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CHAPTER 1

Introduction

1.1 Outline

We describe a flavor of functor calculus for functors FI → V , which we call FI-objects,

where FI is the category of finite sets and injections and V is a stable presentable

∞-category. At the outset, our study into this FI-calculus was inspired by an analogy

to Weiss’ orthogonal calculus, but we soon realized that FI-calculus is in fact a

homotopical extension of the ideas of representation stability.

In Chapter 2 we define, for n ∈ N, n-excisive FI-objects as those sending certain

n + 1-cubes to limit cubes, prove that our definition of an n-excisive FI-object is

equivalent to the criterion that the FI-object be “presented in degree at most n,” (a

characterization analogous to one for representation stable FI-modules) and note that

every FI-object admits a universal approximation by an n-excisive FI-object, giving

rise to a Taylor tower. We introduce the ∞-category of “formal Taylor towers,” which
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we call “excision sequences,” define an analytic FI-object as one which is an iterated

limit of excisive FI-objects, define a category of “convergent excision sequences,” and

show that the ∞-categories of analytic FI-objects and of convergent excision sequences

are equivalent:

Theorem 17. The Taylor tower functor P determines an equivalence

P : FIVAnly ≃ ExSeqVConv : lim

In Chapter 3, we define an n-homogeneous FI-object as an n-excisive FI-object

whose universal n − 1-excisive approximation vanishes. We show, in analogy to other

functor calculi, that the ∞-category of n-homogeneous FI-objects is equivalent to the

∞-category of Sn-objects. For an FI-object E, we call the Sn-object corresponding

to the n-homogeneous layers of the Taylor tower of E the nth Taylor coefficient of E.

A priori, the Taylor coefficients of E together form a symmetric sequence; we show

that this symmetric sequence extends to an FI-object. We define an operation ∆ on

FI-objects which behaves like a derivative and use it to show that the Taylor tower of

a finitely supported FI-object is trivial, a result we summarize with the slogan, “an

analytic FI-object is determined by its germ at infinity.”

We then provide conditions under which an excision sequence (and hence in par-

ticular an analytic FI-object) can be recovered from its FI-object of Taylor coefficients;

these results generalize a theorem of Sam and Snowden in [SS15] which has been

generalized in a different fashion by Patzt and Wiltshire-Gordon in [PW19].

More specifically, we define “tame” excision sequences – more general than finitely

presented FI-objects – and show that the aggregate Taylor coefficient functor restricts

to an equivalence on tame excision sequences:
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Corollary 46. We have an equivalence

C : ExSeqVTame ≃ FIVcoTame

We formulate a yet weaker condition we call “self-tameness” which still ensures

that an excision sequence can be recovered from its Taylor coefficients.

Corollary 52. We have an equivalence

core C : core ExSeqVTame ≃ core FIVselfcoTame

We observe that for many choices of V of interest – for example any Q-linear

∞-category, and in particular SpQ, the ∞-category of rational chain complexes – all

excision sequences are tame, so that in such contexts an excision sequence can always

be recovered from its Taylor coefficients.

In Chapter 4 we concern ourselves with the case when V = SpQ and seek to show

that representation stability for FI-modules is an emanation of FI-calculus. We have

the following theorem:

Theorem 54. For some n ∈ N, let E be an n-excisive FI-object taking values in

rational spectra with finitely generated homology groups. Then the FI-modules Hi(E)

are representation stable.

Combining this result with Corollary 46, we calculate an explicit dictionary allow-

ing us to read off the representations appearing in the stable part of a representation-

stable FI-module from its coefficient FI-module by proceeding one homogeneous layer

at a time:

Corollary 57. For E an n-homogeneous rational FI-object with CnE ∼= V (µ) for

µ ⊢ n, E|FI≥2n
∼= V (µ)•|FI≥2n

.
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Our results therefore suggest that a larger family of rational FI-objects – the

analytic ones – deserve consideration under the mantle of representation stability

even when their homology FI-modules fail to be representation stable, since their

behavior is nonetheless controlled by the same functor calculus phenomena and is

still recorded by their Taylor coefficient FI-objects.

Additionally, because n-excisive FI-objects which are eventually concentrated

in a particular homological dimension may not be concentrated in that dimension

on sufficiently small sets, we observe that FI-calculus illuminates the existence of

“good” pre-stable behavior involving the interaction of homology groups in different

dimensions in the pre-stable range. This suggests searching for such good behavior

in the pre-stable ranges of real-world FI-objects of interest as a way of extending

downwards the lower bounds on their “good” behavior.

1.2 Review of presentable stable ∞-categories

An ∞-category J is finite if its classifying space BJ is equivalent to a finite CW-

complex. A stable ∞-category V is one which is both complete and cocomplete and

such that for I, J finite ∞-categories and for every functor

F : I × J → V

the canonical morphism

colim
j∈J

lim
i∈I

F (i, j) → lim
i∈I

colim
j∈J

F (i, j)

is invertible. This characterization, stated in the framework of derivators, is due to

Moritz Rahn and Michael Shulman and proven in [RS21b]. We similarly have that
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for every

G : I → V

and for every X ∈ V , the canonical morphisms

colim
i∈I

V(X, G(i)) → V
(

X, colim
i∈I

G(i)
)

V
(

lim
i∈I

G(i), X
)

→ lim
i∈I

V(G(i), X)

are invertible.

The traditional definition, found, for example, in [Lur17], is that an ∞-category

V is stable if it is complete, cocomplete, the canonical morphism from the initial

object to the terminal object is invertible (i.e. V is pointed), and fiber and cofiber

squares coincide, i.e. that a square diagram

A B

0 C

is a pullback if and only if it is a pushout. Note that a morphism in a stable ∞-

category is an isomorphism if and only if either its fiber or its cofiber is contractible

(or, equivalently, both its fiber and its cofiber are contractible).

Note that given two objects X, Y ∈ V in a stable ∞-category, the morphism

object V(X, Y ) carries the structure of a spectrum. For further details, see [Lur17,

Chapter 1].

The condition that V be presentable plays no explicit role in the paper except

to ensure that V admit the necessary limits and colimits and to allow us to use the

adjoint functor theorem for presentable ∞-categories. It is satisfied in all examples

of interest.

We call a sub-∞-category of an arbitrary ∞-category reflective if the inclusion
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functor admits a left adjoint, which we call the reflection functor. The dual notion is

called a coreflective sub-∞-category. Given V ′ ⊆ V a reflective sub-∞-category of a

presentable ∞-category V , the collection of objects X ∈ V such that for all Y ∈ V ′

V(X, Y ) ∼= 0

is called the left orthogonal complement of V ′ and is a coreflective sub-∞-category of

V . The dual notion is called the right orthogonal complement of a reflective sub-∞-

category. If V is stable, left and right orthogonal complement are, up to equivalence,

inverse operations.

