and just write op = q or op = a to denote that it is a query or an add. This formulation

is particularly convenient when working with schemes that hide which operation is being executed,

as will be the case with our main constructions. Another approach is to include the different

operations explicitly in ΣDS’s syntax. For example, if it supports queries and adds, then we would

write ΣDS = (Setup,Query,Add), where Query is a special case of Operate that (usually) outputs a

response r 6= ⊥ and an EDS′ = EDS and Add is a special case that (usually) outputs r = ⊥ and

EDS′ 6= EDS. This formulation is particularly convenient when working with schemes that reveal

which operation is being executed, as will be the case with the constructions we use as building

blocks.

Dynamism. We consider several kinds of dynamic STE schemes. The first are fully-dynamic

schemes which support add and delete operations. We usually refer to such schemes simply as

dynamic. Add operations insert a query/response pair (q, r) into the data structure whereas delete

operations remove query/response pairs (q, r) associated with a given query q. If a scheme only

handles add operations we say it is semi-dynamic. Finally, we consider mutable schemes which

are schemes that support an edit operation which takes as input a query/response pair (q, r′) and

changes a pre-existing pair (q, r) to (q, r′). If a scheme is either semi-dynamic or mutable we say

that it is weakly dynamic.

Security. We recall the notion of adaptive semantic security for STE.

Definition 3.3.4 (Security [29, 28]). Let Σ = (Setup,OperateC,S,RebuildC,S) be a structured en-

cryption scheme and consider the following probabilistic experiments where C is a stateful challenger,

A is a stateful adversary, S is a stateful simulator, Λ = (pattS, pattO, pattR) is a leakage profile, λ ≥ 1

and z ∈ {0, 1}∗:

RealΣ,C,A(k): given z and λ the adversary A outputs a structure DS and receives EDS from the

challenger, where (K, st,EDS) ← Setup(1k, λ,DS). A then adaptively chooses a polynomial-

size sequence of operations (op1, . . . opm). For all 1 ≤ i ≤ m the challenger and adversary do

the following:

1. if opi is a query or an update, they execute OperateC,A
((
K, st, opi

)
,EDS

)
;

2. if opi is a rebuild, they execute RebuildC,A
((
K, st

)
,EDS

)
.
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Finally, A outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z and λ the adversary A outputs a structure DS of type T. Given pattS(DS),

the simulator returns an encrypted structure EDS to A. A then adaptively chooses a polynomial-

size sequence of operations (op1, . . . , opm). For all 1 ≤ i ≤ m, the challenger, simulator and

adversary do the following:

1. if opi is either a query or an update, S is given pattO(DS, op1, . . . , opi) and it executes

OperateS,A with A;

2. if opi is a rebuild, S is given pattR(DS) and it executes RebuildS,A with A;

Finally, A outputs a bit b that is output by the experiment.

We say that Σ is Λ-secure if there exists a ppt simulator S such that for all ppt adversaries A, for

all λ ≥ 1 and all z ∈ {0, 1}∗,

|Pr [ RealΣ,C,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

Note that security of non-rebuildable schemes can be recovered by not allowing rebuild operations.

Leakage. We extend the leakage patterns defined in [50] to the dynamic setting. In particular

[50] defined leakage patterns as functions of queries on a static data type. We will have to extend

the definitions to account for general operations (queries or updates) on a dynamic data type. Let

T = (qu : D × Q → R, up : D × U → D) be a dynamic data type. We assume that updates can

be written as query/response pairs, i.e., U = Q × R. Given a data structure d and a sequence of t

operations op1, . . . , opt, we denote by dt the structure that results from applying the given sequence

of operations to d. Consider the following leakage patterns,

� the operation identity pattern is the function family oid = {oidk,t}k,t∈N with oidk,t : Dk×Otk →
{0, 1}t such that oidk,t(d, op1, . . . , opt) = m, where m is a binary t-dimensional vector such

that m[i] = 0 if opi ∈ Q and m[i] = 1 if opi ∈ U;

� the update query equality pattern is the function family uqeq = {uqeqk,t}k,t∈N with uqeqk,t :

Dk × Utk → {0, 1}t×t such that uqeqk,t(d, u1, . . . , ut) = M , where M is a binary t × t matrix

such that for updates ui = (qi, ri) and uj = (qj , rj), M [i, j] = 1 if qi = qj and M [i, j] = 0

otherwise;

� the operation total response length pattern is the function family otrlen = {otrlenk}k∈N with

otrlenk : Dk ×Otk → N such that otrlenk(d, op1, . . . , opt) =
∑
q∈Qk |qu(dt, q)|w and dt is d after

t operations.;

� the operation data size pattern is the function family odsize = {odsizek}k∈N with odsizek :

Dk ×Otk → N such that odsizek(d, op1, . . . , opt) = |dt|w;
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� the operation log size pattern is the function family olsize = {olsizek}k∈N with olsizek : Dk ×
Otk → N such that olsizek(d, op1, . . . , opt) = #Log(DS) where DS is an instantiation of dt such

that DS ≡ dt;

� the operation max log length pattern is the function family omllen = {omllenk}k∈N with omllenk :

Dk ×Otk → N such that omllenk(d, op1, . . . , opt) = maxop∈Log(dt) |op|w.

Note that in the static setting, i.e., when O = Q, the leakage patterns otrlen, odsize, olsize, omllen are

equivalent to the patterns trlen, dsize, lsize,mllen originally defined in [50].

Leakage sub-patterns. We recall the notion of leakage sub-patterns introduced in [50]. Given

a leakage pattern patt, it can be decomposed into sub-patterns capturing its behavior on restricted

classes of query sequences. In particular, we can decompose a leakage pattern into repeating and

non-repeating sub-patterns. The non-repeating sub-pattern is pattern that results from evaluating

patt on non-repeating query sequences (i.e., where all queries are unique).

Definition 3.3.5 (Non-repeating sub-patterns). Let T = (qu : D × Q → R, up : D × U → D) be a

dynamic data type and patt : D×Qt → X be a query leakage pattern. The non-repeating sub-pattern

of patt is the function uniq such that

patt(DS, q1, . . . , qt) =

uniq(DS, q1, . . . , qt) if qi 6= qj for all i, j ∈ [t],

other(DS, q1, . . . , qt) otherwise.

Safe extensions. We recall and extend the notion of safe extension from [50] to support updates.

Definition 3.3.6 (Safe extensions). Let Λ = (pattS, pattQ, pattU, pattR) be a leakage profile. We say

that an extension Ext is Λ-safe if for all k ∈ N, for all d ∈ Dk, for all DS ≡ d, for all λ ≥ 1, for all

DS output by Ext(DS, λ), for all t ∈ N, for all op = (op1, . . . , opt) ∈ Otk,

� pattS(DS) ≤ pattS(DS);

� pattQ(DS, q1, . . . , qp) ≤ pattQ(DS, q1, . . . , qp), where (q1, . . . , qp) is the sub-sequence of queries

in op;

� pattU(DS, u1, . . . , uw) ≤ pattU(DS, u1, . . . , uw), where (u1, . . . , uw) is the sub-sequence of up-

dates in op;

� pattR(DS) ≤ pattR(DS),

where patt1 ≤ patt2 means that patt1 can be simulated from patt2.
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3.4 Our Dynamic Suppression Framework

In this section, we present a dynamic variant of the query equality suppression framework proposed

by [50]. Our framework transforms non-rebuildable weakly-dynamic STE schemes that leak the query

equality into fully-dynamic STE schemes that do not. Recall that the static framework relies on

two compilers: (1) a rebuild compiler (RBC) which transforms a semi-dynamic and non-rebuildable

scheme into a static and rebuildable one; and (2) the cache-based compiler (CBC) which transforms

a static and rebuildable scheme that leaks the query equality into a static scheme that does not.

Challenges. One of the challenges in designing a dynamic variant of the CBC is handling sub-

tle correlations between various leakage patterns. For example, suppose the base STE scheme

leaks the response length and the operation identity patterns and consider a sequence of operations

(op1, . . . , op4) such that op1 = q1, op2 = q2, op3 = u3 and op4 = q4. Now, given the operation

identities and the response lengths, suppose the adversary observes that: q1 has the largest response

length `1; that q3 is an update operation; and that q4 has response length `1 + 1. From this, it can

reasonably infer that q1 might be equal to q4 which is a “probabilistic” variant of the query equality.

It is therefore not enough to suppress the exact query equality but also the patterns that can reveal

partial information about it.

To address this, our compiler will have to suppress the response length and the operation identity

in addition to the query equality. One can trivially suppress the former by padding responses to

the maximum length but this induces a large storage cost; especially when the response lengths

are skewed. A better approach would be to start with base schemes that are volume-hiding in the

sense that they hide the response lengths (without naive padding). Unfortunately, all volume-hiding

constructions we are aware of [47, 71] are only weakly dynamic. Our goal, therefore, will be to design

a compiler that suppresses the query equality, the operation identity and the response length while

upgrading the base scheme from being weakly-dynamic to fully-dynamic.

Another important challenge we must overcome is making the base scheme rebuildable. [50]

already showed how to make semi-dynamic schemes rebuildable but, in our setting, we also need to

handle mutable constructions which do not support add operations but only edits. To summarize,

our compiler has to handle the following challenges:

� (weak dynamism) it must transform a weakly-dynamic (i.e., either semi-dynamic or mutable)

scheme to a fully-dynamic one;

� (operation identity) it must suppress the operation identity; that is, queries and updates should

look identical.

� (rebuild) it must make the base scheme rebuildable even if it is only weakly dynamic.

Overview of the dynamic CBC. The dynamic CBC is similar to the static CBC of [50] with

the exception of a few steps to handle adds and edits. Let ΣDS = (Setup,Query,Add) be a semi-

dynamic STE scheme and let ΣDX = (Setup,Get,Put) be a semi-dynamic and zero-leakage dictionary
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encryption scheme. The compiler produces a new scheme ΣDDS = (Setup,Operate) that works as

follows. Given a structure DS and a capacity λ ≥ 1, its setup algorithm outputs a structure

EDDS = (EDS,EDX), where EDS is the encryption of a λ-extension of DS and EDX is an encryption

of a dictionary with capacity λ. Operations on EDDS are handled as follows:

� (queries) to make a query q, the client first executes a get on EDX for q. If this returns ⊥ (i.e.,

q has never been issued before) the client queries EDS for q and receives a response r. The

client then does a put on EDX to add the query/response pair (q, r). If, on the other hand,

the get on the cache returned a response r 6= ⊥, the client queries EDS for an unused dummy

value and puts the query/response pair (q, r) in EDX;

� (adds) to add a query/response pair (q, r), the client executes a get on EDX for an arbitrary

query and ignores the response. It then queries EDS for an unused dummy and puts (q, r) in

EDX;

� (edits) to edit the response of an existing query q (e.g., by either adding to it, deleting from it

or changing it), the client first executes a get on EDX for q. If this returns ⊥, the client queries

EDS for q and receives a response r. It then edits r, which results in a new response r′, and

puts (q, r′) in EDX. If, on the other hand, the get on the cache returned a response r 6= ⊥,

the client queries EDS for an unused dummy, edits r and puts the edited query/response pair

(q, r′) in EDX.

