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Ten years ago, the first RNA-seq study was published. Since then over 200 thousand RNA-seq studies have

been published, spanning many different organisms, tissue types, and experimental conditions. However,

until recently RNA-seq could only be used to investigate differences in gene expression between samples.

This is because the expression of a sample is measured from pooled mRNA from hundreds of thousands

to millions of cells. Recently, new RNA-seq technologies have begun to emerge, such as single cell RNA-

seq (scRNA-seq), which allows for profiling of individual cells from a sample. This allows for the study

of cellular heterogeneity within a tissue. Another new RNA-seq technology called Spatial Transcriptomics

RNA-seq (STRNA-seq) profiles the mRNA transcripts from a tissue slice while retaining the spatial location

of the transcripts in the tissue. Both methods produce high-dimensional transcript count matrices but are

limited by extremely low coverage, with roughly 80% zero entries. In this dissertation, we introduce two

methods that use known gene and cell dependencies to recover signal from scRNA-seq and STRNA-seq data.

The first method, netNMF-sc, is a matrix factorization method which utilizes gene co-expression networks

obtained from prior RNA-seq studies to perform dimensionality reduction and imputation of sparse scRNA-

seq data, improving clustering performance and recovery of coexpressed genes over existing methods. The

second method, STCNA, uses hidden Markov models to infer genomic copy number aberrations (CNAs)

from STRNA-seq data of tumor tissues. Copy number aberrations, a subset of genomic rearrangements, are

acquired as a tumor evolves and are a driving force of cancer development. STCNA uses spatial information

to uncover subclonal CNAs, which are present in only a subset of cells in the tissue. Finally, we present a

third method, NAIBR, which identifies genomic rearrangements, including those which do not result in copy

number changes, such as inversions and translocations, from barcoded DNA sequencing data.
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the alternative hypothesis Ai+, j− that i+ and j− are adjacent in an individual genome, reads in

barcode 3 are close and are likely to have originated from a single molecule. (c) Under the null
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Chapter 1

Introduction

1.1 Background

1.1.1 The past and present of DNA sequencing

After the advent of Sanger sequencing in 1977 [17], new sequencing technologies are constantly being devel-

oped. The most commonly used sequencing technology today is called next-generation sequencing or second

generation sequencing. This massively parallel sequencing technology starts by randomly segmented DNA

into small fragments. An adapter is ligated to each fragment which then binds to a flow cell. Fragments

are then amplified via PCR using fluorescently labelled nucleotides. As each nucleotide is incorporated, the

flow cell is imaged and the emission from each cluster of amplified DNA fragments is recorded, where each

nucleotide has a specific emission wavelength. Each sequenced fragment is called a read. This method of

"sequencing by synthesis", implemented by Illumina and several other companies, produces highly accurate

reads, with an error rate around 0.1%, but is limited in the length of fragment that can be synthesized. This

means that reads from second generation sequencing technologies are limited to about 300bp. One techno-

logical development that helps overcome this limitation is paired-end reads. Paired-end sequencing involves

synthesizing DNA from both ends of the fragment, resulting in two paired reads from each fragment, one

from the beginning of the fragment and one from the end. Another technological advancement is the ad-

vent of third generation sequencing technologies, which allow sequencing of molecules up to 1Mb in length.

There are two major players in third-generation, long-read, sequencing: PacBio and Oxford Nanopore. In

PacBio sequencing, long molecules are sequenced by immobilizing each molecule in an individual well
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along with a single DNA polymerase and recording fluorescence as nucleotides are synthesized. In Oxford

Nanopore sequencing, changes in electrical signal are measured as a molecule passes through a pore, where

each nucleotide has a distinct electrical signature. Both methods currently have higher cost than short-read

sequencing and a significantly higher error rate (10−15%).

More recently, another third-generation sequencing technology called linked-read sequencing was devel-

oped by the company 10X Genomics. This technology combines the low error rate of short-read sequencing

with the long-range information of long-read sequencing. It does so by encapsulating long molecules in

droplets of oil, each containing a unique string of nucleotides called a barcode. The molecules are then

fragmented within the oil droplets and barcodes are ligated to each short fragment. Then, standard Illumina

sequencing is performed to generate short paired-end reads which can be mapped back to their long molecule

of origin. The limitation of this technology, however, is that each long molecule is only covered by a handful

of short reads, resulting in coverage of only 0.1X per molecule. This is the first of a new type of sequencing

technologies which we will call high-dimensional sequencing technologies, because we obtain a set of se-

quenced reads for thousands of individual molecules. These high-dimensional sequencing technologies are

characterized (1) high resolution, in this case resolution at the molecule level, and (2) low-coverage, in this

case coverage of about 0.1X per molecule.

1.1.2 The past and present of RNA sequencing

RNA-sequencing (RNA-seq), which sequences cDNA reverse-transcribed from mRNA transcripts, was de-

veloped significantly after DNA-sequencing in 2009 [184]. While RNA-seq is vital for understanding how

DNA is spliced to form alternate isoforms, researchers performing RNA-seq are most often not interested in

the sequences themselves, but rather in the relative abundances of mRNA transcripts in a sample. mRNA

transcripts, the precursors to proteins, are transcribed from DNA at different rates depending on a cell’s func-

tion. This results in a wide variety of distinct cell types, from neurons to skin cells to blood cells, which each

have diverse and specific functions. Measuring the relative abundance of mRNA transcripts under different

experimental conditions and disease states has led to countless discoveries including breakthroughs in drug

discovery and prognostic gene signatures [16]. However, until recently RNA-seq could only be used to in-

vestigate differences in gene expression between samples. This is because the expression profile (quantity

of mRNA molecules per gene) of a sample is measured from pooled mRNA from hundreds of thousands to

millions of cells.
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Like DNA-seq, new technologies for RNA-seq are constantly being developed and improved. The re-

cent advent of single-cell RNA-sequencing (scRNA-seq) provides the ability to measure gene expression at

the resolution of a single cell. scRNA-seq combines high-throughput single-cell isolation techniques with

second-generation sequencing, enabling the measurement of gene expression in hundreds to thousands of

cells in a single experiment. This capability overcomes the limitations of microarray and RNA-seq technolo-

gies, which measure the combined expression in a bulk sample, and thus is able to quantify heterogeneity of

gene expression in individual cells and subpopulations of cells [184]. The advantages of scRNA-seq com-

pared to bulk RNA-seq are tempered by undersampling of transcript counts in single cells due to inefficient

RNA capture and low numbers of reads per cell. The output of a scRNA-seq experiment is a high-dimensional

gene × cell matrix of transcript counts, where each column of the matrix represents the expression profile of

a single cell. The coverage per cell from scRNA-seq experiments is extremely low. This results in a transcript

count matrix which contains many dropout events which occur when no reads from a gene are sequenced in

a particular cell, even though the gene is expressed in that cell. The frequency of dropout events depends on

the sequencing protocol and depth of sequencing. Cell-capture technologies, such as Fluidigm C1, sequence

hundreds of cells with high coverage (1-2 million reads) per cell, resulting in dropout rates≈ 20−40% [193].

Microfluidic scRNA-seq technologies, such as 10X Genomics’ Chromium platform, Drop-Seq, and inDrops

sequence thousands of cells with low coverage (1K-200K reads) per cell, resulting in higher dropout rates,

up to 90% [194].

In addition to having low-coverage per cell, scRNA-seq is also limited by the fact that cells are dissociated

from their tissue of origin prior to sequencing, so important information regarding a cell’s location in the

tissue as well as spatial relationships between cells is lost. To address this limitation, spatial transcriptomics,

also called STRNA-seq was developed by [136]. With this technology, a tissue section is placed on an array

comprising of a grid of spots. Each spot contains surface probes each with unique molecular barcodes. The

mRNA within each circular spot, covering 10µm in diameter, is then quantified using standard RNA-seq

protocols. STRNA-seq provides a gene×spot transcript count matrix, where each spot contains the mRNA

from about 10−100 cells. Each spot is associated with a unique coordinate representing its spatial location in

the tissue. Like scRNA-seq, STRNA-seq data also has very low coverage per spot, about .15X corresponding

to about 80% zero entries, so analysis of STRNA-seq data poses similar challenges to scRNA-seq.

Another spatial mRNA quantification approach developed at roughly the same time is called seqFISH (se-

quential fluorescence in situ hybridization). In this technology, fluorescently labelled probes are hybridized
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and then removed from complementary transcripts and the fluorescence of each cell is recorded. This tech-

nology allows for single-cell resolution of spatial transcriptional patterns, but is limited by in the number of

genes that can be profiled per cell. Cells contain so many mRNA transcripts that only small proportion of

genes (about 100−1000) can be accurately measured due to optical crowding [20]. Recent improvements to

the seqFISH protocol have demonstrated the ability to resolve up to 10,000 genes by increasing the number

of color channels from five to 60 "pseudocolors" [19]. This technology is called seqFish+ and it potentially

offers a breakthrough in spatial mRNA quantification technologies due to its ability to capture mRNA expres-

sion at single-cell resolution with relatively high accuracy. However, there have currently been no published

studies using seqFISH+ besides the original publication [19] while there have been many studies using the

STRNA-seq technology [21, 22, 24, 125], so time will tell whether cost, ease of use, and momentum drive

STRNA-seq or seqFISH+ to be the dominant technology for spatial mRNA profiling.

1.1.3 Using sequencing for personalized cancer diagnosis and treatment

The applications of DNA and RNA sequencing are numerous and varied. In this dissertation we will mainly

focus on applications of these technologies to cancer and how they can be used to improve our understanding

of tumor heterogeneity and give insights into cancer prognosis and treatment. Cancer is a disease charac-

terized by the accumulation of deleterious mutations which cause cancer cells to divide uncontrollably and

spread throughout the body. Some of these mutations are point mutations called single nucleotide variants

(SNVs) which occur when a single nucleotide is changed. Most SNVs have no effect but some can alter the

function of a protein which can lead to an increase in cell division or a disruption of cell-cycle checkpoints.

Other mutations are called genomic rearrangements or structural variants. These are mutations that involve

structural changes to the genome and include deletions, the removal of one or more nucleotides, insertions,

the addition of one or more nucleotides (often duplicated from another location in the genome), and inver-

sions, which change the orientation of a genomic segment. Collectively, structural variants affect a larger

portion of the human genome than single nucleotide variants [84]. Inherited germline structural variants

have been implicated in several diseases including Crohn’s disease, rheumatoid arthritis, Type I diabetes, and

autism [83, 89, 100]. In addition, somatic structural variants are common in cancer genomes [72, 86]. These

include deletions of tumor suppressor genes and amplifications of oncogenes which can promote aggressive

cell growth and drive the development of cancer. Cancer genomes can also undergo dramatic rearrangement

events such as chromothripsis, the shattering and random repair of chromosomes in a single catastrophic

event [95], or chromoplexy [68], both of which result in a large number of complex structural variants in a
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cancer genome.

The identification of structural variants from high-throughput DNA sequencing data is generally more

challenging than the identification of single nucleotide variants. This difficulty is primarily a result of the

fact that many structural variants are significantly longer than the DNA sequence reads produced by second

generation DNA sequencing technologies, whose fragment sizes are ~300-500 nucleotides. In addition, such

reads are too short for de novo genome assembly. Thus, structural variants are inferred from atypical, or

aberrant, alignments of reads to a reference genome.

Numerous methods have been developed over the past several years to identify different types of structural

variants from paired-end whole-genome DNA sequencing. Most of these methods rely on first aligning the

paired-end reads to the human reference genome and then looking for two signals: erroneously mapped reads

and changes in read depth. Erroneously mapped reads include discordant read-pairs, where a pair of reads

align too close, too far, or with the opposite orientation of what would be expected. These discordant read-

pairs indicate that the reference genome and cancer genome to not match at genomic region between these

read pairs. Split reads are another example of erroneously mapped reads, where a read has no continuous

alignment to the reference genome but rather has at least two partial alignments. Both discordant read pairs

and split reads are signatures of a novel adjacency in the cancer genome; that is, two intervals that are

non-adjacent in the reference genome are adjacent in a cancer genome. Change in read depth is another

signal of a subset of structural variants called copy number aberrations (CNAs). These include deletions

and amplifications where a DNA segment is either removed or added, resulting in fewer or more read-pairs

mapping to that region respectively.

Extensive work has gone in to identifying novel adjacencies and copy number aberrations from whole-

genome DNA sequencing data of cancer data. Methods that utilize discorded paired reads and split reads

include: BreakDancer [71], GASV [90], VariationHunter [75], Pindel [102], DELLY [85], and LUMPY [80];

many others are reviewed in [97]. Methods that use read depth to identify CNAs include BIC-Seq [101],

CNVnator [66], and TITAN [111]. Other methods, such as GASVPro [92] and SV-Bay [78] combine signals

from discordant read-pairs and read depth signals to identify structural variants. These methods are limited

by the fact that many structural variants are significantly longer than the DNA sequence reads produced

by second generation DNA sequencing technologies, causing some structural variants to not be reported by

these methods. As described earlier, third-generation sequencing technologies can overcome this limitation,

however current long-read technologies Oxford Nanopore and PacBio are often not used clinically due to

their high cost and high error rate. However, linked-read sequencing is roughly the same cost and error rate
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as paired-end sequencing, so it offers an attractive option when it comes to discovery of structural variants

due to the addition of long-range information which can span many large-scale structural variants.

In addition to uncovering mutations underlying cancer development, much can be gleaned from studying

the transcriptional profiles of tumors. Microarray and bulk RNA-seq have long been used to identify gene

signatures, sets of genes with significant differences in expression specific to certain cancer types, subtypes,

or responses to treatment. These gene signatures have been used to diagnose patients [11] as well as to

determine which treatments are most appropriate for an individual patient [12, 13], and to predict prognosis

or recurrence of cancer after treatment [14, 15]. These gene signatures are one of the initial applications of

personalized medicine, where a patient’s unique gene expression signature is used to tailor treatment.

However, gene signatures from bulk microarray or RNA sequencing are limited in their diagnostic and

prognostic power due to heterogeneity within a tumor. Tumor heterogeneity refers to the existence of sub-

populations of cells with distinct genotypes and phenotypes. These subpopulations, called clones or sub-

clones, may have drastically different phenotypes and even a small subpopulation of highly malignant or

drug-resistant cells can result in poor prognosis. If tumors containing drug-resistant subclones are treated

with that drug, the resistant subclone, which is often highly malignant, will become dominant, resulting in

worse prognosis than before treatment [10].

Single cell RNA-seq (scRNA-seq) and spatial transcriptomics (STRNA-seq) technologies can help un-

cover this tumor heterogeneity and lead to better personalized diagnostic and treatment options. Heterogene-

ity is typically first classified by clustering the cells (or spots in the case of STRNA-seq) and classifying the

clusters into cell types and cell states based on genes which are differentially expressed between the clusters.

Several methods have been developed to cluster scRNA-seq data, including BISCUIT [146], CIDR [170], and

SC3 [9]. Standard linear regression methods such as limma [7] and DESeq [8] are typically used to determine

differentially expressed genes between clusters. STRNA-seq provides the ability to not only profile tumor

heterogeneity in gene expression but to understand the spatial landscape of a tumor tissue. This spatial land-

scape is important. For example, cells on the outside of the tissue are more susceptible to treatment, while

cells at the center are more protected. Several methods have been developed to use this spatial information

to identify spatially distributed differentially expressed genes. These include SpatialDE [123] and Spatial

Variance Component Analysis (SVCA) [139].
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1.2 Contributions

We have introduced several high-dimensional sequencing methods: linked-read DNA sequencing, single

cell RNA sequencing (scRNA-seq), and spatial transcriptomics (STRNA-seq). Each of these sequencing

technologies offer attractive opportunities to understand cell biology, and specifically cancer biology, with

unprecedented precision. However, each of these technologies suffer from low-coverage, which limits the

applicability of existing methods. Linked-read sequencing data has low-coverage per molecule, with about

0.1X coverage on average. scRNA-seq data has low-coverage of each cell, with about 90% of genes having

zero counts. Similarly, STRNA-seq data has low-coverage per spot, with about 80% of genes having zero

counts.

This motivates the need for analysis methods designed specifically for these technologies, which can

make use of the benefits of high-dimensional data and overcome the negative effect of low-coverage. To

address this need, we have developed three methods for these three sequencing technologies which utilize

known dependencies to improve the analysis and interpretation of sparse high-dimensional sequencing data.

We first introduce a matrix factorization method netNMF-sc, which makes use of known correlations in

expression between gene pairs obtained from prior RNA-seq and microarray experiments. By incorporating

gene-gene correlations from prior experiments in the form of a gene coexpression network, netNMF-sc is

able to accurately recover cell clusters from scRNA-seq data.

We next introduce our method STCNA which uses prior knowledge of gene and spot dependencies to

infer copy number aberrations (CNAs) from spatial transcriptomics RNA-seq (STRNA-seq) data. Unlike

netNMF-sc, the prior knowledge of these dependencies comes directly from the dataset of interest. This is

ideal because this information will always be available for any STRNA-seq experiment of any organism,

whereas there may be limited prior knowledge available from rarely studied organisms/tissues for use with

netNMF-sc. To our knowledge, STCNA is the first method which incorporates spatial information to infer

CNAs from STRNA-seq data.

Finally, we introduce our method NAIBR which infers novel adjacencies created by structural variants

in a tumor genome from linked-read sequencing data. Linked-read sequencing data consists of barcoded

paired-end reads which originate from long molecules ∼ 50Kb in length. The probability of a paired-end

read originating from a molecule that spans a novel adjacency is dependent on paired-end reads of other

molecules sharing the same barcode. NAIBR incorporates these dependencies into a probabilistic model to

infer the most likely set of novel adjacencies in the data. We show that by incorporating these dependencies,
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NAIBR outperforms other methods at recovering validated novel adjacencies from tumor genomes.



Chapter 2

netNMF-sc: Leveraging gene-gene

interactions for imputation and

dimensionality reduction in single-cell

expression analysis

Abstract

Single-cell RNA-sequencing (scRNA-seq) enables high throughput measurement of RNA expression in sin-

gle cells. However, due to technical limitations, scRNA-seq data often contain zero counts for many tran-

scripts in individual cells. These zero counts, or dropout events, complicate the analysis of scRNA-seq data

using standard methods developed for bulk RNA-seq data. Current scRNA-seq analysis methods typically

overcome dropout by combining information across cells in a lower dimensional space, leveraging the obser-

vation that cells generally occupy a small number of RNA expression states. We introduce netNMF-sc, an

algorithm for scRNA-seq analysis that leverages information across both cells and genes. netNMF-sc learns a

low-dimensional representation of scRNA-seq transcript counts using network-regularized non-negative ma-

trix factorization. The network regularization takes advantage of prior knowledge of gene-gene interactions,

9
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encouraging pairs of genes with known interactions to be nearby each other in the low-dimensional repre-

sentation. The resulting matrix factorization imputes gene abundance for both zero and non-zero counts and

can be used to cluster cells into meaningful subpopulations. We show that netNMF-sc outperforms existing

methods at clustering cells and estimating gene-gene covariance using both simulated and real scRNA-seq

data, with increasing advantages at higher dropout rates (e.g., above 60%). We also show that the results from

netNMF-sc are robust to variation in the input network, with more representative networks leading to greater

performance gains.

2.1 Introduction

Single-cell RNA-sequencing (scRNA-seq) technologies provide the ability to measure gene expression within

and among organisms, tissues, and disease states at the resolution of a single cell. These technologies combine

high-throughput single-cell isolation techniques with second-generation sequencing, enabling the measure-

ment of gene expression in hundreds to thousands of cells in a single experiment. This capability overcomes

the limitations of microarray and RNA-seq technologies, which measure the average expression in a bulk

sample, and thus have limited ability to quantify gene expression in individual cells or subpopulations of

cells present in low proportion in the sample [184].

The advantages of scRNA-seq are tempered by undersampling of transcript counts in single cells due to

inefficient RNA capture and low numbers of reads per cell. The result of scRNA-seq is a gene × cell matrix

of transcript counts containing many dropout events that occur when no reads from a gene are measured

in a cell, even though the gene is expressed in the cell. The frequency of dropout events depends on the

sequencing protocol and depth of sequencing. Cell-capture technologies, such as Fluidigm C1, sequence

hundreds of cells with high coverage (1-2 million reads) per cell, resulting in dropout rates ≈ 20− 40%

[193]. Microfluidic scRNA-seq technologies, such as 10x Genomics Chromium platform, Drop-Seq, and

inDrops sequence thousands of cells with low coverage (1K-200K reads) per cell, resulting in higher dropout

rates, up to 90% [194]. Furthermore, transcripts are not dropped out uniformly at random, but in proportion

to their true expression levels in that cell.

In recent years, multiple methods have been introduced to analyze scRNA-seq data in the presence

of dropout events. The first three steps that constitute most scRNA-seq pipelines are: (1) imputation of

dropout events; (2) dimensionality reduction to identify lower-dimensional representations that explain most

of the variance in the data; (3) clustering to group cells with similar expression. Imputation methods include
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Figure 2.1: Overview of netNMF-sc. Inputs to netNMF-sc are: a transcript count matrix X from scRNA-seq
and a gene coexpression network. netNMF-sc factors X into two lower-dimensional matrices, a gene matrix
W and a cell matrix H, using the network to constrain the factorization. The product matrix X̂ = WH imputes
dropped out values in the transcript count matrix X. H is useful for clustering and visualizing cells in lower-
dimensional space while WH is useful for downstream analysis such as quantifying gene-gene correlations.