1.3 Notation

Throughout, S refers to the ∞-category of spaces, Sp to that of spectra, and S to

the sphere spectrum. Fix V a stable presentable ∞-category. Given X ∈ V and

an ∞-groupoid Y ∈ S, denote by Y ⊗ X the colimit of the functor Y → V that is

constantly X. The functor

− ⊗ X : S → V

is a left adjoint so it extends canonically along Σ∞
+ to a left adjoint

− ⊗ X : Sp → V

from Sp, the stabilization of S, and we use the same notation to describe this extended

functor. Right adjoint to − ⊗ X is the enrichment of V in Sp: V(X, −) : V → Sp.

Dually, for Y ∈ S and X ∈ V, we denote by Y ⋔ X the limit of the functor

Y → V that is constantly X, so that we have a functor

− ⋔ X : Sop → V
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We call a functor FI → V an FI-object of V and we denote the category of such

functors FIV . We sometimes conflate a set and its cardinality; e.g. when we compare

two sets with symbols such as ≤, we are really comparing their cardinalities. For Φ a

property, we denote by FIΦ the full subcategory of FI spanned by those sets satisfying

Φ; FI≤n is a typical example. We write FIΦV for the evident functor category.

When two ∞-categories are canonically equivalent up to an insignificant level

of ambiguity, we sometimes conflate them. As an example, we denote by Sn both

the category with sole object the set {1, . . . , n} and morphisms bijections and the

subcategory of FI spanned by all sets with cardinality n.

For C, D small ∞-categories and E a presentable ∞-category, when there is a

canonical functor C → D, we write

LanD
C : Fun(C, E) → Fun(D, E)

for left Kan extension, leaving the functor C → D implicit. Similarly, we denote right

Kan extension by

RanD
C : Fun(C, E) → Fun(D, E)



CHAPTER 2

Excision and Taylor Towers

2.1 Excisive FI-objects

Definition 1. For n ∈ FI, we define the n-cube category to be FI/n, equivalently the

powerset lattice of n. We define a standard cube to be a diagram in FI determined

by finite sets S ⊆ S ′ in which the vertices are sets T such that S ⊆ T ⊆ S ′ and the

morphisms are the inclusions. We say that a standard cube determined by S ⊆ S ′ is

a standard n-cube if S ′ \ S ∼= n. We say that an FI-object E is n-excisive if it sends

each standard n + 1-cube to a limit diagram (often called a Cartesian cube) in V . We

denote the ∞-category of n-excisive FI-objects in V with the notation ExcnV .

Remark 2. Some readers may feel more comfortable calling n-excisive FI-objects

“n-polynomial” or “polynomial of degree n”. This would be sensible nomenclature. We

use the term “excisive” to be in accord with the terminology of Goodwillie calculus.

Remark 3. Call an n-cube J : FI/n → FI semi-standard if there exist sets S, T and

8
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a function f : T → n such that J(x) = S ⊔ f−1(x) for all x ⊆ n. We view these

semi-standard cubes as homologs of strongly coCartesian cubes of Goodwillie calculus.

An FI-object is n-excisive if and only if it sends all semi-standard n + 1-cubes to

Cartesian cubes. We do not use this fact, so we omit the proof in the interest of

brevity.

Recollection 4. Recall that the total fiber of an n-cube J : FI/n → C for C a pointed

∞-category is the fiber of the canonical morphism

J(∅) → lim
∅≠S⊆n

J(S)

We denote the total fiber of J by tofib J or tofibS⊆n J(S). Recall that the dual notion

is called the total cofiber of J . Recall also that for J : FI/k⊔m → C we have an

isomorphism

tofib
S⊆k⊔m

J(S) ∼= tofib
T ⊆k

(
tofib
T ′⊆m

J(T ⊔ T ′)
)

Recall that when f : X → Y is a morphism in a stable ∞-category C, cofib f ∼= Σ fib f ,

so given an n-cube J : FI/n → C, we can regard n as the disjoint union of its singleton

subsets and apply the preceding result repeatedly to obtain that tocofib J ∼= Σn tofib J .

For more details, see [MV15, Proposition 5.5.4]. Since in a stable ∞-category a

morphism is an isomorphism if and only if its fiber is contractible, we have that

in a stable ∞-category, an n-cube is Cartesian if and only if it is coCartesian.

We therefore could have defined n-excisive FI-objects to be those sending semi-

standard (or standard) n + 1-cubes to coCartesian cubes, and we will make use of

this characterization.

Corollary 5. For m ≥ n, ExcnV ⊆ ExcmV.

Proof. For E ∈ ExcnV it is enough to verify that the total fiber of the image under
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E of any standard m + 1-cube is 0. By Recollection 4, this is equivalent to the total

fiber of an m − n-cube of total fibers of the images of standard n + 1-cubes, each of

which is 0 by assumption.

Proposition 6. The full sub-∞-category ExcnV of FIV is reflective. We denote its

reflection functor Pn.

Proof. Limits commute with Cartesian cubes and filtered colimits commute with

coCartesian cubes, which are Cartesian cubes because V is stable. It follows that

ExcnV is closed under limits and filtered colimits in FIV . The result follows from the

adjoint functor theorem [Lur09, Corollary 5.5.2.9].

Definitions 7. We say that an FI-object is excisive if it is n-excisive for some n ∈ N.

We denote by FIVAnly the reflective subcategory of FIV generated by the excisive

FI-objects and we call its objects analytic.

Definition 8. Given n ∈ FI and X ∈ V , we call FI-objects isomorphic to those of the

form FI(n, −) ⊗ X representable. For brevity, we denote Fn,X
def= FI(n, −) ⊗ X. Recall

that all FI-objects are iterated colimits of representable FI-objects. When V = Sp

and X = S, we simply write Fn for Fn,S.

Proposition 9. We have that for all X ∈ V and n ∈ FI, Fn,X ∈ ExcnV.

Proof. Because − ⊗ X : S → V is a left adjoint, it suffices to show that the functors

FI(S, −) : FI → S

send standard n + 1-cubes to coCartesian n + 1-cubes.

We will use the following fact. Let f : FI/n → FI/m be a functor which preserves

meets and let g : FI/m → S be the functor sending the subsets of m to themselves
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understood as discrete spaces. Then gf is a coCartesian cube if

f(n) =
⋃
i∈n

f (n \ {i})

For S ⊆ T ⊆ S ′ and S ⊆ T ′ ⊆ S ′,

FI(n, T ∩ T ′) ∼= FI(n, T ) ∩ FI(n, T ′)

Each subset of S ′ of cardinality n is a subset of S ′ \ {i} for some i ∈ S ′ \ S exactly

when n < |S ′ \ S| – i.e. when the standard cube in question is a standard m-cube for

m > n.