Note that for every operation, the dynamic CBC executes a get on EDX, then a query on EDS

and, finally, a put on EDX. Furthermore, EDS is never queried for a query q more than once.

Intuitively, the first property will guarantee that the scheme suppresses the operation identity while

the second will guarantee that it suppresses the query equality.

Every operation executed on EDDS consumes a (unique) dummy item from EDS. And since it

holds λ dummies, it needs to be rebuilt after λ operations so that it can continue to be used. We

now describe how this rebuild is achieved.

Overview of the dynamic RBC. We have two main goals when rebuilding EDDS = (EDS,EDX).

The first is to build a new EDS structure EDS′ that holds the λ dummies. The second is to make

sure that EDS′ holds the most up-to-date responses for all the queries. Note that the second goal

is non-trivial because of the way adds and edits are handled. In particular, the most up-to-date

response for a query q can be either in EDS or in EDX depending on whether it has been added,

edited or never modified. More precisely, we have that after λ operations, if a query/response pair

(q, r) is in the cache then r is the most up-to-date response for q. On the other hand, if a pair (q, r)

is not in the cache then the the main structure EDS holds the most up-to-date response for q. In

the following, we refer to a query/response pair (q, r) as valid if r is the most up-to-date response

for q and as invalid if it is not. Our rebuild protocol must then extract the valid query/response
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pairs from EDX and EDS and add them to EDS′ with a minimal amount of leakage. 2

The protocol consists of five phases: (1) initialization, where an array RAM is initialized at

the server; (2) extract-and-tag, where all the query/response pairs are retrieved from EDS and EDX,

tagged according to their validity and stored in an encrypted array at the server; (3) sort-and-shuffle,

where the encrypted array is (obliviously) sorted to partition the invalid and valid query/response

pairs so that the former can be deleted and the latter are randomly shuffled; (4) update, where the

valid query/response pairs in the array are added to a new EDS′ structure; and (5) cache setup,

where a new cache structure EDX′ is created. More precisely, it works as follows:

1. (initialization): the server initializes an array RAM.

2. (extract-and-tag) the client sequentially retrieves all the query/response pairs (q, r) in EDS

and EDX. For all (q, r) in EDX, it adds an encryption of (q, r, f) to RAM, where f is a random

non-zero k-bit value we refer to as a validity tag. If there are less than λ entries in EDX, it

queries it on arbitrary values until it reaches λ queries and for each of these arbitrary queries

it adds an encryption of (⊥,⊥, 0) to RAM. For all query/response pairs (q, r) in EDS, it

adds an encryption of (q, r, f) to RAM, where f is set to 0 if q was present in EDX and f

is set to a random non-zero k-bit value otherwise. For each dummy in EDS, the client adds

an encryption of (⊥,⊥, f) to RAM, where f is a random non-zero k-bit value. Throughout

this phase, the client also keeps count of the number of entries with 0 tags. Notice that the

valid query/response pairs and the dummies are all tagged with random non-zero validity tags

whereas the invalid pairs and the entries that result from the “arbitrary” queries on EDX are

tagged with 0.

3. (sort-and-shuffle) the client obliviously sorts RAM according to the validity tags. Since the

valid pairs and the dummies have random non-zero tags and the rest have 0 tags, this step

will randomly shuffle the valid pairs and dummies and store the rest at the start of the array.

The client then asks the server to delete the first t entries, where t is the number of entries

with 0 tags. At this point, the array only holds valid query/response pairs.

4. (update) the client creates a new structure EDS′ by retrieving the query/response pairs in RAM

and adding them to EDS′. How exactly this is done depends on the kind of dynamism ΣDS

supports:

� (semi-dynamic) if it is semi-dynamic, the client initializes an empty structure DS0 and

encrypts it with ΣDS before storing it at the server. This new encrypted structure is EDS′.

The client sequentially retrieves the query/response pairs (q, r) from RAM and adds them

to EDS′.

� (mutable) if ΣDS is mutable we can only use edit operations. The client then sets up

“placeholder” structure D̃S that it will encrypt and edit until it holds the necessary data.

2Note that invalid query/response pairs in EDS result from the pair existing in EDS from setup (i.e., not being
added) but being edited during the last λ operations.
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Note that for this to work, the placeholder must be large enough to hold the latest version

of DS (i.e., the structure DS after the λ operations) and it must be “safe” in the sense

that encrypting and editing the placeholder must not leak more than operating on the

original structure.

5. (cache setup) the client generates an empty dictionary with capacity λ and encrypts it with

ΣDX and sets it to be EDX′.

Finally, the protocol outputs a rebuilt structure EDDS′ = (EDS′,EDX′).

3.4.1 Security

We now analyze the security of our dynamic suppression framework. We state and prove two

theorems of security. Theorem 3.4.1 analyzes the case when ΣDS is semi-dynamic and Theorem 3.4.3

analyzes the case where ΣDS is mutable. For Theorem 3.4.1, we assume ΣDS has leakage profile

ΛDS = (LS,LQ,LA) =
(
pattdsS , (qeqds, pattdsQ ), pattdsA

)
,

and ΣDX has profile

ΛDX = (LS,LG,LP) =
(
pattdxS ,⊥,⊥

)
.

Theorem 3.4.1 (Semi-dynamic). If ΣDS is ΛDS-secure, if Ext is (pattdsS , uniq, pattdsA )-safe, and if

ΣDX is ΛDX-secure, then ΣDDS is ΛDDS-secure, where

ΛDDS = (LS,LO,LR) =
((

pattdsS , pattdxS
)
, uniq,

(
pattdxS , patt1, patt2, patt3

))
and patt1, patt2 and patt3 are defined as,

� patt1(DS) =
(
pattdsS (DS0), lsize, olsize, omllen

)
� patt2(DS) =

(
pattdsQ (DS, q)

)
q∈QDS

� patt3(DS) =
(
pattdsA (DS0, a)

)
a∈Log(DSλ)

,

where uniq is the non-repeating sub-pattern of pattdsQ , DS0 ≡ d0 and DSλ is the updated DS after

λ ≥ 1 operations.

Proof. Let SDS and SDX be the simulators guaranteed to exist by the adaptive security of ΣDS

and ΣDX, respectively. To prove security, we construct a simulator S such that the output of

IdealΣDDS,A,S(k) is distributed like the output of a RealΣDDS,C,A(k) experiment. Our simulator S
works as follows:

Simulating Setup: given λ and leakage pattdsS (DS) and pattdxS (DX), S computes

EDS← SDS

(
S1

(
pattdsS (DS)

))
,
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where S1 is guaranteed to exist since pattdsS (DS) ≤ pattdsS (DS). S then computes

EDX← SDX
(

pattdxS (DX)

)
.

It sets cnt := 0 and returns EDDS = (EDS,EDX) to A.

Simulating Operate: given the leakage uniq(DS, op1, . . . , opt) for t operations on DS,

where uniq(DS, op1, . . . , opt) = uniq(DS, q1, . . . , qt) for queries qi and updates ui = (qi, ri), S
works as follows.

If cnt > λ it aborts. If cnt ≤ λ, it first uses SDX(⊥) to simulate a Get query to EDX. It then

uses

SDS

(
S2

(
M0, uniq(DS, op1, . . . , opt

)))
to simulate a query to EDS, where M0 is a t × t zero matrix. Note that it suffices to have

this query leakage and qeq = M0 since we only ever make unique queries to EDS during the t

operations. S2 is guaranteed to exist since pattdsQ (DS, q1, . . . , qt) ≤ pattdsQ (DS, q1, . . . , qt). Recall

that ΣDS.QueryC,S is an interactive protocol so here S is using SDS to play the role of the client.

It then uses SDX(⊥) to simulate a Put query to EDX. Finally it sets cnt := cnt + 1.

Simulating Rebuild: S sends EDX← SDX(pattdxS (DX)) to the adversary. S then initializes an array

RAM of capacity lsize + λ and samples a key KL ← Gen(1k).

� for i = 1, . . . , λ,S uses SDX(⊥) to simulate a Get query to EDX, computes cti ← Enc(KL,

0omllen) and sets RAM[i] := cti;

� query phase: for every q ∈ QDS use

SEDS

(
S3

(
pattdsQ (DS, q)

))
to simulate the query to EDS. S3 must exist due to the query safety of the extension

scheme. For each such query set i := i + 1, compute cti ← Enc(KL, 0
omllen) and set

RAM[i] := cti;

� sort-and-shuffle phase: for each gate g = (i, j) in SNm, after receiving cti and ctj from

the adversary, return ct′i ← Enc(KL, 0
omllen) and ct′j ← Enc(KL, 0

omllen);

� send (olsize + λ) to the adversary to truncate the array RAM;

� add phase: use SDS(pattdsS (DS0)) to simulate a Setup operation and for all j ∈ [olsize +λ],

retrieve RAM[j] and use

SEDS

((
pattdsA (DS0, a)

)
a∈Log(DSλ)

)
to simulate (olsize + λ) Add operations on the new EDS′. Set cnt := 0.



43

It remains to show that the probability that IdealΣDDS,A,S(k) outputs 1 is negligibly-close to the

probability that RealΣDDS,C,A(k) outputs 1 for any ppt adversary A. We do this using the following

sequence of games:

Game0: corresponds to a RealΣDDS,C,A(k) experiment.

Game1: is the same as Game0 except that during Setup; EDS is replaced with the output of

SDS(pattdsS (DS)) and the ith execution of ΣDS.Query (i.e., the one for opi) is replaced with

a simulated execution between SDS

(
Mi, uniq(DS, op1, . . . , opi)

)
and the adversary, where Mi

is the i × i zero matrix. Since EDS is only queried on non-repeating sequences for all op-

erations in Game0 it suffices to give SDS leakage
(
Mi, uniq(DS, op1, . . . , opi)

)
. If cnt = λ;

(1) in the query phase of Rebuild, the queries are replaced with a simulated execution of

SDS

(
pattdsQ (DS, q)

)
for all q ∈ QDS (2) in the add phase of Rebuild, EDS is replaced with the

output of SDS(pattdsS (DS0)) and (3) the adds to the new EDS are replaced with a simulated

execution of SDS

((
pattA(DSλ, a)

)
a∈Log(DSλ)

)
. The probabilities that Game0 and Game1 output

1 are negligibly-close, otherwise the adaptive-security of ΣDS would be violated.

Game2: is the same as Game1 except for the following. pattdsS (DS) is replaced with S1(pattdsS (DS)).

For all operations opi, uniq(DS, op1, . . . , opi) is replaced with S2(uniq(DS, op1, . . . , opi)). When

cnt = λ, in the query phase of the Rebuild protocol, pattdsQ (DS, q) is replaced with S3(pattdsQ (DS, q)).

Since all the queries are unique, it suffices to give S3 the leakage pattdsQ (DS, q). The probabilities

that Game1 and Game2 output 1 are negligibly-close, otherwise the (pattdsS , uniq, pattdsA )-safety

of Ext would be violated.

Game3: is the same as Game2 except that EDX is replaced with the output SDX(pattdxS (DX)) and

every execution of Get and Put are replaced with simulated executions between SDX(⊥) and the

adversary. The probabilities that Game2 and Game3 output 1 are negligibly-close, otherwise

the (pattdxS ,⊥,⊥)-security of ΣDX would be violated.