MAGIC [182], a Markov affinity-based graph method, scImpute [168], a method that distinguishes dropout

events from true zeros using dropout probabilities estimated by a mixture model, and SAVER [160], a method

that uses gene-gene relationships to infer the expression values for each gene across cells. Dimensionality re-

duction methods include ZIFA [175], a method that uses a zero-inflated factor analysis model, SIMLR [183],

a method that uses kernel based similarity learning, and two matrix factorization methods, pCMF [151] and

scNBMF [179], which use a gamma-Poisson and negative binomial model factor model respectively. Clus-

tering methods include BISCUIT, which uses a Dirichlet process mixture model to perform both imputation

and clustering [146], and CIDR, which uses principal coordinate analysis to cluster and impute cells [170].

Other methods, such as Scanorama, attempt to overcome limitations of scRNA-seq by merging data across

multiple experiments [158].

We introduce a new method, netNMF-sc, which leverages prior information in the form of a gene co-

expression or physical interaction network during imputation and dimensionality reduction of scRNA-seq

data. netNMF-sc uses network-regularized non-negative matrix factorization (NMF) to factor the transcript

count matrix into two low-dimensional matrices: a gene matrix and a cell matrix. The network regularization

encourages two genes connected in the network to have a similar representation in the low-dimensional gene

matrix, recovering structure that was obscured by dropout in the transcript count matrix. The resulting matrix

factors can be used to cluster cells and impute values for dropout events. While netNMF-sc may use any

type of network as prior information, a particularly promising approach is to leverage tissue-specific gene

coexpression networks derived from earlier RNA-seq and microarray studies of bulk tissue, and recorded in
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large databases such as COXPRESdb [174], COEXPEDIA [188], GeneSigDB [149], and others [166, 186].

netNMF-sc provides a flexible and robust approach for incorporating prior information about genes in impu-

tation and dimensionality reduction of scRNA-seq data.

2.2 Results

2.2.1 netNMF-sc algorithm

Let X ∈ Rm×n be a matrix of transcript counts from an scRNA-seq experiment for m transcripts and n single

cells. It has been observed that the majority of variation in transcript counts is explained by a small number

of gene expression signatures that represent cell types or cell states. Since X is a non-negative matrix, non-

negative matrix factorization (NMF) [165] can be used to find a lower dimensional representation. NMF

factors X into an m×d gene matrix W and a d×n cell matrix H, where d� m,n, and the elements of both

W and H are non-negative. We formulate this factorization as a minimization problem,

min
W≥0,H≥0

∑
i, j

(
xi j log

xi j

WH|i j
− xi j +WH|i j

)
, (2.1)

where ≥ indicates non-negative matrices whose entries are ≥ 0.

The original NMF publication [165] proposed two cost functions to measure the difference between X

and WH: the Kullback-Leibler (KL) divergence given above and the Euclidean distance, ||X−WH||2. We

use KL divergence because it is equivalent to maximizing the likelihood of the Poisson model xi j ∼ Pois(x̂i j),

where X̂ = WH [152]. The Poisson distribution [181] and the negative binomial distribution [157, 180]

without zero inflation have been shown to provide a good fit for droplet-based transcript (UMI) count data.

The Poisson model can be applied directly to transcript count matrices, eliminating the need to log-transform

the transcript counts to better fit a Gaussian distribution [168, 176].

Log-transformation has been shown to introduce bias transcript in count data [157, 181]. Due to high

dropout rates and other sources of variability in scRNA-seq data, the direct application of NMF to the tran-

script count matrix X may lead to components of W and H that primarily reflect technical artifacts rather than

biological variation in the data. For example, [153] observe that the number of dropped out transcripts in a

cell is the primary source of variation in several scRNA-seq experiments.

To reduce the effect of technical artifacts on the factorization, we propose to combine information across

transcripts using prior knowledge in the form of a gene-gene interaction network. We incorporate network
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information using graph regularized NMF [148] which includes a regularization term to constrain W based

on prior knowledge of gene coexpression. The resulting method, netNMF-sc, performs matrix factorization

by solving the following optimization problem:

min
W≥0,H≥0

∑
i, j

(
xi j log

xi j

WH|i j
− xi j +WH|i j

)
+λTr(WT LW), (2.2)

where λ is a positive real constant, L is the Laplacian matrix of the gene-gene interaction network, and Tr(·)

indicates the trace of the matrix.

netNMF-sc uses the resulting matrix H to cluster cells, and the product matrix X̂ = WH to impute values

in the transcript count matrix X, including dropout events (Fig 1).

We also derive a formulation of netNMF-sc with the Euclidean distance cost function ||X−WH||2 (Sec-

tion 2.3.2), which is useful for (log-transformed) data with zero-inflation; e.g., read count data lacking UMIs.

We show that netNMF-sc with the Euclidean distance cost function has similar clustering performance (ARI)

to netNMF-sc with the KL divergence cost function on read count data from [147] (Fig 2.2A-D).

We select the regularization parameter λ as well as the dimension d of the factor via holdout validation

(see Section 2.3.4 and Fig 2.3).

2.2.2 Evaluation on simulated data

We compared netNMF-sc and several other methods for scRNA-seq analysis on a simulated dataset contain-

ing 5000 genes and 1000 cells and consisting of 6 clusters with 300, 250, 200, 100, 100, and 50 cells per

cluster respectively. We generated this data using a modified version of the SPLATTER simulator [189], mod-

eling gene-gene correlations using a gene coexpression network from [188]. We simulated dropout events

using one of two models: a multinomial dropout model [171, 192] and a double exponential dropout model

[146, 168]. Further details are in Methods.

We compared the performance of netNMF-sc to PCA, scNBMF, MAGIC, scImpute, and NMF at dropout

rates ranging from 0 (no dropout) to 0.80 (80% of the values in the data are zero), using 20 simulated datasets

for each dropout rate. We clustered the output from each method using k-means clustering with k = 6 to match

the number of simulated clusters (See Section 2.3.6 for more details on clustering). We selected d = 10 for

NMF, scNBMF, and netNMF-sc and λ = 10 for netNMF-sc based on holdout validation (see Section 2.3.4).

For netNMF-sc, we used a randomly selected subnetwork S = (VS,ES) of the same gene coexpression

network G = (V,E) [188] used to create the simulated data (see Section 4.4). This is intended as a positive
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Figure 2.2: A) Clustering performance of NMF and netNMF-sc on scRNA-seq of 182 cells from [147] with
Euclidean (Euc) and KL divergence cost functions, and k-means clustering with k = 3. The factor matrices
W and H are randomly initialized by sampling i.i.d from the standard normal distribution, taking the absolute
value of each entry to ensure non-negativity. The result that minimizes the netNMF-sc objective value across
10 random initializations is displayed. B) Variance in clustering performance across 10 initializations of
NMF or netNMF-sc. C) Clustering performance of NMF and netNMF-sc with Euclidean and KL divergence
distance functions clustered with k-means. For each initialization, the k which produces the highest silhouette
score within the range 2≤ k≤ 20 is selected. D) Variance in clustering performance across 10 initializations
of NMF or netNMF-sc with k selected using silhouette score.

B)                Selection of with cross-validationA)                  Selection of d with cross-validation �

�d Regularization parameter

Figure 2.3: A) RMSE between held-out entries of X and corresponding imputed entries of WH on simulated
data. Here d = 10 has the lowest root mean squared error. B) RMSE between held-out entries of X and
corresponding imputed entries of WH with d = 10. Here λ = 10 has the lowest RMSE.
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Figure 2.5: Root mean square error (RMSE) on simulated data using the multinomial dropout model.
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Figure 2.6: t-SNE projections of imputed simulated data with 5 simulated cell clusters.
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Figure 2.7: Clustering performance of netNMF-sc run on simulated data with 5000 genes, 1000 cells, and 6
clusters. Dropout was simulated using the multinomial dropout model with a dropout rate of 0.7. The x-axis
measures the number of random edges added to the original graph G = (V,E), where the number of random
edges is x|E|. The red line shows the performance of NMF on the same data.
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Figure 2.8: Comparison of netNMF-sc and other methods on clustering and imputation for a simulated
scRNA-seq dataset containing 1000 cells and 5000 genes, with dropout simulated using a double exponential
model. (A) Clustering results for several scRNA-seq methods on simulated data with different dropout rates.
(B) Imputation results with different dropout rates.

control, to demonstrate the benefit of netNMF-sc when a highly informative network is available. We note

that while S may correlate more strongly with the underlying coexpression structure of the data than we

would expect from biological datasets, the edges in S do not perfectly correspond to coexpressed genes in the

simulated data. This is due to the fact that only a subset of genes from S are differentially expressed in the

simulated data and some pairs of differentially expressed genes in the simulated data are not represented by

an edge in S. When we compare the correlation matrix of the simulated data to S, we observe 317 gene pairs

with R2 ≥ 0.5 are captured by edges in S while 828 gene pairs with R2 ≥ 0.5 are not.

We found that the clusters identified using netNMF-sc across all dropout rates had higher overlap with

true clusters compared to the clusters identified using other methods (Fig 2A). The improvement for netNMF-

sc was especially pronounced at higher dropout rates; for example, at a dropout rate of 0.7, netNMF-sc had

adjusted Rand index (ARI) = 0.78, compared to 0.47 for the next best performing method, NMF. We observe

a similar improvement in clustering performance using the double exponential dropout model (Fig 2.8A-B).

At a dropout rate of 0.7, netNMF-sc had ARI = 0.79, compared to 0.41 for the next best performing method,

scImpute (Fig 2.8A).

We compared the performance of netNMF-sc and other methods on the task of imputation by computing

the root mean squared error (RMSE) between X′, the simulated transcript count matrix before dropout, and

the imputed matrix X̂ = WH. We first compute RMSE0, the RMSE between X′ and the imputed matrix X̂

restricted to entries where dropout events were simulated. At low dropout rates (< 0.25), netNMF-sc had

similar RMSE0 as other methods, but at higher dropout rates netNMF-sc had lower values of RMSE0 (Fig



18

2B). For example, at a dropout rate of 0.7, netNMF-sc had RMSE0 = 4.8 compared to 7.4 for the next

best performing method, NMF (Fig 2B). Similar results were observed on data simulated using the double

exponential dropout model. At a dropout rate of 0.7, netNMF-sc had RMSE0 = 8.3, slightly above MAGIC

(RMSE0 = 7.9) but substantially better than NMF (RMSE0 = 15.9) and scImpute (RMSE0 = 18.3). When we

compute the RMSE between all entries of the transcript count matrix, scImpute outperforms other methods

at low dropout rates (< 0.25) because scImpute does not attempt to impute non-zero counts. However,

at dropout rates above 0.6, netNMF-sc has the lowest RMSE (Fig 2.5). Additionally, we investigated the

contribution of the input network to the performance of netNMF-sc. We found that the addition of up to 70%

random edges did not have a large effect on the performance (Fig 2.7).

2.2.3 Evaluation on cell clustering

We compared netNMF-sc and other scRNA-seq methods in their ability to cluster cells into meaningful cell

types using three scRNA-seq datasets. For all datasets, we normalized the transcript count matrices following

[191] to reduce the effect of differences in the library size, or total number of transcripts sequenced in each

cell (Section 2.3.5). We used the normalized count data for all methods except PCA and scImpute. For these

two methods we applied a log-transformation (log2(X+ 1)) to the transcript count matrix as these methods

assume the data were generated from a Gaussian distribution.

The first dataset contains 182 mouse embryonic stem cells (mESCs) that were flow sorted into one of three

cell cycle phases: G, S, and G2/M and sequenced using the Fluidigm C1 platform combined with Illumina

sequencing [147]. The data contain 9571 genes and a zero-proportion of 0.41. We computed cell clusters for

each method as described in Section 2.3.6. We ran NMF, scNBMF, and netNMF-sc with d = 5 dimensions, a

value selected via holdout validation. For netNMF-sc, we used a network from the ESCAPE database [187]

which contains 153,920 protein-mRNA regulatory interactions from mESCs, with edge weights of 1 for

positive correlations and−1 for negative correlations. We selected λ = 5 via holdout validation. For PCA we

used the top 136 principal components, which explained 90% of the variance. We compared the cell clusters

obtained by running each method followed by k-means clustering on the low-dimensional representation,

using both the true cluster number k = 3 as well as the value k that produced the highest silhouette score in

the range 2≤ k ≤ 20. We also ran Phenograph [167], a graph clustering method, but found that performance

was similar or worse than k-means for all methods (Fig 2.9A-D). We found that netNMF-sc outperformed

other methods at clustering cells into the three cell cycle stages with an adjusted Rand index (ARI) = 0.84

compared to 0.24 for MAGIC and 0.37 for scImpute (Fig 3A-B). Note that while MAGIC did not perform as
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Figure 2.9: Clustering results on the mouse embryonic stem cell (mESC) dataset from [147], which has 3
clusters of cell determined by flow-sorting according to 3 cell cycle stages. (A) k-means clustering results for
k = 3. (B) k-means clustering results for the value k that produced the highest silhouette score in the range
2≤ k ≤ 20 for each method. (C) Phenograph clustering results. (D) t-SNE projections of k-means clustering
results for k = 3.

well as netNMF-sc in clustering the cells into distinct cell cycle phases, it did identify a trajectory between the

phases of the cell cycle, which may be biologically meaningful. However, MAGIC also identified a trajectory

between clusters in the simulated data above although no trajectory was present (Fig 2.6).
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To quantify the contribution of the network to the performance of netNMF-sc, we ran netNMF-sc with

three additional networks: a generic gene coexpression network from COEXPEDIA [188], a k-nearest neigh-

bors network (KNN), and a random network with the same degree distribution as the ESCAPE network. The

k-nearest neighbors network was constructed by placing an edge between the ten nearest neighbors of each

gene in the input data matrix X, based on Euclidean distance (see Section S6 for more details). We found that

the ESCAPE coexpression network gave the best performance, with an ARI of 0.84 compared to 0.76 for

COEXPEDIA, 0.68 for KNN, 0.63 for the random network, and 0.60 for NMF (Fig 2.17A-B). This result is

consistent with the fact that the ESCAPE network was constructed using the same cell type as the scRNA-seq

data, mESCs, while the COEXPEDIA network was constructed using cells from many different cell types.

This demonstrates the benefit of prior knowledge that is matched to the cell types in the scRNA-seq data.

We note that netNMF-sc with any of the networks outperformed NMF, although the difference for the ran-

dom network was negligible, suggesting that some of the advantage of netNMF-sc may be due to enforcing

sparsity on W.

The second dataset, from [190], contains 3005 mouse brain cells from 9 cell types sequenced with the

STRT-seq (single-cell tagged reverse transcription) protocol. The data contain 8,345 genes and a zero-

proportion of 0.60. For netNMF-sc we used a gene coexpression network from [173] containing 157,306

gene-gene correlations across brain cell types (astrocytes, neurons, endothelial cells, microglia, and oligo-

dendrodytes), and selected λ = 1 via holdout validation. NMF, scNBMF, and netNMF-sc were run with

d = 30 dimensions, selected via holdout validation. For PCA we used the top 82 principal components,

which explained 90% of the variance. For each method we ran k-means with k = 9. We found that netNMF-

sc outperformed other methods with an ARI = 0.82 compared to the next best performing methods NMF and

MAGIC with ARIs = 0.72 and 0.71 respectively (Fig 3C-D). netNMF-sc also outperformed other methods

with k selected using the silhouette score as well as using the clustering method Phenograph, with scNBMF

performing second-best (Fig 2.10A-D).
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Figure 2.10: Clustering results on brain cell dataset from [190] who identified 9 cell types. (A) k-means
clustering results for k = 9. (B) k-means clustering results for the value k that produced the highest silhouette
score in the range 2 ≤ k ≤ 20 for each method. (C) Phenograph clustering results. (D) t-SNE projections of
k-means clustering results for k = 9.
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The third dataset contains 2022 brain cells from an E18 mouse sequenced using 10x Genomics scRNA-

seq platform (https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.

1.0/neurons_2000). The data contain 13,509 genes with transcript counts ≥ 10 and a zero proportion

of 0.84. Since this dataset does not have known cell clusters, we compare the cell clusters computed by each

method with the 16 brain cell types reported in a separate 10x Genomics scRNA-seq dataset of 1.3 million

cells from the forebrains of two different E18 mice that was analyzed using bigSCale [161], a framework for

analyzing large-scale transcript count data. For netNMF-sc, we used a gene coexpression network from [173]

containing 157,306 gene-gene correlations across brain cell types (astrocytes, neurons, endothelial cells, mi-

croglia, and oligodendrodytes) and selected λ = 50 via holdout validation. NMF and netNMF-sc were run

with d = 20 dimensions, selected via holdout validation. For PCA we used the top 372 principal components,

which explained 90% of the variance. We used k = 16 in k-means clustering to match the number of brain cell

types reported in bigSCale. We matched the cell clusters output by each method to the 16 cell types reported

in bigSCale as follows. We computed the overlap between the top 200 over-expressed genes in each cluster

(calculated with a one-sided t-test between cells in and out of the cluster) and the published marker genes for

each of the 16 cell types, and selected the cell type with the lowest p-value of overlap (Fisher’s exact test). If

the cluster was not enriched for any cell type with Bonferroni-corrected p < 0.05 then we marked the cluster

as unclassified.

While the true class assignment for each cell is unknown, both scRNA-seq datasets were generated from

the forebrains of E18 mice, and thus we expect that the proportions of each cell type should be similar across

both datasets. We found that the proportions of each cell type identified by netNMF-sc (Fig 4E) were the

closest (many within 2%) to the proportions reported by [161] (Fig 4F). In both cases, the cell type with the

largest proportion is glutamatergic neurons, followed by interneurons and then radial glia and post-mitotic

neuroblasts. Other cell types, such as dividing GABAergic progenitors and Cajal–Retzius neurons, were

found in smaller proportions. In contrast, MAGIC (Fig 4B) finds a large population (13%) of Cajal–Retzius

neurons, while scImpute (Fig 4C) finds a large population (18%) of dividing GABAergic progenitor cells –

both proportions more than 3-fold greater than in bigSCale or netNMF-sc. Clusters computed from PCA (Fig

4A) and from NMF (Fig 4D) also differed substantially from the proportions reported in bigSCale (Fig 4F);

for example, the proportion of post-mitotic neuroblasts was 0% in PCA, 20% in NMF, but 10% in bigSCale.

We found that the number of unclassified cells varied substantially across the methods. Clusters computed

from scImpute and netNMF-sc had no unclassified cells while PCA, MAGIC, and NMF had 10%, 25%, and

1% of cells unclassified, respectively.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_2000
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_2000
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We further examined the smallest cell cluster identified by netNMF-sc, containing only 14 cells. This

cluster was enriched (p ≤ 2.2× 10−16) for microglia marker genes reported by bigSCale, including well-

studied marker genes such as Csf1r, Olfml3, and P2ry12 [185]. These 14 cells represented 0.7% of the 2022

sequenced cells, closely matching the proportion of microglia reported by bigScale (1%). NMF and MAGIC

also identified clusters of microglia cells, but the differentially expressed genes in these clusters were less

enriched for microglia marker genes (p ≤ 4.1× 10−13 and p ≤ 5.5× 10−3, respectively). The NMF cluster

contained 65 cells but did not include any of the 14 cells classified as microglia by netNMF-sc. In addition,

these 65 cells were equally enriched for erythrocyte marker genes (p ≤ 3.2× 10−11). The MAGIC cluster

contained 174 cells, a much larger proportion (9%) of the cell population than the 1% reported by bigSCale.

This cluster included the 14 microglia identified by netNMF-sc but also 160 other cells. The additional 160

cells present in the cluster were not enriched for microglia marker genes (p≤ 1.2×10−1) but were enriched

for glutamatergic marker genes (p ≤ 1.5× 10−2). This suggests that MAGIC erroneously grouped together

different types of cells.

We found 436 genes were differentially expressed between the 14 microglia identified by netNMF-sc

and the other 2008 cells (FDR ≤ 0.01). All 50 microglia marker genes from bigScale were included in

this set, including the two most highly differentially expressed genes Cc14 (fold change 12.5) and C1qc

(fold change 8.7). Of the top 20 differentially expressed genes identified in the netNMF-sc microglial cells,

several were reported in other studies as microglia genes [178] but not bigScale; these include Hexb (fold

change 7.8) and Lgmn (fold change 5.8). Several potential novel marker genes were in the 20 differentially

expressed genes, including Cstdc5 (fold change 4.5) and Stfa1 (fold change 4.2). These results suggest that

netNMF-sc improves clustering of cells into biologically meaningful cell types from scRNA-seq data with

high dropout – even when the cell type is represented by only a small number (< 20) of cells – and facilitates

the identification of potentially novel marker genes.