Theorem 10. We have an equivalence of categories

LanFI
FI≤n

: FI≤nV ≃ ExcnV : ResFI≤n

FI

Proof. For n, k ∈ N, denote by Excn,≤kV the full sub-∞-category of FI≤kV spanned

by functors sending all standard n + 1-cubes in FI≤k to Cartesian n + 1-cubes in V.

Because FI ∼= colimk∈N FI≤k, we have

FIV ∼= lim
k∈Nop

FI≤kV

where the inverse limit is taken over the restriction functors ResFI≤k

FI≤k+1
, and because

every standard n + 1-cube in FI lies in FI≤k for some k ∈ N, we also have that

ExcnV ∼= lim
k∈Nop

Excn,≤kV

Because FI≤k → FIk+1 is fully faithful, LanFI≤k+1
FI≤k

is right inverse to ResFI≤k

FI≤k+1
.

For the other composition, let n ≥ k and E ∈ Excn,≤k+1V . The counit

colim
S⊊k+1

E(S) ∼= LanFI≤k+1
FI≤k

ResFI≤k

FI≤k+1
E(k + 1) εk+1→ E(k + 1) ∼= colim

S⊊k+1
E(S)

is an isomorphism, with the last isomorphism following from Recollection 4.
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Observation 11. It follows that ExcnV is a coreflective sub-∞-category of FIV (an

easier way to see the result is the adjoint functor theorem). We denote the coreflection

functor Qn. Note that

QnE ∼= LanFI
FI≤n

ResFI≤n

FI E

Note that for all E ∈ FIV ,

E ∼= colim
n∈N

QnE

since for all m ≥ n, QmE(n) → E(n) is an isomorphism.

2.2 Excision sequences

Definition 12. We define the ∞-category ExSeqV of excision sequences in V to be

ExSeqV def= lim · · · → FIV P1→ FIV P0→ FIV

so that an excision sequence is a collection of FI-objects {Ei}i∈N (but we will often

simply denote a given excision sequence with a single capital Latin letter, such as

E) equipped with, for m ≥ n, compatible isomorphisms PnEm
∼= En. The reflection

morphisms give us a tower

...

En

...

E0
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We have a functor P : FIV → ExSeqV given by

(PE)i
def= PiE

For E ∈ FIV , we call PE the Taylor tower of E.

Definitions 13. We denote by ExSeqnV the full sub-∞-category of ExSeqV spanned

by excision sequences {Ei} such that for all m ≥ n, the morphism Em → En is an

isomorphism. We denote by

Jn : ExSeqV → ExSeqnV

the coreflection functor. We say that an excision sequence is convergent if it is a colimit

in ExSeqV of a diagram taking values in ⋃n∈N ExSeqnV . We denote by ExSeqVConv

the full sub-∞-category of ExSeqV spanned by convergent excision sequences.

Lemma 14. For E ∈ ExSeqV,

lim
i∈Nop

(JnE)i
∼= Qn

(
lim

i∈Nop
Ei

)

Lemma 15. Let E be an arbitrary presentable ∞-category and let

E0 ⊆ E1 ⊆ · · · ⊆ En ⊆ · · · ⊆ E

be an increasing sequence of presentable reflective sub-∞-categories with reflection

functors Ln. Denote by E∞ the full sub-∞-category of E spanned by limits in E of

diagrams taking values in ⋃
n∈N En. Then E∞ is reflective with reflection functor

L∞ ∼= lim
n∈Nop

Ln

When E is stable, we obtain a dual theorem for presentable coreflective sub-∞-categories

by taking left orthogonal complements.
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Proof. Let E ′
∞ denote the intersection of all presentable reflective sub-∞-categories

of E which contain the union of the Ei and with reflection functor L′
∞. Then E ′

∞ is a

presentable reflective sub-∞-category of E and is the closure under iterated limits of

⋃
i∈N

Ei

It follows that the canonical natural transformation L′
∞(id → L∞) is an isomorphism.

Then because for any E ∈ E , L∞E ∈ E ′
∞, it follows that L∞ ∼= L′

∞ and hence

E ′
∞ = E∞.

Corollary 16. FIVAnly ⊆ FIV and ExSeqVConv ⊆ ExSeqV are reflective and corefle-

ctive respectively. We denote their reflection and coreflection functors P∞ and J∞

respectively.

Theorem 17. The Taylor tower functor P determines an equivalence

P : FIVAnly ≃ ExSeqVConv : lim

Proof. First, note that because

P : FIV → ExSeqV

factors through ExSeqVConv, so does its right adjoint

lim
i∈Nop

: ExSeqV → FIV

so every analytic FI-object is the limit of a convergent excision sequence. Let

E ∈ ExSeqVConv

We have

P
(

lim
i∈Nop

Ei

)
∼= P

(
colim

n∈N
Qn lim

i∈Nop
Ei

)
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∼= P
(

colim
n∈N

lim
i∈Nop

(JnE)i

)
∼= colim

n∈N
P
(

lim
i∈N

(JnE)i

)
∼= colim

n∈N
(JnE)i

∼= E

establishing that

P ◦
(

lim
i∈Nop

−
)

≃ idExSeqVConv

while
(

lim
i∈Nop

−
)

◦ P ≃ idFIVAnly

follows from Lemma 15.



CHAPTER 3

Taylor Coefficients

3.1 Homogeneous FI-objects

Definition 18. We say that E ∈ ExcnV is n-homogeneous if Pn−1E = 0. We denote

the full sub-∞-category of n-homogeneous FI-objects HmgnV . We define

Dn
def= fib (Pn → Pn−1) : FIV → HmgnV

We say that DnE is the nth layer of the Taylor tower of E. More generally, we can

speak of the nth layer of any excision sequence, and we denote this construction also

by Dn.

Definition 19. We say that E ∈ FIV is n-cohomogeneous if E is in the image of

LanFI
Sn

. Equivalently, E ∈ FIV is n-cohomogeneous when E ∈ ExcnV and Qn−1E ∼= 0.

We denote the category of n-cohomogeneous FI-objects coHmgnV . We define

Rn
def= cofib (Qn−1 → Qn) : FIV → coHmgnV

16
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Proposition 20. When restricted to HmgnV and coHmgnV respectively, the functors

Rn and Dn are inverses. In particular, n-homogeneous FI-objects are classified by

Sn-objects.

Proof. Given E ∈ HmgnV , we consider the following commutative diagram.