Game4: is the same as Game3 except that every ciphertext cti is replaced with Enc(KL, 0
omllen). The

probabilities that Game3 and Game4 output 1 are negligibly-close, otherwise the CPA-security

of SKE would be violated.

The Theorem follows by observing that Game4 is exactly an IdealΣDDS,A,S(k) experiment.

Before we prove our Theorem for mutable schemes, recall that the rebuild protocol needs to setup

a placeholder structure that can be edited to realize the new data object. This placeholder must be

setup and edited with minimal leakage. We do this with the notion of a safe placeholder which we

define below.

Definition 3.4.2 (Safe placeholder). A placeholder structure D̃S is (pattS, pattQ, pattE)-safe for a

structure DS if, for all queries q1, . . . , qt, for all edits e1, . . . , et,

� pattS(D̃S) ≤ pattS(DS),
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� pattQ(D̃S, q1, . . . , qt) ≤ pattQ(DS, q1, . . . , qt),

� pattE(D̃S, e1, . . . , et) ≤ pattA(DS, e1, . . . , et).

We assume that there exists an efficient algorithm GenPlaceholder that takes as input some state

information and generates a safe placeholder. We now prove Theorem 3.4.3, assuming that ΣDS has

leakage profile

ΛDS = (LS,LQ,LE) =
(
pattdsS , (qeqds, pattdsQ ), pattdsE

)
,

and ΣDX has the same profile as above.

Theorem 3.4.3 (Mutable). If ΣDS is ΛDS-secure, if Ext is (pattdsS , uniq, pattdsE )-safe, if D̃S is an

(pattdsS , pattdsQ , pattdsE )-safe placeholder for DSλ, and if ΣDX is ΛDX-secure, then ΣDDS is ΛDDS-secure,

where

ΛDDS = (LS,LO,LR) =
((

pattdsS , pattdxS
)
, uniq,

(
pattdxS , patt1, patt2, patt3

))
and patt1, patt2 and patt3 are defined as,

� patt1(DS) =
(
pattdsS (DSλ), lsize, olsize, omllen

)
� patt2(DS) =

(
pattdsQ (DS, q)

)
q∈QDS

� patt3(DSλ) =
(
pattdsE (DSλ, e)

)
e∈Log(DSλ)

,

where uniq is the non-repeating sub-pattern of pattdsQ , and DSλ is the updated DS after λ ≥ 1 opera-

tions.

Proof. Let SDS and SDX be the simulators guaranteed to exist by the adaptive security of ΣDS

and ΣDX, respectively. To prove security, we construct a simulator S such that the output of

IdealΣDDS,A,S(k) is distributed like the output of a RealΣDDS,C,A(k) experiment. Our simulator S
works as follows:

Simulating Setup,Operate: S executes the same steps as the simulator for semi-dynamic schemes in

the proof of Theorem 3.4.1. Since leakage is the same and the dynamic cache-based compiler

is identical in operation for these steps, this suffices for simulation.

Simulating Rebuild: S sends EDX← SDX(pattdxS (DX)) to the adversary. S then initializes an array

RAM of capacity lsize + λ and samples a key KL ← Gen(1k).

� for i = 1, . . . , λ,S uses SDX(⊥) to simulate a Get query to EDX, computes cti ← Enc(KL,

0omllen) and sets RAM[i] := cti;

� query phase: for every q ∈ QDS use

SDS

(
S3

(
pattdsQ (DS, q)

))
to simulate the query to EDS. S3 must exist due to the query safety of the extension

scheme. For each such query set i := i + 1, compute cti ← Enc(KL, 0
omllen) and set

RAM[i] := cti;
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� sort-and-shuffle phase: for each gate g = (i, j) in SNm, after receiving cti and ctj from

the adversary, return ct′i ← Enc(KL, 0
omllen) and ct′j ← Enc(KL, 0

omllen);

� send (olsize + λ) to the adversary to truncate the array RAM;

� edit phase: use SDS(S4(pattdsS (DSλ))) to simulate a Setup operation and for all j ∈ [olsize+

λ], retrieve RAM[j] and use

SDS

(
S4

((
pattE(DSλ, e)

)
e∈Log(DSλ)

))
to simulate (olsize + λ) Edit operations on the new EDS′. S4 must exist due to the setup

and update safety of the placeholder D̃S. Set cnt := 0.

It remains to show that the probability that IdealΣDDS,A,S(k) outputs 1 is negligibly-close to the

probability that RealΣDDS,C,A(k) outputs 1 for any ppt adversary A. We do this using the following

sequence of games:

Game0: corresponds to a RealΣDDS,C,A(k) experiment.

Game1: is the same as Game0 except that during Setup; EDS is replaced with the output of

SDS(pattdsS (DS)) and the ith execution of ΣDS.Query (i.e., the one for opi) is replaced with

a simulated execution between SDS

(
Mi, uniq(DS, op1, . . . , opi)

)
and the adversary, where Mi

is the i × i zero matrix. Note that because EDS is only queried on non-repeating sequences

for all operations in Game0 it suffices to give SDS leakage
(
Mi, uniq(DS, op1, . . . , opi)

)
. If

cnt = λ; (1) in the query phase of Rebuild, the queries are replaced with a simulated execution

of SDS

(
pattdsQ (DS, q)

)
for all q ∈ QDS (2) in the edit phase of Rebuild, EDS is replaced with

the output of SDS(pattdsS (D̃S)) and (3) the edits to EDS are replaced with a simulated execu-

tion of SDS

((
pattdsE (D̃S, e)

)
e∈Log(DSλ)

)
. The probabilities that Game0 and Game1 output 1 are

negligibly-close, otherwise the adaptive-security of ΣDS would be violated.

Game2: is the same as Game1 except for the following. pattdsS (DS) is replaced with S1(pattdsS (DS)).

For all operations opi, uniq(DS, op1, . . . , opi) is replaced with S2(uniq(DS, op1, . . . , opi)). When

cnt = λ, in the query phase of the Rebuild protocol, pattdsQ (DS, q) is replaced with S3(pattdsQ (DS,

q)). Since all the queries are unique, it suffices to give S3 the leakage pattdsQ (DS, q). The proba-

bilities that Game1 and Game2 output 1 are negligibly-close, otherwise the (pattdsS , uniq, pattdsE )-

safety of Ext would be violated.

Game3: is the same as Game2 except that during the edit phase of Rebuild, pattdsS (D̃S) is replaced

with S4(pattdsS (DSλ)) and for all e ∈ log(DSλ), pattdsE (D̃S, e) is replaced with S4(pattdsE (DSλ, e)).

The probabilities that Game2 and Game3 output 1 are negligibly-close otherwise the (pattdsS ,

pattdsQ , pattdsE )-safety of the placeholder D̃S would be violated.

Game4: is the same as Game3 except that EDX is replaced with the output SDX(pattdxS (DX)) and

every execution of Get and Put are replaced with simulated executions between SDX(⊥) and the
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adversary. The probabilities that Game3 and Game4 output 1 are negligibly-close, otherwise

the (pattdxS ,⊥,⊥)-security of ΣDX would be violated.

Game5: is the same as Game4 except that every ciphertext cti is replaced with Enc(KL, 0
omllen). The

probabilities that Game4 and Game5 output 1 are negligibly-close, otherwise the CPA-security

of SKE would be violated.

The Theorem follows by observing that Game5 is exactly an IdealΣDDS,A,S(k) experiment.

This completes the security analysis of our dynamic cache-based compiler. In the next section,

we will discuss the general efficiency of the compiler.

3.4.2 Efficiency of the Dynamic Cache-Based Compiler

We now analyze the efficiency of the schemes produced by our suppression framework and compare

it to using black-box ORAM simulation.

Operation complexity. The efficiency of ΣDDS clearly depends on the efficiency of its building

blocks ΣDS and ΣDX. Recall that for every operation op on EDDS, the client executes: one get

operation on EDX, one query operation on EDS and one put operation on EDX. This leads to an

operation complexity of

timeddsO = timedsQ + timedxG + timedxP ,

where timedsQ is the query complexity of ΣDS, and timedxG and timedxP are the get and put complexities

of ΣDX.

Rebuild complexity. Recall that the Rebuild protocol of ΣDDS executes: (1) λ gets on EDX; (2)

#QDS queries on EDS; (3) an oblivious sort on an array of size #QDS + 2 · λ; and (4) #QDSλ adds

or edits on EDS. The complexity of steps (1) and (2) is

λ · timedxG + #QDS · timedsQ .

The complexity of steps (3) and (4) depend on the sorting network used and the storage at the client.

Using Batcher’s bitonic sort [17] with O(1) client storage [50], steps (3) and (4) have complexity

O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ + #QDSλ ·max
u∈U

timedsU (|u|)
)
, (3.1)

where timedsU (|u|) is either the add or the edit complexity of ΣDS, QDSλ is the query space of DSλ, and

RDSλ is the corresponding response space for the queries q ∈ QDSλ . Note that if maxu∈U timedsU (|u|) =

O
(
log2 #QDSλ

)
, then Equation (3.1) above is

O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
.

Adding steps (1) through (4) we have

timeddsR = λ · timedxG + #QDS · timedsQ +O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
. (3.2)
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Operations & rebuild. It follows from the above that the time timedsλO+R to execute λ operations

and to rebuild the structure is

timeddsλO+R = λ · timeddsO + timeddsR

= λ ·
(

timedsQ + 2 · timedxG + timedxP

)
+ #QDS · timedsQ

+O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
. (3.3)

The complexity above depends in part on the efficiency of the scheme ΣDX used for the underlying

cache. Several constructions can be used including the “standard” cache, square-root ORAM or the

more efficient tree-based ORAM [81]. In the following, we analyze the complexity of ΣDDS based on

different instantiations of ΣDX.

Using the standard cache. The standard (zero-leakage) cache is an array of size λ that stores

encryptions of label/value pairs (`, v) where the labels all have the same size and where the values

are padded to the maximum value length. To execute a get for a label `, the client retrieves the entire

encrypted array, decrypts it and keeps the value associated with `. To insert or edit a label/value

pair, the client retrieves the entire encrypted array, decrypts it, inserts the new pair or modifies an

existing pair, re-encrypts the array and sends it back to he server. It follows that the get and put

complexities of the standard cache are

timedxG = timedxP = O

(
λ · max

r∈RDSλ

|r|w
)
,

Combining this with Equation (3.3), we have

timeddsλO+R = (λ+ #QDS) · timedsQ +O

(
λ2 · max

r∈RDSλ

|r|w)

)
+O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
.