2.2.4 Recovering marker genes and gene-gene correlations from cell cycle data

Finally, we investigated how well each method recovers differentially expressed marker genes and gene-

gene correlations from scRNA-seq data. First, we examined cell cycle marker genes. We obtained a set

of 67 periodic marker genes whose expression has been shown to vary over the cell cycle across multiple

cell types [150]. This set contains 16 genes with peak expression in G1/S phase and 51 genes with peak

expression during G2/M phase. We expect to observe a significant number of these periodic genes amongst

the top differentially expressed genes between G1/S phase and G2/M phase cells in the cell cycle dataset
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Figure 2.11: (A) Adjusted Rand index (ARI) for cell clusters obtained by methods on mouse embryonic stem
cell (mESC) scRNA-seq data from [147], with cell cycle labels obtained by flow sorting. (B) 2D t-SNE
projections of cells in reduced dimensional space. (C) Clustering results on brain cell dataset from [190] into
9 cell types. (D) 2D t-SNE projections of cells in reduced dimensional space.
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from [147]. We compared the ranked list of differentially expressed genes from data imputed by netNMF-sc

to the ranked lists of differentially expressed genes from the untransformed data and data imputed NMF,

MAGIC, scImpute. We found that periodic genes ranked very highly in netNMF-sc results (p≤ 3.2×10−11,

Wilcoxon rank sum), an improvement compared to their ranking in the untransformed data (p≤ 4.5×10−3,

Wilcoxon rank sum, Fig 5A). In contrast, the data imputed with NMF, MAGIC, and scImpute resulted in

a lower ranking of the periodic genes (p ≥ 0.05, Wilcoxon rank sum). Additionally, we found that in data

imputed by MAGIC, some periodic genes had expression patterns that were out of phase with the cell cycle.

For example, Exo1, which peaks in G1/S phase, had lower expression in G1/S phase cells compared to G2/M

phase cells (p≤ 2.2×10−16, Wilcoxon rank sum) in MAGIC imputed data (Fig 5B). In contrast, the peak in

Exo1 expression during G1/S phase is observed in the results from netNMF-sc ( p≤ 6.7×10−12, Wilcoxon

rank sum), while Exo1 is not differentially expressed in the untransformed data (p ≤ 0.17, Wilcoxon rank

sum) (Fig 5B).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−40

−20

0

20

40

−30 −20 −10 0 10 20 30
tSNE1

tS
N
E2

● ●

● ●

● ●

● ●

Dividing_Cells Endothelial
Erythrocyte Glutamatergic_1
Glutamatergic_2 Interneuron
Progenitor Radial_gliaE) netNMF-scD) NMF

B) MAGIC C) scImputeA) PCA F) Cell type proportions

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

20

30

−25 0 25
tSNE1

tS
N
E2

● ●

● ●

● ●

● ●

Dividing_Cells Erythrocyte
Glutamatergic_1 Glutamatergic_2
Interneuron Progenitor
Radial_glia Unclassified

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−40

−20

0

20

−40 −20 0 20
tSNE1

tS
N
E2

● ●

● ●

● ●

● ●

●

Cajal−retizus_neurons Dividing_Cells
Erythrocyte Glutamatergic_1
Interneuron Microglia
Pericyte Progenitor
Unclassified

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−20

0

20

−40 −20 0 20 40
tSNE1

tS
N
E2

● ●

● ●

● ●

● ●

● ●

Dividing_Cells Endothelial
Erythrocyte Glutamatergic_1
Glutamatergic_2 Interneuron
Microglia Post−mitotic_neuroblasts
Progenitor Unclassified

Glutamatergic 1
Interneuron
Glutamatergic 2
Radial Glia
Post-mitotic neuroblasts
Intermediate progenitor
Dividing GABAergic
Pericyte
Cajal-Retizius neuron
Erythrocyte
Endothelial
Microglia
Unclassified
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Glutamatergic 1 39% 21% 39% 9% 23% 25%

Interneuron 26% 8% 15% 22% 17% 19%

Glutamatergic 2 0% 0% 0% 27% 15% 15%

Radial Glia 8% 0% 4% 0% 6% 11%

Post-mitotic 
neuroblasts 0% 0% 0% 20% 11% 10%

Intermediate 
progenitor 10% 6% 15% 7% 10% 9%

Dividing 
GABAergic 2% 7% 18% 6% 5% 4%

Pericyte 0% 4% 0% 0% 0% 2%

Cajal-Retizius
neuron 0% 13% 0% 0% 4% 2%

Erythrocyte 5% 7% 7% 5% 6% 1%

Endothelial 0% 0% 2% 1% 2% 1%

Microglia 0% 9% 0% 2% 1% 1%

Unclassified 10% 25% 0% 1% 0% 0%

Figure 2.12: (A-E) t-SNE projections of scRNA-seq data from 2022 brain cells from an E18 mouse. Colors
indicate cell types as derived in bigSCale analysis of 1.3 million E18 mouse brain cells [161]. (F) Proportions
of each cell type predicted by each method. Entries highlighted in blue are within 2% of the proportions from
bigSCale. Entries highlighted in orange differ by more than 10% from the proportions from bigSCale.

We also investigated whether each method could recover gene-gene correlations between periodic marker

genes in the cell cycle data. We expect pairs of periodic genes whose expression peaks during the same

phase of the cell cycle to be positively correlated and pairs of genes that peak during different phases to be

negatively correlated. Across all 2211 pairs of periodic marker genes, we found that the mean R2 was 0.54

for netNMF-sc, compared to 0.73 for MAGIC, 0.29 for NMF, 0.02 for scImpute and 0.03 for untransformed

data (Fig 5C). Setting a stringent cutoff for significant correlation (R2 ≥ 0.8, p ≤ 2.2× 10−16), we found
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that 15% of the pairs of periodic genes were correlated in data imputed by netNMF-sc compared to 68%

in data imputed by MAGIC, 0.8% in data imputed by NMF, and nearly 0% in data imputed by scImpute.

While the higher percentage of correlated gene pairs in MAGIC seems to be an advantage, the MAGIC-

imputed data also contained a number of cell cycle marker genes, such as Exo1, whose expression signature

was the opposite of expected. Such cases can result in incorrect correlations between pairs of marker genes.

For example, marker genes Exo1 and Dtl both peak during G1/S phase and are expected to be positively

correlated. However, MAGIC found negative correlation (R = −0.58, p ≤ 3.6× 10−16) between these two

genes. In contrast, netNMF-sc recovers the positive correlation (R = 0.56, p≤ 2.2×10−16), while scImpute

(R = 0.03, p≤ 0.66) and NMF (R = 0.06, p≤ 0.46) do not (Fig 5D).

Overall, we found that in the data imputed by MAGIC 19% of correlated periodic genes were correlated

in the opposite direction than expected; i.e., genes that peaked during the same phase were negatively cor-

related or genes which peaked during different phases were positively correlated. In contrast, in the data

imputed by netNMF-sc only 1% of the correlated periodic genes were correlated in the opposite direction

than expected (Table 1). These results from MAGIC may be explained by the fact that MAGIC introduces a

large number gene-gene correlations during imputation, many of which may be spurious, as was previously

reported by [160]. In fact, the majority (78%) of the gene pairs in the correlation matrix generated from data

imputed by MAGIC were correlated (R2 ≥ 0.8, p ≤ 2.2× 10−16), compared to only 0.2% in the correlation

matrix generated from data imputed by netNMF-sc and 0.005% in the correlation matrix generated from the

untransformed data (Table 1).

To examine whether these correlations identified by MAGIC and netNMF-sc represented real biologi-

cal signal, we ran both methods on permuted data where the transcript counts were permuted independently

in each cell. We found that 85% of the gene pairs were correlated (R2 ≥ 0.8, p ≤ 2.2× 10−16) in MAGIC

imputed data compared to only 0.2% of gene pairs in netNMF-sc imputed data (Table 1). This observation

suggests that many of the gene-gene correlations found in the MAGIC imputed cell cycle data may be spuri-

ous. Further investigation on simulated data suggests that such spurious correlations may be a consequence

of the small number of cells: we found that MAGIC imputed data had many correlations in transcript count

matrices with ∼ 200 cells but fewer correlations in imputed data with many (∼ 1000) cells (Fig 2.15). We

also observed the number of gene-gene correlations found by MAGIC on permuted data increased rapidly

with the diffusion parameter t before reaching a plateau (Fig 2.14B). In contrast, the number of gene-gene

correlations found by netNMF-sc on permuted data decreased as the number of latent dimensions d increased

(Fig 2.14A).
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Method

Fraction of 
gene pairs with 

correlation 
(R2≥.8) 

Fraction of periodic 
gene pairs with 

correlation (R2≥.8) 
in correct/incorrect 

orientation

Untransformed 1x10-5 0.00 / 0.00

MAGIC 0.78 0.49 / 0.19

scImpute 1x10-5 0.00 / 0.00

NMF 2x10-3 8x10-3 / 1x10-3

netNMF-sc 2x10-3 0.14 / 0.01

Bulk (COXPRESdb) 9x10-5 0.14 / 0.00

Permuted data 1x10-4 2x10-2 / 1x10-2

MAGIC on 
permuted data 0.85 0.40 / 0.39

netNMF-sc on 
permuted data 2x10-3 2x10-3 / 3x10-4

Table 2.1: Fraction of all pairs of genes and pairs of periodic genes (defined by [150]) with correlations
(R2 ≥ 0.8, p≤ 2.2×10−16, Student’s t-test) in the cell cycle dataset [147]. Correct orientation means that a
pair of genes with peak expression in the same stage of the cell cycle has positive correlation, and a pair of
genes with peak expression in different stages of the cell cycle has negative correlation. Grey rows denote
correlations on permuted data.

We performed a second analysis of differentially expressed marker genes and gene-gene correlations in

scRNA-seq data from the MAGIC publication [182] containing 7415 human transformed mammary epithe-

lial cells (HMLEs) which were induced to undergo epithelial to mesenchymal transition (EMT) and then

sequenced using the inDrops platform [163]. We assessed how well each method recovered differential ex-

pression of 16 canonical EMT marker genes from [154] (3 genes with high expression in epithelial (E) cells

and 13 genes with high expression in mesenchymal (M) cells). We found that the EMT marker genes ranked

highly in netNMF-sc results (p≤ 1.4×10−5, Wilcoxon rank sum), an improvement compared to their rank-

ing in the untransformed data (p ≤ 3.1× 10−3, Wilcoxon rank sum, Fig 2.18A). MAGIC was the second

best method, ranking EMT genes highly (p ≤ 1.1× 10−4, Wilcoxon rank sum) but below the performance

of netNMF-sc. We observed that in data imputed by MAGIC, the E marker gene TJP1 had higher average

expression in M cells than E cells (p≤ 2.2×10−16) (Fig 2.18B). This resulted in TJP1 being negatively corre-

lated (R =−0.57, p≤ 2.2×10−16) with another epithelial marker gene, CDH1 in the MAGIC imputed data.

In contrast, these E marker genes showed positive correlation (R = 0.66, p≤ 6.4×10−16) in the netNMF-sc
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imputed data and this correlation that was not apparent in the untransformed data (Fig 2.18C). We also in-

vestigated whether netNMF-sc could recover gene-gene correlations between EMT marker genes in E and M

cells. We expect that pairs of E or M genes would exhibit positive correlation, while pairs containing one E

and one M gene would exhibit negative correlations. In data imputed by netNMF-sc, 12% of the EMT gene

pairs were correlated (R2 ≥ 0.8, p ≤ 2.2× 10−16), with all gene pairs correlated in the expected orientation

(Fig 2.19). In data imputed by MAGIC, 23% of EMT gene pairs were correlated, but 5% were correlated in

the opposite direction than expected (Fig 2.18D).
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Figure 2.13: Comparison of differential expression of marker genes and gene-gene correlations in untrans-
formed data from [147] and data imputed using netNMF-sc, NMF, scImpute, and MAGIC. (A) Overlap
between differentially expressed genes and periodic genes (log p-values from Fisher’s exact test). (B) Ex-
pression of the G1/S phase marker gene Exo1 in cells labeled as G1/S (blue) and cells labeled as G2/M
(green) in data imputed by each method. In netNMF-sc imputed data, Exo1 is overexpressed in G1/S cells
compared to G2/M cells (p ≤ 6.7× 10−12), as expected. In contrast, in data imputed by MAGIC, Exo1 is
underexpressed in G1/S cells compared to G2/M cells (p ≤ 2.2× 10−16). Exo1 shows no difference in ex-
pression in untransformed and scImpute data. (C) Distribution of R2 correlation coefficients between pairs
of periodic genes in the cell cycle data. (D) Scatter plot of expression of two G1/S phase genes, Dtl and
Exo1, across cells. These genes are positively correlated in data imputed by netNMF-sc (p ≤ 2.2× 10−16),
negatively correlated in data imputed by MAGIC (p≤ 2.2×10−16), and uncorrelated in other methods.
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t=8 auto-selected by 
MAGIC

B) netNMF-sc on random data

t=7 auto-selected by 
MAGIC

A) netNMF-sc on permuted cell cycle data

d=10

d=10

Figure 2.14: (A) Average R2 correlation over gene pairs on permuted cell cycle data as a function of the
number d of dimensions in the matrix factorization from netNMF-sc. (B) Average R2 correlation over gene
pairs on permuted cell cycle data as a function of the diffusion operator, t, used by MAGIC (light blue
indicates standard deviation). t = 5 is auto-selected by MAGIC according to the Procrustes disparity of the
diffused data. (C) netNMF-sc run on random data drawn from N(2,2). (D) MAGIC run on random data
drawn from N(2,2).

Random expression matrices drawn from N(2,2) and imputed using MAGIC

Size 
(genes,cells) Mean R2 Percent significant 

correlations (R2 > 0.8) Auto-selected t

(10000,100) 0.997 0.997 5

(10000,200) 0.997 0.96 5

(10000,300) 0.73 0.60 21

(10000,400) 0.13 5x10-3 20

(10000,500) 0.16 7x10-3 21

(10000,1000) 0.08 1x10-3 19

(10000,2000) 0.07 1x10-3 20

Figure 2.15: Gene-gene correlations introduced by MAGIC on expression matrices simulated from a N(2,2)
distribution.
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Figure 2.16: Enrichment of the imputed count matrix WH (blue) and the raw count matrix X for edges in the
input network (ESCAPE).

2.2.5 Clustering on cell cycle data

To quantify the effect our choice of network has on the performance of netNMF-sc, we ran netNMF-sc

with two different external networks as well as a network containing randomized edges. The first network

is the previously described network obtained from the ESCAPE database [187]. The second network is

a generic gene-gene co-expression network which is the result of combining expression data from 2,486

mouse microarray experiments [188]. Next, we constructed a k-nearest neighbors network, constructed by

representing the 10 nearest neighbors of each gene in the input data matrix as edges with weight 1 in the

network. Finally, we constructed a randomized network that maintains the same node degree as the ESCAPE

network by performing the double_edge_swap procedure from the python library networkx.

We found that all networks besides the random network significantly improved clustering results com-

pared to NMF (Fig 2.17A-B), with the mESC-specific network obtained from the ESCAPE database per-

forming the best.

2.2.6 Recovering marker genes and gene-gene correlations from EMT data

Using a set of 16 canonical EMT marker genes (3 genes overexpressed in epithelial cells and 13 genes

overexpressed in mesenchymal cells) [154], we defined the set of all 120 gene pairs as our gold standard.

We note that this set includes several gene pairs not investigated in the MAGIC paper [? ]. To validate our

approach, we looked for positive correlations between pairs of mesenchymal or epithelial genes and negative

correlations between pairs containing one epithelial and one mesenchymal gene.

We clustered cells by CDH1 and VIM expression, two canonical marker genes for epithelial (CDH1)
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Figure 2.17: (A) Clustering results for cell cycle data from [147]. The result that minimizes the netNMF-sc
objective value across 10 random initializations is displayed. NMF is compared with netNMF-sc run with
different networks used as input. Coexpedia is a generic gene-gene co-expression network, ESCAPE is a
gene-gene co-expression network specific to mESCs, and KNN is a k-nearest neighbors network constructed
from the 10 nearest neighbors of each gene in the input data matrix. Random is a random network con-
structed to have the same number of edges and degree as the ESCAPE network. (B) Variance in clustering
performance across 10 random initializations.

and mesenchymal cells (VIM), respectively. We labeled the 200 cells with the highest CDH1 expression

epithelial and the 200 cells with the highest VIM expression mesenchymal. We compared the ranked list of

differentially expressed genes from data imputed by netNMF-sc to the ranked lists of differentially expressed

genes from the raw data and data imputed NMF, MAGIC, scImpute. We found that the EMT marker genes

ranked very highly in netNMF-sc results (p ≤ 1.4× 10−5, Wilcoxon rank sum), a significant improvement

compared to their ranking in the raw data (p ≤ 3.1× 10−3, Wilcoxon rank sum) (Fig 2.18(a)). In contrast,

the next best performing method MAGIC had a smaller improvement in the ranking of EMT marker genes

compared to the raw data (p≤ 1.1×10−4, Wilcoxon rank sum).

We observed that in data imputed by MAGIC, the E marker gene TJP1 had higher average expression

in M cells than E cells (p = 1.5× 10−33) (Fig 2.18(b)). This resulted in TJP1 being negatively correlated

(R = −0.57, p = 3.4×10−50) with another E marker gene, CDH1 in the MAGIC imputed data; in contrast,

these E marker genes showed positive correlation (R = 0.66, p = 6.4× 10−78) in the netNMF-sc imputed

data, correlation that was not apparent in the raw data (Fig 2.18(c)). We also investigated whether netNMF-sc

could recover gene-gene correlations between EMT marker genes in E and M cells. We expect that pairs

of E or M genes would exhibit positive correlation, while pairs containing one E and one M gene would

exhibit negative correlations. In data imputed by netNMF-sc, 12% of the EMT gene pairs were significantly

correlated (R2 ≥ 0.8, p ≤ 2.2× 10−16), with all gene pairs correlated in the expected orientation (Fig 2.19).
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Figure 2.18: Comparison of gene-gene correlations and differential gene expression in raw data from [182]
and data imputed using netNMF-sc, NMF, scImpute, and MAGIC. (A) Overlap between differentially ex-
pressed genes and EMT marker genes (log p-values from Fisher’s exact test). (B) Expression of the E marker
gene TJP1 in cells labeled as E (blue) and cells labeled as M (green) in data imputed by each method. In
netNMF-sc imputed data, TJP1 is overexpressed in E cells compared to M cells (p = 1.4× 10−12), as ex-
pected. In contrast, in data imputed by MAGIC, TJP1 is underexpressed in E cells compared to M cells
(p = 1.5× 10−33), and shows no significant difference in expression in raw and scImpute data. (C) Corre-
lation between pairs of periodic genes in cell cycle data. (D) Scatter plot of two E phase genes: CDH1 and
TJP1. The genes are positively correlated in data imputed by netNMF-sc (p = 6.3× 10−78) but negatively
correlated in data imputed by MAGIC (p = 3.4×10−50).

In data imputed by MAGIC, 23% of EMT gene pairs were significantly correlated, but 5% were correlated in

the opposite direction than expected (Fig 2.18(d)).
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Method
Gene pairs with 

significant (R2≥.8) 
correlation

Periodic gene pairs with 
significant (R2≥.8) 

correlation in 
correct/incorrect orientation

Raw 6e-8 0.00 / 0.00

MAGIC 0.05 0.18 / 0.05

scImpute 6e-8 0.00 / 0.00

NMF 0.02 0.06 / 0.00

netNMF-sc 6e-3 0.12 / 0.00

Figure 2.19: Fraction of all gene pairs and EMT gene pairs (defined by [154]) with significant correlations
(R2 ≥ 0.8, p≤ 2.2×10−16) in the EMT dataset. Correct orientation means that a pair of E-E or M-M genes
have positive correlation while E-M genes have negative correlation.

2.3 Methods

2.3.1 netNMF-sc algorithm

netNMF-sc uses graph-regularized NMF [148] with KL divergence, which solves the following optimization

problem:

min
W≥0,H≥0

∑
i, j

(
xi j log

xi j

WH|i j
− xi j +WH|i j

)
+λTr(WT LW), (2.3)

for a positive real constant λ , where L is the Laplacian matrix of the gene-gene interaction network, and

Tr(·) indicates the trace of the matrix. The regularization term Tr(WT LW) encourages pairs of genes to

have similar representations in the matrix W when they are connected in the network. Graph-regularized

NMF has previously been used in bioinformatics to analyze somatic mutations in cancer [159].

We derive the graph Laplacian L for the gene-gene interaction network as follows. Let S = [si j] ∈ Rm×m

denote a gene-gene similarity matrix whose entry si j is the weight of an interaction between genes i and j.

A positive weight si j indicates a positive correlation between gene i and gene j, while a negative weight

indicates negative correlation. We use the signed graph Laplacian L = D−S, where D = Diag(|S|1) is the

degree matrix and |S| is the entry-wise absolute value of S. The signed Laplacian, like the Laplacian, is

symmetric and positive semidefinite, [156, 164]. Performing Laplacian embedding using the signed version

of the graph Laplacian produces an embedding where positive edges between a pair of genes correspond to

high similarity and negative edges correspond to low similarity [164].

