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Chapter 1

Introduction

In practice, it is rare that the true generating mechanism of a data source is known. This

uncertainty presents a challenge to statisticians, who are commonly tasked with specifying

and identifying relationships in a given dataset. However, this challenge is not unique,

nor equal, for any particular dataset. Investigators may encounter these challenges when

modelling data in a variety of settings, such as those comparing the effects of interventions

between groups of individuals. Estimating the effects of interventions is often the primary

objective in controlled trials or experiments, but may also be the goal of an observational

study. Generally, controlled trials are preferred to observational studies when examining

intervention effects as they typically have the benefit of known sampling and randomization

mechanisms. These mechanisms aim to provide investigators with groups of trial participants

that are similar to one another on average, which generally helps to appropriately and

accurately estimate the intervention effects. However, even under controlled settings, there

may be latent structures determining the data generation that are not easily discovered

or known. The presence and complexity of these structures likely varies for each dataset

and the variables within it. Examining the relationships within a dataset in the presence

of latent structures may prove challenging. Moreover, specifying statistical models for this

type of data requires assumptions and methods that should be tested for their robustness to
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deviations or violations of these assumptions. Throughout this dissertation, we are interested

in methodological developments and comparisons for latent data generating mechanisms

across a variety of controlled trial or experiment settings. In particular, we focus on three

settings: 1) Stratified Cluster Randomized Trials, 2) Adaptive Randomized Controlled Trials,

and 3) Longitudinal Controlled Experiments.

1.1 Aim 1

Randomized controlled trials (RCTs) are the gold-standard for estimating the effects of

interventions. While adjustment for covariates in RCTs leads to more powerful statistical

procedures, multiple systematic reviews have shown that many RCTs do not adjust for

covariates beyond the intervention. In cluster randomized trials (CRTs) groups of subjects,

rather than individuals, are randomly assigned to interventions. When there exists a variable

believed to be prognostic of the outcome of interest, stratifying the randomization by this

variable may lead to improved balance between intervention arms.

In the analysis phase of a stratified CRT (SCRT), generalized linear multilevel models

(GLMM) and generalized estimating equations (GEE) have been proposed to adjust for

individual-level and cluster-level covariates as well as for the correlations between individuals

within the same group. When a SCRT is implemented, the exact specification of GLMM and

GEE models that account for stratification variables have not been extensively examined.

Aim 1 is to examine the operating characteristics of different specifications of GEE and

GLMM models in SCRTs through extensive simulations. The simulations include binary

and continuous outcome variables, different outcome error configurations, linear and non-

linear relationships between the covariates and outcomes, as well as different number of

clusters and individuals within clusters.
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1.2 Aim 2

When RCT participants adhere to their assigned intervention, the effects of randomization

approximates the effects of the intervention. However, in the presence of noncompliance,

assignment to the intervention may not approximate well the receipt of the intervention.

Noncompliance to the assigned intervention may become even more significant in pragmatic

RCTs, in which researchers have less control over the administration of the intervention.

Numerous methods have been developed to address lack of compliance following the collection

of data from an RCT as part of the analysis stage. However, limited experimental designs

have been developed to address possible noncompliance while the trial is ongoing.

Adaptive designs provide a framework to specify possible modifications during the design

stage of a randomized trial. In such designs, investigators can evaluate interventions as data

are accrued and apply adaptations to the trial. Aim 2 proposes an adaptive design to

address noncompliance with multi-component intervention. We frame the design within the

counterfactual causal inference framework, and describe both design and analysis procedures

to implement this design.

1.3 Aim 3

Amyotrophic lateral sclerosis (ALS) is a progressive neurological condition impacting nerve

cells within the brain and spinal cord. ALS is characterized by motor function impairment,

and many ALS patients also experience cognitive and behavioral symptoms that resem-

ble those of frontotemporal dementia. The ALS disease spectrum can be characterized by

the RNA-binding protein, TDP-43. Defining the role of TDP-43 in the neurodegeneration

process can lead to treatment development of ALS. Animal models enable researchers to

manipulate genetics and environmental factors to investigate their roles in development, be-

havior, and health outcomes of a disease. Mice models are frequently used because of their

phylogenetic proximity and physiological resemblance to humans. Many studies that utilize
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mouse models to examine behavior, motor, and cognitive functions are generally performed

using data that are collected over short time periods while the mice undergo a single test.

The automated home-cage behavioral phenotyping of mice (ACBM) (Jhuang et al. (2010)) is

a computer vision system that is trained with manually annotated behaviors of interest and

tracks these behaviors in freely behaving mice in cages. The ACBM enables investigators to

record and analyze multiple behaviors over multiple days for multiple mice.

Analysis of Variance (ANOVA) is a commonly used statistical tool to compare two or

more types of animals across multiple behavioral tasks. However, The ANOVA model may

produce unreliable inference and predictions when the results of a test are correlated over

time and within mice, as well as when the outcomes are non-Normally distributed. Following

a Bayesian framework, we compare the goodness of fit of multiple models to data annotated

by the ACBM algorithm over 5 days for 20 mice. Aim 3 proposes a hierarchical zero-inflated

generalized Dirichlet multinomial regression model (abbreviated ZIHGDM) (Tang and Chen

(2018)) with cyclic splines to model the time mice spent performing certain behaviors at

each circadian hour. This model can integrate periods in which mice do not perform certain

behaviors, correlation between the time spent performing the different behaviors, repeated

measurement for each mouse and day of the week, and cyclic effects of hours within a day.
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Chapter 2

Methods to adjust for stratification

variables in Stratified Cluster

Randomized Trials
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2.1 Introduction

Randomized controlled trials (RCTs) are commonly used study designs for estimating the

effects of interventions. Studies that estimate effects of interventions should comprise of two

distinct stages: the design stage and the analysis stage (Rubin, 2008). The design stage of

a RCT is commonly described in a study protocol which documents the aims, procedures,

and policies of the study. This protocol also describes the randomization procedure and the

statistical analysis that would be employed at the conclusion of the trial. The analysis stage

implements the statistical analysis described in the study protocol (Rosenberger and Lachin,

2015).

One of the objectives of randomization is to balance all observed and unobserved baseline

covariates across the arms of the study (Rosenberger and Lachin, 2015). However, random-

ization only balances covariates on average (Morgan and Rubin, 2012). When there are

covariates that are known to be associated with the outcomes, stratified randomization is

a design tool that can be used to increase covariates balance (Kernan et al., 1999). Strat-

ified randomization has been shown to increase the precision of treatment effect estimates

(Meier, 1981; Ye et al., 2023; Kernan et al., 1999; Lachin, 1988). The increase in precision is

expected to be larger in RCTs with small number of participants compared to RCTs with

many participants (Kernan et al., 1999; Lachin, 1988).

A different approach to address possible imbalances and increase the efficiency of a study

is to adjust for covariates at the analysis stage. Adjusting for covariates in RCTs generally

leads to more powerful statistical procedures (Ivers et al., 2012). However, several systematic

reviews have shown that only one-quarter to one-third of the RCTs adjust for baseline

covariates (Yu et al., 2010; Assmann et al., 2000; Austin et al., 2010; Hernandez et al.,

2005). One reason for the lack of covariate adjustment is the possibility of reduced power

when these covariates are not highly correlated with the outcomes (Kahan et al., 2014).

A simulation study of different RCT settings found that adjustments for covariates that

are not correlated with the outcomes resulted in a small decrease in power compared to
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possible large gains in power when adjusting for covariates that are highly correlated with the

outcomes (Kahan et al., 2014). A different reason for the lack of covariate adjustment is that

investigators may be concerned with model misspecification when adjusting for covariates

beyond the intervention indicator. However, in RCTs with unit-level randomization, the

analysis of covariance (ANCOVA) estimator was shown to have a consistent point estimate

and consistent standard error even when the model is misspecified (Wang et al., 2019). In

addition, if any of the covariates are correlated with the outcome, ANCOVA based estimates

are more precise (Yang and Tsiatis, 2001).