Using a tree-based cache. The scheme ΣDX can also be instantiated with a tree-based ORAM

like Path ORAM [81] which has get and put complexity

timedxG = timedxP = O

(
max
r∈RDSλ

|r|w · log2 λ

)
,

where λ is the number of entries stored in the ORAM. Combining this with Equation 3.3, we have

timeddsλO+R = (λ+ #QDS) · timedsQ +O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)
+O

(
#QDSλ · max

r∈RDSλ

|r|w · log2 #QDSλ

)
. (3.4)

Comparison to black-box ORAM simulation. With the exception of the construction of [60],

ORAM does not traditionally support re-sizing. So to compare our constructions with black-box
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ORAM simulation based on state-of-the-art ORAMs (e.g., Path ORAM [81]) 3 we have to assume

that the ORAM is initialized with some upper-bound on the size. We use an “upper-bound” data

structure which we denote DS∗. More precisely, to setup the ORAM simulation for a structure DS,

the ORAM is initialized to hold DS∗ so that DS can expand to fill the allocated space. The ORAM

simulation of one operation on DS using a tree-based ORAM then has complexity,

timetreeO = Bds
Q ·O

(
log2 |DS∗|2

B

)
· B
w
,

where Bds
Q is the number of blocks that need to be read to answer a query, B is the block size of the

ORAM and w is the word length (in bits). Since the ORAM does not have to be rebuilt, timetreeλO+R

is the same as the time complexity of λ operations. Setting B = maxr∈RDS∗ |r|2 as an upper limit on

possible response length, we have,

timetreeλO = λ ·Bds
Q ·O

(
log2 |DS∗|2

maxr∈RDS∗ |r|2

)
· max
r∈RDS∗

|r|w. (3.5)

To compare the efficiency of our schemes with black-box ORAM simulation, we examine Equation

(3.4). Assuming that λ = O(#QDS),4 and timedsQ = O(log #QDS) we have that #QDSλ ≤ #QDS+λ =

O(#QDS). Combining the first two terms in Equation (3.4) we get,

timeddsλO+R = O(#QDS · log #QDS) +O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)
+O

(
#QDS · max

r∈RDSλ

|r|w · log2 #QDS

)
. (3.6)

From Equation (3.6), we observe that timeddsλO+R is asymptotically dominated by

O

(
#QDS · max

r∈RDSλ

|r|w · log2 #QDS

)
.

Comparing Equations (3.5) and (3.6), we have the following proposition.

Proposition 3.4.4. If λ = O(#QDS), #QDS = O(#QDS∗) and Bds
Q = ω(1), then

timeddsλO+R = o
(
timetreeλO

)
.

For structures with constant-time queries, Bds
Q = 1 so our approach improves asymptotically over

ORAM simulation whenever

max
r∈RDSλ

|r|w = o

(
max
r∈RDS∗

|r|w
)
.

For a concrete efficiency comparison we refer the reader to Section 3.4.4.

3Note that some ORAM constructions can achieve better asymptotic query complexity [70] but we use Path ORAM
for its simplicity and real-world practicality.

4This is a conservative assumption on λ. In practice, the selection of λ is crucial to the efficiency of the scheme.
The question of selecting the optimal λ for efficiency is interesting and can be further explored.
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3.4.3 Concrete Instantiations

In this section we show how to apply our framework to two concrete schemes: the piggyback scheme

PBS from [50] which is a semi-dynamic construction and the advanced volume-hiding scheme AVLHd

from [47] which is mutable. The leakage profiles of the resulting schemes is minimal and only reveal

information pertaining to the total size of the structure.

Our PBS-Based Constructions

PBS is a non-rebuildable semi-dynamic STE scheme. It is parameterized with a batch size α and

supports query and add operations. PBS queries and adds in batches in the sense that when

executing a query q1 it only retrieves a fixed number of batches from q1’ s response and retrieves

the next set of batches only when a new query q2 occurs. In the meantime, q2 is inserted into a

queue until enough queries are made for the client to retrieve q1’s entire response. Adds are handled

similarly. When a sequence of queries or adds is complete, all the remaining batches in the queue

are retrieved or pushed.

PBS has two variants. The first is a perfectly correct variant which incurs some small amount

of query leakage; namely, for sequences of non-repeating queries, it leaks the number of batches

required to process the sequence; and for sequences with repeating queries, it reveals the query

equality and the response lengths. The second variant achieves only probabilistic correctness but

the non-repeating sub-pattern of its query leakage is ⊥. The application of our framework to the

first variant results in a dynamic variant of the AZL construction from [50] whereas applying it to

the second variant results in a dynamic variant of the FZL construction from [50].

Leakage profile of PBS. The leakage profile of the perfectly correct variant of PBS is

ΛPBS = (LS,LQ,LA) = (tbrlen, rqeq, alen),

where tbrlen, rqeq and alen are defined as follows. The total batched response length

tbrlenk,α(DS) = trlen(DS) +
∑
q∈QDS

α−
(
|qu(DS, q)|w mod α

)
reveals the number of batches needed to store the responses in the structure. The repeated query

equality pattern

rqeqk,m(DS, q1, . . . , qt) =


⊥ if m < t and qi 6= qj for all i, j ∈ [t],

γm if m = t and qi 6= qj for all i, j ∈ [t],

qeq× rlen(DS, q1, . . . , qt) otherwise,

where

γm
def
=

( ∑
i∈[m]

|qu(DS, qi)|w + α−
(
|qu(DS, qi)|w mod α

))
· α−1 − (m− 1).
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Note that the non-repeating sub-pattern of rqeq is uniq where

uniqk,m(DS, q1, . . . , qt) =

⊥ if m < t and qi 6= qj for all i, j ∈ [t],

γm if m = t and qi 6= qj for all i, j ∈ [t].

The add length pattern

alenk,m(DS, u1, . . . , ut) =

⊥ if m < t,

γm if m = t,

reveals nothing until the last add of the sequence, and then reveals the number of batches required

to finish the add sequence.

When PBS is modified to support only probabilistic correctness for queries, the non-repeating

sub-pattern of its query leakage is ⊥. The leakage profile of the probabilistic variant of PBS is

therefore (Lpbs
S ,Lpbs

Q ,Lpbs
U ) = (tbrlen, pattQ, alen) where

pattQ(DS, q1, . . . , qt) =

⊥ if qi 6= qj for all i, j ∈ [t],

qeq× rlen(DS, q1, . . . , qt) otherwise.

Safe extension for PBS. Let (q̃1, · · · , q̃λ) be dummy queries. For all 1 ≤ i ≤ λ, compute

DS← Add(DS, (q̃i,0)), where |0|w = maxr∈RDS
|r|w.

Theorem 3.4.5. If λ and α are publicly-known parameters and if all queries in QDS have the same

bit length, the extension scheme described above is (tbrlen, uniq, alen)-safe.

Proof. In order to show that pattdsS (DS) ≤ pattdsS (DS), note that

tbrlen(DS) =
∑
r∈RDS

(
|r|w + α− (|r|w mod α)

)
+ λ ·

(
µ+ α− (µ mod α)

)

= tbrlen(DS) + λ ·
(
µ+ α− (µ mod α)

)
(3.7)

where µ
def
= maxr∈RDS

|r|w. Then given leakage pattdsS (DS) = tbrlen(DS) and public parameters λ

and α, we can simulate pattdsS (DS) using Eq.(3.7) with µ set to mllen(DS)− |q|. For query leakage,

to show that uniq(DS, q1, . . . , qt) ≤ uniq(DS, q1, . . . , qt), observe that the output of uniq is the same

over DS or DS and therefore simulation is trivial. Similarly, for the add leakage, the output of alen

over DS and DS is the same and therefore simulation is trivial.

Dynamic AZL. Let dynamic AZL be the perfectly-correct fully-dynamic rebuildable scheme that

results from applying our framework to the perfectly-correct variant of PBS. Its security is proved

in the following Theorem.

Theorem 3.4.6. If ΣDX is ΛDX-secure where ΛDX = (LS,LG,LP) = (mllen,⊥,⊥), then dynamic

AZL is ΛAZL-secure where

ΛAZL = (LS,LO,LR)

=
(
(tbrlen,mllen) , uniq′, (lsize, tbrlen, olsize, omllen, otbrlen)

)
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where otbrlen(DS, op1, . . . , opλ) = tbrlenk,α(DSλ) and

uniq′k,m(DS, op1, . . . , opt) = uniqk,m(DS, q1, . . . , qt),

where opi is either a query qi or an update ui = (qi, ri).

Proof. To complete the proof we note that the following leakages can be expressed in terms of leakage

patterns: (1) any sequence of operations for PBS is compiled into a sequence of non-repeating queries

and therefore the operation leakage is uniq′ – the total number of batches to retrieve the responses;

and (2) from Theorem 3.4.1, the rebuild leakage consists of the following leakage patterns: the setup

leakage for the empty data structure DS0 is ⊥. Then patt1(DS) =
(
lsize, olsize, omllen

)
; the query

leakage for all unique queries is the non-repeating sub-pattern of rqeq which is the total number of

batches to retrieve responses for all the queries, tbrlen. Then, patt2(DS) = tbrlen; and, the update

leakage for adding all the responses to the data structure DS0 is alen applied to all the responses,

which is the total batch response length otbrlen and therefore patt3(DS) = otbrlen.

Efficiency of dynamic AZL. It follows from Equation (3.4) that the complexity of dynamic AZL

when ΣDX is initialized with a tree-based ORAM is

timeazlλO+R = (λ+ #QDS) · timepbsQ +O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)
+O

(
#QDS · max

r∈RDSλ
|r|w
· log2 #QDSλ

)
,

where timepbsQ is the query complexity of PBS which is equal to the query complexity of is underlying

multi-map encryption scheme. The storage complexity of dynamic AZL is the sum of the storage

required for the cache and the storage required for the PBS structure. This results in storage

complexity

O

(
λ · (α+ max

a∈Log(DSλ)
|a|w) + #QDS · (α+ max

r∈RDS

|r|w)

)
.

Dynamic FZL. Dynamic FZL is the probabilistically-correct fully-dynamic scheme that results

from applying our framework to the probabilistically-correct variant of PBS. Its security is analyzed

in the following Theorem.

Theorem 3.4.7. If ΣDX is ΛDX where ΛDX = (LS,LG,LP) = (mllen,⊥,⊥), then dynamic FZL is

ΛFZL-secure where

ΛFZL = (LS,LO,LR) = ((tbrlen,mllen) ,⊥, (lsize, olsize, omllen, otbrlen)) .

Proof. To complete the proof we note that the following leakages can be expressed in terms of leakage

patterns as follows: (1) the operation leakage uniq′ is ⊥ applied to any operation, which is also ⊥
(2) from Theorem 3.4.3, the rebuild leakage consists of the following: the setup leakage for the data

structure DSλ is ⊥. Then, patt1(DS) =
(
lsize, olsize, omllen

)
; the query leakage for all unique queries

is ⊥. Then, patt2(DS) = ⊥; and, the edit leakage for editing all the responses for the data structure

DSλ is the total batch response length otbrlen and therefore patt3(DSλ) = otbrlen.
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Efficiency of dynamic FZL. The efficiency of dynamic FZL is the same as that of dynamic AZL.

Our AVLH-Based Construction

We now apply our framework to the mutable variant of the advanced volume-hiding multi-map

encryption scheme AVLHd from [47]. Note that here we do not consider the variant that exploits

concentrated components for storage improvements.

Overview of AVLH. At a high level, the scheme uses n bins to store a multi-map of size N , where

N is the sum over all labels of the labels’ tuple lengths. The scheme uses a random bipartite graph

to map labels to bins. More precisely, each label ` is mapped at random to t out of n bins, where

t is the maximum tuple length. The elements of the tuple corresponding to a label ` are placed in

each bin mapped to `. If there are more bins mapped than the length of the tuple, some bins are

left empty. The bins are then padded to the size of the maximum bin, encrypted and stored on the

server. To query for a label `, the client retrieves all the bins mapped to `. The scheme hides the

tuple lengths, i.e., the response length rlen. It also supports restricted edits in the sense that one

can edit/change the values in a tuple but not add values to it.