We implemented netNMF-sc using the TensorFlow Python library [155] and tested the performance of

netNMF-sc with four different optimizers: Adam, momentum, gradient descent, and Adagrad. We found
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Figure 2.20: (A-B) Adjusted rand index (ARI) and Root mean square error (RMSE) of netNMF-sc with
Euclidean distance on simulated data with and without masking of zero entries. (C-D) Clustering performance
(ARI) and imputation error (RMSE) of netNMF-sc with Euclidean distance using different optimizers (Adam,
Momentum, Gradient descent, and Adagrad).

Adam to perform the best at recovering clusters embedded in the data as well as reducing error between the

imputed data and the original data prior to dropout (Fig 2.20A-D). Adam (Adaptive Moment Estimation) uses

the first and second moments of gradient of the cost function to adapt the learning rate for each parameter

[162]. This allows Adam to perform well on noisy data as well as sparse matrices [162].

netNMF-sc has a shorter runtime on large-scale scRNA-seq datasets than other methods. On a simulated

dataset with 5000 genes and 2000 cells, netNMF-sc ran in 1.2 minutes on one 2.60GHz Intel Xeon CPU and

in 34 seconds on one NVidia Tesla P100 GPU. In comparison, MAGIC was the fastest method, taking only

13 seconds, while scNBMF and scImpute were both significantly slower than netNMF-sc, taking 2.1 and

6.9 minutes respectively (Fig 2.21). On a real dataset from [172] with 9291 genes and 44,808 mouse retinal

cells, netNMF-sc ran in 34 minutes on one NVidia Tesla P100 GPU. In comparison, MAGIC was the fastest,

running in 1.3 minutes, while scNBMF and scImpute were significantly slower than netNMF-sc, failing to

complete in 5 hours.

2.3.2 netNMF-sc with Euclidean distance

We also formulated netNMF-sc with a Euclidean distance cost function. This cost function is equivalent to

maximizing the Gaussian likelihood the data X given its factors W and H [152]. Graph-regularized NMF
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Figure 2.21: Runtime (log2)of imputation methods as a function of the number of cells (with 5000 genes).

[148] is the following:

min
W≥0,H≥0

||X−WH||2F +λTr(WT LW), (2.4)

where λ is a positive real constant, L is the Laplacian matrix of the gene-gene interaction network, and Tr(·)

indicates the trace of the matrix. We allow for zero inflation using a binary matrix M that masks zero entries

in X, such that a non-zero entry in ai j in WH is not penalized when the corresponding entry xi j of X is equal

to 0. M has the same dimensions as X with entries

mi j =





1 if xi j > 0,

0 otherwise.
(2.5)

Incorporating the mask, the final formulation of netNMF-sc with a Euclidean distance cost function is

min
W≥0,H≥0

||M◦X−M◦WH||2F +λTr(WT LW), (2.6)

where ◦ indicates element-wise multiplication (or Schur product of matrices).

To meet the Gaussian assumptions of this model, we set X to be the log-transform of the transcript counts

with a pseudocount of 1, as in many scRNA-seq models which assume an underlying Gaussian distribution

[168, 176]. The zero entry mask is not implemented in many commonly used NMF methods [? ? ], but has

a profound effect on improving clustering performance and imputation accuracy at high dropout rates (Fig

2.20(a-b))
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2.3.3 Generation of simulated scRNA-seq data

We used the simulator SPLATTER [189] to generate transcript count data, estimating the parameters of

the model from mouse embryonic stem cell scRNA-seq data [147] using the SplatEstimate command. We

modified SPLATTER to introduce correlations between genes that are differentially expressed in each cluster

using a gene coexpression network from [188]. See Section 4.4 for further details.

After simulating transcript counts to obtain a count matrix X′, we generated dropout events using one

of two models. The first is a multinomial dropout model, used previously to model dropout in scRNA-seq

data [171, 192]. In this model, the observed transcript counts in a cell are multinomial distributed, where

the probability of observing a transcript from gene i in cell j is
x′i j

∑r,s x′rs
and the number of trials is the sum

of all transcripts in the count matrix, ∑r,s x′rs, multiplied by the capture efficiency, ranging from 0 to 1. The

resulting count matrix X contains dropout proportional to the capture efficiency. The second model is the

double exponential dropout model, used previously in the scImpute [168] and BISCUIT [146] publications.

In this model, an entry xi j of the count matrix is set to zero with probability p = exp(−δx′2i j), where δ is the

dropout rate.

2.3.4 Parameter selection via holdout validation

We use the following holdout validation procedure to select the number of latent dimensions d and the regu-

larization parameter λ .

1. Select 20% of the entries of X to be held-out at random. Let V denote the indices of these data in X.

2. Run netNMF-sc for a range of latent dimensions d with λ = 0, masking out held-out entries using the

matrix M

min
W≥0,H≥0

∑
i, j

(
xi j log

xi j

(M◦WH|i j)
− xi j +(M◦WH|i j)|i j

)
+λTr(WT LW), (2.7)

where M contains zeros for mi j ∈ V and ones for mi j /∈ V . We hold out random entries rather than

rows or columns to prevent overfitting as proposed by [? ].

3. Calculate root mean squared error (RMSE) =

√
∑(i, j)∈V (WHi j−Xi j)2

|V | between the held-out data from X

and the reconstructed data WH, where |V | denotes the number of held-out entries

4. Select the value of d which results in the lowest RMSE
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We perform the analogous procedure to select the regularization parameter λ using the value of d selected in

the previous step.

2.3.5 Library size normalization

For a transcript count matrix X, the library size l j of each cell j is the sum of all transcript counts across every

gene,

l j = ∑
i∈n

xi j.

To normalize X, we divide each entry xi j in a cell’s expression profile by the cell’s library size and then

multiply xi j by the median library size q across all cells,

x̄i j = q
xi j

l j
,

where x̄i j is an entry in the normalized transcript count matrix X̄.

2.3.6 Clustering low-dimensional cell matrices

To compare the results of the dimensionality reduction and imputation methods PCA, scNBMF, NMF, netNMF-

sc, MAGIC, and scImpute, we cluster cells by running k-means on the output from each method. For di-

mensionality reduction methods (scNBMF, NMF, netNMF-sc) we cluster by running k-means on the low-

dimensional cell matrix, H, where the number of dimensions d is selected using holdout validation (Section

2.3.4). For PCA we cluster by running k-means on the top principal components which explain 90% of the

variance in the data. For imputation methods (MAGIC and scImpute) we run PCA on the imputed matrices to

reduce the dimensionality of the data and cluster by running k-means on the top principal components which

explain 90% of the variance in the data. For each method, k-means is run with 100 random initializations and

the clusters corresponding to the optimal objective value are reported.

2.3.7 Data simulation

We use a real gene-gene co-expression network obtained from Coexpedia [188] and randomly select 5000

genes to be retained using the random.sample command. To define differentially expressed genes, for each

of the k clusters, we randomly sample 5 genes and their neighbors to be differentially expressed. If this

results in more than 10% of genes being differentially expressed in each cluster, we downsample, at random,
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these selected genes such that at most 10% of the genes in each cluster are differentially expressed. Each

differentially expressed gene is scaled by a differential expression factor as described by Splatter [189],

however we ensure that if a gene is overexpressed in a cluster (differential expression factor > 1), then its

selected neighbors are also overexpressed. The same is true for underexpressed genes (differential expression

factor < 1). Dropout of transcripts is performed following either the double exponential or the multinomial

dropout model.

2.4 Discussion

We present netNMF-sc, a method for performing dimensionality reduction and imputation of scRNA-seq

data in the presence of high (> 60%) dropout rates. These high dropout rates are common in droplet-based

sequencing technologies, such as 10x Genomics Chromium, which are becoming the dominant technology

for scRNA-seq. netNMF-sc leverages prior knowledge in the form of a gene coexpression network. Such

networks are readily available for many tissue types, having been constructed from bulk RNA-sequencing

data, or from other experimental approaches. To our knowledge, the only other method that uses network

information to perform dimensionality reduction on scRNA-seq data is [169]. However, this method assumes

that there is no dropout in the data, and its performance with high dropout rates is unknown. Moreover, this

method uses a neural network that is trained on a specific protein-protein interaction (PPI) network, while

netNMF-sc can use any gene-gene interaction network. Another method, netSmooth [177] – published during

the preparation of this manuscript – uses network information to smooth noisy scRNA-seq matrices but does

not perform dimensionality reduction.

We demonstrate that netNMF-sc outperforms state-of-the-art methods in clustering cells in both simulated

and real scRNA-seq data. In addition, netNMF-sc is better able to distinguish cells in different stages of the

cell cycle and to classify mouse embryonic brain cells into distinct cell types whose proportions mirror the

cellular diversity reported in another study with a substantially greater number of sequenced cells. netNMF-

sc imputes values for every entry in the input matrix, similar to MAGIC and in contrast to scImpute which

imputes values only for zero counts. Since transcript counts in scRNA-seq data are reduced for all genes,

imputation of all values can improve clustering performance and better recover biologically meaningful gene-

gene correlations. On multiple datasets, we show that netNMF-sc yields more biologically meaningful gene-

gene correlations than other methods. However, one potential downside of imputation is “oversmoothing" of

the data resulting in the introduction of artificial gene-gene correlations.



39

There are multiple directions for future improvement of netNMF-sc. First, netNMF-sc relies on exist-

ing gene-gene interaction networks. While we have demonstrated that generic gene coexpression networks

[188] can improve clustering performance on human and mouse scRNA-seq data, netNMF-sc may not offer

substantial improvements over existing methods on tissues or organisms where high-quality gene-gene inter-

action networks are not available. In the future, other prior knowledge could be incorporated into netNMF-sc,

such as cell-cell correlations, which might be obtained from underlying knowledge of cell types or from spa-

tial or temporal information. Second, there are several additional sources of variation in scRNA-seq data

in addition to dropout, such as cell cycle and batch effects. netNMF-sc may be able to assist in removing

these confounding effects by encouraging correlations between genes that are connected in the network, thus

down-weighting correlations induced by these or other confounding effects. Evaluating the effectiveness of

netNMF-sc in the presence of these additional sources of variation is left as future work. Finally, there re-

mains the issue of whether one should identify discrete cell clusters or continuous trajectories in scRNA-seq

data. Here we focused on clustering cells in the low-dimensional space obtained from netNMF-sc. An poten-

tial future direction is to investigate how to leverage prior knowledge in trajectory inference from scRNA-seq

data.



Chapter 3

Identifying CNAs from Spatial

Transcriptomics RNA-seq data

3.1 Abstract

Tumors are highly heterogeneous, consisting of cell populations with transcriptional and genetic diversity.

These diverse cell populations are spatially organized, creating spatial structure within the tumor microen-

vironment. A new technology called spatial transcriptomics can recover spatial patterns of gene expression

within a tissue by sequencing the RNA from a grid of spots, each containing a small number of cells. In a

tumor, these gene expression patterns represent the combined contribution of gene regulatory mechanisms,

which alter the rate at which a gene is transcribed, and genetic diversity, such as copy number aberrations

(CNAs), which affects the number of copies of a gene in the genome. The presence of CNAs in a tumor cell

can be inferred from the cell’s gene expression profile, but is complicated by transcriptional variation as well

as sparsity of the data. We use the observation that cells nearby in space are likely to share similar CNAs and

propose a method to incorporate known spatial relationships between spots to aid in inferring CNAs from

spatial transcriptomics sequencing of tumors. We find that incorporating spatial information improves CNA

inference on simulated data.

40
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3.2 Introduction

A new technology called spatial transcriptomics [136] can recover spatial patterns of gene expression within

a tissue by sequencing the RNA from a grid of spots, each containing a small number of cells. In a tumor,

these gene expression patterns represent the combined contribution of gene regulatory mechanisms, which

alter the rate at which a gene is transcribed, and genetic diversity, which affects the number of copies of a

gene in the genome. In cancer cells, the variance in expression of a given mRNA transcript is a combination

of regulatory mechanisms as well as Copy Number Aberrations (CNAs). These CNAs can amplify or delete

copies of the gene in the genome, resulting in more or fewer mRNA transcripts of that gene. If we knew

the CNAs present in a cell’s genome, then we could correct the cell’s expression profile for variance due to

CNAs and be able to determine if a gene is differentially expressed due to regulatory mechanisms or changes

in copy number.

Calling CNAs from DNA sequencing has a long history. Many methods, such as APOLLOH [110],

TITAN [111], and others employ HMMs to model dependencies between adjacent segments of the genome,

where the hidden states of the HMM are the copy number states. Inferring CNAs RNA-seq data has only

recently become an active area of research. Several recently developed methods attempt to match cells from

a single-cell RNA-seq (scRNA-seq) experiment to predefined clones (obtained from single-cell DNA-seq or

other methods). These include CloneAlign [144], which uses variants and read depth to match cells to clones,

Cardelino [135], which uses a probabilistic model to match cells to clones, and LIAYSON [143], which

deconvolutes bulk CNV profiles into cell-specific CNAs. Several methods [112, 113] have been developed to

infer chromosome-level CNAs from scRNA-seq data. Two methods, HoneyBADGER [120] and InferCNV

[142] directly infer megabase or smaller CNAs from scRNA-seq data. Both methods use HMMs which emit

either Deletion, Neutral, or Amplification for each gene, where neighboring genes on the chromosome are

connected by an edge in the HMM. HoneyBADGER also incorporates SNPs to identify loss of heterozygosity

events.

Since cells replicate by dividing, it is reasonable to assume that nearby cells are likely to have a recent

common ancestor. That means that they are also likely to contain the same set of CNAs. We propose to use the

spatial relationships between spots to infer CNAs from spatial transcriptomics data. Other recently developed

methods for spatial transcriptomics and its counterpart single-molecule fluorescence in situ hybridization

(smFISH) have incorporated spatial relationships between cells to cluster cells or identify spatially distributed

differentially expressed genes. SpatialDE [123] identifies spatially distributed differentially expressed genes
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from spatial transcriptomics or smFISH data using Gaussian process regression, decomposing expression

variability into spatial and non-spatial components. Spatial Variance Component Analysis (SVCA) [139]

also uses a Gaussian process framework to quantify the effect of cell-cell interactions on gene expression.

[138] use a Poisson factorization model to perform factor analysis on spatial transcriptomics data, identifying

factors which incorporate both gene activity and spatial activity. Two methods, by [134] and [145], developed

for smFISH us a Hidden Markov Random Field (HMRF) to identify spatially distributed cell clusters.

We propose to model both the spatial relationships between spots and the relationships between genes on a

chromosome using a combination of a HMRF and an HMM. Given a gene and spot pair, the copy number state

of each gene will be influenced by the copy number states of neighboring genes, similar to HoneyBADGER

and InferCNV. However, by utilizing the additional spatial information, the clone assignment of each spot

will be influenced by the clone assignment of neighboring spots.

Hidden Markov Random Field (HMRF)

Hidden Field:
Clone 

assignment 
matrix Z

Observed Field:
Spot expression 

matrix X

Hidden Markov Model (HMM)

Start End

Amp Amp Amp Amp

Neut Neut Neut Neut

Del Del Del Del

...

...

...

(b)(a)

Observations
x11 x12 x1m-1 x1m

Hidden state path: ck
zik= 1

x21 x22 x2m-1 x2m... ... ... ...

→

Figure 3.1: (a) Hidden Markov Random Field (HMRF) for modeling spot clone assignment matrix Z. The
observed field is spot expression matrix X. The hidden field is clone assignment matrix Z. zik = 1 if spot i
is assigned to clone k and 0 otherwise. (b) Hidden Markov Model (HMM) for modeling CNA profile ck for
clone k. The observations are the expression profiles ~xi for spots assigned to clone k. The hidden state path ~ck
represents the sequence of CNA states from the alphabet S = {Deletion,Neutral,Amplification}. The hidden
state path for the green clone k is highlighted.
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3.3 Method

3.3.1 Problem Definition

The observed expression of each gene in a cell is determined both by the copy number state of that gene

as well as regulatory mechanisms which alter its rate of transcription. We normalize out the majority of

the variance in expression due to regulatory mechanisms by combining the expression of multiple nearby

genes into bins. This relies on the assumption that nearby genes will participate in many different regulatory

pathways and thus have different rates of transcription. See section 3.3.8 for full details. We further assume

that the cells contained within each spot have the same copy number profile. While this is a strong assumption,

it has been shown that nearby cells are close evolutionary ancestors [107, 109]. Thus, cells contained within

the same 100µl spot are likely to share the same set of CNAs.

Due to length of the average CNA being much larger than the length of the average gene, we expect many

CNAs to span multiple bins along a chromosome (see Section 3.3.8 for full details). Thus, we expect the

copy number of bin i+1 to be dependent on the copy number of bin i. Similarly, neighboring spots in a tissue

are likely to originate from the same clone, i.e. have the same CNA profile [107] . We can represent these

spatial dependencies by connecting neighboring spots by an edge, creating a grid network G = (V,E), where

an edge (vi,v j) ∈ E represents two neighboring spots (Figure 3.1).

Given an n spot by m bin observed expression matrix Xn×m, where row~xi = [xi1, ...,xim] is the expression

profile of spot i, and a spot grid network G = (V,E), we wish to (1) infer clone assignment matrix Zn×K ,

where zik = 1 if spot i belongs to clone k and 0 otherwise, and (2) infer CNA profile matrix CK×m, where row

~ck = [ck1, ...,ckm] is the copy number profile of clone k.

In brief, our method consists of iterating between updating the entries of the CNA profile matrix C given

the clone assignment matrix Z and updating the entries of the clone assignment matrix Z given the CNA

profile matrix C. We model dependencies between adjacent bins along a chromosome arm by a hidden

Markov model (HMM) and model dependencies between neighboring spots indicated by G = (V,E) by a

hidden Markov random field (HMRF). The details of the HMM and HMRF are described below.

3.3.2 Hidden Markov Model (HMM) for predicting CNA profiles

Because CNAs do not span across different chromosomes or chromosome arms, the observed expression

across each chromosome arm can be treated as independent of the expression of any other arm. Thus, CNA



44

profiles can be independently inferred for each chromosome arm. Furthermore, we make the assumption that

observed spots originate from one of K clones with distinct CNA profiles. Thus, we can separately infer

CNA profiles for pairs (a,k) of chromosome arm a and clone k. For ease of explanation, in the following

section we will introduce our model under a simplified assumption that all bins 1, ...,m originate from a single

chromosome arm and all spots 1, ...,n originate from a single clone.

We can model the expression profile~xi = [xi1, ...,xim] of spot i as an ordered sequence of observed symbols

emitted from an HMM with underlying state sequence ~c = [c1, ...,cm], where each symbol xi j ∈ R and each

state c j takes one of the values from the set of states S = {Deletion, Neutral, Amplification}. We wish to infer

the sequence~c of hidden states which emitted the observed expression profile~xi.

We assume that the hidden state sequence~c is a first-order Markov chain. This means that the probability

of being in state a at position p+1 depends only on the state at position p. The probability of transitioning

from state a to state b is given by transition matrix T . For the initial state c1, we denote the initial probability

π(s) = P(c1 = s),∀s∈ S. We model the emission probability at state s by a Gaussian with parameters (µs,σs),

such that

P(xi j|c j = s) = G(xi j; µs,σs).

The full HMM can be specified completely by (1) the transition matrix T , (2) the initial state probability π(s),

and (3) the parameters Θ = {µDel,σDel,µNeut,σNeut,µAmp,σAmp} of the Gaussian emission probability. We

let λ = (T,π,Θ) define the HMM. The formulation of the HMM is similar to the formulations used by CNA

callers designed for DNA sequencing data, such as APOLLOH [110] and TITAN [111].

Now that we have defined the HMM, we relax the assumption that our data originates from a single clone

and assume the data originates from K clones. We can estimate the values of the parameters λ = (T,π,Θ)

using expectation maximization EM. The parameters λ of the HMM are assumed to be shared across each

chromosome arm and clone, so we only learn a single set of parameters for the observed data X. For the

expectation step, we use the forward-backward algorithm to compute the joint posterior log-likelihood of the

CNA matrix C given the observed data X, the clone assignment matrix Z, and the parameters λ . Since the

expression profiles of each spot are independent of each other spot given the model parameters λ , we obtain

the following function for the posterior log-likelihood:

P(C|X,Z,λ ) =
n

∑
i=1

logzik(P(ck|~xi,λ )), (3.1)

where~xi is the expression profile of spot i and zik = 1 if spot i is assigned to clone k and 0 otherwise. For the
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maximization step of EM, we estimate the values of the parameters λ = (T,π,Θ) using coordinate descent

until convergence criteria are met. The Viterbi algorithm is then applied independently for each chromosome

arm and clone to find the state path which maximizes the posterior log-likelihood given the learned values for

λ .