A third approach to address possible imbalances combines stratification and covariates

adjustment to obtain balanced covariates at the design stage and improved efficiency at the

analysis stage (Kahan and Morris, 2011). In simulations, this approach was shown to provide

valid and efficient estimates with continuous, binary and time to event outcomes (Kahan and

Morris, 2011). Moreover, not adjusting for randomization strata in the analysis stage may

result in conservative standard error estimates under stratified randomization procedures

(Wang et al., 2021).

In cluster randomized trials (CRTs), groups of subjects, rather than individuals, are ran-

domly assigned to the interventions. Randomization at the cluster level may be preferred

because of economic or logistical reasons (Donner and Klar, 2000). CRTs can also reduce

experimental contamination, which may occur when individuals assigned to different treat-

ment arms are in frequent contact (Donner and Klar, 2004). Compared to individual-level

randomization, CRTs may suffer from loss of efficiency, because outcomes of individuals

within a cluster are more similar than outcomes of individuals across clusters.

Because in many CRTs the number of clusters is relatively small, stratification on im-

portant prognostic factors has been suggested to reduce imbalances between arms (Donner,

1998). Moreover, because stratification is expected to reduce between-cluster variability,

stratified randomization is expected to increase precision (Hayes and Moulton, 2017). Strata

in cluster randomized trials are commonly defined using baseline cluster-level characteristics
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that are expected to be correlated with the outcomes (Raab and Butcher, 2001; Donner and

Klar, 2000).

Regression adjustments with CRTs require advanced models, because they commonly

include both individual-level and cluster-level covariates as well as accounting for the corre-

lations of individuals within clusters. Two primary methods are commonly used for analysis

of CRTs (Turner et al., 2017a,b; Campbell et al., 2006). The first method is the generalized

linear multilevel model (GLMM) approach where the first level represents the individual

patients, and it is nested within a second level that adjusts for cluster effects (Hayes and

Moulton, 2017). The second method is the generalized estimating equations (GEE) which

yields population-level inference for the parameters in the model (Liang and Zeger, 1986;

Campbell et al., 2006; Turner et al., 2017b). However, interpretation of the parameters

from the two models are not equivalent with similar subject-level covariate specification.

Therefore, defining a common estimand of interest is important when comparing model

performance between the GLMM and GEE approaches.

Although stratification is commonly used in CRTs (Lewsey, 2004; Crespi, 2016), less

attention has been given to analysis of stratified CRTs (SCRTs). Turner et al. (2017b)

suggested that ignoring stratification in the analysis of CRTs will result in statistically valid

procedure that can be more powerful because of the increased degrees of freedom. This

advice differs from the ANCOVA result for individual randomized trials if the stratification

variables are correlated with the outcomes (Wang et al., 2019). With binary outcomes,

multiple χ2 statistics were proposed to address stratified randomization (Song and Ahn,

2003). Based on simulations, a modified Mantel–Haenszel statistic (Zhang and Boos, 1997)

and a GLMM test statistics were shown to be statistically valid and more powerful compared

to other test statistics. However, these tests statistics had low power when the number of

clusters were small, and they do not provide an easily interpretable effect size estimates. The

modified Mantel–Haenszel statistic was also extended to categorical variables (Dobbins and

Simpson, 2002), but it may suffer from similar limitations as the statistic with the binary
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outcome. Lewsey (2004) used simulations analysis to compare the effects of stratification on

cluster size in CRTs. With stratified randomization, they relied on GLMMs that included

an indicator for strata membership. The analysis model for simple randomization did not

adjust for the stratification variables. They describe that stratified randomization resulted

in greater power compared to simple randomization. However, the estimands of the simple

randomization model and the stratified randomization model differ. Borhan et al. (2023),

compared GLMM and GEE models to analyze continuous outcomes in stratified cluster

randomized trials. They report that the examined GEE model has larger than nominal type

I error for small clusters, while the GLMM model has nominal error for small and large

number of clusters. However, the estimands that were used for comparison of GEE model

and the GLMM model differed.

We perform an extensive simulations to examine the operating characteristics of different

specifications of GEE and GLMM models in stratified CRTs. The simulations include binary

and continuous outcome variables, different outcome error configurations, linear and non-

linear relationships between the covariates and outcomes, as well as different number of

clusters and individuals within clusters.

Our simulations identify four main trends. First, GLMM and GEE models that adjust

for strata-defining covariates are generally robust to subject-level model misspecification,

and to the cluster-level distribution misspecification. These models are more precise than

models that do not adjust for strata-defining covariates. Second, a GLMM that adjusts for

within and between association of covariates with the outcome, is generally valid and it has

operating characteristics that are generally similar to correctly specified models. Third, GEE

models that do not perform sampling variance adjustment may result in invalid statistical

procedures. Fourth, GEE models with sampling variance adjustment have similar, although

less precise, performance compared to GLMMs with the same mean specification, as the

number of clusters increases.

The paper proceeds as follows: Section 2 describes the notations and models. Section
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3 describes the simulation configurations. The simulation results are presented in Section

4. Section 5 implements the methods on a study that examined the effects of a video

intervention for advanced directive on hospitalizations. Section 6 provides discussion and

conclusions.

2.2 Notations and Methods

2.2.1 Notation

Consider a SCRT for estimating the effect of binary intervention T on an outcome Y . Under

the Stable Unit Treatment Value Assumption (Imbens and Rubin, 2015), outcome for unit

i ∈ {1, . . . ,mj} from cluster j ∈ {1, . . . , J}, has two potential outcomes: Yij(1) when cluster

j is assigned to the active treatment group, and Yij(0) when cluster j is assigned to the

control group. Because units can only be assigned to one of the interventions at a specific

point in time, only one of these two potential outcomes can be observed. The observed

outcomes are

Y obs
ij = (1− Tj)× Yij(0) + Tj × Yij(1),

where Tj ∈ {0, 1} is the treatment assigned to cluster j. In addition to the observed outcomes,

we record P1 baseline unit-level covariates, Xij = {X1ij, . . . , XP1ij}, and P2 baseline cluster-

level covariates, Zij = {Z1ij, . . . , ZP2ij}. The cluster-level covariates are similar for all units

in the same cluster Zij = Zi′j, ∀ i, i′. Stratification variables in a SCRT, Z′
ij, are generally

cluster-level covariates and can be defined as a subset of Zij, such that Z′
ij ⊆ Zij. Causal

effects in CRTs and SCRTs are summarized using estimands, which are functions of unit-

level potential outcomes over a pre-defined set of units (Rubin, 1978). A commonly used

estimand is the average treatment effect (ATE), γ = E(Y (1) − Y (0)), where expectation

is taken over the entire population of units. When the number of units within each cluster

varies, a different estimand is the difference in average of cluster means in the treated group
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to the average of cluster means in the control group (Zhai and Gutman, 2021),

ξ =
1∑J

j=1 Tj

J∑
j=1

Tj ∗
1

mj

mj∑
i=1

Yij(Tj)−
1∑J

j=1(1− Tj)

J∑
j=1

(1− Tj) ∗
1

mj

mj∑
i=1

Yij(Tj).

The methods that are presented here can be used to estimate γ and ξ; however, for simplicity,

we will concentrate our derivations and simulations for γ.

2.2.2 Generalized Linear Multilevel Models

A common model for analyzing a CRT is the generalized linear multilevel model (GLMM)

(McCulloch, 2003). In GLMMs, the mean of the potential outcomes conditional on a pa-

rameter vector θθθ, E[Yij(Tj)|θθθ], can be related to a set of covariates, {Xij,Zij, Tj}, through a

link function g(·),

E[Yij(Tj)|θθθ] = µij(Tj)

g(µij(Tj)) = h
(
Zij,Xij,βββ, Tj

)
+ cj

cj ∼ N (0, τ 2),

(2.1)

where β ⊆ θ is a set of unknown parameters and cj represents the effect of cluster j. The

identity link function, g (µij(Tj)) = µij(Tj), is commonly used with continuous outcomes,

and the logit link, g (µij(Tj)) = log
(

µij(Tj)

1−µij(Tj)

)
with binary outcomes. The form of h(·)

is study specific and we describe possible forms for h(·) in the Sections 2.2.2 - 2.2.2. For

continuous outcomes we assume Yij(Tj) ∼ N
(
µij(Tj), σ

2
ϵ

)
, and θ = {β, σ2

ϵ}. To estimate γ,

we calculate 1∑J
j=1 mj

∑
ij

∫
(µ̂ij(1) − µ̂ij(0)) dPcj , where µ̂ij(Tj) are the estimates of µij(Tj)

from Equation (2.1) and Pcj is the distribution of cj. GLMMs can be estimated using the R

software packages lme (Bates et al., 2015) or nlme (Pinheiro et al., 2023) as well as PROC

GLIMMIX or PROC MIXED in SAS (Turner et al., 2017b).