0 E DnRnE

Qn−1E E RnE

Qn−1E 0 Pn−1RnE

We begin by considering the middle row. This is a fiber sequence. The bottom row is

Pn−1 applied to the middle row and therefore also a fiber sequence. The top row is

the fiber of the natural transformation from the middle row to the bottom row and is

therefore also a fiber sequence. This proves that

idHmgnV ∼= DnRn

The other direction follows from a similar argument.

Definition 21. Given E ∈ FIV and n ∈ FI, we define

CnE
def= RnDnE(n) ∼= tocofib

T ⊆n
DnE(T )

This is a Sn-object, and we call CnE the nth Taylor coefficient of E.

3.2 The aggregate coefficient functor

The Cn are left adjoint functors and so controlled by their restrictions to representable

FI-objects. We therefore wish to calculate CnFS,X , and the first step toward that goal

is calculating PnFS,X .
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Proposition 22. For S ∈ FI and X ∈ V,

PnFS,X
∼= lim

T ⊆S

|T |≤n

FT,X

Proof. For just this proof, let us denote

F
(n)
S,X

def= lim
T ⊆S

|T |≤n

FT,X

Because F
(n)
X,S is a limit of n-excisive FI-objects and therefore n-excisive, it is enough

to show that

PnFS,X
∼= PnF

(n)
S,X

By the Yoneda lemma, it is enough to show that for all E ∈ ExcnV ,

FIV(FS,X , E) ∼= FIV
(
F

(n)
S,X , E

)
We have

FIV(FS,X , E) ∼= V(X, E(S))

∼= V

X, colim
T ⊆S

T ≤n

E(T )


∼= colim

T ⊆S

T ≤n

FIV(FT,X , E)

∼= FIV
(
F

(n)
S,X , E

)
Definition 23. In what follows, we denote Gn,X

def= DnFn,X and Gn
def= DnFn.

Corollary 24.

Gn,X
∼= tofib

S⊆n
FS,X
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Corollary 25.

DnFm,X
∼=

∏
S⊆m

|S|=n

GS,X

Proof. Using Proposition 22,

DnFm,X
∼= fib PnFm,X → Pn−1Fm,X

∼= fib lim
S⊆m

|S|≤n

FS,X → Pn−1 lim
S⊆m

|S|≤n

FS,X

∼= lim
S⊆m

|S|≤n

fib FS,X → Pn−1FS,X

∼= Ran{S⊂m:|S|≤n}
{S⊂m:|S|=n} GS,X

∼=
∏

S⊆m

|S|=n

GS,X

Proposition 26. The Taylor coefficients of representable FI-objects are given by

CnFm,X
∼= FI(n, m) ⋔ X

Proof. Using the preceding corollaries, we have

CnFm,X = tocofib
T ⊆n

∏
U⊆m

|U |=n

tofib
S⊆U

FS,X(T )

∼=
∏

U⊆m

|U |=n

tofib
S⊆U

tocofib
T ⊆n

FS,X(T )

∼=
∏

U⊆m

|U |=n

tocofib
T ⊆n

FU,X(T )(3.1)

∼=
∏

U⊆m

|U |=n

FU,X(n)(3.2)

∼=
∏

U⊆m

|U |=n

FI(U, n) ⊗ X
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∼=
∏

U⊆m

|U |=n

FI(n, U) ⋔ X(3.3)

∼= FI(n, m) ⋔ X

where eq. (3.1) uses that when |S| < n, FS,X is n − 1-excisive so that

tocofib
T ⊆n

FS,X(T ) ∼= 0

and hence

tofib
S⊆U

tocofib
T ⊆n

FS,X(T ) ∼= fib
(

tocofib
T ⊆n

FU,X(T ) → 0
)

∼= tocofib
T ⊆n

FU,X(T )

and eq. (3.2) uses that when |T | < |U |,

FU,X(T ) = FI(U, T ) ⊗ X = ∅ ⊗ X ∼= 0

so that

tocofib
T ⊆n

FU,X(T ) ∼= cofib (0 → FU,X(n)) ∼= FU,X(n)

Corollary 27. For E ∈ FIV, CnE is functorial in n ∈ FI, so that we obtain an

aggregate Taylor coefficient functor

C : FIV → FIV

and we extend the construction to E ∈ ExSeqV with the formula

C : E 7→ lim
n∈Nop

CPnE

Definition 28. Denote by SuppnV the image of RanFI
FI≤n

. Denote the reflection

functor by

Un : FIV → SuppnV



21

Observation 29. For E ∈ ExSeqV ,

CPnE ∼= UnCE

3.3 Derivatives

Let us give a more direct description of CE in terms of the FI-object E.

Notation 30. For E ∈ FIV and n ∈ FI, define a new FI-object

∆nE
def= tocofib

S⊆n
E(S ⊔ −)

Given a map f : n → n′ in FI, abbreviate

n′ \ f
def= n′ \ img f

Further, given k ∈ FI, define

j† :: k → n′ ⊔ k

by

j†(a) def=


j−1(a) a ∈ j(n′ \ f)

a a /∈ j(n′ \ f)

and define

gf,k
def=

∑
j:n′\f→k

E
(
f ⊔ j†

)
: E(n ⊔ k) → E(n′ ⊔ k)

Theorem 31. The Taylor coefficients of E are given by

CE(n) ∼= colim
k∈FI

∆nE(k)

The morphism CE(f) is determined by the maps gf,k.
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Proof. Since our constructions preserve colimits in E, we need only verify that the

theorem holds for representable FI-objects, and this in turn allows us to reduce further

to the case V = Sp and thence to just the Fn. To verify the formula for objects,

observe that

colim
k∈FI

Fm(n + k)

can be identified with the suspension spectrum of the set of partial bijections from

m to n. The construction ∆n commutes with suspension, and by the fact we used

in the proof of Proposition 9, ∆n kills off exactly those partially defined injections

which do not cover n. A partially defined injection m → n which covers n is the same

data as an injection n → m, and since this set is finite, its suspension spectrum is

isomorphic to its dual. For the remainder of the proof, we make use of the isomorphism

CFm(n) ∼= Σ∞FI(n, m)+. We that

CFm(f) : CFm(n) → CFm(n′)

is determined by adjointness by the map

FI(n, m) 7→ Ω∞Σ∞FI(n′, m)+

given by

(i : n → m) 7→
∑

i′:n′→m

i′=fi

η(i′)

where η is the unit of the Σ∞
+ ⊣ Ω∞ adjunction and the sum is taken with respect to

the E∞-structure of the infinite loop space. To verify the formula for morphisms, we
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must verify the commutativity of the following square:

Fm(n + k) CFm(n)

Fm(n′ + k) CFm(n′)

gf,k CFm(f)

By adjointness, the canonical map Fm(n + k) → CFm(n) is determined by the map

FI(m, n + k) → Ω∞CFm(n)

which sends an injection i : m → n + k to 0 if n ̸⊆ i(m) and to η(i∗) otherwise, where

i∗ def=
(
a 7→ i−1(a)

)
: n → m

We can conclude by observing that given an injection i : m → n + k representing an

injection i∗ : n → m, each injection n′ → m which restricts to i∗ is represented once

by a summand of gf,k(i).