3.3.3 Markov Random Field (MRF) model

We can model clone assignment matrix Z as a configuration of a random field with respect to graph G =

(V,E), where E is the edges (vi,v j) between neighboring spots. Let Z be a random field with finite state

space A, where state a ∈ A is a length K vector with all entries ai = 0 except for ak = 1. and let Z, where

zi ∈ A, be a configuration of random field Z with respect to graph G = (V,E). Z is a MRF with respect to

neighborhood system {Ni|i ∈V} only if Z obeys the local Markov property:

P(zi|z j, i 6= j) = P(zi|z j j ∈ Ni),

meaning that the clone assignment zi of vertex Vi depends only on the clone assignments z j of its neighboring

vertices Vj ∈ Ni.

3.3.4 Hidden Markov Random Field (HMRF)

We seek to infer a clone assignment matrix Ẑ which is an estimate of the true clone assignment matrix Z∗

according to the MAP criterion

Ẑ = arg max
Z∈Z

P(X|Z)P(Z), (3.2)

where Z is the set of all possible configurations of Z. Given Ẑ, we can model the observed data X by

a HMRF. The HMRF model is characterized by three properties: (1) a hidden random field, where the

configuration of the field is unobservable, (2) an observable random field, where the random variables of

the observable random field follow a known emission probability distribution given a specific configuration

of the hidden random field, (3) given a configuration of the hidden random field, the random variables of the

observed random field are conditionally independent.

We define a HMRF with hidden random field Z and observable random field X such that Z is a configura-

tion of random field Z with respect to graph G = (V,E). We assume the observed random variables~xi of field

X follow a multivariate Gaussian emission probability. Given a configuration of hidden field Z where zik = 1,
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~xi = x is emitted with probability G(x;dk,Σk), where dk is the mean vector of clone k and Σk is covariance

matrix of clone k.

3.3.5 HMRF algorithm for predicting clone assignments

Given the CNA profile matrix Ĉ and parameters Θ of the emission probability we can infer the clone assign-

ment matrix Ẑ

Ẑ = arg max
Z∈Z

P(X|Z, Ĉ,Θ)P(Z)

The conditional probability distribution P(X|Z, Ĉ,Θ) is the emission probability function. We model the

emission probability of clone k by a multivariate Gaussian distribution G with parameters ~µk and Σk. Let ck j

denote the state of bin j in clone k. The jth entry of mean vector ~µk is the expected value of bin j in clone k,

which we have estimated to be µck j in the previous step. Thus, we define the mean vector ~µk = µck1 , ...,µckm .

Similarly, we define the covariance matrix Σk such that the diagonal entries Σ j j = σ2
ck j

and all other entries

are 0. We can thus express the joint likelihood probability,

P(X|Z, Ĉ,Θ) =
n

∏
i=1

P(xi|zi, Ĉ,Θ)

=
n

∏
i=1

K

∑
k=1

zikG(xi;~µk,Σk)

The prior probability P(Z) is a Gibbs distribution

P(Z) =
1
q

exp(−U(Z)) (3.3)

U(Z) = ∑
i, j∈E

Y (zi,z j) (3.4)

Y (zi,z j) =





0 if zi = z j

β if zi 6= z j,

(3.5)

where q = 2π |S|/2 is a normalizing constant. Using these equations we use Iterated Conditional Modes

(ICM) to infer a locally optimal Z by iteratively updating zi conditioned on i’s neighbors until convergence.

We then iterate between optimizing for Ẑ given Ĉ and optimizing Ĉ given Ẑ until convergence.
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Figure 3.2: (a) Normalized Hamming distance between true and inferred CNA profiles on simulated data
for STCNA run with different range of β . (b) Adjusted Rand Index (ARI) between true and inferred clone
assignments on simulated data for STCNA run with range of β .

3.3.6 Selecting the value of parameter β

To select the optimal value of parameter β we measured the distance between true and inferred CNA matrices

C∗ and Ĉ as well as the difference between true and inferred clone assignment matrices Z∗ and Ẑ over a range

of β values. We found that both the inferred CNAs and clone assignments were stable across a range of β

from 1 to 3 (Figure 3.2). The distance between true and inferred CNA matrices, measured by normalized

Hamming distance, as well as the difference between true and inferred clone assignment matrices, measured

by ARI, increased for β values less than 1 or higher than 3 (Figure 3.2). We use β = 2 for all results on

simulated and real data.

3.3.7 Parameter initialization

We initialize the transition matrix T ,

T =




1−2t t t

t 1−2t t

t t 1−2t



,

where t = 10−5. The clone assignment matrix Z is initialized by performing K-means clustering on the rows

of the observed expression matrix X. The number of clones K may be selected either prior knowledge or by

computing the average silhouette score for a range of K and selecting the value of K with the highest average

silhouette score. After initializing the clone assignment matrix Z we initialize the CNA profile matrix C and
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the values for parameters (µs,σs). For each clone k, we compare the observed expression of spots assigned

to clone k to the expression of normal spots in each bin 1 ≤ j ≤ m. The distance between these samples is

measured by a two-sample Kolmogorov–Smirnov (KS) test. If the hypothesis that the two samples are drawn

from the same distribution is rejected (p ≤ .001), then ck j = Amplification or ck j = Deletion depending on

whether the mean of clone k spots is higher or lower than the normal spots. The parameters (µs,σs) are then

initialized to the means and standard deviations of bins assigned to each state s.

3.3.8 Binning genes

The median length of a human gene is approximately 24Kb [115], with average intergenic distances between

genes being 4Kb or smaller [114]. Comparatively, the median length for a amplification or deletion across

many cancer types has been found to be approximately 900Kb and 700Kb respectively, with focal CNAs

being much longer at approximately 19600Kb and 22700Kb respectively [117]. Thus we expect the median

CNA to span 28 genes or more. We bin genes in windows of w genes with a step size of s. We bin based on

genes rather than genomic intervals because the observed measurements are at the gene level and this allows

measurements to be directly comparable across bins. For all experiments we bin with a window size w such

that there is a median of 50X coverage per gene. This typically results in window size between 30−50. For

all experiments we use a step size of 1, so we get a copy number call for all m genes in the dataset.

3.3.9 Data Preprocessing

Prior to running STCNA the raw expression matrix X is preprocessed via the following steps inspired by

InferCNV. First, genes with non-zero counts in fewer than 20 cells are filtered out. The data is then library-

size normalized, where counts for each gene in a spot are divided by the sum of counts for the spot. This

normalization removes variance due to differences in size or number of cells in each spot. Next, the data is

log-normalized with pseudocount 1 (log(X+1)). Then, the data is binned to remove variation in expression

from regulatory mechanisms acting at the gene level (see Section 3.3.8), retaining only large-scale variations

due to copy number changes. For each bin, the median of the normal spots is subtracted from the tumor spots

to remove differences in total expression between bins and allow for direct comparison of expression across

bins. Finally, the log-transformation is inverted (exp(X)−1).



49

3.3.10 Normalized Hamming Distance

The Hamming distance between two CNA profiles a and b is the total number of bins in which the two profiles

differ. Let the hamming distance between a and b be denoted H(a,b) and let |a| denote the total number of

non-neutral bins in CNA profile a and |b| denote the total number of non-neutral bins in CNA profile b, where

a non-neutral bin is either an amplification or deletion. We define normalized Hamming distance to be

Hn(a,b) =
H(a,b)
|a|+ |b|

. Thus, if all non-neutral bins are the same between a and b, then Hn(a,b) = 0 and if all non-neutral bins

differ between a and b then Hn(a,b) = 1. Without this normalization, CNA profiles with few non-neutral

bins will almost always have lower Hamming distance than CNA profiles with many non-neutral bins even if

none of the bins match between profiles a and b.

3.4 Results

3.4.1 Results on Simulated Data

We simulated a tumor tissue with 150 spots from 3 spatially distributed clones, A (75 spots), B (50 spots),

and C (25 spots). The CNAs present in each of these clones are the same as those identified by scDNA-seq

of a triple-negative breast cancer patient-derived xenograft SA501 sequenced and analyzed by [144]. [144]

also sequenced and analyzed scRNA-seq expression data from the same patient-derived xenographt SA501

and assigned each of the 1152 cells to one of the clones (A, B, C) identified by scDNA-seq. After prepro-

cessing (see Section 3.3.9) the scRNA-seq data contained 6557 genes. We simulated a 6557×150 expression

matrix X using a three-component Gaussian mixture model with parameters (µDel,σDel),(µNeut,σNeut), and

(µAmp,σAmp) respectively,

xi ∼





G(µDel,σDel) if ci = Deletion,

G(µNeut,σNeut) if ci = Neutral,

G(µAmp,σAmp) if ci = Amplifciation.

(3.6)

The values of µDel and σDel are the mean and standard deviation of deleted segments from the scRNA-seq

data of sample SA501 and similarly for neutral and amplified segments. We define a graph G = (V,E) of spot
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relationships. Each spot is connected by an edge to at most 4 neighboring spots. We align the 150 spots in a

grid such that spots from the same clone are likely to be near each other. We select 25 spots from clone A to

represent normal spots and use those to normalize the simulated expression matrix X.

We ran STCNA both with the spatial information and without. We denote STCNA run with the spatial

information (β = 1) and without the spatial information (beta = 0) as STCNA-HMRF and STCNA-HMM

respectively. We also compare to another copy-number inference method developed for scRNA-seq called

InferCNV. By incorporating spatial information, STCNA-HMRF outperformed STCNA-HMM and Infer-

CNV at recovering the simulated CNAs, measured by normalized hamming distance (see Section 3.3.10),

and assigning spots to their respective clones, measured by ARI (Figure 3.3).
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Figure 3.3: (a-d) Assignment of spots to clones A (green), B (orange) and C (purple). (f-i) CNA profiles
for each clone. (e) Similarity between true and inferred clone assignments for each method measured by
Adjusted Rand Index (higher is better). (j) Normalized Hamming distance between true and inferred CNA
profiles (lower is better).

3.4.2 Pseudo-spatial transcriptomics from matched scDNA-seq and scRNA-seq

Patient-derived xenographt SA501

As described in the previous section, we obtained scRNA-seq expression data of 1152 cells from triple-

negative breast cancer patient-derived xenograft SA501 as well as the copy number profiles of three clones,

derived from scDNA-seq, present in this tissue from [144]. Each of the 1152 cells was matched to one of

three clones (A, B, C) by clonealign [144]. We simulated pseudo-spatial relationships between these 1152

cells assigned to the same clone (Figure 3.4). The data also did not include matched normal (reference) cells
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to which we could normalize the scRNA-seq data. Because of differences in mean expression of each gene,

it is necessary to normalize the expression to a reference so that relative expression can be compared between

genes. To overcome this, we randomly selected 200 of the 930 cells assigned to clone A and defined them as

normal cells, normalizing each gene by the median of its expression in these normal cells.
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Figure 3.4: Clone assignment and CNA inference results from InferCNV, STCNA-HMM, and STCNA-
HMRF on patient-derived xenograft SA501. (a-d) Assignment of spots to clones A (green), B (orange)
and C (purple). (f-i) CNA profiles for each clone. (e) Similarity between true and inferred clone assignments
for each method measured by Adjusted Rand Index (higher is better). (j) Normalized Hamming distance
between true and inferred CNA profiles (lower is better).

Using the expression profiles obtained from scRNA-seq and the simulated spatial relationships between

cells, we ran STCNA-HMRF, STCNA-HMM, and InferCNV and compared the inferred CNAs to the true

CNAs. We ran each method with the number of clones K = 3. CNA inference from this real scRNA-seq data

is more difficult than the simulated data because (1) there are additional sources of variation due to variance

in gene expression and dropout that were not captured in the simulated data, (2) each spot may contain cells

from multiple clones result in in mixed signal, and (3) the proportions of each cell type are very unequal, with

930 spots assigned to clone A, 192 spots assigned to clone B and only 30 spots assigned to clone C.

We found that by incorporating spatial information STCNA-HMRF successfully assigned cells to clones

A and B with high accuracy (Figure 3.4). However, none of the methods were able to identify the 30 spots

from clone C which differ from clone A by only two amplifications on chromosome 11. STCNA-HMRF

assigned all of these 30 spots to clone B, which has a very similar expression profile to clone C. InferCNV

and STCNA-HMM, however, assigned these spots to three different clones, none of which matched the true

expression profile of clone C (Figure 3.4). Though none of the methods correctly inferred the CNA profiles
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Figure 3.5: Clone assignment and CNA inference results from InferCNV, STCNA-HMM, and STCNA-
HMRF on high grade serous carcinoma cell line OV2295. (a-d) Assignment of spots to clones A (green),
B (orange) and C (purple). (f-i) CNA profiles for each clone. (e) Similarity between true and inferred clone
assignments for each method measured by Adjusted Rand Index (higher is better). (j) Normalized Hamming
distance between true and inferred CNA profiles (lower is better).

of all clones, STCNA-HMRF inferred the CNA profile of clones A and B with low error and assigned most

of the spots to their respective clones (ARI .97), while InferCNV and STCNA-HMM identified many CNAs

not present in the data and failed to correctly assign spots to clones (ARI of .32 and .46 respectively).

high grade serous carcinoma cell line OV2295

We also obtained matched scRNA-seq and scDNA-seq data from a high grade serous carcinoma cell line,

OV2295, from [144]. The scRNA-seq data contains 1460 cells assigned to clones C (674 cells) and D (786

cells), with CNA profiles inferred from scDNA-seq data. We found that by incorporating spatial information

STCNA-HMRF successfully assigned cells to clones C and D with high accuracy (ARI=.99), while InferCNV

had low accuracy (ARI=.31) and STCNA-HMM failed at assigning cells to clones (ARI=0.02) (Figure 3.5).

In addition, STCNA-HMRF had the lowest error in its inferred CNA profiles, with a normalized hamming

distance of .44 compared to InferCNV with .68 and STCNA-HMM with .76.

3.4.3 Results on STRNA-seq of breast cancer biopsy

We have demonstrated that STCNA can recover CNA profiles and accurately assign cells to their respective

clones from scRNA-seq data with simulated spatial organization. Now, we demonstrate the performance on
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Figure 3.6: Results of applying CNA inference methods to STRNA-seq of four layers from a breast cancer
biopsy. For each method, CNA inference was performed separately for each of the four layers. (a) Re-
sults from InferCNV. (b) Results from STCNA-HMM (STCNA with β = 0). STCNA-HMM does not use
spatial information. (c) Results from STCNA-HMRF (STCNA with β = 2). STCNA-HMRF uses spatial
information.

STCNA on STRNA-seq data. Currently, no matched STRNA-seq and scDNA or bulk DNA-seq datasets exist,

so we cannot compare CNA profiles inferred by STCNA to a ground truth. However, [] sequenced four layers

of a breast cancer tissue biopsy. If we assume that the same clones are likely to be present between any two

tissue layers, then we can assess the performance of CNA inference methods by measuring the normalized

Hamming distance between adjacent layers (1-2,2-3, and 3-4).

For each layer, we first have to differentiate tumor from normal spots so that we can normalize the expres-

sion of tumor spots relative to the normal spots as described in Section 3.3.9. It relatively easy to distinguish

by eye the tumor and normal sections of the tissue from the histopathology images. From analyzing many

STRNA-seq datasets, we also notice that clustering into two clusters based on just the first principal com-

ponent of the expression matrix results in a segmentation that visually matches that of the histopathology

images, indicating that the differences between tumor and normal spots is the largest source of variation in

the data. We also note that the first principal component correlates with the library-size of each spot as well as

the proportion of zero entries, with normal spots having on average smaller library size and higher proportion

of zero entries. For each of the four layers of the breast cancer biopsy, we use the first principal component

to segment spots into two clusters and denote spots in the cluster with the lower average library-size as the
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normal spots.

We then ran STCNA-HMRF, STCNA-HMM, and InferCNV on the tumor spots from each layer indepen-

dently with K = 3. For each method, we compared the inferred CNA profiles between layers 1-2, 2-3, and 3-4

respectively. The CNA profiles inferred by STCNA had lower normalized Hamming distance (.35, .39, .34)

than InferCNV (.67, .65, .65) and STCNA-HMM (.45, .48, .47) (Figure 3.6(d-f)). The better correspondence

of CNA profiles between layers indicates that STCNA is able to recover more accurate CNA profiles by

utilizing the spatial relationships between spots. In addition, the spots assigned to each of the three clones

inferred by STCNA-HMRF are more contiguous within the tissue than the other two methods, where spots

from each clone are more mixed across the tissue (Figure 3.6(a-c))).

3.5 Conclusion

We propose a new method, STCNA, to infer CNAs from spatial transcriptomics (STRNA-seq) data. STCNA

jointly infers the assignment of cells to one of K clones and the CNA profiles of each clone by using rela-

tionships between neighboring spots and neighboring genes to improve clone assignment and CNA profile

inference. We demonstrate that by incorporating spot relationships, STCNA outperforms other methods at

recovering the true clone assignments and CNA profiles of simulated data. We also demonstrate that STCNA

outperforms other methods on real STRNA-seq data, inferring CNA profiles that are consistent across adja-

cent tissue layers of a breast cancer biopsy.

There are several potential extensions to STCNA that we leave as future work. The first is incorporating

information variant calling of raw reads from STRNA-seq. CNA inference methods such as TITAN [111]

developed for DNA-seq and HoneyBADGER [120] developed for scRNA-seq use SNPs to identify loss-of-

heterozygosity (LOH) events. While it is unclear how informative SNPs called from STRNA-seq data will be

due to the data having low coverage per spot, it is an interesting future direction. Another potential extension

to STCNA is allowing for more than three hidden states (Deletion, Neutral, Amplification). For example, we

could allow for loss or gain of one and two copies, resulting in five hidden states.



Chapter 4

Identifying structural variants using

linked-read sequencing data

4.1 Abstract

Structural variation, including large deletions, duplications, inversions, translocations, and other rearrange-

ments, is common in human and cancer genomes. A number of methods have been developed to identify

structural variants from Illumina short-read sequencing data. However, reliable identification of structural

variants remains challenging because many variants have breakpoints in repetitive regions of the genome and

thus are difficult to identify with short reads. The recently developed linked-read sequencing technology from

10X Genomics combines a novel barcoding strategy with Illumina sequencing. This technology labels all

reads that originate from a small number (~5-10) DNA molecules ~50Kbp in length with the same molecular

barcode. These barcoded reads contain long-range sequence information that is advantageous for identifi-

cation of structural variants. We present Novel Adjacency Identification with Barcoded Reads (NAIBR), an

algorithm to identify structural variants in linked-read sequencing data. NAIBR predicts novel adjacencies

in a individual genome resulting from structural variants using a probabilistic model that combines multiple

signals in barcoded reads. We show that NAIBR outperforms several existing methods for structural variant

identification – including two recent methods that also analyze linked-reads – on simulated sequencing data

and 10X whole-genome sequencing data from the NA12878 human genome and the HCC1954 breast cancer

cell line. Several of the novel somatic structural variants identified in HCC1954 overlap known cancer genes.

55
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Figure 4.1: (Left) Linked-read sequencing with the 10X Genomics Chromium platform begins by fragment-
ing the individual genome into large DNA molecules, which are isolated into individuals beads that contain
several large molecules and sequencing reagents. Within the bead, molecules are sheared into smaller frag-
ments (500 bp) and labeled with a 16bp barcode indicating its bead of origin. Illumina paired-read sequencing
of each fragment results in barcoded paired-end reads. (Right) Alignment of read-pairs to a reference genome
results in concordant reads (black) and discordant reads (red). Discordant reads indicate candidate novel adja-
cencies that are a result of structural variants that distinguish individual genomes from the reference genome.

4.2 Introduction

Recent whole genome sequencing (WGS) analysis of human genomes has shown that structural variation,

including insertions, deletions, duplications, and rearrangements of genomic segments greater than 50bp, are

a key component of human variation [96]. Collectively, structural variants affect a larger portion of the human

genome than single nucleotide variants [84]. Inherited germline structural variants have been implicated in

several diseases including Crohn’s disease, rheumatoid arthritis, Type I diabetes, and autism [83, 89, 100].

In addition, somatic structural variants are common in cancer genomes [72, 86]. These include deletions

of tumor suppressor genes and amplifications of oncogenes which can promote aggressive cell growth and

drive the development of cancer. Cancer genomes can also undergo dramatic rearrangement events such

as chromothripsis, the shattering and random repair of chromosomes in a single catastrophic event [95], or

chromoplexy [68], both of which result in a large number of complex structural variants in a cancer genome.

The identification of structural variants from high-throughput DNA sequencing data is generally more

challenging than the identification of single nucleotide variants. This difficulty is primarily a result of the

the fact that many structural variants are significantly longer than the DNA sequence reads produced by

current (second generation) DNA sequencing technologies, whose read lengths are ~300-500 nucleotides. In

addition, such reads are too short for de novo genome assembly. Thus structural variants are inferred from

atypical, or aberrant, alignments of reads to a reference genome.