The leakage profile of AVLHd is

ΛAVLH = (LS,LQ,LE) = (trlen, qeq, (oid, uqeq)).

Extension. Let (q̃1, · · · , q̃λ) be dummy queries and (r̃1, · · · , r̃λ) be the corresponding dummy

responses such that |r̃i| = 1. For all i ∈ [λ], compute MM ← Add(MM, (q̃i, r̃i)). We prove the

security of this extension in the Theorem below.

Theorem 3.4.8. If λ is a publicly-known parameter and that all queries in the query space QDS

have the same bit length, the above extension scheme is (trlen,⊥, (oid, uqeq))-safe.

Proof. For setup leakage, to show that pattdsS (DS) ≤ pattdsS (DS) we note that trlen(DS) = trlen(DS)+

λ · 1 = trlen(DS) +λ. Given the public parameter λ and the pattdsS (DS) = trlen we can then simulate

pattdsS (DS). For query leakage, ⊥ is trivially the same over DS and DS. For edit leakage, the output

of (oid, uqeq) is the same over DS and DS and therefore the simulation is trivial.

Safe placeholder. Since AVLHd is mutable we define a safe placeholder multi-map M̃M. Note

that the placeholder must have the following properties:

1. M̃M must have enough space to hold the tuples of all the labels ` ∈ LMMλ
5;

2. the setup, query and edit leakages on M̃M must be at most the setup, query and edit leakages

on MM.

5For any multi-map data structure MM, the query space QDS is the label space LMM.
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The placeholder structure is created as follows during rebuilds. During the extract-and-tag phase,

the client learns which labels are valid and their tuple lengths. During the update phase it creates,

for every valid label ` a dummy tuple t of the same length and inserts (`, t) in M̃M. We prove the

security of the placeholder in the Theorem below.

Theorem 3.4.9. The placeholder above is (trlen, qeq, (oid, uqeq))-safe.

Proof. To simulate the setup leakage trlen for MMλ note that trlen(M̃M) =
∑
i #MMλ[`i] = trlen(MMλ).

The query and edit leakages are the same over both M̃M and MMλ and they have the same label

space LMMλ . Then simulation is trivial and the placeholder is (trlen, qeq, (oid, uqeq)-safe.

Zero-leakage advanced volume-hiding. Let ZAVLH be the dynamic rebuildable multi-map

encryption scheme that results from applying our framework to AVLHd with the above placeholder

structure and a dictionary encryption scheme ΣDX with leakage profile ΛDX = (Ldx
S ,Ldx

G ,Ldx
P ) =

(mllen,⊥,⊥). Theorem 3.4.10 below proves the security of ZAVLH.

Theorem 3.4.10. If ΣDX is ΛDX-secure, then ZAVLH is ΛZAVLH-secure where

ΛZAVLH = (LS,LO,LR) = ((trlen,mllen) ,⊥, (lsize, olsize, omllen, otrlen)) .

Proof. To complete the proof we note that the following leakages can be expressed in terms of leakage

patterns as follows: (1) for the operation leakage, uniq′ is ⊥ applied to any operation, which is also

⊥; and (2) the rebuild leakage consists of the following: the setup leakage for the data structure

DSλ is the total response length after λ operations, otrlen. Then from Theorem 3.4.3, patt1(DS) =(
lsize, olsize, omllen, otrlen

)
; the query leakage for all unique queries is ⊥. Then, patt2(DS) = ⊥;

and, since there are olsize unique edit operations for the data structure DSλ the leakage is then

patt3(DSλ) = olsize. Note that the operation leakage oid can be simulated from olsize and is therefore

not part of patt3.

Efficiency of ZAVLH. We now analyze the efficiency of our dynamic cache-based compiler with a

tree-based cache and the AVLHd scheme. The query complexity for ZAVLH is

timezavlhQ = O(t ·N/n)

If t = O(1) and n = O(N/ logN) where t is the maximum tuple length and n is the number of bins,

the query complexity is O(logN) for zero-leakage operations. From Equation (3.4) we have,

timezavlhλO+R = O (#LMM · logN) +O

(
λ · max

r∈RMMλ

|r|w · log2 λ

)
(3.8)

+O

(
#LMM · max

r∈RMMλ

|r|w · log2 #LMMλ

)
(3.9)
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3.4.4 Concrete Comparisons

In Section 3.4.2, we showed that our framework can asymptotically outperform black-box ORAM

simulation under natural assumptions on the data and queries. In this section, we are interested in

gaining a better understanding of the practical gains in different settings. Specifically, we compare

the concrete efficiency of our ZAVLH scheme to an oblivious multi-map constructed via black-box

ORAM simulation and to a standard dynamic encrypted multi-map called Πdyn
bas [26]. Since the

latter has optimal storage and query complexities, this comparison highlights the cost of leakage

suppression.

Parameters and notation. For our comparison, we consider a multi-map MM with t labels and

N =
∑
`∈LMM

#MM[`] total values and maximum tuple length l. After λ Add operations on MM,

the resulting multi-map is denoted MMλ. We denote the number of labels in MMλ as tλ and the

total values in MMλ as Nλ. The maximum tuple size in MMλ is denoted by lλ. All PRF keys and

outputs are of length k = 256 bits, all values in the multi-maps are 64 bits and N is set to 216.

Parameters Setting 1 Setting 2 Setting 3 Setting 4

General:
length of PRF output (bits) 256 256 256 256
length of MM value (bits) 64 64 64 64
cache size (λ) 64 64 64 64

MM:
max. tuple length (l) 512 512 512 512
total # of labels (t) 256 256 256 256
total # of values (N) 216 216 216 216

total # of AVLH bins (n) 8192 8192 8192 8192

Updated MMλ:
max. tuple length (lλ) 512 512 512 512
total # of labels (tλ) 256 256 256 256
total # of values (Nλ) 65600 65600 65600 65600
total # of AVLH bins (nλ) 8199 8199 8199 8199

Upper-bound MM∗:
factor of growth 25 50 150 1000
max. tuple length (l∗) 1.28 ×104 2.56 ×104 7.68 ×104 51.2 ×104

total # of labels (t∗) 0.64 ×104 1.28 ×104 3.84 ×104 25.6 ×104

total # of values (N∗) 163.84 ×104 327.68 ×104 983.04 ×104 6553.6 ×104

Table 3.1: Parameters for the efficiency comparison of dynamic CBC, black-box ORAM simulation,
and Πdyn

bas , given a multi-map MM and a sequence of λ add operations.

Parameters for ZAVLH. The number of bins in AVLH are chosen such that each bin contains

(logN)/2 values on average. The tree-based cache used in the dynamic CBC is instantiated with

Path ORAM with λ leaf nodes; one for each tuple in the cache. Each block is initialized to hold one

tuple and therefore (l+ λ) values at most. Each node/bucket in the binary tree holds Z = 5 blocks.
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Efficiency
Measure

ZAVLH
(OPS)

ZAVLH
(E&T)

ZAVLH
(S&S)

ZAVLH
(UP)

ZAVLH
(Total)

Path ORAM
(MM∗)

Std EMM

(Πdyn
bas )

0.401 0.084 - 0.401 0.486 4.78 0.066
Client State 10.058

(Mbits) 32.539
244.137

29.704 14.352 - 29.71 44.062 52424.704 20.992
Server Storage 209707.008

(Mbits) 1887412.224
83885916.16

166.739 211.042 1181.008 268.294 1827.084 1995.534 10.485
Communication 4306.721

(Mbits) 14421.059
113419.012

Leakage l, N t tλ lλ, Nλ
l, N, t

lλ, Nλ, tλ
l∗, t∗ vol, qeq

Table 3.2: Concrete efficiency comparison. The efficiency numbers shown for ORAM correspond to
each of the 4 settings for the ORAM upper-bound data structure.

The position map maps every label to a leaf node in the ORAM and has size λ(k+log λ). The stash

stores at most log λ blocks and therefore log λ(l+λ) values. A query to the cache reads and writes a

path of log λ buckets in the tree. The multi-map MM stores t+λ labels and N +λ total values. We

summarize the cost of ZAVLH in Table 3.2 breaking it down into the cost to execute λ operations

(OPS) and the costs of the different rebuild phases: extract-and-tag (E&T), sort-and-shuffle (S&S)

and update (UP).

Black-box ORAM simulation. To manage the dynamic multi-map MM with Path ORAM,

we initialize an upper-bound structure MM∗ with t∗ labels and N∗ values.6 Specifically, we use

upper-bound structures that are 25, 50, 150, and 1000 times larger than the multi-map’s original

size (Table 3.1). The maximum length of a tuple in MM∗ is l∗. The Path ORAM that manages

MM∗ has t∗ leaf nodes, one for each label in MM∗. Each block is initialized to hold l∗ values and

each node/bucket in the binary tree holds Z = 5 blocks. This ORAM has a position map of size

t∗(q + log t∗) and a stash that holds at most log t∗ blocks at any given time.

Comparison. Table 3.2 shows the costs in Mbits for each of the 4 settings for ZAVLH, black-box

ORAM simulation, and Πdyn
bas . We can see that ZAVLH out-performs black-box ORAM simulation

in both space and communication for our chosen parameters. In particular, the storage cost of

ZAVLH is 3 to 7 orders of magnitude smaller than black-box ORAM simulation and only a factor of

2 larger than Πdyn
bas . We also observe that the communication cost of ZAVLH is up to 60 times smaller

6This is due to Path ORAM’s inability to resize.
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than black-box ORAM simulation, but 180 times larger than Πdyn
bas which is optimal but incurs more

leakage.

Efficiency
Measure

ZAVLH
(OPS)

ZAVLH
(E&T)

ZAVLH
(S&S)

ZAVLH
(UP)

Path ORAM
(MM∗)

Std EMM

(Πdyn
bas )

Client
State

2k(t+ λ)+
(k + log λ)λ

+(l + λ)v log λ

(k + log lλ)·
(tλ + λ)

—
2k(tλ + λ)+
(k + log λ)λ

+(lλ + λ)v log λ

(k + log t∗)t∗
+l∗v log t∗

(k + log t∗)tλ

Server
Storage

(φ)

((N + λ)v + kn)
+5v(2λ− 1)

(l + λ)

(t+ 2λ)·
(2k + (l + λ)v)

—
((Nλ + λ)v + knλ)

+5v(2λ− 1)
(lλ + λ)

5l∗v(2t∗ − 1) Nλ(k + v)

Communication
(ψ)

λ
(
lk+

l((N + λ)v/n)
+10v(l + λ) log λ

)
l(t+ λ)·

(k+
(N + λ)v/n)
+5v(l + λ)·
λ log λ

+φ(E&T)

4(2k+
(l + λ)v)
·St+2λ

knλ
+ log ((Nλ + λ)/nλ)

+2lλ(tλ + λ)·(
k + (Nλ + λ)v/nλ

)
+φ(E&T)

λ(10vl∗ log t∗) λlλ(k + v)

Leakage l, N t tλ lλ, Nλ l∗, t∗ vol,qeq

Table 3.3: Calculations for efficiency comparison using a sequence of λ add operations.