In CRTs when assuming a multilevel analysis model, the sampling variability of a contin-

uous outcome can be factored into three components, the residual variance after adjustment
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for the observed covariates Zij and Xij, the cluster-level variability, and the predicted vari-

ance based on observed covariates,

V (Yij(Tj)) = V
(
Yij(Tj)− cj − h

(
Zij,Xij,βββ, Tj

))
+ V

(
cj

)
+ V

(
h
(
Zij,Xij,βββ, Tj

))
(2.2)

Adjusting for covariates that are correlated with the outcomes can lead to reductions in the

residual variance term in Equation (2.2). However, compared to RCTs, this reduction may

not be as large in CRTs because it does not influence the cluster-level variability, V (cj). A

derivation of the variance decomposition for a CRT is included in Supplementary Material

2.7.1.

Unadjusted Multilevel Models

One model specification for analyzing RCTs with individual-level randomization does not

adjust for covariates beyond the intervention (Yu et al., 2010; Assmann et al., 2000; Austin

et al., 2010; Hernandez et al., 2005). In CRTs, a corresponding model assumes that h(·) =

β1Tj and

g (µij(Tj)) = cj + β1Tj, (2.3)

where β1 is the conditional treatment effect on the link function scale. Models that do not

adjust for covariates are thought to be less prone to type I error because they do not suffer

from misspecifications of the relationship between covariates and the outcome. (Kraemer,

2015).

Adjusted Multilevel Models

Under individual-level randomization, linear adjustments for covariates leads to more pow-

erful statistical procedures (Balzer et al., 2016). In CRTs, a corresponding GLMM is,

g (µij(Tj)) = cj + β1Tj +

P1∑
p=1

β2pXpij +

P2∑
p=1

β3pZpij, (2.4)
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where βββ = (β1, {β2p}, {β3p}). A possible limitation of Equation (2.4) is that models with

different sets of Xij may result in different sampling error estimates (Beach and Meier, 1989).

In addition, Equation (2.4) does not consider the variability of the covariates across clusters,

which may influence the outcomes. Throughout, we will refer to this model as GLMM.

Neuhaus and Kalbfleisch Model

Neuhaus and Kalbfleisch (1998) suggested a model that adjusts for baseline covariates while

considering their between- and within- cluster associations with the outcome. Formally,

g (µij(Tj)) = cj + β1Tj +

P1∑
p=1

(
β2pXpj + β3p

(
Xpij −Xpj

))
+

P2∑
p=1

β4pZpij, (2.5)

where βββ = (β1, {β2p}, {β3p}, {β4p}) and Xpj = 1
mj

∑mj

i=1Xpij ∀p, j. When the associations

between the covariates and the outcomes at the individual and cluster level differ, this model

can result in more precise estimates of γ. Throughout, we will refer to this model as NKM.

2.2.3 Generalized Estimating Equations

Generalized Estimating Equations (GEE) have been proposed as an alternative to GLMMs

for estimating treatment effects in clustered or longitudinal data (Zeger et al., 1988). In

GEE, the model for the marginal distribution of Yij(Tj) does not require specification of the

joint distribution of subject’s observations (Liang and Zeger, 1986). Define covariance matrix

Vj(ααα) = A
1/2
j Rj(ααα)A

1/2
j , where Cov(Yij(Tj)) = Aj × ϕ, with an unknown scale parameter

ϕ, and Aj = diag{g(µ1j), . . . , g(µmjj)}. Rj(ααα) is a correlation matrix that may depend on a

vector of unknown parameters, ααα (Zeger et al., 1988). We estimate the unknown parameters,

βββ, by solving the following equations,

U(βββ) =
J∑

j=1

∂µµµij(Tj)

∂βββ
V−1

j (ααα)(Yij(Tj)− µµµij(Tj)) = 000, (2.6)
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where µµµij(Tj) = E(Yij(Tj)) = {g−1(h(Zij,Xij,βββ, Tj)), . . . , g
−1(h(Zij,Xij,βββ, Tj))}. GEE

requires correct specification of the marginal mean but not the variance-covariance matrix

to obtain consistent estimates (Liang and Zeger, 1986). Misspecifying the mean may result

in biased and inconsistent estimates (Emond et al., 1997).

The sampling variance of the parameter βββ is usually estimated using the robust ”sand-

wich” estimator (Liang and Zeger, 1986). When the number of clusters is small, this ”sand-

wich” estimator has been shown to be biased (Mancl and DeRouen, 2001; Li and Redden,

2014; Huang et al., 2016) and can lead to inflated type I error rate and below nominal coverage

(Kahan et al., 2016; Leyrat et al., 2018). Multiple procedures have been proposed to adjust

the sampling covariance matrix of GEE estimates in small samples (Gosho et al., 2021; Ford

and Westgate, 2018; Wang et al., 2016). Gosho et al. (2021), identified the bias-adjustment

proposed by Mancl and DeRouen (2001) as the best performing method for mixed effects

models with repeated measures. This adjustment method reduces the bias of the residual

estimator, rrrijrrr
T
ij = (Yij(Tj)− µ̂µµij(Tj))(Yij(Tj)− µ̂µµij(Tj))

T , by estimating the expectation of

the squared first-order Taylor series expansion of rrrij around β. Lu et al. (2007) reported that

this adjustment generally overestimates variances, but results in nominal coverage with 10

clusters or more. However, for less than 10 clusters an adjustment by Kauermann and Carroll

(2001) may be preferred. In our simulations, we examined the performance of the different

GEE models, without any adjustments, with the bias adjustments proposed by Mancl and

DeRouen (2001), and with the bias adjustment proposed by Kauermann and Carroll (2001).

GEE models can be estimated using the R software package geepack (Halekoh et al., 2006)

or in SAS using PROC GENMOD (Turner et al., 2017b). Bias adjustments for the sampling

variance can be obtained using the geesmv (Wang, 2015) package.

2.2.4 Estimating E(Y (1)) and E(Y (0)) Separately

The models in Sections 2.2.2 and 2.2.3 assume that the covariates Xij and Zij do not interact

with the intervention. This implies that the intervention effect is homogeneous on the link
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scale. In addition, these models assume that the within- and between cluster variability are

similar across intervention groups. To relax these assumptions, γ can be estimated with

two separate models, µij(1) and µij(0), in the treated and control group, respectively. For

example, under the NKM model structure,

g (µij(t)) = cj +

P1∑
p=1

(
βt
1pXpj + βt

2p

(
Xpij −Xpj

))
+

P2∑
p=1

βt
3pZpij, (2.7)

where βββ1 = ({β1
1p}, {β1

2p}, {β1
3p}) may differ from βββ0 = ({β0

1p}, {β0
2p}, {β0

3p}). Other models

can be defined similarly. To obtain estimates for γ, we average over the covariates and cluster-

specific effects in each model to obtain estimates of E(Yij(1)) and E(Yij(0)), Ê(Yij(1)) and

Ê(Yij(0)), respectively. Point estimate of γ is derived as γ̂ = Ê(Yij(1))−Ê(Yij(0)). Sampling

variance estimates of γ̂ are expected to be larger than the sampling variance based on the

models in Sections 2.2.2 and 2.2.3, because the covariance between Ê(Y (1)) and Ê(Y (0))

is assumed to be 0 when these estimates are modeled independently. However, it may

lead to more accurate estimates, and better operating characteristics when the effects are

heterogeneous.