Corollary 32. By Theorem 31 and Recollection 4,

C(∆nE)(−) ∼= C(E)(− ⊔ n)

Definition 33. Call an FI-object E finitely supported if there exists n ∈ N such

that E ∈ SuppnV. Denote by FIVTors – the ∞-category of torsion FI-objects – the

coreflective sub-∞-category of FIV generated by the finitely supported FI-objects.

Corollary 34. For any E ∈ FIV, CE ∈ FIVTors.

Proof. This follows from the facts that CE is finitely supported when E is represen-

table, that C is a left adjoint functor, and that every FI-object is an iterated colimit

of representable FI-objects.

We formalize the notion that an analytic FI-object is determined by its “germ at

infinity.”
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Corollary 35. For E ∈ FIVTors, PE ∼= 0.

Proof. It is sufficient to prove that CE ∼= 0 for E finitely supported. We begin by

showing that CE(0) ∼= colim E ∼= 0 when E|FI≥n
∼= 0. By [Lur09, Proposition 4.1.3.1]

– Quillen’s Theorem A for quasicategories, originally due to Joyal – it suffices to show

that for all m ∈ FI,

B(m ↓ FI≥n) ∼= ∗

where B : Cat∞ → S is the classifying space functor, since this implies that

0 = colim
FI≥n

0 ∼= colim
FI≥n

E|FI≥n
∼= colim

FI
E

Note that we have an equivalence

(k, f : m → k) 7→ k \ f : m ↓ FI≥n
∼= FI≥n−m

so it will be sufficient to establish that BFI≥n
∼= ∗ for all n ∈ N. Let

ι≥n : FI≥n → FI

denote the inclusion functor and write

κ≥n
def= S 7→ S ⊔ n : FI → FI≥n

Then we have natural transformations

idFI → ι≥nκ≥n

and

idFI≥n
→ κ≥nι≥n

each given by the canonical inclusion S → S ⊔ n. Upon taking classifying spaces,
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these natural transformations become homotopies, so that Bι≥n and Bκ≥n are inverse

homotopy equivalences between BFI and BFI≥n. But BFI ∼= ∗ because FI has an

initial object. For any S ∈ FI, we have that if E vanishes on FI≥n, then so does ∆SE,

so for E finitely supported,

CE(S) ∼= C(∆SE)(0) ∼= 0

Corollary 36. For E ∈ FIVAnly and any n ∈ N,

E ∼= RanFI
FI≥n

ResFIn
FI E

Conjecture 37. Corollary 35 implies that FIVAnly is a full sub-∞-category of the right

orthogonal complement of FIVTors. We conjecture the converse: that FIVAnly in fact

is the right orthogonal complement of FIVTors.

3.4 Recovering excision sequences from coefficients

Notation 38. Denote by Z the right adjoint to C. We have used C to refer to

functors with various domains including FIV, ExSeqV, and ExcnV, and we shall

similarly use Z to refer to functors with these various codomains.

Observation 39. For E ∈ FIV ,

ZE ∼=
∫

m∈FI
CFm ⋔ E(m)

∼=
∫

m∈FI
Sp(FI(m, −), S) ⋔ E(m)

∼=
∫

m∈FI
FI(m, −) ⊗ E(m)

Lemma 40. The unit

ηFX,n
: FX,n → ZCFX,n



26

is an isomorphism.

Proof.

ZCFX,n
∼=
∫

m∈FI
FI(m, −) ⊗ FI(m, n) ⋔ X

∼=
∫

m∈FI
FI(m, n) ⋔ FI(m, −) ⊗ X

∼= FI(n, −) ⊗ X

∼= FX,n

Definition 41. We call a Sn-object A tame if the norm map

FI(−, n) ⋔Sn A → FI(−, n) ⋔Sn A

is a natural isomorphism. In this case we also call the cohomogeneous FI-object

LanFI
Sn

A tame. We also call any m-excisive FI-object that is a finite colimit of tame

cohomogeneous FI-objects tame, any excision sequence of tame excisive FI-objects

tame, and any analytic FI-object with a tame Taylor tower tame. We denote the ∞-

categories of such SnVTame, coHmgnVTame, ExcmVTame, ExSeqVTame, and FIVAnly,Tame

respectively.

We call an FI-object cotame if it lies in the image of ResExSeqVTame

ExSeqV C. We denote

the ∞-category of cotame FI-objects FIVcoTame. We denote by SuppnVcoTame the full

sub-∞-category of SuppnV spanned by cotame objects.

Theorem 42. Let A ∈ SnVTame and denote

E
def= FI(n, −) ⊗ A
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and endow E with the diagonal Sn-action so that

ESn
∼= LanFI

Sn
∈ coHmgnVTame

Then

η : ESn → ZCESn

is an isomorphism.

Proof. Fixing total orders on n and k determines an isomorphism of Sn-spaces

FI(n, k) ∼= LanSn
∗ {S ⊆ k : |S| = n}

exhibiting FI(n, k) as a free Sn-space. Tensoring an Sn-object with a free Sn-space

yields a free Sn-object, so E(k) is a free Sn-object for each k ∈ FI. Then by [Lur17,

Example 6.1.6.26], the norm maps

Nm (E(k)) : E(k)Sn → E(k)Sn

are isomorphisms and hence the norm map

Nm (E) : ESn → ESn

is an isomorphism.

Because left adjoint functors of stable ∞-categories are exact, we have a commut-

ative square

C(ESn) C
(
ESn

)

(CE)Sn
(CE)Sn

C(Nm (E))

f

Nm (CE)

where the left arrow is an isomorphism because C is a left adjoint, the top arrow is
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C applied to the norm and hence an isomorphism by the preceding argument, and

the bottom arrow is an isomorphism by our assumption on A, so the right arrow f

must also be an isomorphism.

The adjunction C ⊣ Z now gives us a new commutative square

ESn (ZCE)Sn

ZC
(
ESn

)
Z(CE)Sn

(ηE)Sn

η
ESn

Zf

We know that all the morphisms in this square except the left one are isomorphisms,

so that one must be as well.

We play our game one last time. The naturality of the unit gives us the commut-

ative square

ESn ESn

ZC(ESn) ZC
(
ESn

)
Nm (E)

ηESn

ZC(Nm (E))

and we conclude that ηESn
must be an isomorphism since all the other morphisms in

the square are isomorphisms.