In Table 3.3 we show the expressions used to calculate the results in Table 3.2. We recall that

our scheme ZAVLH has two phases for any sequence of λ operations: (1) the operations themselves

(OPS); and (2) the different rebuild phases : (2a) extract-and-tag (E&T), sort-and-shuffle (S&S),

and (2c) update (UP). We now present a brief explanation of the expressions used to compute the

efficiency costs:

1. OPS. During the λ operations, the client maintains state for the multi-map as well as the

state for the tree-ORAM based cache with λ entries:

� The stash for the cache ORAM has at most log λ blocks. Each block has (l + λ) values

of bit length v. Then the ORAM stash is of size (l + λ)v log λ bits.

� The position map for the ORAM cache maps each leaf in the tree to a label. Then there

are λ entries consisting of a label and a leaf in the tree. A label is k bits long and a leaf

can be identified with log λ bits. Then the position map is of size (k + log λ)λ.

� The client also maintains 2k state per label in the multi-map, which can have at most

(t+ λ) values.

The server stores all the entries for both the multi-map and the cache.

� The multimap has at most (N +λ) values of length v and n labels of length k each. Then

the total size of the multimap in bits will be (N + λ)v + kn.

� The cache consists of a tree with 2λ − 1 nodes. Each node contains 5 blocks, and each

block contains at most (l + λ) values of length v bits each. Then the total size of the

cache in bits will be 5v(2λ− 1)(l + λ).

Communication per operation consists of reading and writing a path in the cache, as well as

querying for a label and receiving the corresponding values.
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� For the cache, each path is log λ nodes long, each node has 5 buckets and each bucket

has (l+ λ) values of length v bits each. Reading reads a path, and writing writes a path

in the ORAM. Then the total cache communication will be 10v(l + λ) log λ.

� Since the underlying multi-map scheme is AVLH, a query to the multi-map consists of l

bin labels and a response of l bin contents. Each bin has at most (N +λ)/n values where

n is the number of bins. Then the total multi-map communication is lk + lv((N + λ)/n)

bits.

� Each of the above steps must be repeated for every operation and therefore the cost is

multiplied by λ to get the final communication in bits.

This phase leaks both the maximum number of values corresponding to one label in the multi-

map l and the total number of values in the multi-map N . Note that λ is a public parameter

and therefore known to the adversary.

2. E&T. In this phase, the client queries all the labels in the multi-map. Then for each label the

client creates a RAM entry at the server side.

� For each of the labels the client has to store the (updated) number of values. There are

(tλ + λ) labels in the updated multi-map (including dummies) and each of them could

have up to lλ values.

� For each label, the client needs to store the label, and the new length, which would be

k + log lλ bits for each i.e. (k + log lλ) · (tλ + λ) bits total.

The server stores the RAM. Each entry of the RAM contains: a label, a freshness value, and

is padded to (l + λ) values. Then the total server storage is (2k + (l + λ)v) for each label

(including dummies). The RAM is also padded to have (t+ 2λ) labels. Then the total server

storage is (t+ 2λ)(2k+ (l+ λ)v) bits. The communication of constructing the RAM is that of

(1) querying all the labels in the cache followed by all the labels in the multi-map, (2) sending

each of the entries of the RAM to the server. The cost of step (2) is the same as the server

storage φ(E&T). For step (1):

� Since we query all the labels in the cache, we need not read and write to cache for

every operation. We can merely read every path in the tree. Then each path is of size

5v(l+λ) log λ bits, as shown for previous operations. There are λ such paths, so the total

communication cost is 5v(l + λ)λ log λ bits.

� Querying the multi-map consists of sending the t+λ original labels (including dummies)

and receiving the results for each. As shown earlier for AVLH, each of these queries costs

l(k + (N + λ)v/n) bits and there are a total of (t+ λ) queries.

� Combining the above two expressions, we have the resulting communication cost in bits.

The only additional leakage in this phase is the number of labels in the multi-map, t.
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3. S&S. There is no persistent client state, or extra server storage required in this phase. For

each gate of the oblivious sort circuit, two RAM entries are sent back and forth between the

client and the server. Then the total communication cost is 4 times the size of one RAM entry,

multiplied by the number of gates in a circuit to obliviously sort t+2λ elements. We have seen

previously that one RAM entry consists of (2k+ (l+λ)v) bits. Then the total communication

cost is 4(2k + (l + λ)v) · St+2λ where St+2λ is the number of gates in the oblivious sorting

circuit for (t + 2λ) elements. Only the new number of labels tλ is leaked in this phase, since

the RAM is truncated at tλ + λ.

4. UP. Since the update phase consists of queries to the new multi-map, just like the (OPS)

stage, the client and server state are exactly the same except with the parameters of the new

multi-map (subscripted with λ). The communication costs have to account for (1) setting up

a placeholder structure at the server, (2) reading every entry in the RAM and running the

corresponding update on the placeholder structure.

� Every entry in the RAM is read once by the client. Then this cost is the same as the size

of the RAM, or φ(E&T).

� To set up a placeholder structure in AVLH, the server need only receive the labels, and

the size of the bins. There are nλ labels of size k bits each. And the bins have size less

than (Nλ + λ)/nλ. Then the communication required is knλ + log((Nλ + λ)/nλ) bits.

� For each update, a label must be sent and lλ bins must be read and written. Given the

size of the bins, the total communication would be 2lλ(tλ + λ) · (k + (Nλ + λ)v/nλ).

This phase leaks the updated parameters tλ, Nλ of the new multi-map.

5. Black-box ORAM simulation. The ORAM simulation using Path ORAM with the upper-

bound structure MM∗ has the same client state, server state and communication cost as the

tree-ORAM based cache in (OPS), except that the parameters l, t are replaced by l∗, t∗ which

are the parameters of MM∗. The ORAM construction would leak only the upper-bound pa-

rameters.

6. Standard EMM (Πdyn
bas ). The standard dynamic EMM has the following costs:

� The client state consists of one counter per label that keeps track of the length of the tuple.

Therefore for a dynamic EMM that holds tλ labels the client state would be k + log t∗

bits per label where t∗ is the upper-bound on the length of a tuple.

� The server storage would consist of Nλ label-value pairs, each pair consisting of (k + v)

bits.

� The communication for each operation would be lλ label-value pairs, and the total com-

munication across λ operations would therefore be λlλ(k + v) bits.
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3.5 Our Techniques for Efficient Leakage Suppression

In the previous sections, we have seen that our dynamic query equality suppression framework

results in zero-leakage STE schemes that are asymptotically more efficient than black-box ORAM

simulation. However, our schemes are still significantly inefficient when compared to standard (but

leaky) STE schemes. In this section, we present new techniques for leakage suppression which are

practically efficient and much closer in efficiency to standard constructions. We initiate a line of work

in leakage suppression that will increase practical efficiency significantly. In the rest of this section,

we present a static dictionary transform that suppresses the query equality leakage, and use the

transform to design an encrypted dictionary scheme. Our dictionary transform QRT uses replicated

label-value pairs in order to suppress the query equality leakage of a dictionary. The transform

adds replicated label-value pairs to the input dictionary and transforms every repeating query to

the dictionary to a query for a unique replica, thereby suppressing the query equality. However, the

transform has a limited query capacity, and it can only support up to some fixed number of queries.

We show how to overcome this limitation using a rebuild protocol for encrypted dictionaries and

design a static dictionary scheme RPL that supports optimal query complexity while also suppressing

the query equality.

3.5.1 Query Replication

We introduce the technique of query replication, or making copies of the queries, in order to suppress

the query equality pattern. As a first attempt at using replication to hide query equality, a replication

transform could simply create replica label-value pairs in the dictionary, and later query the replica

labels. For example, consider a label ` with its corresponding value v replicated as two replica

label-value pairs (`1, v1) and (`2, v2), where v1 = v2 = v. Both the label-value replicas will be added

to the plaintext dictionary during setup. At query time, when ` is queried for the first time, the

query is transformed to `1 and retrieves v1. Later, when ` is queried a second time, the query is

now transformed to `2 and retrieves v2. The two queries are equal, but they are transformed to

two unique queries for different (equivalent) labels and each of them retrieves a different encrypted

value. Therefore, the query equality leakage between the two queries is suppressed by the transform.

Size constraints. However, what if ` is queried a third, or even a fourth time? In order to continue

suppressing the query equality, the transform would need to add more replicas in the dictionary.

As the number of queries grows, the number of replicas required to suppress the query equality

would also therefore grow. This would increase the size of the transformed dictionary output by the

replication transform. If the dictionary could be unbounded, the transform could, in theory, create a

very large number of replicas. Every query would then retrieve a previously unused replica, and the

query equality would always be suppressed. However, in practice, the size of the output dictionary

is bounded, and therefore the number of replicas that can be added is also bounded. Since these

replicas are used to hide the query equality, the transform can then only support a limited number of
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queries before it runs out of replicas. Our transform captures this constraint by requiring two public

parameters γ and δ, which control both the size of the transformed dictionary, and the number of

queries that can be supported with query equality suppression.

Replication distribution. Given the constraints on the size of the replicated dictionary and the

number of supported queries, how best can the transform utilize the replicas in order to support the

most number of queries correctly? In other words, how must each label be replicated in order to

support the most number of queries? Intuitively, the queries that are most popular will be repeated

the most, and therefore will require the most query equality suppression. It is therefore reasonable

to replicate the most popular queries the most number of times. In other words, given the client’s

potential query distribution, the transform can use this information to replicate each label-value

pair proportional to the probability that it will be queried. Therefore the transform also takes as

additional input a probability distribution over the label space of the dictionary, which we refer to

as the replication distribution. This distribution is then used to determine the number of replicas

that will be created for each label-value pair in the transformed dictionary. At query time, each

time a label is queried, the query will be transformed to query an unused replicated label-value pair,

thereby suppressing the query equality.

Dummy labels. However, the replication distribution need not be the same as the eventual distri-

bution that is used to query the transformed dictionary. This situation can arise due to incomplete

or incorrect information about the query distribution. For instance, the transform may have created

very few replicas for some label ` that is frequently queried. Whenever the label ` is queried, a replica

will be used, and the transform will soon run out of unused replices to query. However, we require

the transform to provide security in the worst case, and suppress the query equality, regardless of

the query distribution. In order to maintain security as required, the transform introduces dummy

label-value pairs into the dictionary. These pairs contain no valid information, but they are retrieved

whenever a queried label does not have any valid replicas remaining. In this manner, every query

can still be transformed into a unique query on the transformed dictionary, regardless of the query

distribution. Since the dummy values do not contain any information, the response to the query

will be incorrect, and hence the transform trades off correctness to preserve security.