2.3 Simulations

To examine the performance of the models in Section 2 under varying levels of misspecifi-

cation, we perform simulation analysis. In the simulations, we generate three covariates for

individual i ∈ {1, . . . ,mj} in cluster j ∈ {1, . . . , J}. The first covariate is a cluster propor-

tion of black individuals Z1j ∼ U(0, 1). The second variable is a binary individual-level black

indicator, X1ij ∼ Bernoulli(Z1j), and the third variable is an individual-level standardized

cholesterol, X2ij ∼ N(∆, 1) where ∆ ∈ {0, 1}. Given individual- and cluster-level covariates
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we generate the potential outcomes Yij(Tj) based on Equation (2.1), with

g
(
µij(Tj)

)
= cj+β1Tj+(β2 + β3νj)Z1j+β4X1ij+β5exp

(
X2ij

β6

)
+β7X2j+β8X2ij+β9TjX2ij,

(2.8)

where βk, k = 1, . . . , 9, are pre-defined coefficients, cj ∼ F is the cluster specific mean,

νj ∼ N(0, 1) is the cluster specific change in slope for Z1j, X2j = 1
mj

∑mj

i=1X2ij with mj

individuals in cluster j, and g(·) is the identity link function. Each coefficient β1, . . . , β9

represent a relationship of the covariates and treatment assignment with the potential out-

comes: β1 represents the linear relationship with the treatment assignment, β2 represents the

linear relationship between cluster proportion of black individuals, β3 represents the linear

relationship with cluster-specific proportion of black individuals, β4 represents the linear re-

lationship with individual level race indicator, β5 represents the non-linear relationship with

individual level cholesterol, β6 represents the degree of non-linear relationship with individ-

ual level cholesterol, β7 represents the linear relationship with cluster average cholesterol,

β8 represents the linear relationship with individual-level cholesterol, and β9 represents the

heterogeneity of the treatment assignment effect for different values of the individual-level

cholesterol.

We construct 36 simulation sets such that each follows a factorial design using the three

covariates and the model in Equation 2.8. The 36 simulation sets are defined by unique values

of 4 elements: the randomization type, the inclusion of treatment effect heterogeneity across

clusters, the outcome type (continuous/binary) and model specification. We examine three

randomization types: simple randomization (SR0), stratified randomization constructed with

one variable (SR1), and stratified randomization with two variables (SR2). The proportion

of black individuals in the cluster, Z1j, was used as the first stratifying variable. We stratified

clusters based on Z1j to either 2, 3, or 4 using the respective quantiles of Z1j. The average

cholesterol level in the strata, X2j, was used as the second stratification variable. All clusters

above the median of average cholesterol were assigned to one strata, and the rest were
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assigned to the second strata. The randomization strata element was examined with either

no stratification, stratification on Z1j, resulting in 2, 3, or 4 strata, or the combination of the

two stratification variables, resulting in 4, 6, or 8 strata. Within each strata clusters were

randomly assigned with 1:1 ratio to either the intervention group or the control group. In

sets that used the two covariates for stratification, β5 and β7 were different from 0. Simple

randomization was examined with either β5 = β7 = 0 or with both different from 0.

The second element that we examined was the introduction of treatment effect hetero-

geneity across clusters. Formally, we set β9 = 0 for a constant homogeneous effect on the link

scale (HTE0), and set β9 ̸= 0 for heterogeneous effect (HTE1). The third element defining the

simulation is the outcome type. We examined two types of outcomes: continuous (CO) and

binary (BO). Formally, continuous outcomes were generated as Yij(Tj) ∼ N
(
µij(Tj), σ

2
ϵ = 1

)
and binary outcomes were generated as Yij(Tj) ∼ Ber

(
logit−1(µij(Tj))

)
.

The model specification element consists of 4 levels. The first level comprises a model that

does not include varying slope across clusters, νj = 0 and the cluster-specific effects follows a

Normal distribution cj ∼ N(0, σ2
c ) (MS1). The second level of the model specification element

assumes that νj = 0, and cj ∼Student-t distribution with df degrees of freedom (MS2). The

third level assumes that νj = 0, and cj ∼ Gamma(α, 1) (MS3). The fourth level assumes

varying cluster-level covariate effects between clusters, νj ∼ N(0, 1) and cj ∼ N(0, σ2
c ) (MS4).

Of the 36 simulation sets, 32 are constructed as the unique combinations of the 4 elements,

for the following levels: randomization type ∈ {SR1, SR2}, treatment effect heterogeneity

∈ {HTE0, HTE1}, outcomes ∈ {CO, BO}, model specification ∈ {MS1, MS2, MS3, MS4}.

The 4 remaining simulation sets utilize simple randomization of the clusters and generate the

data from Equation (2.8) similar to SR1 columns in Table 2.1. Denote these 4 simulations

as SR0-A, SR0-B, SR0-C, SR0-D.

Each simulation set comprises of either 1458 or 2916 configurations of unique factor

combinations. Every configuration within each simulation set is replicated 100 times. Tables

2.1 and 2.2 summarize the factors that varied within each simulation set. Table 2.1 describes
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the levels that were examined for coefficients β1, β2, β3, and β9. In addition, in each set

we examine the number of clusters, J , and the number of individuals within each cluster

mj. We examine the performance of each method assuming the the size of the clusters

are equal, mj = m ∈ {20, 50, 200},∀j, as well as with unequal cluster sizes, such that

log(mj) ∼ N(1, sd = 20) ∀j ∈ {1, . . . , J} was rounded to the nearest integer. Table 2.2

summarizes the distributions and values for the cluster specific mean, cj.

2.3.1 Estimation Procedures

We compared 7 specifications of the models described in Sections 2.2.2 and 2.2.3. Two of

the model specifications followed the data-generating specification: a GLMM specification,

denoted as True model, and a GEE specification, denoted as GEE True.

The remaining 5 models include Model (2.3), which will be denoted as the Standard

model, two models based on Equation (2.4), which will be denoted as TRM and the Strata

model, one model based on Equation (2.5), denoted as NKM, and a GEE model with the

same mean specification as TRM and denoted as GEE TRM. Table 2.3 summarizes the

models that were used for sets with each model specification. Sampling variance estimation

with GEE model used the Mancl and DeRouen (2001) adjustment. Comparison to the

unadjusted estimates and the Kauermann and Carroll (2001) are provided in the Online

Supplement. For MS4, the True Model adds a random slope to its estimation procedure.

2.3.2 Model Evaluation

We consider the estimand of interest to be the marginal difference between the expected

values under the active intervention and under the control, γ. To estimate E(Yij(0)) and

E(Yij(1)) using multi-level models that adjust for additional covariates and cluster spe-

cific intercept, requires integration over these covariates and the distribution of the cluster

specific effects. When model parameters are unknown, additional integration over them is

required. These integrations commonly do not have analytically tractable solutions when
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Table 2.1: The pre-defined variable values for simulating data from Equation (2.8) for MS1,
MS2, MS3, and MS4.

CO BO

HTE0 HTE1 HTE0 HTE1

Variable SR1 SR2 SR1 SR2 SR1 SR2 SR1 SR2

β1 1/4, 1, 4 1/4, 1, 4 1/4, 1, 4 1/4, 1, 4 1, 2, 3 0.25, 0.5, 1 1, 2, 3 0.25, 0.5, 1
β2 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 -1.5, -1, -0.5 -2, -1.5, -1 -1.5, -1, -0.5 -2, -1.5, -1
β3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
β4 1 1 1 1 -1 -1 -1 -1
β5 0 1 0 1 0 1 0 -0.5
β6 1 1 1 1 1 10 1 10
β7 0 1 0 1 0 1 0 1
β8 0 0 1 0 0 0 -1 0
β9 0 0 1,3 1,3 0 0 1, 2 0.5, 1
∆ 0 0 1 1 0 0 1 1
J 24, 36, 48 48, 72, 96 24, 36, 48 48, 72, 96 24, 36, 48 48, 72, 96 24, 36, 48 48, 72, 96
S 2, 3, 4 4, 6, 8 2, 3, 4 4, 6, 8 2, 3, 4 4, 6, 8 2, 3, 4 4, 6, 8

mj ∀ j 20, 50, 200 20, 50, 200 20, 50, 200 20, 50, 200 20, 50, 200 20, 50, 200 20, 50, 200 20, 50, 200

Table 2.2: Distribution of cluster means for each simulation set and model specification.