Numerous methods have been developed over the past several years to identify different types of struc-

tural variants from read alignments. Each of these methods use some combination of three signals that can
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be extracted from read alignments: discordant read-pairs, split-reads, and read depth (Figure S12a). A dis-

cordant read-pair is a pair of reads from the same fragment/insert whose alignments to the reference genome

have distance and/or orientation that differ from expected if the entire fragment was contiguous on the refer-

ence genome. A split read is a read with no contiguous alignment to the reference genome, but rather with

at least two partial alignments to the reference. (In practice, only a single partial, or clipped, alignment may

be reported by the read alignment software.) Discordant read pairs and split reads are signatures of a novel

adjacency in the individual genome; that is, two intervals that are non-adjacent in the reference genome are

adjacent in an individual genome. Methods that rely on discordant paired reads and/or split reads include

BreakDancer [71], GASV [90], VariationHunter [75], Pindel [102], DELLY [85], and LUMPY [80]; many

others are reviewed in [97]. Read depth is the (normalized) number of reads that map to a particular region of

the genome. Read depth can be used to identify copy-number aberrations, such as deletions and duplications,

by identifying regions of unexpectedly low or high coverage in the genome. Examples of read depth meth-

ods include BIC-Seq [101], and CNVnator [66]. In addition, methods such as GASVPro [92] and SV-Bay

[78] combine signals from discordant read-pairs and read depth signals to identify structural variants. Local

assembly approaches such as SvABA [98], and novoBreak [73] achieve nucleotide level resolution of novel

adjacencies. However, local assembly approaches require the identification of candidate regions for assembly

using the signals described above; thus, local assembly generally increases specificity more than sensitivity.

In addition, assembly-based approaches requires high coverage and is typically more time consuming than

read-pair or read depth based methods [67].

The fundamental limitations in structural variant detection and whole-genome assembly are the fact that

the human genome is diploid and highly repetitive [82]. Short reads have low signal to assign variants to

haplotypes and to identify structural variants whose breakpoints lie in repetitive sequences. While algorithms

can help extract information from this low signal, longer reads provide stronger signal. New 3rd-generation

sequencing technologies developed by Pacific Biosciences and Oxford Nanopore produce much longer reads

(exceeding 10Kbp). However, these technologies are practically limited by their high per-base error rate and

high cost compared to Illumina short-read sequencing. Additionally, structural variants that are larger than

the average read size or that fall in repetitive regions still remain difficult to identify using these technologies

[99]. An alternative sequencing technology called linked-read sequencing was recently developed by 10X

Genomics, and commercialized in their Chromium platform. In this technology, long DNA molecules, 50−

100Kbp in size are partitioned into one of several million droplets using microfluidics. Each droplet contains

a small number (~10) of molecules [100]. The molecules in each droplet are sheared into smaller fragments
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and labeled with a 16bp molecular barcode that is unique to each droplet. The fragments are then amplified

and sequenced using Illumina paired-end sequencing protocol (Figure 4.1). 10X Genomics’ linked-read

technology thus provides both the low error rate and low cost of Illumina sequencing as well as long-range

sequencing information provided by 3rd-generation sequencing technologies (Figure S12b). The technology

is similar in some respects to the strobe sequencing technology that was prototyped by Pacific BioSciences

but never commercially released [87, 88].

Here, we introduce Novel Adjacency Identification with Barcoded Reads (NAIBR, pronounced "neigh-

bor"), a method that identifies novel adjacencies resulting from structural variants in an individual genome

from linked-read sequencing data. NAIBR combines a novel split-read type signal from linked-reads with tra-

ditional signals of structural variants in the underlying paired-reads in the data. We demonstrate that NAIBR

outperforms existing structural variant detection algorithms – both paired-read methods and two recently de-

veloped methods [93, 105] for linked-reads – using simulated and real linked-read sequencing data. NAIBR

also leverages haplotype phasing information from linked-reads, improving the detection of heterozygous

structural variants.

4.3 Methods

Consider two genomes, a reference genome and an individual genome, each represented by an interval, G =

[1,n] and G′ = [1,n′] respectively. We let [i−, i+] denote an interval in the genome, where i− and i+ indicate

the start and end of the interval respectively. We consider a structural variant to be any difference between an

individual genome and a reference genome due to DNA breakage and repair, that results in the joining of two

non-adjacent intervals [i+, i−] and [ j+, j−] in the reference genome. The ends of these intervals may be joined

in one of four orientations, and we indicate the four possible novel adjacencies in the individual genome by

the pairs of joined ends: (i+, j−),(i+, j+),(i−, j−), or (i−, j+). Note that novel adjacencies are formed by

most of the usual structural variants (segmental deletions/insertions, inversions, and translocations), with the

notable exception of the deletion of a chromosome to the telomere.

NAIBR aims to identify such novel adjacencies using linked-read sequencing data. Our algorithm differs

from previously published methods in that it incorporates signals from both paired-end reads and linked-reads

into a unified model. Before defining the model, we will describe the signals we observe in paired-end and

linked-read data and how these signals are combined to identify novel adjacencies arising from structural

variants in an individual genome.
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4.3.1 Paired-end sequencing data

In Illumina paired-end sequencing, chromosomes are sheared into small fragments and size selected such that

most fragment lengths are within the interval [lmin, lmax]. Each fragment is sequenced from both ends from

opposite DNA strands; thus one read will originate from the forward (+) strand and one from the reverse (-)

strand. Paired reads are aligned to the reference genome. Each aligned read, x, is represented by a tuple

x = (lx,rx,ox,qx), where lx is the leftmost position of x in the reference genome, rx is the rightmost position

in the reference genome, ox ∈ {+,-} is the orientation of x, and qx is the mapping probability of x. We

define a read-pair to be the ordered pair 〈x,y〉, where read x has the smaller starting coordinate. A read-pair

〈x,y〉 is concordant provided the distance between aligned reads f = ry− lx isbetween lmin and lmax and the

orientations are ox =+,oy =−. Concordant reads are consistent with the fragment aligning contiguously to

the reference genome with no rearrangement. A read pair 〈x,y〉 not satisfying this condition is discordant.

Discordant read-pairs arise from either (1) errors in sequencing and/or alignment or (2) novel adjacencies in

an individual genome with respect to the reference.

4.3.2 Linked-read sequencing data

The linked-read sequencing technology developed 10X Genomics adds a layer of structure to Illumina paired-

end sequencing by tagging each DNA fragment with a barcode prior to sequencing (Figure 4.1). Barcoded

read-pairs are aligned to the reference using a linked-read aware aligner called Lariat [70]. Lariat processes

all read-pairs from a single barcode simultaneously, using the knowledge that reads originate from a small

number of long molecules. Using this prior knowledge, it finds more unique mappings than other tools and

can map to highly repetitive regions.

Read-pairs p = 〈x,y〉 originating from the same long molecule will each be tagged with the same barcode

bp ∈ N. Because molecules are partitioned into droplets uniformly at random, the likelihood of assigning

the same barcode to two molecules from nearby locations on the reference genome is low. Thus, we assume

that read-pairs with the same barcode that map near each other on an individual genome are likely to have

originated from the same long molecule. We partition such read-pairs into sets called linked-reads.

A linked-read is a set of concordant read-pairs that share the same barcode and have a maximum dis-

tance of δ from another read-pair in the linked-read. Each linked-read is assumed to have originated from

a contiguous strand of DNA in the reference genome. The set of all concordant read-pairs in the genome is

partitioned into linked-reads such that any two read-pairs p = 〈x,y〉 and p′ = 〈x′,y′〉, where lx < l′x, are both
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Figure 4.2: (a) A linked-read is defined by read-pairs separated by a distance ≤ δ on the reference genome.
(b) Linked-reads Li and L j may have originated from one of 4 candidate split molecules, each supporting
a novel adjacency with a different orientation. M = (L+

i ,D,L−j ) supports a novel adjacency (i+, j−) and
indicates that the end of linked-read Li is adjacent to the start of linked-read L j (the arrows points to the
location of the novel adjacency).
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partitioned into the same linked-read if bp = bp′ , and lx′ − ry ≤ δ (see Figure 4.2a).

Any pair of linked-reads sharing a barcode may have originated from a molecule that is split with respect

to the reference genome due to the presence of a novel adjacency in an individual genome. We define a

candidate split molecule as a tuple M = (L1,D,L2), where L1 and L2 are linked-reads and D is a set of

discordant read pairs, satisfying the following conditions: (1) All read pairs in L1, L2, and D share the

same barcode. (2) All discordant read pairs in D have the same orientations, and the distance between

any two discordant read-pairs in D is at most lmax. Formally, for read pairs p = 〈x,y〉, p′ = 〈x′,y′〉 ∈ D,

|x− x′| < lmax and |y− y′| < lmax. (3) The linked reads are located within δ of the discordant read-pairs

in D, in the direction consistent with the orientation of D. To indicate the last condition, we assign an

orientation to each linked read in M. For example, M = (L+
1 ,D,L−2 ) is a candidate split molecule provided:

the rightmost position, rL1 = max{ry | 〈x,y〉 ∈ L+
1 }, of L1 is within δ of discordant read-pairs in D and the

leftmost position, lL2 = min{lx | 〈x,y〉 ∈ L−2 }, of L2 is within δ of discordant read-pairs in D. See Figure

4.2). Note that we also define a candidate split molecule in the case where D is the empty set. In this case,

a candidate split molecule can be formed for any of the four possible orientations of linked-reads L1 and L2:

(L+
1 , /0,L−2 ),(L

+
1 , /0,L+

2 ),(L
−
1 , /0,L−2 ),(L

−
1 , /0,L+

2 ).

We say that a candidate split molecule M supports a novel adjacency provided that the distances and

orientations of the linked and discordant reads in M are consistent with the novel adjacency. For example,

candidate split molecule M = (L+
1 ,D,L−2 ) supports the novel adjacency (i+, j−) provided: (1) The orientation

of the candidate split molecule matches the orientation of the novel adjacency. (2) Each read-pair p = 〈x,y〉 ∈

D, is at most lmax from breakends i and j: i− lmax ≤ rx ≤ i and j ≤ ly ≤ j+ lmax. (3) Oriented linked-reads

L+
i and L−j are at most a distance δ from positions i and j respectively: i−δ ≤ rL1 ≤ i and j ≤ lL2 ≤ j+δ .

According to the definitions above, for a given barcode and novel adjacency (i+, j−), there is at most one

candidate split molecule that supports this novel adjacency. We define the set M to be the set of all candidate

split molecules supporting a novel adjacency (i+, j−). For ease of exposition, we will describe the model

below for a novel adjacency of the form (i+, j−), but the model may be applied to novel adjacencies with any

of the four orientations.

4.3.3 Likelihood ratio score

We use a likelihood ratio score to evaluate the evidence support a novel adjacency. Given a potential novel

adjacency (i+, j−), let Ai+, j− be the event of a novel adjacency (i+, j−) in an individual genome and let event

Āi+, j− to be the absence of this novel adjacency. Let M be the set of all candidate split molecules supporting
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Figure 4.3: (a) A candidate split molecule for novel adjacency (i+, j−) consists of a linked-read L+
i a linked-

read L−j , within a distance δ of position j and a set of discordant reads D. Barcoded reads aligned to the
reference genome may originate from an individual genome that either contains a novel adjacency (Ai+, j−)
or does not contain a novel adjacency (Āi+, j−). (b) Under the alternative hypothesis Ai+, j− that i+ and j− are
adjacent in an individual genome, reads in barcode 3 are close and are likely to have originated from a single
molecule. (c) Under the null hypothesis Āi+, j− that i and j are non-adjacent in an individual genome, reads
in barcode 3 are separated by a large distance and are likely to have originated from two molecules. Barcode
2 contains a read that is discordant under Āi+, j− and therefore assumed to be mismapped.

novel adjacency (i+, j−). We compare the likelihood P(M |Ai+, j−) of Ai+, j− and the likelihood P(M | Āi+, j−

of Āi+, j− given the set of observed candidate split molecules (Figure 4.3) using the log-likelihood ratio

Λi+, j− = log
P(M | Ai+, j−)

P(M | Āi+, j−)
. (4.1)

We report novel adjacencies with log-likelihood ratio, Λi+, j− > c (selection of c is described in the Supple-

ment) as the set of predicted novel adjacencies in the individual genome.

We now describe how we compute each of the terms in the log-likelihood ratio. First, we assume that

the locations of molecules with different barcodes are independent. Combining this assumption with the

requirement that candidate split molecules with different barcodes must originate from different molecules,

we have that P(M |Ai+, j−) and P(M |Ai+, j−) are each the product of the individual probabilities of observing

each candidate split molecule M = (L+
i ,D,L−j ) ∈M . Next, a candidate split molecule M may have either

originated from a single molecule that spans the interval [i+, j−] or from two molecules, each of which does

not span the interval [i+, j−]. Let EM be the event that candidate split molecule M originates from a single

molecule and let EL+i
and EL−j

be the events that linked-reads L+
i and L−j originate from unique molecules.

Thus, the probability of observing candidate split molecule M is the probability of two disjoint events: that
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M originates from one molecule (EM), or that L+
i and L−j originate from two different molecules (EL+i

∩EL−j
).

Thus, the log-likelihood ratio Λi+, j− is calculated as follows,

Λi+, j− =

∏
M∈M

[
P(EM | Ai+, j−)+P(EL+i

∩EL−j
| Ai+, j−)

]

∏
M∈M

[
P(EM | Āi+, j−)+P(EL+i

∩EL−j
| Āi+, j−)

] .

We now describe how we calculate the probabilities of EM and EL+i
∩EL−j

given the the events Ai+, j−

and Āi+, j− . Given a candidate split molecule M = (L+
i ,D,L−j ) supporting a novel adjacency (i+, j−), P(EM |

Ai+, j−) is the probability that M was sequenced from a single molecule when i+ and j− are adjacent in

the individual genome; correspondingly, P(EM | Āi+, j−) is the probability that M was sequenced from a

single molecule when i+ and j− are not adjacent in the individual genome. We model the sequencing of a

molecule as the generation of mapped reads through three sequential processes: (1) molecule size selection,

(2) molecule sequencing, and (3) read mapping. We assume that the fragmentation of chromosomes into

long molecules and the sequencing of reads from a molecule are independent processes. This assumption of

independence is reasonable because sequencing occurs after molecules are sheared into short fragments.

Thus, we model the probability P(EM | Ai+, j−) as,

P(EM | Ai+, j−) = P(S(M) = s) ·P(R(M) = ρ) ·P(QM),

where S(M) = the size of molecule M,

R(M) = the sequencing rate of molecule M, and

QM = the event that all reads in M are correctly mapped,

and the probability P(EM | Āi+, j−) as,

P(EM | Āi+, j−) = P(S(M) = s̄) ·P(R(M) = ρ̄) ·P(QM\D)

where QM\D = the event that reads in M \D are correctly

mapped and reads in D are mismapped.

We model the size S(M) of a molecule M by a negative binomial distribution, P(S(M) = ·) = NB(·), with

parameters estimated from the collection of all aligned linked reads. We assume that the vast majority of

linked-reads in the data originate from molecules that are contiguous with respect to the reference genome.



64

Formally, the size of a linked-read L is rL− lL, where rL =max{ry | 〈x,y〉 ∈ L} and lL =min{lx | 〈x,y〉 ∈ L} are

the rightmost and leftmost positions, respectively, of paired reads in L. This approximation tends to slightly

underestimate the true length of a molecule due to missing reads at the ends of the molecule. Under Ai+, j− ,

the size of candidate split molecule M is approximately s = (i− lLi)+ (rL j − j), the sum of the portions of

the molecule aligning to the left and right of the novel adjacency. Similarly, under Āi+, j− , the size of M is

approximated by s̄ = rL j − lLi , the distance between the leftmost position in Li and the rightmost position in

L j. For the case where i+ and j− are on different chromosomes, P(S(M) = s̄) = 0.

We model the sequencing rate R(M) of a molecule M by a Gamma distribution, P(R(M) = ·) = Γ(·). The

negative binomial and Gamma distributions provide a good fit to the empirical distributions of molecule size

and sequencing rate respectively (Figure S2), but other distributions can be used (Table S1). The sequencing

rate of a candidate split molecule M under Ai+, j− is approximated by ρ =
|L+i ∪D∪L−j |

s , the number of reads

sequenced from M normalized by the size s of M. The sequencing rate of M under Āi+, j− is approximated by

ρ̄ =
|L+i ∪L−j |

s̄ . Under Āi+, j− , we exclude D from the set of reads sequenced from M because these reads are

assumed to be mismapped.

We now define the probabilities P(QM) and P(QM\D) of mapping reads to the reference genome. Under

Ai+, j− , all reads in M are correctly mapped, an event with probability

P(QM)≈ ∏
〈x,y〉∈L+i ∪D∪L−j

(qx +qy

2
)
,

where qx and qy are the mapping probabilities of reads x and y obtained from the alignment software. We

chose to approximate the mapping probability of the read-pair p = 〈x,y〉 to be the average of the mapping

probabilities of each read, which we found to perform well on data. Under Āi+, j− , concordant reads in L+
i

and L−j are correctly mapped and discordant reads in D are mismapped, an event with probability,

P(QM\D)≈ ∏
〈x,y〉∈D

(
1− qx +qy

2
)
· ∏
〈x,y〉∈L+i ∪D∪L−j

(qx +qy

2
)
.

We calculate the probability P(EL+i
∩EL−j

) | Ai+, j−) that L+
i and L−j were sequenced from two different

molecules as the product of the probabilities that L+
i and L−j were sequenced from independent molecules

with corresponding sizes si,s j and sequencing rates pi, p j, and that the reads from the two molecules were
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then properly mapped to the reference genome, the latter event denoted by event QM . Formally,

P(EL+i
∩EL−j

) |Ai+, j−) =

P(S(Li) = si) ·P(R(Li) = ρi)·

P(S(L j) = s j) ·P(R(L j) = ρ j) ·P(QM),

where sk = rLk − lLk and ρk =
|Lk|
sk

.

Under Āi+, j− , the probabilities of molecule size selection and sequencing remain the same. However

any discordant reads in D will be mismapped under Āi+, j− , resulting in the last term being the probability

P(QM\D).

4.3.4 Incorporating haplotype phase

10X Genomics provides phasing as part of its alignment pipeline, using linked-reads to phase SNPs into large

phase blocks. Each position i in the reference genome is assigned a phase block mi and any SNP within phase

block mi will be assigned to either haplotype 1 or haplotype 2. [105] report that the current software can

phase > 95% of SNPs to a phase blocks of size > 0.5Mb, with an average error rate of 0.03%. Let mx ∈ N

denote the phase block of a read x, aligned to the reference genome, and let hx ∈ {1,2} denote the haplotype

of read x. We define M α,β ⊆M be the subset of candidate split molecules M = (L+
i ,D,L−j ) such that the

haplotype hLi of linked-read Li is α , the haplotype hL j of linked-read L j is β , and for all read pairs 〈x,y〉 in

D, hx = α and hy = β . On the linked-read datasets described in the Results below, we found that > 99% of

linked-reads (δ = 10Kbp) contain read-pairs that are assigned to a unique phase block and haplotype. We

omit the small number of linked-reads containing read-pairs from multiple haplotypes or phase blocks from

further analysis.

We define a haplotype-specific log-likelihood ratio,

Λ
α,β
i+, j− = log

P(M α,β | Ai+, j−)

P(M α,β | Āi+, j−)
. (4.2)

Each novel adjacency in a diploid genome is the result a heterozygous structural variant on haplotype 1, a

heterozygous structural variant on haplotype 2, or a homozygous structural variant affecting both haplotypes.

If positions i and j are on the same phase block mi = m j, then the haplotypes of i and j must match. Thus, we

calculate the log-likelihood ratio Λh
i+, j− to be the maximum of Λ

1,1
i+, j− , Λ

2,2
i+, j− , and Λi+, j− , corresponding to
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a novel adjacency resulting from a heterozygous structural variant on haplotype 1, a heterozygous structural

variant on haplotype 2, or a homozygous structural variant,

Λ
h
i+, j− = max(Λ1,1

i+, j− ,Λ
2,2
i+, j− ,Λi+, j−). (4.3)

However, if positions i and j are not on the same phase block, mi 6= m j, then the haplotypes of i and j may

not match. For example, SNPs assigned to haplotype 1 of phase block mi may originate from the same

chromosome as SNPs assigned haplotype 2 of phase block m j. In this case, we calculate the log-likelihood

ratio Λh
i+, j− as,

Λ
h
i+, j− = max(Λ1,1

i+, j− ,Λ
2,2
i+, j− ,Λ

1,2
i+, j− ,Λ

2,1
i+, j−Λi+, j−), (4.4)

which accounts for the ambiguity in haplotype assignment. NAIBR reports both the phased log-likelihood

ratio Λh
i+, j− as well as the inferred haplotype for each novel adjacency.

4.4 Simulating structural variants

We run each method using its default parameters. For NAIBR we use the the phased log-likelihood ratio

λ h
i+, j− described in section 2.4 and set δ = 10Kbp. This value of δ is selected to be the 95th percentile

of distances between read pairs within each barcode, calculated using reads from three datasets, NA12878,

HCC1954T, and HCC1954N, sequenced on the 10X Chromium platform. The 95th percentile is chosen

because it results in few read-pairs originating from the same molecule being erroneously separated into two

linked-reads.