3.5.2 The Query Replication Transform

We now formally describe our query replication transform QRT which transforms a dictionary ac-

cording to a replication distribution. Our transformation effectively transforms the query equality

leakage pattern of the dictionary to the identity matrix, i.e., every query to the dictionary is trans-

formed into a unique query on the transformed dictionary. The pseudocode for QRT is described in

Figure 3.1.
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Overview. QRT is a data structure transformation that takes as input the following: (1) a dic-

tionary DX, (2) a replication distribution ~p on the query space of the dictionary, and (3) public

parameters γ, δ. The transformation outputs a replicated dictionary where each label is replicated

proportional to its probability from the replication distribution. The replicated dictionary is gener-

ated as follows: first, create an empty dictionary DX′ of size M = (2 + δ) · γ. Now, let p` be the

probability corresponding to label ` in the query space Qk. Create p` · (1 + δ) · γ replicas, or copies,

of label ` and its corresponding value v. Append a per-label counter value to each replicated label.

After replicating all the labels present in the input dictionary, create a dummy label `⊥ and assign

to it a corresponding dummy value 0k. Add γ replicas of `⊥ to the replicated dictionary DX′. The

transformed dictionary then contains a total of M label-value pairs after replication.

Query transformation. The QRT also transforms queries to the underlying dictionary structure.

Every query for a label is transformed into a query for an unused replicated label in the transformed

dictionary. At a high level, this also transforms the query equality pattern because an unused

replicated value is retrieved for every query, transforming any repeating queries into queries for

unique labels in the replicated dictionary. The QRT must maintain some state to support this

transformed get operation, namely, both the number of queried replicas for each label, and the total

number of queries performed. Therefore the QRT is a stateful transform.

Query limit. The QRT must also account for two special cases, due to the fact that the replicated

dictionary is bounded in size: (1) when all the replicas of a label in the transformed dictionary have

been queried, the transformed query will return a dummy label. Due to this modification, the get

operation may not always return the correct value. However, we will show that we can guarantee

correctness with high probability if the query distribution is the same as the replication distribution;

(2) when the replicated dictionary runs out of replicas, the transformation does not support any

further queries. We set the query limit (or epoch), to γ for the transformed data structure. After γ

queries, the transformed dictionary will not support any further get operations.

Efficiency. The storage overhead for the replicated dictionary is M = (2 + δ) · γ, M ≥ (N + γ),

where N is the number of labels in the original dictionary. The transformation maintains a counter

of logM bits for each label in the dictionary, as well as a query counter, and therefore total state

of (m + 1) · logM bits. For each get on the transformed dictionary, exactly one encrypted value

is retrieved and therefore both the communication complexity and the round complexity of the

transformed queries are optimal.

Correctness of QRT

In this section we prove the correctness guarantees of QRT. We show that correctness holds with

high probability if the replication distribution and the query distribution over the label space are

the same.
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Let γ and δ be public parameters, and let ~p be a distribution on the query space of a dictionary DX, with
probability p` corresponding to a label `. Consider the transform QRT defined as follows:

� QRT(1k, γ, δ, ~p):

– QRT.Transform(DX)

1. initialize empty dictionary DX;

2. for each label `:

(a) compute the number of replicas r` = p` · (1 + δ) · γ;

(b) if ` is present in DX, let v = DX[`];

(c) else, let v = 0k;

(d) for i = 1, 2, . . . , r`:

* set DX[` ‖ i] = v;

3. select a dummy label `⊥;

4. for j = 1, 2, . . . , γ:

(a) set DX[`⊥ ‖ j] = 0k;

5. initialize a dictionary DXc and set DXc[`] = r` for every label `, and counter gcnt = 0;

6. output the transformed dictionary DX and the state st = (DXc, gcnt).

– QRT.Transform(`, st)

1. if gcnt > γ, return ⊥;

2. let cnt = DXc[`]:

(a) if cnt > 0, decrement DXc[`];

(b) if cnt = 0, set ` = `⊥ and cnt = gcnt;

3. increment gcnt;

4. output ` ‖ cnt.

Figure 3.1: The query replication transform: QRT
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Theorem 3.5.1. If both the query distribution and the replication distribution are given by {p`}`∈Qk ,

then QRT is ε-correct for up to γ queries where ε = m · e−
δ2γ·min` p`

2+δ .

Proof. Let ` be some label with query probability p`. Then from the replication distribution, we

know that there exist r` = p` · (1+ δ) ·γ replicas for this label. Then we can compute the probability

that the total number of queries in an epoch for this label exceed r`. Let the queries in the epoch

be q1, q2, . . . , qγ , and Xi,` be an indicator variable that is defined as follows:

Xi,` =

1, if qi = `, 1 ≤ i ≤ γ

0, otherwise

Let X` =
∑γ
i=1Xi,`. Then X` is the number of times that ` is queried during the epoch, given that

the query probability is p`. Given that there are γ queries in the epoch, the expected number of

queries is p` · γ. Using a Chernoff bound,

Pr[X` ≥ p` · (1 + δ) · γ] ≤ exp

(
−δ2 · γ · p`

2 + δ

)
Since min` p` ≤ p`, and given that exp

(
− δ

2γ·min` p`
2+δ

)
= ε/m it follows:

Pr[X` ≥ p` · (1 + δ) · γ] ≤ ε

m
,

Finally, using the union bound over all m labels, we see that QRT is ε-correct (for any label).

This guarantee holds for the first γ queried labels, after which the QRT will only return ⊥.

Security of QRT

When QRT is used in conjunction with a dictionary encryption scheme, we must ensure that the

transformation leaks only the public parameters γ, δ of QRT. Then given a leakage profile Λ of a

static rebuildable encrypted dictionary scheme, we can define the Λ-safety of QRT as follows:

Definition 3.5.2 (Λ-safe QRT). Let Λ = (LS,LQ,LR) be a static rebuildable dictionary leakage

profile. We say that QRT is Λ-safe if for all k ∈ N, for all distributions ~p, for all γ > 0, δ ≥ 0,

for all d ∈ Dk, for all DX ≡ d, for all (DX, st) output by QRT.Transform(DX), for all t ∈ N, for all

(q1, . . . , qt) ∈ Qtk, for all (q1, . . . , qt) where qi is output by QRT.Transform(qi, st),

LS(DX) ≤ {LS(DX), params} and LQ(DX, q1, . . . , qt) ≤ LQ(DX, q1, . . . , qt),

and LR(DX) ≤ LR(DX),

where params = {γ, δ}.

3.5.3 A Query Equality-Suppressed Dictionary Scheme

In this section we use the QRT to design a dictionary encryption scheme RPL with optimal non-

amortized query complexity that also suppresses the query equality pattern. In the previous section

we observed that the QRT can only support a fixed number of queries, γ. RPL must then somehow

increase the number of queries supported by the QRT in order to work around this limitation.
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� QRT(1k, γ, δ, ~p):

– QRT.Reset()

1. for each label `:

(a) compute r` = p` · (1 + δ) · γ;

(b) set DXc[`] = r`;

2. set gcnt = 0.

Figure 3.2: Resetting client state for the QRT

Refreshing replicas. In order to be able to support more queries, RPL periodically “refreshes”

the encrypted replicas. Once all the existing replicas have been refreshed, the scheme can support

the next γ queries from the client. In order to refresh the replicas, we introduce a Rebuild protocol,

similar to previous work in query equality suppression [50]. The Rebuild protocol must re-encrypt

the encrypted dictionary such that the server cannot correlate the replicas before and after re-

encryption. Then given such a static rebuildable dictionary encryption scheme, we can apply the

QRT to construct our scheme which suppresses the query equality.

We now describe our dictionary encryption scheme, RPL, which efficiently suppresses the query

equality pattern using the QRT. Our scheme uses a blackbox static rebuildable dictionary scheme

ΣDX as a building block. At a high level, the client uses the QRT to transform the input dictionary

before encrypting it using ΣDX and uploading the encrypted dictionary to the server. At query

time, the client’s queries are transformed using the QRT before being sent to the server. Finally,

after the client issues γ queries, the client and the server execute a protocol to rebuild the encrypted

dictionary. Since the QRT supports only a limited number of queries, the rebuild protocol is required

to re-initialize the QRT and continue supporting queries on the encrypted structure. For security,

we require that the rebuild protocol not leak any correlations between the labels of the dictionary

before and after the rebuild protocol is executed. Any correlations leaked during the rebuild process

would allow the server to (partially) infer the query equality pattern. The reset procedure for the

QRT is given in Figure 3.2. The pseudocode for our scheme is given in Figure 3.3. We now analyse

the security and efficiency of RPL.

Security of RPL

Our first theorem shows that our scheme RPL does indeed hide the query equality leakage, when

instantiated with a static rebuildable dictionary encryption scheme with no rebuild leakage. We

then show how to instantiate RPL with such a dictionary encryption scheme in order to suppress

the query equality.

Theorem 3.5.3. If ΣDX is a response-hiding rebuildable static dictionary encryption scheme which

is (LDX
S , (qeq, patt),LDX

R )-secure, and QRT is (LDX
S , uniq,LDX

R )-safe, where LDX
R = ⊥, then RPL is a

static, (LS,LG,LR)-secure dictionary encryption scheme, where LS = {LDX
S , params}, LG = uniq,

and LR = ⊥ where uniq is the non-repeating sub-pattern of patt and params = (γ, δ) are the public

parameters of the QRT.
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Let ΣDX = (Setup,Get,Rebuild) be a response-hiding rebuildable static dictionary encryption scheme, let
γ, δ be the public parameters of the QRT, let the total number of labels be m, and ~p be the replica-
tion distribution. Then every label ` has an associated replication probability p`. Consider the static
rebuildable dictionary encryption scheme RPL = (Setup,Get,Rebuild) defined as follows:

� Setup(1k, γ, δ, ~p,DX):

1. generate a QRT transform of DX by computing

(DX′, stQRT)← QRT.Transform(DX);

2. encrypt the transformed dictionary DX′ by computing

(K, stDX,EDX)← ΣDX.Setup(1k,DX′);

3. initialize a counter gcnt = 0;

4. output the key K, the client state st = (stDX1 , stQRT, gcnt), and the encrypted dictionary EDX.

� GetC,S((K, st, `),EDX):

1. C checks if gcnt > γ and if true aborts;

2. C transforms the query ` by computing `′ ← QRT.Transform(`, stQRT);

3. C and S execute (v,⊥)← ΣDX.GetC,S

(
(K, stDX, `

′),EDX
)
;

4. C increments gcnt.

� RebuildC,S ((K, st) ,EDX):

1. C and S generate the rebuilt dictionary by executing

((K′, st′),EDX′)← ΣDX.RebuildC,S((K, st),EDX);

2. C resets the client state stQRT by running QRT.Reset();

3. C sets gcnt = 0.

Figure 3.3: RPL: A dictionary encryption scheme with query equality suppression.
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Proof. Let SDX be the simulator guaranteed to exist by the adaptive security of ΣDX and let SQRT

be the simulator guaranteed to exist by the (LDX
S , uniq,LDX

R )-safety of QRT. To prove security, we

construct a simulator S such that the output of IdealRPL,A,S(k) is distributed like the output of a

RealRPL,C,A(k) experiment. Our simulator S works as follows:

Simulating Setup: given γ, δ, and leakage LDX
S (DX), S computes

EDX← SDX
(
SQRT

(
LDX
S (DX), params

))
,

It sets gcnt = 0 and returns EDX to A. It suffices to use the leakage on the input dictionary DX,

because the leakage of the replicated dictionary can be simulated using the leakage computed

on DX and params.

Simulating Get: given the leakage uniq(DX, g1, . . . , gt) for t gets on DX1, S works as follows.