Model Specification Variable CO BO

MS1, MS4
cj Normal(0, σ2

c ) Normal(0, σ2
c )

σ2
c 1/3, 1, 3 1/3, 1/2, 1

MS2
cj tν tν
ν 3, 5, 7 1, 2, 3

MS3
cj Gamma(α, 1) Gamma(α, 1)
α 0.5, 8, 16 0.5, 2, 4

the link function is not linear. Moreover, calculating interval estimates for the marginal

means requires additional derivations. A possible solution is to rely on Bayesian or empiri-

cal Bayes solutions (Seltzer et al., 1996; Skrondal and Rabe-Hesketh, 2009). The empirical

Bayes solution does not take into account the uncertainty of the second-level variance com-

ponent (Seltzer et al., 1996), which could lead to underestimation of the standard error.

The Bayesian approach assumes a prior distribution for the second-level variance, and can

be sensitive to this assumption (Seltzer et al., 1996). To account for the uncertainty of the

second level-variance component, we relied on the Bayesian approach, implemented with the

brms (Bürkner, 2017) R package. The default half-Student-t prior distribution was assumed

for the second-level variance component. Summary of the estimation procedure is provided
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Table 2.3: Mean models for each simulation set presented by randomization type and treat-
ment effect heterogeneity. Here, we suppress outcome type and model specifications because
mean models do not change for different levels of these two elements.

Model Type Model Formula

True
SR1, HTE0 g(µij(Tj)) = cj + β1Tj + β2Z1j + β3X1ij

SR2, HTE0 g(µij(Tj)) = cj + β1Tj + β2Z1j + β3X1ij + β4exp(X2ij) + β5X2j

SR1, HTE1 g(µij(Tj)) = cj + β1Tj + β2Z1j + β3X1ij + β4X2ij + β5TjX2ij

SR2, HTE1 g(µij(Tj)) = cj + β1Tj + β2Z1j + β3X1ij + β4exp(X2ij) + β5X2j + β6TjX2ij

Standard
All Sets g(µij(Tj)) = cj + β1Tj

TRM
SR1,{HTE0, HTE1}
& SR2, HTE0

g(µij(Tj)) = cj + β1Tj + β2X1ij

SR2, HTE1 g(µij(Tj)) = cj + β1Tj + β2X1ij + β3X2ij

Strata
SR1, {HTE0, HTE1}
& SR2, HTE0

g(µij(Tj)) = cj + β1Tj + β2X1ij + β3Sj

SR2, HTE1 g(µij(Tj)) = cj + β1Tj + β2X1ij + β3Sj + β4X2ij

NKM
SR1, HTE0 g(µij(Tj)) = cj + β1Tj + β2Z1j + β3(X1ij − Z1j)
SR2, {HTE0, HTE1} g(µij(Tj)) = cj + β1Tj + β2Z1j + β3(X1ij − Z1j) + β4X2ij + β5(X2ij −X2j)
SR1, HTE1 g(µij(Tj)) = cj + β1Tj + β2Z1j + β3(X1ij − Z1j) + β4X2ij

GEE True
SR1, HTE0 g(µij(Tj)) = β1Tj + β2Z1j + β3X1ij

SR2, HTE0 g(µij(Tj)) = β1Tj + β2Z1j + β3X1ij + β4exp(X2ij) + β5X2j

SR1, HTE1 g(µij(Tj)) = β1Tj + β2Z1j + β3X1ij + β4X2ij + β5TjX2ij

SR2, HTE1 g(µij(Tj)) = β1Tj + β2Z1j + β3X1ij + β4exp(X2ij) + β5X2j + β6TjX2ij

GEE TRM
All Sets g(µij(Tj)) = β1Tj + β2X1ij

in Appendix 2.7.2. The brmsmargins (Wiley and Hedeker, 2022) R package was used to

obtain marginal estimates for E(Yij(1)) and E(Yij(0)).

GEE models produce marginal parameter estimates, which can be used to estimate γ.

The R packages geepack (Halekoh et al., 2006) and geesmv (Wang, 2015) are used to obtain

point estimates and bias-adjusted standard errors for the parameters of the GEE models,

respectively. Using these parameter estimates, the R package marginaleffects (Arel-Bundock,

2022) is then used to obtain the point estimates and their corresponding sampling variance

for γ.

At each replication of each configuration we obtained an estimate for γ and its sampling
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variances. These estimates are used to compute a binary indicator for whether a 95% confi-

dence interval covers the estimand, the interval width, and the bias of the estimate relative

to γ. Using these values, for each configuration within each simulation set, we estimated

the coverage probability by calculating the proportion of 95% confidence intervals that cover

the estimand, the mean interval width and the mean absolute bias (MAB). To identify the

factors that have the largest influence on the coverage probabilities, interval width and MAB

we use ANOVA (Gutman and Rubin, 2015). Similar methodology was used by Cangul et al.

(2009) and Gutman and Rubin (2015).

2.3.3 Separate Treatment Models

The simulations outlined in Section 2.3 are repeated with separate models for the treatment

and control groups (Section 2.2.4). These simulations are similar to the configurations that

are described in Section 2.3 (Tables 2.1 and 2.2). An additional simulation setting that

allows for σ2
c and σ2

ϵ to vary across intervention groups is used to assess the performance

of the joint and the separate models. Specifically, we examined simulation set with {CO,

HTE1, SR2, MS1}, and we assumed that cj in the intervention and control groups follows

N(0, σ2
c (1 − Tj) + 3Tj), where σ

2
c ∈ {1/3, 1, 3}. We also assumed that σ2

ϵ = 1 when Tj = 0

and σ2
ϵ = 3 when Tj = 1.

2.4 Results

2.4.1 Continuous Outcome Results

Across the different operating characteristics, the number of clusters and the cluster variance

were the most frequent influential factors for continuous outcomes simulation sets. Addi-

tionally, the treatment interaction coefficient was influential for coverage probability when

the treatment effect is heterogeneous (HTE1). We will summarize the results for each model

specification for the number of clusters and the cluster variance for HTE0 simulation sets by
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averaging across the other factors. For HTE1 simulations we will summarize the results for

the number of clusters, the cluster variance and the interaction coefficient while averaging

across the other factors. Because the results for the different operating characteristics were

similar between varying cluster sizes and equal cluster sizes, we present the results for equal

cluster sizes and do not provide the results for the varying cluster sizes.

Models with Normally Distributed Cluster Specific Mean (MS1)

For all of the methods, increasing the number of clusters improves model performance with

decreased interval widths and smaller mean absolute bias (MAB). Increasing the variance of

the cluster specific mean results in worse model performance with increased interval widths

and larger MAB. However, MAB is less than 0.5 in the majority of simulations.

Tables 2.4-2.7 summarizes the coverage rates for {{SR1,SR2}, {HTE0,HTE1}, CO, MS1}

simulation sets. In these simulation sets, the True, NKM, and GEE True models coverages

are generally at or above nominal. The Standard model, TRM, Strata model, and GEE

TRM have the largest above nominal coverage rates.