Remark 43. The bulk of the foregoing proof can be encapsulated by the claim that

the following square commutes:

ESn ESn

ZC(ESn) (ZCE)Sn

Lemma 44. Suppose that C and D are stable ∞-catories, that C0 ⊆ C and D0 ⊆ D

are full sub-∞-categories, that each object of C and D can be expressed as a colimit
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of objects in C0 and D0 respectively, and that there exists an exact functor

L : C → D

which restricts to an equivalence

ResC0
C L : C0 ≃ D0

Then L is an equivalence

L : C ≃ D

Proof. We show that L is surjective and fully faithful. Denote by

R : D0 → C0

the inverse of ResC0
C L : C0. For establish surjectivity, we have that for a ∈ D there

exists some finite ∞-category I and diagram

A : I → D0

such that

a ∼= colim
i∈I

A(i)

∼= colim
i∈I

LRA(i)

∼= L
(

colim
i∈I

RA(i)
)

Next, for b, c ∈ C, there exist finite ∞-categories J and K and functors

B : J → C′

C : K → C′
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such that b ∼= colim B and c ∼= colim C so that we have

D(Lb, Lc) ∼= D
(

L(colim j ∈ J B(j)), L
(

colim
k∈K

C(k)
))

∼= D
(

colim
j∈J

LB(j), colim
k∈K

LC(k)
)

∼= lim
j∈J

colim
k∈K

D0(LB, LC)

∼= lim
j∈J

colim
k∈K

C0(B, C)

∼= C
(

colim
j∈J

B(j), colim
k∈K

C(k)
)

∼= C(b, c)

establishing full faithfulness.

Corollary 45. We have an equivalence

C : ExcnVTame ≃ SuppnVcoTame

Corollary 46. We have an equivalence

C : ExSeqVTame ≃ FIVcoTame

Corollary 47. The equivalence of Corollary 46 restricts to an equivalence

C : FIVAnly,Tame ≃ FIVTors,coTame

Proof. This follows from Corollary 34 and Theorem 17.

Example 48. When V is Q-linear, all Sn-objects are tame, so we have equivalences

C : ExSeqV ≃ FIV

C : FIVAnly ≃ FIVTors
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Example 49. When V is the ∞-category of K(m)-local spectra for some m ∈ N and

prime p, all Sn-objects are tame, so we have equivalences

C : ExSeqV ≃ FIV

C : FIVAnly ≃ FIVTors

Definition 50. For E ∈ ExSeqV , we say that E is self-tame if for all pairs n, m ∈ N,

the map

FIV(QmE, QnE) → FIV(QmE, ZCQnE)

induced by the unit (i.e. the norm map) is an isomorphism. We denote the full

sub-∞-category of such ExSeqVselfTame. We say that an FI-object is self-cotame if it

lies in the image of

C : ExSeqVselfTame → FIV

and we denote the full sub-∞-category of such FIVselfcoTame.

Notation 51. Recall that the core of an ∞-category C, denote core C, is its coreflection

into S; in other words, core C is the maximal sub-∞-groupoid of C.

Corollary 52. We have an equivalence

core C : core ExSeqVTame ≃ core FIVselfcoTame



CHAPTER 4

Representation Stability

In this section, we explore the connections between FI-calculus and representation

stability. For the most part, we will specialize to the case V = SpQ, but we begin

with an important result that applies more broadly, when V = Sp.

4.1 A bouquet

Theorem 53. For k ≥ 2n − 1, Gn(k) is a wedge of copies of S.

Proof. Recall that by Proposition 22, Gn is the total fiber of the n-cube given by

FS(k) as S ranges over the subsets of n. This is equivalent to the n-fold desuspension

of the total cofiber of the same n-cube, so we could equivalently show that this total

cofiber is a wedge of copies of Sn. For this it would suffice to show that the total

cofiber L(n, k) of the n-cube FI(S, k)+ is a wedge of copies of Sn, where we form the

colimit in the ∞-category of pointed spaces rather than of spectra.

32
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As a first step, we show that

(4.1) cofib (L(n, k) → L(n, k ⊔ 1)) ∼=
∨

x∈n

ΣL(n \ {x}, k)

Note that

(4.2) cofib (FI(S, k)+ → FI(S, k ⊔ 1)+) ∼=
∨

x∈S

FI(S \ {x}, k)+

for S ⊆ n. For x ∈ n and S ⊆ n, define the n-cube

Ax(S) def=


FI(S \ {x}, k)+ x ∈ S

∗ x /∈ S

and note that

tocofib
S⊆n

Ax(S) ∼= cofib (L(n \ {x}, k) → ∗) ∼= ΣL(n \ {x}, k)

We can rewrite morphism 4.2 as

cofib (FI(S, k)+ → FI(S, k ⊔ 1)+) ∼=
∨

x∈n

Ax(S)

and taking total cofibers over S ⊆ n yields morphism 4.1.

Next, observe that FI(∅, k) ∼= ∗ and that cofib (X → ∗)+
∼= ΣX for any (unbased)

space X (since X is unbased, we regard ΣX as the unreduced suspension of X with

the tip of one cone chosen as a basepoint). We therefore see that

(4.3) L(n, k) ∼= Σ colim
∅≠S⊆n

FI(S, k)

where the colimit is taken in the ∞-category of unbased spaces and again we choose

a basepoint when we suspend. Let us consider the category of elements of the functor

FI(−, k) : FI/n,>0 → S. This is the partially ordered set P (n, k) of tuples (S, T, ϕ)

where ∅ ≠ S ⊆ n, ∅ ≠ T ⊆ k, and ϕ : S ∼= T with order given by (S, T, ϕ) ≤ (S ′, T ′, ϕ′)
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if S ⊆ S ′, T ⊆ T ′, and ϕ′|S = ϕ. There is an evident isomorphism P (n, k) ∼= P (k, n),

and because P (n, k) is the category of elements of FI(−, k) : FI/n,>0 → S, we have

NP (n, k) ∼= colim∅≠S⊆n FI(S, k) where N denotes the nerve of the poset.