Some methods output a pair of intervals for each novel adjacency, allowing for some uncertainty in

the location of the novel adjacency, while others output a precise pair of coordinates. To account for this

difference, we take the midpoint of each reported window and define each called novel adjacency to be a pair

of 500bp windows centered on their respective midpoints. A call is considered correct if the left coordinate

of the true novel adjacency overlaps the left window of the called novel adjacency and the right coordinate of

the true novel adjacency overlaps the right window of the called novel adjacency.

We use chromosomes 17 and 18 from human reference genome hg19 as our reference for the purpose

of simulation. We simulate several types of structural variants in a range of sizes. To assess NAIBR’s

ability to detect novel adjacencies that occur on a single haplotype, we simulate two test genomes, one that

contains 400 homozygous structural variants across the genome and one that contains 400 different structural
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variants on each haplotype. We also add SNPs with a uniform 1% mutation rate across the genome to simulate

genetic variance between an individual and the reference. The 400 structural variants consist of 200 deletions,

100 insertions (including duplications, and translocations), and 100 inversions between 50Bp and 100Kbp.

Structural variants are simulated using the R package, RSVSim with default parameters for the size distribution

of each structural variant type. RSVSim estimates these default size distributions for each structural variant

type by fitting a beta distribution to structural variant sizes obtained from the Database of Genomic Variants

[77]. Figure 4.4 shows the distribution of structural variants sizes for 400 simulated structural variants.

Because structural variants tend to co-occur with other, smaller mutations, such as small indels or SNPs,

we randomly generate additional SNPs and indels within 50bp of the novel adjacencies introduced by each

structural variant, with a probability p = 0.25 of generating a SNP and p = 0.5 of generating a small indel.

The structural variants for each haplotype of the two test genomes are non-overlapping and cumulatively

affect 4.6% of the haplotype. Each structural variant creates between 1 and 2 novel adjacencies in the data:

deletions create 1 novel adjacency while inversions and insertions create 2 novel adjacencies.

Sequencing of chromosomes 17 and 18 is simulated using LRSIM [81], which simulates reads generated

with 10X Genomics’ linked-read technology. 30X coverage 100bp paired-end read sequencing data was

generated with an average molecule size of 85Kb (consistent with the current state of the technology), a per

base error rate of 0.1%, and a mean insert size of 340bp. Molecules were assigned barcodes such that on

average each barcode is assigned to 4 molecules. Though the current technology assigns the same barcode

to approximately 10 molecules, because the test genome is an order of magnitude smaller than the human

genome, this number must be reduced to achieve a similar average distance between molecules with the same

barcode. Reads are mapped to chromosomes 17 and 18 and assigned to haplotype blocks using Long Ranger

[105]. Mapped reads are used as input to each structural variant detection method.

To assess NAIBR’s ability to detect heterozygous novel adjacencies, we simulated a genome that con-

tains 400 different structural variants – including duplications, deletions, translocations, and inversions – on

each haplotype (800 in total), creating a total of 1027 novel adjacencies, 734 novel adjacencies larger than

10Kbp, and 545 novel adjacencies larger than 30Kbp. This dataset, sequenced at 30X total coverage, has

15X coverage of each haplotype, resulting in fewer discordant read-pairs crossing each novel adjacency than

in the homozygous dataset. NAIBR identifies novel adjacencies from the heterozygous dataset with nearly

equal precision and recall as the homozygous dataset, correctly identifying 967/1027 novel adjacencies (Fig.

4.5b). The introduction of heterozygous variants results in a significant decrease in precision and/or recall

for all other methods except for GASVPro. This could be due to GASVPro’s use of breakend read depth,
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Figure 4.4: Size distribution of 400 simulated structural variants (deletions, insertions, and inversions).

Figure 4.5: a) Precision-recall curve for NAIBR, Long Ranger, GROC-SVs, GASV, GASVPro, and LUMPY
on 30X simulated data from chromosomes 17 and 18, containing 400 homozygous structural variants. b)
Precision-recall curve for NAIBR, Long Ranger, GROC-SVs, GASV, GASVPro, and LUMPY on 30X sim-
ulated data from chromosomes 17 and 18, containing 800 heterozygous structural variants.
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a) Runtime (in hours)                   
on simulated human 
chromosomes 17 and 18

b) Peak memory usage (in Gb) 
on simulated human 
chromosomes 17 and 18

NAIBR       Long     GROC- GASVPro LUMPY
Ranger      SVs
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Figure 4.6: a) Runtime of NAIBR, Long Ranger, GROC-SVs, GASVPro, and LUMPY on simulated human
chromosomes 17 and 18. NAIBR and LUMPY both ran in about 15 minutes, while Long Ranger and GROC-
SVs took 3.55 and 2.85 hours to complete respectively. GASVPro had the longest runtime at 11.56 hours.
b) Peak memory usage for NAIBR, Long Ranger, GROC-SVs, GASVPro, and LUMPY. NAIBR requires a
similar amount of memory as GROC-SVs and LUMPY and significantly less memory than both Long Ranger
and GASVPro.

a signal of a lower concordant read depth surrounding novel adjacency breakends. Breakend read depth is

present for both balanced and unbalanced rearrangements and provides additional signal in the absence of

discordant reads.

4.4.1 Runtime analysis

We compared runtimes and memory usage of NAIBR, Long Ranger, GROC-SVs, GASVPro, and LUMPY

on the 400 homozygous variants simulated data described above. We ran each method on 1 core of a 2.6Ghz

512Gb machine. Note that Long Ranger’s structural variant calling algorithm is incorporated as part of

its phasing pipeline, so runtime and peak memory consumption include both phasing and structural variant

calling. Figure 4.6 shows that NAIBR is more than 10 times faster than Long Ranger and GROC-SVs,

which both utilize linked-reads, and consumes less than half the amount of memory as Long Ranger. NAIBR

also performs well against paired-end methods, achieving a slightly lower running time than LUMPY and a

significantly lower running time than GASVPro while requiring half the amount of memory as GASVPro.
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Figure 4.7: (left) The negative binomial distribution (red) fit to the empirical linked-read length distribution
(blue) from 35X linked-read sequencing data from individual NA12878 of the 1000 genomes project. (right)
The gamma distribution (red) fit to the empirical distribution of sequencing rate per molecule (blue).

Table 4.1: (a) Precision and recall for 400 simulated structural variants on human chromosomes 17 and 18.
(b) Precision and recall for 800 simulated structural variants on human chromosomes 17 and 18.

4.5 Modeling empirical distributions

We model molecule size by a negative binomial distribution with parameters (p,r) and model the sequencing

rate per molecule by a Gamma distribution with parameters (α,β ). These distributions provide a close fit to

the empirical distributions (see Figure S2). We examine the importance of distribution choice by comparing

the NAIBR’s performance using either a negative binomial or a Poisson distribution to model molecule size

and either a Gamma or Normal distribution to model the sequencing rate per molecule.

We ran NAIBR on two simulated datasets containing chromosomes 17 and 18 with 400 homozygous

structural variants and 800 heterozygous structural variants respectively. We report the precision and recall

of both datasets using all combinations of distributions to model molecule size and sequencing rate per
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molecule. On both datasets, the combination of negative binomial to model molecule size and Gamma to

model sequencing rate per molecule performs slightly better than the other distributions, with precision and

recall of 98.3% and 94.2% respectively for the dataset with homozygous variants (Table 4.1a) and precision

and recall of 96.9% and 94.2% respectively for the dataset with heterozygous variants (Table 4.1b). The

difference in performance between the different distributions is quite small, only accounting for at most a

2.6% difference in precision and at most a 3% difference in recall.

4.6 Determining a value for Λi+, j−

As the number of split molecules spanning a novel adjacency increases, the value of the log-likelihood ratio

Λi+, j− will increase proportionally. This means that the value of Λi+, j− is proportional to the coverage of the

sequencing data. We estimate an appropriate cutoff parameter c for Λi+, j− by running NAIBR on simulated

data. We define c such that the set of novel adjacencies with Λi+, j− ≥ c can recall ≥ 90% of simulated novel

adjacencies.

We simulated data containing 1027 heterozygous novel adjacencies (as described in Section 4.4) at seven

levels of coverage: 60X, 50X, 30X, 30X, 20X, 10X, and 5X. We then ran NAIBR on each of the datasets.

NAIBR was able to recall at least 90% of the novel adjacencies at all levels of coverage except for 5X

coverage, where it could only recall 84% of the novel adjacencies. Figure 4.8 shows that, as expected, c

increases linearly as the coverage increases. The equation of the best-fit line y = 6.943∗ x−37.33 is used to

determine c. NAIBR automatically determines the cutoff parameter c based on the coverage of the data and

labels each prediction with score Λi+, j− ≥ c.

4.7 Benchmarking HCC1954

Three studies – [69] [94], and [74] – have sequenced the tumor cell line HCC1954 and reported sets of

predicted structural variants. Bignell et al. used BAC sequencing to identify amplifications in the tumor cell

line HCC1954. 21 significantly amplified BACs were shotgun-sequenced and aligned to the human genome,

identifying 69 novel adjacencies. These novel adjacencies were confirmed as somatic events by PCR of both

the tumor and matched normal DNA. Stephens et al. performed paired-end sequencing of 24 cancer genomes,

including HCC1954. The study identified 1832 novel adjacencies based on discordantly mapped reads and

confirmed 246 of these to be somatic through PCR sequencing of the tumor and matched normal. Galante
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Figure 4.8: c is the maximal cutoff value such that 90% recall is achieved. c increases linearly as the coverage
increases. The green line is the best-fit line to the data.

et al. performed whole paired-end sequencing of HCC1954 and identified 89 somatic novel adjacencies

validated by PCR sequencing of the tumor and matched normal.

Though the genomic rearrangements reported by each study were experimentally validated, relatively few

were reported by more than one study and only 1 variant was reported by all three studies (Figure 4.9). This

indicates that experimental design plays a large role in the dictating which novel adjacencies are identified

and that there are still potentially many more that have yet to be identified.

We combined the three sets of validated novel adjacencies into a single set, combining overlapping novel

adjacencies. A novel adjacency defined by breakends (a,b) overlaps a novel adjacency defined by breakends

(c,d) if |c− a| ≤ 500bp and |d− b| ≤ 500bp. The novel adjacencies are combined by defining each break-

end as the interval [min(a,c),max(a,c)] and [min(b,d),max(b,d)] respectively. Each study reports novel

adjacencies created by four types of structural variation events: deletions, inversions, duplications, and inter-

chromsomal events. Deletions and classified as having concordantly oriented read-pairs (+-) and a decrease

in copy number. Duplications are classified as having -+ or +- orientation and an increase in copy number.

Inversion are classified as having – or ++ orientation. Interchromosomal events are classified as having novel

adjacency breakends on different chromosomes.

We ran NAIBR, Long Ranger, GASV, and GASVPro on 35X coverage sequencing data for tumor cell
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Figure 4.9: Venn diagram of novel adjacencies reported by Bignell et al., Stephens et al., and Galante et al..

line HCC1954T and normal cell line HCC1954N provided by 10X Genomics. Novel adjacencies reported by

each method that appear in HCC1954T and not HCC1954N are considered to be somatic. We will consider

novel adjacencies separated by a distance at least 30Kb, as the vast majority (92%) of the PCR validated

novel adjacencies were at least 30Kb in size and Long Ranger only reports novel adjacencies ≥ 30Kb.

NAIBR reported 549 somatic novel adjacencies with scores > 205. The score cutoff is determined using

the equation derived in section 4.8. Long Ranger reported 555 somatic novel adjacencies passing quality

thresholds and labeled as ’CALLS’. GASV reported 13920 somatic novel adjacencies with at least 4 support-

ing discordant reads. LUMPY reported 1342 somatic novel adjacencies with at least 2 split reads.

Figure 4.12 shows the number of PCR validated novel adjacencies created by deletions, duplications,

inversions, or interchromosomal events predicted by each method. NAIBR identifies significantly more novel

adjacencies created by duplication events than the other methods and significantly more novel adjacencies

created by interchromosomal events than Long Ranger. Bignell et al. and Stephens et al. note that tandem

duplications are the most common type of structural variant observed in breast cancer tumors, followed

by interchromosomal events. Both suggest that a defect in DNA maintenance may generate this particular

class duplication events. NAIBR’s ability to detect more novel adjacencies introduced by duplications and

interchromosomal events than other methods without introducing many potential false positive predictions
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b) 710 validated structural 
variants larger than 1Kbp

c) 223 validated structural 
variants larger than 5Kbp

d) 121 validated structural 
variants larger than 7Kbp

e) 70 validated structural 
variants larger than 10Kbp

f) 49 validated structural 
variants larger than 15Kbp

g) 43 validated structural 
variants larger than 20Kbp

h) 36 validated structural 
variants larger than 25Kbp

i) 32 validated structural 
variants larger than 30Kbp

a) 2950 validated structural 
variants larger than 50bp

Figure 4.10: Precision-recall curves (a-i) for human cell line NA12878 with 2950 validated structural variants
of different sizes. All methods were run on 35X linked-read sequencing data for cell line NA12878 provided
by 10X Genomics. (f-i) For large structural variants ≥ 15Kb, NAIBR (dark blue) performs similarly to
other linked-read structural variant detection methods, Long Ranger and GROC-SVs. GROC-SVs (light
blue) performs with slightly higher precision due to its use of local assembly to verify predicted variants.
(b-e) For mid-range structural variants ≥ 1Kbp, NAIBR demonstrates significant improvement over other
methods. NAIBR predicts more true variants than linked-read methods Long Ranger and GROC-SVs and
performs with higher precision than paired-end read methods GASV, GASVPro, and LUMPY. (a) NAIBR
was designed to identify structural variants significantly larger than the insert size of a concordant paired-
end read, which ranges between 250bp and 850bp in this dataset. On small structural variants, linked-reads
provide little additional information. NAIBR can offer a small improvement over paired-end methods on
small variants due to NAIBR’s ability to use the haplotype information provided by Long Ranger.
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Figure 4.11: Precision of PCR validated novel adjacencies reported by Bignell et al., Stephens et al., and
Galante et al. for structural variant calling methods: NAIBR, Long Ranger, GASV, and GASVPro. Colored
bars represent true positive events and grey bars represent false positive events. NAIBR reports the highest
number of true positives and reports fewer false positives than Long Ranger and GASV.

may allow it to recover more clinically relevant novel adjacencies.

NAIBR recalls significantly more novel adjacencies than other methods (142 recalled by NAIBR com-

pared to 117 recalled by GASV, 100 recalled by Long Ranger, and 55 recalled by LUMPY). Figure 4.11

shows total number of true positive and false positive predictions made by each method (reported on the log

scale). GASV reported significantly more predictions than the other methods. NAIBR and Long Ranger

made a similar number of total predictions, but NAIBR recalled more PCR validated novel adjacencies than

Long Ranger. We plot the number of PCR validated variants predicted by each method at different levels of

recall in Figure 4c. To obtain different levels of recall, the results from NAIBR and Long Ranger are sorted

by log-likelihood score and the predictions by GASV are sorted by number of supporting discordant reads.

Figure 4c shows that at all levels of recall, NAIBR performs with higher precision than Long Ranger, GASV,

and LUMPY.

We compare the predictions made by NAIBR to those made LUMPY, which uses only paired-end reads.

NAIBR and LUMPY both identified 42 novel adjacencies from the PCR-validated set. NAIBR addition-

ally identified 100 PCR-validated novel adjacencies not identified by LUMPY while LUMPY identified 13

PCR-validated novel adjacencies not identified by NAIBR (Figure 4.15). NAIBR utilizes signals from both

discordant read-pairs as well as candidate split molecules, while LUMPY relies entirely on discordant read-

pairs and split reads. Figure 4.16a shows the distribution of the number of discordant read-pairs and candidate

split molecules in NAIBR predictions, but not predicted by LUMPY or present in the set of validated novel
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Figure 4.12: Recall of PCR validated novel adjacencies reported by Bignell et al., Stephens et al., and Galante
et al. for structural variant calling methods: NAIBR, Long Ranger, GASV, and GASVPro. Colored bars
represent true positive events and grey bars represent false negative events.

adjacencies. This set of predictions contains on average the lowest number (3.25) of discordant read-pairs,

with 24% of predictions containing 0 discordant read-pairs. The mean numbers of candidate split-molecules

(116) and discordant pairs (10.0) present in predictions shared by NAIBR and LUMPY (Figure 4.16b) are

significantly larger (P = 2.5 ·10−4,P = 2.38 ·10−21) than the corresponding numbers (46.0 and 3.25) in Fig-

ure 4.16a. Figure 4.16d shows the distribution of the number of discordant read-pairs and candidate split

molecules predicted by both NAIBR and LUMPY and also present in the set of validated novel adjacencies.

Most predictions in this set contain multiple discordant read-pairs. The mean number of discordant pairs

(12.5) in Figure 4.16d that overlap PCR-validated novel adjacencies is significantly larger (P = 1.44 ·10−7)

than the corresponding number (10.0) in Figure 4.16b.

We also explored how NAIBR’s predictions varied with sequence coverage. Figure 4.14 shows preci-

sion recall curves for NAIBR on the HCC1954 breast cancer cell line at coverage: 35X, 15X, and 10X. Not

surprisingly, the total recall increases with increasing coverage. Precision remains approximately the same

across different coverages, with the exception of a slight decrease in precision for recall > 20% in the 10X

coverage dataset. In Figure 4.13 we see that the total number of predictions as well as those matching vali-

dated novel adjacencies decreases as coverage decreases. While the average number of discordant read-pairs

decreases by nearly 50% when coverages drops from 35X to 15X, the number of candidate split molecules

decreases by only 15%. This results in a decrease from 142 predictions matching validated novel adjacencies
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a) NAIBR predictions not matching validated novel adjacencies, cell line HCC1954

35X coverage, 407 predictions 15X coverage, 295 predictions 10X coverage, 204 predictions

b) NAIBR predictions matching validated novel adjacencies, cell line HCC1954

35X coverage, 142 predictions 15X coverage, 103 predictions 10X coverage, 83 predictions

Figure 4.13: Distributions of discordant read pairs and candidate split molecules supporting NAIBR pre-
dictions, at 35X coverage, 15X coverage, and 10X coverage on the HCC1954 breast cancer cell line. (a)
Distribution for NAIBR predictions not matching validated novel adjacencies evaluated on 35X, 15X, and
10X coverage datasets. NAIBR predicted 407 novel adjacencies at 35X coverage, 295 at 15X coverage,
and 204 at 10X coverage. At 35X coverage the mean number of discordant pairs (3.58) is significantly
larger (P = 6.79 · 10−12) than at 15X coverage (1.87) while the number of candidate split molecules (50.6)
is not significantly larger (P = 0.056) than at 15X coverage (40.6). (b) Distribution for NAIBR predic-
tions matching validated novel adjacencies evaluated on 35X, 15X, and 10X coverage datasets. NAIBR
predicted 142 novel adjacencies at 35X coverage, 103 at 15X coverage, and 83 at 10X coverage. At
35X coverage the mean number of candidate split-molecules (118.9) and discordant pairs (10.8) is sig-
nificantly larger (P = 1.64 · 10−5,P = 2.95 · 10−22) than the corresponding numbers (50.6 and 3.58) in
(a). These differences are also significant at 15X (P = 5.70 · 10−5,P = 1.51 · 10−18) and 10X coverage
(P = 1.17 ·10−4,P = 3.60 ·10−17).

in the 35X dataset to 103 predictions matching novel adjacencies in the 15X dataset, a 28% reduction in the

number of validated predictions.
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Figure 4.14: Precision-recall curve for 283 validated structural variants in breast cancer cell line HCC1954
predicted by NAIBR at three levels of coverage: 35X, 15X, and 10X. A total of 142 variants were predicted
at 35X coverage, 103 at 15X coverage, and 69 at 10X coverage. The total recall increases with increasing
coverage, with precision remaining approximately the same across different coverage, with the exception of
a slight decrease in precision for recall > 20% in the 10X coverage dataset.
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Figure 4.15: Venn diagram comparing NAIBR predictions, LUMPY predictions, and PCR-validated novel
adjacencies on the HCC1954 breast cancer cell line.
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a) 333 predictions b) 100 predictions matching validated 
novel adjacencies  

d) 42 predictions matching LUMPY predictions 
and validated novel adjacencies 

c) 74 predictions matching LUMPY predictions

Figure 4.16: Distributions of discordant read pairs and candidate split molecules supporting NAIBR predic-
tions, LUMPY predictions, and PCR-validated novel adjacencies on the HCC1954 breast cancer cell line. (a)
Distribution for 333 NAIBR-unique predictions not matching validated novel adjacencies. (b) Distribution
for 100 NAIBR-unique predictions matching validated novel adjacencies. The mean numbers of candidate
split-molecules (116) and discordant pairs (10.0) are significantly larger (P = 2.5 · 10−4,P = 2.38 · 10−21)
than the corresponding numbers (46.0 and 3.25) in (a). (c) Distribution for 74 predictions shared by NAIBR
and LUMPY, but not matching validated novel adjacencies. (d) Distribution for 42 predictions shared by
NAIBR and LUMPY that match validated novel adjacencies. The mean number of discordant pairs (12.5) is
significantly larger (P = 1.44 ·10−7) than the corresponding number (10.0) in (b).
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Figure 4.17: Percentage of validated novel adjacencies within a distance, x, from the true breakends. Distance
is measured as the absolute value of the distance between the true breakends and the breakends predicted by
each structural variant caller.