Table 2.4: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE0, CO, MS1}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 99 (98,100) 97 (96,100) 95 (92,97) 98 (97,100) 97 (95,100) 95 (93,97) 98 (97,100) 97 (95,98) 95 (93,97)
Strata 96 (94,97) 95 (94,97) 94 (91,96) 96 (94,97) 95 (94,97) 94 (91,97) 94 (91,97) 95 (94,97) 95 (94,97)
True 95 (94,97) 95 (94,97) 94 (91,97) 96 (94,98) 96 (94,98) 94 (91,97) 95 (94,97) 94 (91,97) 94 (91,96)
NKM 95 (94,97) 95 (94,97) 94 (91,97) 96 (94,98) 95 (94,97) 94 (91,97) 95 (94,99) 95 (94,97) 94 (92,97)

Standard 99 (100,100) 99 (97,100) 95 (94,97) 99 (99,100) 98 (97,100) 96 (94,98) 99 (100,100) 98 (97,100) 96 (94,97)
GEE True 95 (94,96) 96 (96,97) 95 (94,96) 95 (94,96) 96 (94,96) 95 (93,97) 95 (94,96) 95 (94,96) 95 (94,96)
GEE TRM 98 (96,99) 98 (96,99) 96 (94,98) 98 (97,100) 97 (96,98) 95 (94,97) 99 (98,100) 97 (96,99) 96 (94,97)

Because all of the methods generally have at or above nominal coverage we summarize

their mean interval width in Tables 2.8, 2.9, 2.10, and 2.11. For all models, the mean interval

widths increase as σ2
c increases and decrease as the number of clusters increases. The largest

interval widths and their variability across methods are observed for Set {SR2, HTE1, CO,

MS1} for the same levels of σ2
c and J . The standard model generally has the largest interval
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Table 2.5: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE0, CO, MS1}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 98 (97,100) 97 (96,98) 96 (95,97) 98 (97,99) 97 (96,100) 95 (94,97) 97 (96,99) 97 (96,98) 97 (96,100)
Strata 96 (94,98) 96 (95,97) 95 (94,96) 96 (94,98) 96 (95,97) 94 (92,96) 95 (94,97) 96 (95,98) 97 (94,100)
True 95 (91,97) 95 (94,96) 94 (94,97) 96 (94,97) 94 (94,97) 93 (91,96) 95 (93,96) 95 (93,97) 96 (94,100)
NKM 94 (92,96) 95 (94,97) 95 (92,97) 95 (94,97) 96 (94,97) 95 (93,96) 95 (94,95) 96 (94,97) 96 (94,97)

Standard 99 (99,100) 98 (97,99) 97 (95,97) 99 (99,100) 98 (97,100) 96 (95,97) 99 (97,100) 98 (97,100) 98 (96,100)
GEE True 96 (94,98) 95 (94,96) 95 (94,96) 96 (94,97) 95 (95,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,96)
GEE TRM 99 (98,100) 98 (96,99) 96 (95,97) 99 (98,100) 98 (97,98) 96 (95,98) 99 (98,100) 98 (96,98) 96 (95,98)

Table 2.6: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, CO, MS1}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3

TRM 98 (97,100) 97 (95,100) 96 (94,97) 97 (96,100) 97 (94,100) 95 (94,97)
Strata 95 (94,97) 95 (94,97) 95 (94,97) 95 (92,97) 95 (94,97) 95 (94,97)
True 94 (91,97) 94 (94,97) 94 (93,97) 91 (89,94) 94 (91,97) 94 (92,97)
NKM 94 (92,97) 95 (94,97) 94 (94,97) 95 (93,97) 95 (94,97) 95 (94,97)

Standard 99 (98,100) 98 (97,100) 96 (94,99) 98 (97,100) 97 (97,100) 96 (94,97)
GEE True 95 (94,97) 95 (94,96) 95 (94,97) 92 (91,94) 94 (92,96) 94 (93,96)
GEE TRM 98 (97,99) 97 (96,98) 96 (95,97) 97 (95,98) 96 (95,98) 95 (94,97)

widths across all simulation sets. The Strata model, TRM and GEE TRM have the next

larger interval widths. In Set {SR2, HTE1, CO, MS1}, their interval widths can be three

times larger than the interval widths of the True model. The True model and the NKM

have similar interval widths, except for Set {SR2, HTE1, CO, MS1}, where the NKM has

interval widths that are 10% to 67% larger than the interval widths of the True model. As

σ2
c increases the ratio between the mean interval widths of NKM and the True model is

closer to 1. Generally, multilevel models have similar or shorter intervals compared to the

corresponding GEE models.

For simulation sets {{SR1,SR2}, {HTE0,HTE1}, CO, MS1}, across all models, the MAB

increases as the variance of cj increases and/or the number of clusters decreases. For sets

other than {SR2, HTE1, CO, MS1}, all models generally have similar MAB across config-

urations; however, the Standard model typically has the largest MAB (Tables 2.12, 2.13,
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Table 2.7: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, CO, MS1}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3

TRM 99 (98,100) 98 (97,98) 97 (96,98) 99 (98,100) 98 (98,99) 97 (96,99)
Strata 98 (97,100) 97 (96,98) 97 (96,98) 99 (98,100) 98 (97,99) 97 (96,99)
True 95 (93,97) 94 (93,96) 94 (91,96) 92 (90,93) 93 (92,94) 95 (93,96)
NKM 95 (94,97) 94 (93,96) 95 (93,97) 94 (93,96) 95 (94,96) 96 (94,97)

Standard 99 (98,100) 98 (97,99) 97 (97,99) 99 (98,100) 99 (98,100) 98 (97,99)
GEE True 95 (94,97) 95 (94,97) 95 (93,96) 92 (90,94) 94 (93,96) 95 (94,96)
GEE TRM 99 (98,100) 98 (98,99) 97 (97,98) 99 (98,100) 99 (98,100) 98 (97,99)

Table 2.8: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.45 (1.16,1.74) 2.02 (1.8,2.26) 3.04 (2.92,3.15) 1.15 (0.92,1.39) 1.59 (1.45,1.75) 2.46 (2.4,2.53) 0.99 (0.8,1.2) 1.37 (1.26,1.5) 2.09 (2.03,2.13)
Strata 1.13 (1.08,1.16) 1.78 (1.72,1.84) 2.91 (2.85,2.96) 0.9 (0.86,0.95) 1.41 (1.38,1.42) 2.35 (2.33,2.38) 0.77 (0.74,0.79) 1.22 (1.19,1.24) 2.01 (1.99,2.03)
True 1.05 (1.03,1.07) 1.73 (1.69,1.76) 2.9 (2.85,2.95) 0.84 (0.83,0.85) 1.38 (1.36,1.4) 2.33 (2.31,2.36) 0.72 (0.71,0.73) 1.18 (1.17,1.21) 1.97 (1.93,2.02)
NKM 1.05 (1.03,1.07) 1.74 (1.71,1.76) 2.9 (2.86,2.97) 0.84 (0.83,0.85) 1.38 (1.36,1.39) 2.34 (2.32,2.38) 0.72 (0.72,0.73) 1.18 (1.17,1.19) 1.98 (1.95,2.02)

Standard 1.82 (1.46,2.17) 2.3 (2,2.57) 3.23 (3.04,3.34) 1.46 (1.17,1.74) 1.82 (1.61,2.01) 2.6 (2.48,2.7) 1.25 (1,1.5) 1.56 (1.38,1.74) 2.2 (2.13,2.27)
GEE True 1.05 (1.04,1.07) 1.74 (1.72,1.75) 2.97 (2.94,3) 0.84 (0.83,0.85) 1.4 (1.38,1.41) 2.37 (2.35,2.39) 0.72 (0.72,0.73) 1.19 (1.18,1.19) 2.03 (2.01,2.05)
GEE TRM 1.43 (1.13,1.75) 1.97 (1.77,2.18) 3.08 (2.95,3.2) 1.14 (0.91,1.39) 1.6 (1.44,1.78) 2.48 (2.4,2.61) 0.99 (0.79,1.2) 1.37 (1.23,1.53) 2.13 (2.06,2.23)

and 2.14). In Set {SR2, HTE1, CO, MS1}, the MAB of the Standard model, GEE TRM,

TRM, and Strata model are approximately 50% to 100% greater than the True model, and

the MAB for NKM is between 25% and 60% larger (Table 2.15). The GEE True MAB is

similar across configurations to the True model MAB.