The symmetry P (n, k) ∼= P (k, n) reveals the symmetry L(n, k) ∼= L(k, n) by

eq. (4.3). Combining this with eq. (4.1), we have

(4.4) cofib (L(n, k) → L(n ⊔ 1, k)) ∼=
∨
x∈k

ΣL(n, k \ {x})

We make the inductive hypothesis that for some n there exists C(n) such that for all

k ≥ C(n), L(n, k) is a wedge of copies of Sn. Let k ≥ C(n) and consider the long

exact sequence in homology induced by eq. (4.4) (but replace k with k ⊔ 1). By our

inductive hypothesis, for i ̸= n,

Hi+1

 ∨
x∈k⊔1

ΣL(n, k ⊔ 1 \ {x})
 ∼= 0 ∼= Hi(L(n, k ⊔ 1))

so Hi(L(n ⊔ 1, k ⊔ 1)) ∼= 0 whenever i /∈ {n, n + 1} and the morphism

(4.5) Hn(L(n, k ⊔ 1)) Hn(L(n ⊔ 1, k ⊔ 1))

is a surjection. Similarly, using eq. (4.1) (and replacing n and k with n ⊔ 1 and k ⊔ 1

respectively), we have that

(4.6) Hn(L(n ⊔ 1, k ⊔ 1)) Hn(L(n ⊔ 1, k ⊔ 2))

is surjective. Composing morphisms 4.5 and 4.6, we have a surjection

(4.7) Hn(L(n, k ⊔ 1)) Hn(L(n ⊔ 1, k ⊔ 2))

We now show that the map

L(n, k ⊔ 1) L(n ⊔ 1, k ⊔ 2)
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is nullhomotopic, so that morphism 4.7 and therefore also Hn(L(n ⊔ 1, k ⊔ 2)) must

be trivial. This is easiest to see in terms of the posets P (n, k ⊔ 1) and P (n ⊔ 1, k ⊔ 2).

Let us establish the notation 1 = {a} and 2 = {a, b}. Consider the following diagram:

P (n, k ⊔ 1) P (n, k ⊔ 1)

∗ P (n ⊔ 1, k ⊔ 2)

id

f
g

{a}∼={b}

We let g be the inclusion and

f : (S, T, ϕ) 7→ (S ⊔ {a}, T ⊔ {b}, ϕ ⊔ ({a} ∼= {b}))

Then there are natural transformations g ⇒ f and ({a} ∼= {b}) ◦ ∗ ⇒ f . After

taking the nerve, these natural transformations become homotopies, and composing

these homotopies yields a null-homotopy of g. But g is the morphism which induces

morphism 4.7.

We have proven the following: if there exists C(n) such that for all k ≥ C(n),

L(n, k) is a wedge of n-spheres, then for all k ≥ C(n), the homology of L(n ⊔ 1, k ⊔ 2)

is free (since by the long exact sequence from eq. (4.4) it must be a subgroup of

the homology of a wedge of spheres) and is concentrated in degree n + 1. Since

P (∅, k) = ∅ for all k, L(∅, k) = S0 for all k. For all k ≥ 1, L(1, k) is the suspension

of a non-empty discrete space and therefore a wedge of circles. We will show that for

n ≥ 2 and k ≥ 2n − 1, L(n, k) is the suspension of a connected space and therefore

simply-connected. By induction, L(n, k) is a Moore space of type M(G, n) for G free

and is therefore a wedge of n-spheres.

Let us show that when n ≥ 2 and k ≥ 3, NP (n, k) is connected. Each simplex is

attached to a vertex, and each vertex is connected by a 1-simplex to a vertex of the
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form ({x}, {y}, ϕ). We will denote vertices ({x1, . . . , xj}, {y1, . . . , yj}, ϕ) by
x1 ϕ(x1)
... ...

xj ϕ(xj)


Let x, x′ ∈ n be distinct and y, y′, y′′ ∈ k be distinct. We must show that

(
x y

)
is

connected to
(

x′ y′
)

, to
(

x′ y

)
, and to

(
x y′

)
. We have

(4.8)
(

x y

)
<

x y

x′ y′

 >
(

x′ y′
)

(4.9)
(

x y

)
<

x y

x′ y′′

 >
(

x′ y′′
)

<

x y′

x′ y′′

 >
(

x y′
)

(4.10)
(

x y′
)

<

x y′

x′ y

 >
(

x′ y

)

where we compose sequences 4.9 and 4.10 to obtain a path from
(

x y

)
to
(

x′ y

)
.

4.2 A dictionary

Throughout the remainder of this section, we will at times treat rational vector spaces

as rational spectra concentrated in dimension 0. For X a spectrum, we denote by

XQ its rationalization. We call functors

FI → QVect
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FI-modules.

Theorem 54. For some n ∈ N, let E be an n-excisive FI-object taking values in

rational spectra with finitely generated homology groups. Then the FI-modules Hi(E)

are representation stable.

Proof. When n = 0, E must be constant. An objectwise-finite FI-module is representa-

tion stable if and only if it is finitely generated by [CEF15, Theorem 1.13]. Moreover,

the category of FinQVect-FI-objects is Noetherian by [CEF15, Theorem 1.3]. The

homology of an m-cohomogeneous FI-object is generated entirely in degree m, so the

cofiber sequence Qn−1E → E → RnE gives us our desired result, since Hi(E) is the

extension of a sub-FI-module of HiRnE by a quotient FI-module of Hi (Qn−1E), both

of which are finitely generated.

We know from Theorem 53 that the homology of Gn(k) is concentrated in dimen-

sion 0 for k ≥ 2n − 1. Let us get to know H0(Gn,Q) better. First we recall some

facts about the representation theory of the symmetric groups.

Recollection 55. Given an irreducible rational representation V of Sn, its complexifi-

cation V ⊗Q C is an irreducible complex representation of Sn, so the representation

theory of Sn is the same over any characteristic 0 field, regardless of algebraic closure.

This is a well-known fact, but can be seen for instance from the facts that the so-called

Specht modules can be defined over the integers [Sag01, Section 2.3] and account for

all irreducible complex representations [Sag01, Section 2.4].

We call a finite, weakly decreasing sequence of natural numbers λ = (λ1, . . . , λj)

a numerical partition.1 We write

|λ| def=
∑

i

λi

1These are usually called “partitions” of n in the combinatorics literature, but we wish to
distinguish them from sets of disjoint sets whose union is n.
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and say that λ is a numerical partition of |λ|. The notation λ ⊢ n is synonymous

with |λ| = n.

Recall e.g. from [Sag01, Section 2.3] that the Specht modules of n are in bijection

with numerical partitions of n. We denote by V (λ) the Specht module corresponding

to a numerical partition λ. Given a numerical partition λ and k ≥ λ1 + |λ|, we define

λ[k] to be the numerical partition (k − |λ|, λ). We define w(λ) def= |λ| − λ1 and we say

that w(λ) is the weight of λ. Observe that w(λ[k]) = |λ| when λ[k] is defined.

For µ ⊢ n, we have a Sn-representation Mµ called a Young permutation repre-

sentation and defined in [Sag01, Section 2.1]. By [Sag01, Section 2.10], for λ ⊢ n,

the dimension of QVectSn(V (λ), Mµ) = Kλ,µ, where Kλ,µ is a Kostka number: the

number of semistandard Young tableaux of shape λ and content µ. This means

the following. For λ = (λ1, . . . , λj), we consider n boxes arranged in j rows with

λi boxes in row i. A semistandard tableau of shape λ and content µ is a way of

filling these boxes with natural numbers such that the number i occurs µi times, the

columns of our tableau are strictly increasing from top to bottom, and the rows of

our tableau are weakly increasing from left to right. A standard λ tableau simply

means a semistandard λ tableau with content (1n).