For the HCC1954 cancer cell line we compared the specificity of breakends predicted by NAIBR to those

predicted by Long Ranger, GASV, and LUMPY. For the set of true positive predictions made by NAIBR, Long

Ranger, GASV, and LUMPY we plotted the percentage of breakends within distances ranging from 0-500bp

from the breakends of the PCR validated novel adjacencies (Figure 4.17). 30% of the breakends predicted by

NAIBR fall within 50bp of the PCR-validated breakends, while only 9% and 12% of the breakends predicted

by Long Ranger and GASV respectively fall within 50bp of the PCR-validated breakends.

Finally, we assess the distance between breakends predicted by NAIBR to breakends from validated

novel adjacencies from human cell lines NA12878 and HCC1954 as well as simulated novel adjacencies. A

predicted novel adjacency is determined to match a validated novel adjacency if both breakends of a predicted

novel adjacency lie within 1000bp of breakends from a validated novel adjacency. Figure 4.18 shows the

percentage of predicted breakends that lie within distances ranging from 0-700bp from validated breakends.

We find that for each dataset, the vast majority of breakends lie within 500bp of validated breakends and that

over half of the breakends lie within 100bp of validated breakends.
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Figure 4.18: Percentage of breakends predicted by NAIBR that lie within a given distance from experimen-
tally validated novel adjacencies in human cell lines NA12878 (blue), HCC1954 cancer cell line (orange),
and simulated data (green). For all datasets, the majority of novel adjacencies predicted by NAIBR lie within
100bp of validated novel adjacencies. Distance is measured as the absolute value of the distance between the
true and predicted breakends.
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4.8 Identifying candidate novel adjacencies

Each candidate split molecule is defined with respect to a pair of oriented breakends i+ and j− representing

a novel adjacency between an interval ending at i+ and an interval starting at j−. NAIBR provides the

option to identify candidate novel adjacencies using discordant read-pairs, linked-reads, or user-defined novel

adjacencies. Split reads could also be utilized to either define candidate novel adjacencies or to refine the

breakends of adjacencies defined by discordant read-pairs or linked-reads. This is currently not employed

by NAIBR and is left as future work. We define candidate novel adjacencies using discordant read-pairs as

follows.

For a discordant read-pair 〈x,y〉, the location of the novel adjacency is determined by the orientations

ox and oy of each read, x and y. For each of the four possible pairs of orientations, the candidate novel

adjacencies are defined,

(i+, j+) = (rx,ry) if ox =+ and oy =+,

(i+, j−) = (rx, ly) if ox =+ and oy =−,

(i−, j+) = (lx,ry) if ox =− and oy =+,

(i−, j−) = (lx, ly) if ox =− and oy =−.

Candidate novel adjacencies can also be defined using linked-reads. For each pair of linked-reads L1,L2

in a barcode β , L1 and L2 may have originated from a split-molecule with a novel adjacency in one of four

orientations:

(i+, j+) = (e1,e2),

(i+, j−) = (e1,s2),

(i−, j+) = (s1,e2),

(i−, j−) = (s1,s2),

where ek = max{ry | 〈x,y〉 ∈ Lk},

sk = min{lx | 〈x,y〉 ∈ Lk}.
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L1 and L2 may have alternatively originated from distinct molecules assigned the same barcode by chance.

To reduce the number of candidate novel adjacencies, we only apply NAIBR to candidate novel adjacencies

with at least k overlaps. Two candidate novel adjacencies (i+, j−) and (a+,b−) overlap if |i+−a+|< δ and

| j−−b−|< δ . k may be defined by the user with a default value of k = 3.

Each candidate novel adjacency is assigned a log-likelihood ratio score by NAIBR. If the breakends of

two predicted novel adjacencies each fall within a distance lmax of each other than the novel adjacency with

the higher log-likelihood ratio is reported.

By default, NAIBR utilizes only discordant read-pairs to define candidate novel adjacencies because they

typically fall within several hundred bases of the true adjacency whereas linked-reads may be as much as a

distance δ from the true novel adjacency. Using simulated data we found that we could obtain over 90% recall

using candidate novel adjacencies defined by discordant read-pairs on data ranging from 10X-60X coverage.

4.9 Results

We assess NAIBR’s ability to detect novel adjacencies in simulated and real 10X long-read sequencing data

and benchmark against 5 other methods: Long Ranger [105], GROC-SVs [93], GASV [91], GASVPro [92],

and LUMPY [80]. We chose these methods for comparison because they utilize different combinations of

signals to identify and rank novel adjacencies. Long Ranger is 10X Genomics’ structural variant detection

program. Long Ranger identifies novel adjacencies by computing overlapping pairs of linked-reads and com-

putes a likelihood score based on the number of overlaps observed in the data. GROC-SVs is also designed

for linked-read sequencing data. GROC-SVs identifies structural variants by performing local assembly

on barcoded reads. GROC-SVs operates in two steps. First it assigns p-value to novel adjacencies, and

then it performs local assembly, labelling novel adjacencies as assembled or unassembled. In some cases,

unassembled variants have smaller p-values than assembled variants. GASV, GASVPro, and LUMPY ana-

lyze paired-end sequencing data. When running these algorithms on 10X Genomics data we ignore barcodes

and treat the data as Illumina paired-end sequencing data. GASV uses only discordant read-pairs and ranks

novel adjacencies by the number of supporting discordant read-pairs. GASVPro uses a combination of dis-

cordant read-pairs and breakend read depth to assign a log-likelihood score to each predicted novel adjacency.

LUMPY uses discordant and split reads to call novel adjacencies and reports a p-value for each adjacency.

We benchmark NAIBR against each method on both simulated and real data. Reported novel adjacencies

are ranked from highest to lowest confidence according to the metrics used by each method. We run each
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Figure 4.19: Signals observed by molecules spanning novel adjacencies produced by different structural
variation events. a) A molecule spanning a novel adjacency produced by a deletion of B will be split if the
size |B| of interval B is > δ . b) An inversion of the interval B will result in two novel adjacency. A molecule
spanning a novel adjacency between the end of A and the end of B will be split if |B|− |L+

j |> δ . A molecule
spanning a novel adjacency between the start of B and the start of C will be split if |B| − |L−i | > δ . c) A
tandem duplication of the interval B will result in a single novel adjacency between the end of B and the start
of B. A molecule spanning this novel adjacency will be split if |B|− |L−i |− |L+

j |> δ .
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Figure 4.20: (a) Three signals of structural variants in paired-end sequencing data. (1) Discordant read-
pairs occur when a read-pair aligns to the reference genome with non-concordant (+,−) orientation or an
insert size smaller than lmin or larger than lmax. (2) Read depth measures the number of reads mapping to a
genomic region. Read depth will be lower in regions spanning a deletion and higher in regions spanning a
duplication. (3) A split read occurs when a novel adjacency lies within one of the reads of the pair, causing
it to be unmapped. (b) Linked-read sequencing contains all the signals of paired-end sequencing (discordant
read-pairs, read depth, and split reads) and also adds linked-reads, which are formed from nearby read-pairs
sharing the same barcode.
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method using its default parameters. More specifics can be found in the Supplement.

We simulate several types of structural variants – including duplications, deletions, translocations, and

inversions – on chromosomes 17 and 18 of the human reference genome hg19. To assess NAIBR’s ability to

detect novel adjacencies that occur on a single haplotype, we simulate two test genomes, one that contains

400 homozygous structural variants and one that contains 400 different structural variants on each haplotype.

Translocations and inversions create more than 1 novel adjacency in the simulated genome, resulting in 508

homozygous novel adjacencies in the first simulated genome and 1027 heterozygous novel adjacencies in the

second simulated genome. We simulate linked-read sequencing to 30X coverage. Details on simulation can

be found in the Supplement. Figure 4.21a shows the precision-recall curve for all 5 methods run on the 30X

test dataset containing 508 homozygous novel adjacencies. NAIBR has the highest recall of all methods,

correctly identifying 479/508 homozygous novel adjacencies. GASV correctly identified 309/508 variants,

however GASV reported several thousand variants, resulting in very low precision at high values of recall.

LUMPY performed similarly to GASV, correctly identifying 308/508 true variants, however the algorithm

only reports variants with high probability scores according to their scoring metric, resulting in lower recall.

GASVPro identified as many true variants as NAIBR at 50% recall, but only reported 289/508 true variants

in total, compared to 479 reported by NAIBR.

Long Ranger and GROC-SVs are each designed to utilize linked-reads, however both methods are limited

to the identification of certain types of variants. Long Ranger reports variants larger than 30Kbp and GROC-

SVs only reports variants larger than 10Kbp. The simulated dataset contains 369 novel adjacencies larger

than 10Kbp and 269 structural variants larger than 30Kbp. Both Long Ranger and GROC-SVs perform with

lower precision than NAIBR. For GROC-SVs, 38/39 of assembled novel adjacencies were present in the truth

set, showing that the local assembly approach has high precision. However an additional 59 true novel adja-

cencies were predicted by GROC-SVs but failed to assemble, indicating that local assembly removes many

true positives. We perform the same comparison on a simulated dataset containing 800 heterozygous novel

adjacencies with similar results. We also compare the runtime and memory usage of NAIBR to other methods

and find that NAIBR outperforms other linked-read methods (see Supplement). These results demonstrate

that NAIBR’s incorporation of both linked-read and paired-end read data improves performance over other

methods without significant additional time or memory requirements.
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Figure 4.21: a) Precision-recall curve for NAIBR, Long Ranger, GROC-SVs, GASV, GASVPro, and LUMPY
on 30X simulated data from chromosomes 17 and 18, containing 400 homozygous structural variants. b)
Precision-recall curve for NAIBR, GASV, GASVPro, LUMPY, GROC-SVs, and Long Ranger evaluated
against the set of 123 validated structural variants > 7Kbp from NA12878 [80]. c) Precision-recall curve for
NAIBR, GASV, GASVPro, LUMPY, GROC-SVs, and Long Ranger evaluated against the set of validated
structural variants ≥ 30Kbp from breast cancer cell line HCC1954 [69, 74, 94].

4.9.1 Benchmarking on NA12878

To assess NAIBR’s ability to detect known variants from a real dataset, we obtained whole-genome sequenc-

ing data of individual NA12878 of the 1000 Genomes Project from 10X genomics (https://support.

10xgenomics.com/genome-exome/datasets/NA12878_WGS_210). The data was sequenced on the Chromium

platform to 35X sequencing coverage with the Illumina Hiseq2500 to produce 845 million 98bp reads with

mean insert size of 340bp and a mean molecule size of 68Kbp. We used the 2,950 validated novel adjacencies

in NA12878 reported in [80] as the truth set. Novel adjacencies in this dataset were validated by split-read

mapping analysis of independent long-read sequencing data from PacBio or Illumina Moleculo platforms.

Figure 4.21b shows the precision-recall curves each method against 121 validated structural variants

larger than 7Kbp. NAIBR correctly predicted 73/121 novel adjacencies > 7Kbp. GASV also correctly pre-

dicted 73 novel adjacencies but displayed poor precision. GROC-SVs reported variants that it was able to

assemble using its local assembly pipeline as well as variants that were not assembled. The local assembly

step of GROC-SVs drastically reduces the number of reported false positives but also fails to assemble several

predictions matching the truth set. Long Ranger reported 17 novel adjacencies, correctly identifying 12/32

variants larger than 30Kbp from the truth set, compared to 17/32 variants larger than 30Kbp detected by

NAIBR. Figure S9 shows the precision-recall curves for each of the 5 methods on different structural variant

sizes, ranging from 50bp-30Kbp. NAIBR outperforms other linked-read methods at detecting variants be-

tween 50bp and 10Kbp and outperforms paired-end methods at detecting variants larger than 5Kbp. NAIBR

outperforms both linked-read and paired-end methods at detecting variants between 1Kbp and 10Kbp. In

https://support.10xgenomics.com/genome-exome/datasets/NA12878_WGS_210
https://support.10xgenomics.com/genome-exome/datasets/NA12878_WGS_210
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summary, NAIBR detects large structural variants (> 1Kbp) with better precision than paired-end callers

GASV, GASVPro, and LUMPY and has higher recall and precision for variants smaller than 10Kbp com-

pared to linked-read callers Long Ranger and GROC-SVs.

4.9.2 Tumor cell line HCC1954

We test NAIBR’s ability to detect somatic structural variants in tumor cell line HCC1954T. The cell line

was derived from a grade 3 invasive ductal carcinoma and sequenced by 10X Genomics to 35X coverage

with a mean molecule size of 85Kbp. The matched normal HCC1954N was sequenced by 10X Genomics

to 35X coverage with a mean molecule size of 88Kbp. We identify novel adjacencies in both HCC1954T

and HCC1954N using 4 different methods: NAIBR, Long Ranger, GASV, and LUMPY. We formed a set of

369 true novel adjacencies by combining PCR-validated novel adjacencies from three previous studies: [69],

[94], and [74].

NAIBR identifies 142 PCR-validated novel adjacencies, significantly more than Long Ranger (100),

GASV (117), and LUMPY (55) (Figure S6). NAIBR also demonstrates better precision at all levels of recall

than other methods (Figure 4.21c). Notably, GASV has significantly lower precision than Long Ranger and

NAIBR, predicting over ten times as many novel adjacencies with lower recall than the other methods (Figure

S6). NAIBR significantly outperforms Long Ranger at identifying duplications and interchromosomal events

(Figure S5), identifying 72 duplications compared to 50 identified by Long Ranger and 53 interchromosomal

events compared to 37 predicted by Long Ranger. Over 30% of the breakends predicted by NAIBR lie within

50bp of the breakends of the PCR-validated novel adjacencies, compared to approximately 10% of breakends

predicted by Long Ranger and GASV (Figure S7).

Several of the novel adjacencies in HCC1954T that were not identified by Long Ranger and GASV af-

fect known oncogenes and tumor suppressors. For example, a novel adjacency between Chr11:93153935

and Chr11:93160223 occurs within the gene CCDC67, potentially leading to loss of function of the gene.

CCDC67 has recently been identified as a tumor suppressor gene [103, 106]. A novel adjacency between

Chr14:89829140 and Chr7:155683934 affects the forkhead transcription factor checkpoint suppressor, CHES1.

CHES1 expression has been shown to be reduced across many cancer types [76]. A novel adjacency between

Chr11:69059340 and Chr11:69089741, surrounding the MYEOV gene (Chr:69061613-69064754), is poten-

tially a result of a duplication of MYEOV. MYEOV has been shown to be amplified in breast cancer patients

and has been identified as a candidate oncogene [79].
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4.10 Discussion

We present NAIBR, a probabilistic algorithm for the identification of novel adjacencies using linked-read

sequencing data. Linked-read sequencing combines low per-base error rate of short-read sequencing tech-

nologies with long-range linking information of long-read technologies. Linked-read sequencing offers dras-

tically improved mapping and phasing results compared to paired-end sequencing [70] with similar cost,

making it an attractive option for researchers. NAIBR is one of the first algorithms that identifies structural

variation by using signals unique to linked-read sequencing data. NAIBR uses discordant read-pairs obtained

from paired-end reads combined with candidate split molecule obtained from linked-reads to identify and

rank novel adjacencies. NAIBR detects novel adjacencies with higher accuracy and precision than existing

methods on both simulated and real linked-read sequencing data.

We also demonstrate NAIBR’s ability to predict somatic novel adjacencies from cancer data by applying

it to cell line HCC1954. Several novel adjacencies detected by NAIBR were not identified by other methods,

including novel adjacencies affecting tumor suppressor genes CCDC67 and CHES1 and candidate oncogene

MYEOV. While some of the novel adjacencies predicted by NAIBR might be verified PCR, it is possible that

long-read sequencing data (e.g.from PacBio or Oxford Nanopore) would be required, since these adjacencies

were not readily apparent from short-read sequencing data.

As future work, we plan to incorporate additional signals, such as read depth and split-reads, into our

probabilistic model for identifying novel adjacencies. Our algorithm can also be extended by performing

local assembly on linked-reads supporting novel adjacencies to reconstruct structural variants, as is done by

GROC-SVs [93].

The utility of linked-reads in identifying novel adjacencies between nearby positions on the reference

genome (such as a small deletion) is limited by the fact that each molecule is sequenced to low coverage, intro-

ducing large gaps between read-pairs sequenced from the same molecule. Thus, with the current Chromium

technology from 10X Genomics, linked-reads provide substantial additional power to detect large structural

variants but provide little additional power above that of paired-end sequencing in the detection of small

structural variants. However, linked-read sequencing is a very new technology and is likely to improve in the

coming years. As molecules are sequenced to higher coverage, NAIBR’s ability to detect novel adjacencies

using candidate split molecules will improve significantly, enabling the identification of novel adjacencies

arising from smaller structural variants.



Chapter 5

Conclusions and Future Directions

Recently developed high-dimensional sequencing technologies such as scRNA-seq, STRNA-seq, linked-

read sequencing, and others provide increased resolution over standard DNA-seq and RNA-seq technologes,

boosting our ability to study biological mechanisms underlying disease with unprecedented precision. How-

ever, it is currently only feasible to obtain this high resolution at the cost of low-coverage. This means that

analysis methods, such as clustering, differential expression analysis, and copy number calling, designed for

high-coverage "bulk" sequencing data will not be effective on the sparse high-dimensional data from these

new technologies. This motivates the need for analysis methods designed specifically for these technologies,

which can make use of their benefits and overcome the negative effect of low-coverage. To address this

need, we have developed three methods for three different sequencing technologies, scRNA-seq, STRNA-

seq, and linked-read sequencing, which utilize known dependencies to improve the analysis and interpretation

of sparse high-dimensional sequencing data.

These known dependencies can come in many forms. First, we introduce a method, netNMF-sc, which

makes use of known correlations in expression between gene pairs obtained from prior RNA-seq and mi-

croarray experiments. By incorporating gene-gene correlations from prior experiments in the form of a gene

coexpression network, netNMF-sc is able to accurately recover cell clusters from scRNA-seq data. Incorpo-

rating these known gene-gene correlations gives netNMF-sc an advantage over other methods because of the

sparsity of scRNA-seq data, often containing as many as 90% zero entries. We have shown that netNMF-sc

performs well on several real scRNA-seq datasets with a variety of gene coexpression networks, however

the method relies on the strong assumption that gene-gene correlations are the same for every cell in the

scRNA-seq experiment. While it is generally true that many gene regulatory pathways are conserved across

91



92

organisms of the same species, a one-size-fits all approach may not be best. An interesting future direction

would be to investigate cell-type-specific gene coexpression networks and model the coexpression of the

scRNA-seq data as a combination of contributions from each of these cell-type-specific networks.

We next introduce a method STCNA which uses prior knowledge of gene and spot dependencies to

infer copy number aberrations (CNAs) from spatial transcriptomics RNA-seq (STRNA-seq) data. Unlike

netNMF-sc, the prior knowledge of these dependencies comes directly from the dataset of interest. This is

ideal because this information will always be available for any STRNA-seq experiment of any organism,

whereas there may be limited prior knowledge available from rarely studied organisms/tissues for use with

netNMF-sc. To our knowledge, STCNA is the first method which incorporates spatial information to infer

CNAs from STRNA-seq data. We demonstrate that by incorporating both dependencies between adjacent

genes on the genome and adjacent spots in a tissue, we can significantly improve the inference of clone CNA

profiles and the assignment of spots to clones. Exploring violations of these dependencies in STRNA-seq

data is an interesting avenue for future work. For example, a clone which does not show significant spatial

clustering and has spots distributed throughout a tumor tissue could indicate a population of cells which

has increased mobility. These mobile cells may suggest poor prognosis with a higher chance of metastasis.

Another potential future direction is investigating the relationship between copy number aberrations and gene

expression in tumor tissues. With STCNA we can currently only identify genes that are directly affected by

copy number changes. However, the deletion of DNA coding for a transcription factor, for example, may

set of a cascade of regulatory changes, resulting in higher or lower expression of several genes in a shared

regulatory pathway. Further research of paired gene expression and CNA profiles across many individuals is

needed to determine these complex causal relationships between copy number aberrations and downstream

changes in gene expression.

The third method we introduce is NAIBR which infers novel adjacencies created by structural variants

in a tumor genome from linked-read sequencing data. Linked-read sequencing data consists of barcoded

paired-end reads which originate from long molecules ∼ 50Kb in length. The probability of a paired-end

read originating from a molecule that spans a novel adjacency is dependent on paired-end reads of other

molecules sharing the same barcode. By incorporating these dependencies into a probabilistic model, we

demonstrate that NAIBR improves the identification of novel adjacencies over other existing methods on

multiple datasets. Directions for future work include incorporating additional signals, such as read depth and

split-reads into the probabilistic model. The probabilistic model could also be extended by performing local

assembly of linked-reads supporting novel adjacencies to reconstruct structural variants. Combining read
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depth, split-reads, and local assembly into the existing model would reduce the number of false positive calls

and potentially facilitate the inference of smaller events.
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