Simple Randomization of Intervention

Simple randomization of clusters to the intervention resulted in nominal coverage or close to

nominal for all models in these simulation sets (data not shown). Mean interval widths are

largest for the Standard model ranging from 25-100% increase compared to the True model

interval widths. TRM and GEE TRM interval widths are also larger across configurations

than the True model but ranging from 2% to 50% increase. NKM and GEE True interval

widths are similar to the True model. The Strata model has similar interval widths to the

True model, except for heterogeneous treatment effect (Set SR0-B) when cj = 1/3 in which

interval widths are approximately 33% larger than the True model interval widths.
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Table 2.9: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.14 (1.09,1.19) 1.46 (1.43,1.47) 2.2 (2.18,2.2) 0.93 (0.88,0.98) 1.2 (1.17,1.2) 1.78 (1.76,1.79) 0.78 (0.76,0.79) 1.03 (1.01,1.04) 1.53 (1.52,1.56)
Strata 1 (0.98,1.01) 1.37 (1.36,1.39) 2.13 (2.1,2.15) 0.81 (0.8,0.82) 1.12 (1.11,1.12) 1.72 (1.7,1.74) 0.7 (0.69,0.71) 0.96 (0.95,0.97) 1.49 (1.48,1.5)
True 0.72 (0.72,0.73) 1.18 (1.18,1.19) 2.01 (2,2.04) 0.58 (0.58,0.59) 0.96 (0.96,0.97) 1.63 (1.61,1.64) 0.5 (0.5,0.5) 0.83 (0.82,0.83) 1.39 (1.38,1.4)
NKM 0.8 (0.79,0.81) 1.24 (1.22,1.26) 2.05 (2.03,2.08) 0.65 (0.65,0.66) 1.01 (1,1.01) 1.66 (1.65,1.67) 0.56 (0.56,0.56) 0.87 (0.86,0.87) 1.43 (1.42,1.43)

Standard 1.34 (1.26,1.43) 1.6 (1.56,1.62) 2.28 (2.23,2.29) 1.09 (1.02,1.18) 1.31 (1.27,1.32) 1.85 (1.82,1.86) 0.91 (0.87,0.92) 1.13 (1.09,1.13) 1.6 (1.58,1.61)
GEE True 0.73 (0.72,0.73) 1.21 (1.21,1.23) 2.07 (2.05,2.1) 0.59 (0.59,0.59) 0.97 (0.97,0.98) 1.66 (1.65,1.67) 0.51 (0.51,0.51) 0.84 (0.83,0.84) 1.43 (1.42,1.44)
GEE TRM 1.23 (1.1,1.37) 1.56 (1.45,1.69) 2.26 (2.19,2.34) 1 (0.89,1.12) 1.27 (1.18,1.37) 1.84 (1.79,1.91) 0.86 (0.77,0.97) 1.09 (1.02,1.18) 1.59 (1.54,1.64)

Table 2.10: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.48 (1.27,1.77) 2.04 (1.89,2.23) 3.06 (2.98,3.13) 1.18 (1.01,1.41) 1.62 (1.5,1.77) 2.45 (2.39,2.5) 1.01 (0.87,1.2) 1.39 (1.29,1.52) 2.11 (2.06,2.16)
Strata 1.2 (1.13,1.24) 1.84 (1.79,1.88) 2.95 (2.91,2.98) 0.96 (0.9,1) 1.46 (1.42,1.49) 2.37 (2.34,2.4) 0.81 (0.76,0.85) 1.24 (1.22,1.27) 2.02 (1.99,2.05)
True 1.06 (1.04,1.07) 1.74 (1.72,1.77) 2.9 (2.86,2.94) 0.84 (0.83,0.85) 1.38 (1.36,1.41) 2.32 (2.29,2.36) 0.72 (0.71,0.73) 1.19 (1.17,1.2) 1.97 (1.95,2.01)
NKM 1.12 (1.07,1.19) 1.79 (1.74,1.84) 2.93 (2.9,2.98) 0.9 (0.85,0.95) 1.43 (1.4,1.44) 2.35 (2.32,2.39) 0.77 (0.73,0.82) 1.22 (1.2,1.24) 2.01 (1.97,2.04)

Standard 2 (1.79,2.28) 2.43 (2.25,2.66) 3.31 (3.21,3.42) 1.6 (1.43,1.82) 1.95 (1.82,2.1) 2.66 (2.57,2.75) 1.37 (1.24,1.57) 1.67 (1.55,1.83) 2.3 (2.22,2.37)
GEE True 1.05 (1.04,1.07) 1.74 (1.73,1.76) 2.97 (2.94,3) 0.84 (0.84,0.85) 1.39 (1.38,1.41) 2.37 (2.35,2.4) 0.72 (0.72,0.73) 1.19 (1.18,1.2) 2.03 (2.01,2.05)
GEE TRM 1.61 (1.46,1.8) 2.14 (2.02,2.28) 3.19 (3.08,3.27) 1.3 (1.18,1.44) 1.71 (1.62,1.82) 2.56 (2.48,2.64) 1.12 (1.02,1.23) 1.48 (1.39,1.56) 2.21 (2.14,2.28)

For homogeneous treatment effect (Set SR0-A), the MAB of all models are similar, except

for the Standard model with MAB that is 10% to 50% larger than the True model. In Set

SR0-B, the Standard model has the largest MAB, followed by TRM, GEE TRM, and the

Strata model, all of these methods have MABs that are 33% to 60% larger than the True

model. The GEE True MAB is similar to the True model, and the NKM MAB is larger by

approximately 10% compared to the True model.

Models with Cluster Specific Intercepts Following Non-Normal Distributions

(MS2 & MS3)

When the cluster specific mean is generated from a Student’s t-distribution, above nominal

coverages are observed for the Standard model, TRM, and GEE TRM. The NKM and

GEE True have similar coverages to the True model across simulation sets (Supplementary

Material 2.7.5). The Strata model has similar coverages to the True model for simulation

sets with one stratification variable (SR1), but it has above nominal coverage in sets with

two stratification variables (SR2). For mean interval widths and MABs, similar trends are

observed when cluster specific means are generated from Student’s t-distribution and the
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Table 2.11: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 2.08 (1.97,2.19) 2.26 (2.15,2.37) 2.78 (2.69,2.85) 1.69 (1.6,1.78) 1.86 (1.78,1.94) 2.28 (2.22,2.35) 1.45 (1.37,1.54) 1.6 (1.53,1.68) 1.96 (1.91,2.01)
Strata 1.97 (1.86,2.09) 2.16 (2.05,2.26) 2.68 (2.61,2.75) 1.59 (1.5,1.67) 1.76 (1.69,1.85) 2.2 (2.14,2.25) 1.37 (1.29,1.45) 1.52 (1.45,1.59) 1.9 (1.86,1.93)
True 0.72 (0.72,0.73) 1.19 (1.18,1.19) 2.01 (1.99,2.04) 0.58 (0.58,0.59) 0.96 (0.95,0.97) 1.63 (1.61,1.64) 0.5 (0.5,0.5) 0.83 (0.82,0.84) 1.4 (1.39,1.41)
NKM 1.23 (1.2,1.25) 1.55 (1.52,1.58) 2.24 (2.22,2.26) 0.99 (0.97,1.01) 1.27 (1.25,1.28) 1.83 (1.82,1.85) 0.86 (0.84,0.87) 1.09 (1.07,1.1) 1.58 (1.56,1.6)

Standard 2.19 (2.07,2.28) 2.34 (2.24,2.45) 2.83 (2.75,2.91) 1.79 (1.68,1.85) 1.92 (1.85,2) 2.33 (2.27,2.4) 1.52 (1.44,1.6) 1.66 (1.6,1.74) 2.01 (1.96,2.06)
GEE True 0.73 (0.73,0.74) 1.21 (1.2,1.22) 2.07 (2.05,2.08) 0.59 (0.59,0.59) 0.98 (0.97,0.98) 1.66 (1.65,1.67) 0.51 (0.5,0.51) 0.84 (0.83,0.84) 1.43 (1.42,1.43)
GEE TRM 2.16 (2.04,2.25) 2.36 (2.24,2.46) 2.87 (2.79,2.96) 1.75 (1.64,1.83) 1.92 (1.82,1.99) 2.34 (2.27,2.41) 1.51 (1.41,1.59) 1.65 (1.57,1.72) 2.02 (1.96,2.08)