If gcnt > γ it aborts. If gcnt ≤ γ, it uses

SDX
(
SQRT

(
M0, uniq(DX, g1, . . . , gt

)))
to simulate a Get to EDX, where M0 is a t×t zero matrix. Using M0 and the non-repeating sub-

pattern suffices because all the gets to EDX are unique. After each Get, S sets gcnt := gcnt+1.

Simulating Rebuild: given the rebuild leakage LDX
R = ⊥, S runs the simulator

EDX′ ← SDX
(
SQRT

(
⊥
))

,

in order to simulate the rebuild protocol.

It remains to show that the probability that IdealRPL,A,S(k) outputs 1 is negligibly-close to the

probability that RealRPL,C,A(k) outputs 1 for any ppt adversary A. We do this using the following

sequence of games:

Game0: corresponds to a RealRPL,C,A(k) experiment.

Game1: is the same as Game0 except that during Setup; EDX is replaced with the output of

SDX(LDX
S (DX)) and the ith execution of ΣDX.Get is replaced with a simulated execution between

SDX
(
Mi, uniq(DX, g1, . . . , gi)

)
and the adversary, where Mi is the i× i zero matrix, DX is the

transformed dictionary and gi the ith transformed get output by the QRT. Since all the gets

to EDX are unique in Game0 it suffices to give SDX the leakage
(
Mi, uniq(DX, g1, . . . , gi)

)
. If

gcnt = γ; the rebuild protocol is replaced by a simulated interaction of the simulator SDX with

the rebuild leakage LR, in order to generate the rebuilt structure EDX′. The probabilities that

Game0 and Game1 output 1 are negligibly-close, otherwise the adaptive-security of ΣDX would

be violated.
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Game2: is the same as Game1, except the (LDX
S , uniq,LDX

R ) leakage computed on the transformed

dictionary DX are replaced by running SQRT on the respective leakage of DX and the pub-

lic parameters params of the QRT. The probabilities that Game1 and Game2 output 1 are

negligibly-close, otherwise the (LDX
S , uniq,LDX

R )-safety of QRT would be violated.

The Theorem follows by observing that Game2 is exactly an IdealRPL,A,S(k) experiment.

In the above theorem, we show that RPL suppresses the query equality leakage when the un-

derlying scheme has no rebuild leakage. We note here that this constraint is slightly stricter than

required, since we only need that the correlations between old and new replicas not be leaked dur-

ing rebuild. We now show how to instantiate such a dictionary encryption scheme using existing

constructions from the literature.

Concrete instantiation. In order to instantiate RPL, we compile a semi-dynamic dictionary

encryption scheme using the static RBC compiler [50], which results in a static rebuildable dictionary

encryption scheme. We use the semi-dynamic (only Add operations are supported) version of the

standard dictionary encryption scheme Πdyn
bas with the leakage profile (LS,LQ,LA) = (N, qeq,⊥),

where N is the total number of labels in the dictionary and qeq is the query equality. We note that

since the semi-dynamic scheme does not support deletes on the underlying dictionary, every Add

operation must introduce a new label-value pair into the encrypted dictionary, and therefore the

Add operation has no leakage. Then, applying the static RBC, we have a resulting static rebuildable

scheme ΣDX with the leakage profile (LS,LQ,LR) = (N, qeq,⊥) [50, Theorem 2]. We now show that

the QRT is (N, uniq,⊥)-safe and prove the security of the concrete instantiation.

Lemma 3.5.4. The QRT is (N, uniq,⊥)-safe.

Proof. We first note that the setup leakage is LS(DX) = (2 + δ) · γ, which can be simulated from

params. The query leakage is LQ(DX, q1, . . . , qt) = uniq, because the QRT transforms every query to

unique queries and therefore the leakage is the same, and query can be simulated from uniq. Finally

the rebuild leakage, LR = ⊥, and therefore rebuild can be simulated with no leakage.

Combining Lemma 3.5.4 with our Theorem 3.5.3, we have that RPL has leakage (LS,LG,LR) =

(N, uniq,⊥), and therefore the query equality leakage is suppressed.

Concrete Efficiency of RPL

In this section we analyze the concrete efficiency and correctness of our scheme RPL. We first

construct a scheme using Πdyn
bas [26] compiled using the static RBC [50]. The resulting scheme, ΣDX,

is a static rebuildable dictionary encryption scheme. We can now use this scheme to build RPL,

resulting in a static rebuildable dictionary scheme with no query equality leakage.

Server storage. We first note that the server storage depends on the size of the replicated dic-

tionary, which depends only on the public parameters γ and δ. In particular, the server must store

(2 + δ) · γ encrypted label-value pairs.
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Client state. The client state consists of the state for the QRT transform: one dictionary with

m labels, and one counter; and a query counter. Since we use the Πdyn
bas scheme to implement an

encrypted dictionary, the scheme itself does not require any separate client state. The client must

also store two encrypted entries of the array RAM during the oblivious sort phase of the static RBC.

Non-amortized communication complexity. The get complexity for our scheme is the Get

complexity of Πdyn
bas , which is optimal. However, the Rebuild protocol is initiated after every γ Get

operations. The total time complexity of the rebuild protocol depends on the underlying rebuild of

the encrypted dictionary scheme. Since we assume the static RBC instantiated with Πdyn
bas , the rebuild

incurs a logarithmic communication overhead. However, the costs of the rebuild can be amortized

over a sequence of γ get operations. In the following, we analyze the amortized time complexity for

a Get operation in our scheme.

Amortized communication complexity. A sequence of γ Get operations in our scheme, consists

of γ Get operations to the underlying encrypted dictionary scheme, as well as the setup, sorting and

put operations performed during the rebuild protocol. Then:

TRPL
G (g1, . . . , gγ) =

γ∑
i=1

TEDX
G (gi) + TEDX

R (γ),

where TG(gi) is the time taken to perform the ith Get operation and TEDX
R (γ) is the time taken to

perform the rebuild operation for EDX.

Given that the RBC rebuild uses an oblivious sort protocol, followed by M = (2 + δ) · γ Put

operations, and using the Ajtai-Komlos-Szemeredi sorting network [11],

TRPL
G (g1, . . . , gγ) =

γ∑
i=1

TEDX
G (gi) +O(|v|w ·M · logM) +

M∑
j=1

TEDX
P (pj),

where TG(gi) and TP(pj) are the times taken to perform the ith Get and the jth Put operations,

respectively, and v = qu(g).

Concretely, for Πdyn
bas , the Get and Put complexities are both O(1), and assuming that |v|w and δ

are O(1), our scheme would have the following complexity:

γ ·TRPL
G (g) = γ ·O(1) +O(M · logM) +M ·O(1),

TRPL
G (g) = O(1) +O((2 + δ) · log((2 + δ) · γ)) + (2 + δ) ·O(1),

TRPL
G (g) = O(log((2 + δ) · γ)).

Then our get complexity is logarithmic in the total size of replicated dictionary.

Round complexity. Similarly, we inherit the round complexity of the underlying construction.

Since Πdyn
bas executes get operations in one round, our non-amortized get complexity is also one round,

and therefore optimal. However, the rebuild introduces O(M · logM) rounds, if the client has limited
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state. However, this round complexity can be amortized to O(logM) rounds per get operation.

Further, if the client has more state available, the oblivious sorting gates can be parallelized to

reduce the round complexity of the rebuild protocol.

Correctness. We inherit the correctness properties of the QRT. Given that the underlying en-

crypted dictionary scheme has only a negligible probability of being incorrect, the resulting scheme

from RPL will have the correctness properties described in Section 3.5.2, shifted by an additional

negligible factor.

Concrete parameters. We now show the concrete correctness properties of RPL depending on

the distribution used for the QRT. Since RPL trades off correctness for security, given the fixed public

parameters γ and δ, the scheme’s correctness properties will vary depending on the replication/query

distribution ~p. For example, let the number of labels in the dictionary m = 100, and the public

parameters be γ = 2500, δ = 3. Then if both the replication and query distributions are uniform,

i.e., each ` has probability p` = 1/m, then from Theorem 3.5.1 we have:

ε = m · e−
δ2γ·min` p`

2+δ

= 100 · e− 9·2500
5·100 ≈ 2.86× 10−18

On the other hand, if the replication and query distribution are both Zipf, i.e., `i has probability

pi = 1/(i ·Hm), i ∈ [m] where Hm is the mth harmonic number we have instead:

ε = 100 · e−
9·2500

5·100·H100 ≈ 0.017.

Efficient rebuilding. From the analysis of communication complexity, we see that the largest

overhead is incurred due to the rebuilding of the dictionary. The static RBC incurs a logarithmic

overhead in communication cost due to the use of an oblivious sorting protocol. We outline here a

new rebuild compiler called the fixed rebuild compiler (FRC) that will reduce the asymptotic query

complexity of RPL. At a high level, similar to the RBC, the FRC takes as input a dynamic dictionary

encryption scheme and compiles it into a static rebuildable scheme. The FRC will use two fixed but

random orderings of the labels in order to rebuild the encrypted dictionary. These orderings are

referred to as schedules. One of the schedules will be used to download label-value pairs from the

original dictionary and store them in the client stash and the other will be used to add label-value

pairs from the client stash to the rebuilt dictionary. If an add is scheduled to the rebuilt dictionary,

it will be executed regardless of if the query is already present in the client stash. Therefore the

server sees a query and an add operation at every round of the rebuild protocol. Since the query and

add operations follow fixed but random schedules, correlations between them will not be revealed

to the server, which is what we require for the security of RPL. The FRC then trades off client state

in order to reduce the asymptotic communication complexity of the rebuild protocol. Our proposed

compiler is an adaptation of the injection-secure dynamic multi-map encryption scheme, FIX [13]7.

7Manuscript received as private communication from the authors.
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3.6 Conclusions

We studied whether it was possible to construct a dynamic framework to suppress the query equality

leakage of an STE scheme, and if leakage suppression techniques could be practically efficient.

At a high level, our dynamic query equality suppression compiler uses a small server-side cache

to suppress the query equality leakage, and rebuilds the entire encrypted structure when the cache is

full. We faced the following challenges: (1) in the dynamic setting, the volume leakage is correlated

with query equality and the operation identity leakage and therefore our compiler had to suppress

all three patterns; (2) we started with a base volume-hiding STE scheme for our compiler. At the

time, volume-hiding schemes were only weakly-dynamic, and so our compiler had to upgrade the

dynamism of the base construction to make it fully-dynamic; (3) we had to use the base scheme

weakly-dynamic operations in order to enable the ‘rebuilding’ phase of the construction.

Our construction resolved all these challenges and was proved to be secure. It was also shown to

be asymptotically more efficient than black-box ORAM simulation, which was the only other viable

option for dynamic query equality suppression. During our study, we realized that suppressing

the query equality leakage is an expensive operation, and that our techniques were still far from

optimally efficient.

This led us to explore practically efficient leakage suppression. We presented our replica-based

leakage suppression transform and constructed the first dictionary encryption scheme that has op-

timal non-amortized query complexity with query equality suppression. We explore the security,

efficiency, and correctness trade-offs of the resulting scheme. With this scheme, we initiate a line of

work in practical leakage suppression that is crucial to the real-world adoption of these techniques.
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