Finally, recall some notation from [CEF15]. Given a rational Sn-representation

V : Sn → QVect, we define M(V )•
def= LanFI

Sn
V , the left Kan extension of V to FI.

We also recall the FI-object V (λ)• defined in [CEF15, Proposition 3.1.4], which is

representation stable and satisfies V (λ)k
∼= V (λ[k]) when k ≥ λ1 and V (λ)k

∼= 0

otherwise.

Observe that GQ
n has a natural action of Sn because Fn does. In the following

theorem, we characterize GQ
n along with its Sn-action.
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Theorem 56. We have an isomorphism in the category Fun(Sn × FI≥2n, Sp)

GQ
n

∼=
⊕
λ⊢n

V (λ) ⊠ V (λ)•

Proof. Given a rational Sk-spectrum X and λ ⊢ k, define χλ(X) to be the Euler

characteristic of the spectrum SpSk
(V (λ), X) if it exists. Then

(4.11) χλ

(
GQ

n (k)
)

=
∑

0≤i≤n

(−1)n−i

(
n

i

)
χλ

(
FQ

i (k)
)

We observe that FQ
i (k) ∼= M(k−i,1i) so that

χλ

(
FQ

i (k)
)

= Kλ,(k−i,1i)

In a semistandard tableau of shape λ and content (k − i, 1i), the k − i 1s must be in

left-most boxes of the first row of the tableau, so we need only consider λ ⊢ k such

that λ1 ≥ k − n, and since k ≥ 2n, we have k − λ1 ≤ n ≤ k − i. This means that

there are no boxes directly below any box after the k − ith box in the first row of our

tableau, so for any subset of {2, . . . , i + 1}, there is exactly one way to fill out the rest

of the first row of our tableau. Define λ′ def= (λ2, . . . , λj). Once we have chosen how

to fill the top row of our semistandard λ-tableau under construction, any standard λ′

tableau determines a unique semistandard λ tableau with the given first row (since

all of the relevant numbers in the first row are 1s and all of our remaining numbers

after the first row are unique and greater than 1). Note that λ1 = k − w(λ), so we

have shown that

Kλ,(k−i,1i) =
(

i

λ1 − k + i

)
Kλ′,λ′ =

(
i

w(λ)

)
Kλ′,λ′

Combining this with eq. (4.11), we have

(4.12) χλ

(
GQ

n (k)
)

= Kλ′,λ′
∑

0≤i≤n

(−1)n−i

(
n

i

)(
i

w(λ)

)



40

Note that the quantity
(

n
i

)(
i

w(λ)

)
is the number of pairs B ⊆ A ⊆ n such that

|B| = w(λ) and |A| = i. We could also count these pairs by choosing B ⊆ n and then

choosing A \ B ⊆ n \ B. This observation gives us the identity(
n

i

)(
i

w(λ)

)
=
(

n

w(λ)

)(
n − w(λ)
i − w(λ)

)

Substituting this into eq. (4.12), we have

χλ

(
GQ

n (k)
)

= Kλ′,λ′

(
n

w(λ)

) ∑
0≤i≤n

(−1)n−i

(
n − w(λ)
i − w(λ)

)

= Kλ′,λ′

(
n

w(λ)

) ∑
0≤j≤n−w(λ)

(−1)n−w(λ)−j

(
n − w(λ)

j

)

= Kλ′,λ′

(
n

w(λ)

)
(1 − 1)n−w(λ)

=


Kλ′,λ′ n = w(λ)

0 n ̸= w(λ)
(4.13)

This establishes that for λ ⊢ k, χλ

(
GQ

n (k)
)

̸= 0 if and only if w(λ) = n. This implies

that for k ≥ 2n and V an irreducible Sk-representation, SpSk

(
V, GQ

n (k)
)

̸= 0 if and

only if V ∼= V (λ′)k for some λ′ ⊢ n.

Note that by Theorem 53, H0
(
GQ

n

)
is a sub-Sn × FI≥2n-module of H0

(
FQ

n

)
.

Observe that FQ
n = M(Q[Sn]). By Maschke’s Theorem,

Q[Sn] ∼=
⊕
λ⊢n

End(V (λ))

∼=
⊕
λ⊢n

V (λ)∗ ⊠ V (λ)

∼=
⊕
λ⊢n

V (λ) ⊠ V (λ)

where the last isomorphism holds because in characteristic zero, finite dimensional
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representations of Sn are self-dual. We therefore have that

FQ
n

∼=
⊕
λ⊢n

V (λ) ⊠ M (V (λ))

By [CEF15, Lemma 3.2.3 and Proposition 3.4.1], the weight n irreducible sub-

representations of the M(V (λ))(k) form a sub-FI-object of M(V (λ)) and indeed are

exactly V (λ)•.

Corollary 57. For E an n-homogeneous rational FI-object with CnE ∼= V (µ) for

µ ⊢ n, E|FI≥2n
∼= V (µ)•|FI≥2n

.

Proof. Restricting to FI≥2n, we have

E ∼= V (µ) ∧Sn GQ
n

∼=
⊕
λ⊢n

(V (µ) ⊗ V (λ))Sn
⊠ V (λ)•

∼=
⊕
λ⊢n

(V (µ) ⊗ V (λ))Sn ⊠ V (λ)•

∼=
⊕
λ⊢n

(V (µ)∗ ⊗ V (λ))Sn ⊠ V (λ)•

∼=
⊕
λ⊢n

HomSn(V (µ), V (λ)) ⊠ V (λ)•

∼= V (µ)•

Since every rational Sn-spectrum is a direct sum of ((de)suspensions of) spectra

of the form appearing in the hypothesis of Corollary 57, we now have an elementary

dictionary allowing us to translate between rational Sn-spectra and n-homogeneous

rational FI-objects – in other words, we have made the equivalence in Proposition 20

explicit (in the rational case). In fact, we have the following additional corollary.

Corollary 58. For E a rational FI-object and k ≥ 2n, there is an isomorphism of
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Sk-spectra

PnE(k) ∼=
∨
i≤n

DiE(k)

Proof. The result follows from an inductive argument. The case n = 0 holds since

P0 = D0. For the inductive step, we apply Corollary 57 and Schur’s Lemma to

the long exact sequence in homology associated to the fiber sequence DnE(k) →

PnE(k) → Pn−1E(k). This establishes that the two sides of our equation agree on

the level of homology (including the Sk-action), and Q[Sk] is semisimple, this implies

that they agree as Sk-spectra
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