Table 2.12: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.22 (0.2,0.24) 0.35 (0.32,0.38) 0.58 (0.56,0.61) 0.17 (0.16,0.19) 0.28 (0.26,0.29) 0.48 (0.44,0.51) 0.15 (0.14,0.17) 0.25 (0.23,0.27) 0.4 (0.38,0.42)
Strata 0.22 (0.2,0.23) 0.35 (0.32,0.38) 0.58 (0.53,0.62) 0.17 (0.15,0.19) 0.27 (0.26,0.29) 0.48 (0.45,0.51) 0.15 (0.14,0.17) 0.25 (0.23,0.26) 0.4 (0.38,0.43)
True 0.2 (0.19,0.22) 0.34 (0.31,0.37) 0.58 (0.53,0.61) 0.16 (0.15,0.17) 0.26 (0.24,0.28) 0.48 (0.45,0.51) 0.14 (0.13,0.15) 0.24 (0.23,0.26) 0.4 (0.37,0.43)
NKM 0.2 (0.19,0.22) 0.34 (0.31,0.37) 0.59 (0.54,0.62) 0.16 (0.15,0.17) 0.26 (0.24,0.28) 0.47 (0.44,0.52) 0.14 (0.13,0.15) 0.24 (0.23,0.26) 0.4 (0.37,0.43)

Standard 0.24 (0.22,0.27) 0.36 (0.32,0.4) 0.59 (0.53,0.65) 0.19 (0.17,0.2) 0.29 (0.27,0.31) 0.48 (0.45,0.52) 0.17 (0.14,0.19) 0.26 (0.24,0.28) 0.41 (0.37,0.43)
GEE True 0.2 (0.19,0.21) 0.33 (0.31,0.34) 0.58 (0.55,0.6) 0.16 (0.15,0.17) 0.27 (0.25,0.28) 0.48 (0.45,0.5) 0.14 (0.13,0.15) 0.23 (0.21,0.25) 0.4 (0.38,0.43)
GEE TRM 0.22 (0.2,0.24) 0.33 (0.32,0.35) 0.58 (0.55,0.61) 0.18 (0.16,0.19) 0.28 (0.27,0.28) 0.48 (0.46,0.51) 0.15 (0.14,0.16) 0.24 (0.22,0.26) 0.41 (0.39,0.43)

Normal distribution. Specifically, NKM has interval widths that are closest to the True and

GEE True models. In addition, GEE models have slightly higher interval widths than the

corresponding GLMMs.

When cj follows a Gamma distribution (MS3), the trends are generally similar to the

cj generated from Normal distribution. However, the differences in model performance are

more pronounced when the shape parameter, α, is large. When α ∈ {8, 16}, GEE models

have interval widths larger than their corresponding GLMM models. The GEE True model

can even have interval widths that are larger than the NKM model. When α = 16, GEE

True model has coverages that are at or above nominal, while the True GLMM model is

below nominal. This is a result of the larger interval widths for GEE True. The NKM model

is more robust to skewed cluster specific mean, and results in better coverage than the True

model in this simulation set.

Models with Cluster Specific Slope (MS4)

When the slope of Z1j, β3 in Equation (2.8), varies across clusters, coverage probabilities are

similar to the ones observed for first level misspecifications (Section 2.4.1). In sets {SR2,
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Table 2.13: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.18 (0.17,0.19) 0.26 (0.25,0.28) 0.43 (0.39,0.46) 0.15 (0.14,0.17) 0.21 (0.2,0.22) 0.35 (0.32,0.38) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.28 (0.26,0.32)
Strata 0.18 (0.17,0.19) 0.26 (0.25,0.28) 0.42 (0.4,0.45) 0.15 (0.14,0.17) 0.21 (0.2,0.22) 0.35 (0.33,0.37) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.28 (0.25,0.32)
True 0.14 (0.13,0.15) 0.23 (0.22,0.24) 0.41 (0.38,0.43) 0.12 (0.11,0.13) 0.19 (0.18,0.2) 0.34 (0.32,0.36) 0.1 (0.1,0.11) 0.17 (0.16,0.18) 0.27 (0.24,0.31)
NKM 0.16 (0.15,0.17) 0.24 (0.23,0.25) 0.42 (0.39,0.44) 0.13 (0.13,0.14) 0.2 (0.18,0.2) 0.34 (0.32,0.36) 0.12 (0.11,0.12) 0.17 (0.16,0.19) 0.27 (0.24,0.31)

Standard 0.19 (0.18,0.2) 0.27 (0.25,0.28) 0.43 (0.39,0.45) 0.16 (0.15,0.17) 0.21 (0.2,0.23) 0.35 (0.32,0.38) 0.13 (0.13,0.14) 0.19 (0.18,0.2) 0.28 (0.26,0.32)
GEE True 0.14 (0.14,0.15) 0.24 (0.23,0.25) 0.4 (0.38,0.42) 0.12 (0.11,0.12) 0.19 (0.19,0.2) 0.34 (0.32,0.36) 0.1 (0.09,0.11) 0.17 (0.16,0.18) 0.29 (0.28,0.31)
GEE TRM 0.18 (0.17,0.19) 0.27 (0.26,0.28) 0.42 (0.4,0.43) 0.15 (0.14,0.16) 0.22 (0.21,0.23) 0.35 (0.33,0.38) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.3 (0.29,0.32)

Table 2.14: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.23 (0.21,0.25) 0.35 (0.31,0.38) 0.57 (0.52,0.6) 0.19 (0.17,0.2) 0.3 (0.28,0.32) 0.48 (0.45,0.51) 0.17 (0.15,0.18) 0.25 (0.23,0.27) 0.4 (0.37,0.42)
Strata 0.23 (0.21,0.25) 0.35 (0.32,0.38) 0.57 (0.53,0.6) 0.18 (0.17,0.2) 0.29 (0.27,0.32) 0.48 (0.44,0.51) 0.16 (0.14,0.18) 0.25 (0.23,0.27) 0.4 (0.37,0.43)
True 0.22 (0.2,0.23) 0.34 (0.31,0.37) 0.55 (0.51,0.6) 0.18 (0.15,0.19) 0.29 (0.27,0.3) 0.47 (0.44,0.51) 0.16 (0.14,0.17) 0.25 (0.23,0.26) 0.4 (0.37,0.43)
NKM 0.22 (0.2,0.23) 0.35 (0.31,0.37) 0.56 (0.51,0.6) 0.18 (0.16,0.19) 0.29 (0.27,0.31) 0.48 (0.45,0.5) 0.16 (0.14,0.17) 0.25 (0.22,0.27) 0.4 (0.37,0.42)

Standard 0.29 (0.25,0.32) 0.39 (0.36,0.41) 0.59 (0.54,0.63) 0.23 (0.2,0.26) 0.33 (0.31,0.36) 0.51 (0.47,0.54) 0.21 (0.18,0.23) 0.28 (0.25,0.31) 0.42 (0.39,0.45)
GEE True 0.22 (0.21,0.23) 0.35 (0.33,0.37) 0.57 (0.54,0.59) 0.18 (0.16,0.19) 0.28 (0.27,0.3) 0.48 (0.46,0.5) 0.15 (0.14,0.16) 0.24 (0.23,0.25) 0.41 (0.38,0.43)
GEE TRM 0.27 (0.24,0.3) 0.38 (0.36,0.41) 0.59 (0.56,0.61) 0.23 (0.2,0.25) 0.31 (0.29,0.33) 0.5 (0.48,0.52) 0.19 (0.16,0.21) 0.27 (0.25,0.29) 0.43 (0.4,0.45)

{HTE0,HTE1}, CO, MS4} with non-linear effects in the data generating mechanism, the

Standard model, TRM, and GEE TRM have above nominal coverage, and the corresponding

interval widths range from 25-125% larger than the True model (Supplementary Material

2.7.7). The Strata model has at or above nominal coverages and generally shorter interval

widths than the Standard model and TRM. However, it generally has similar or wider interval

widths than NKM and the True model. This is more pronounced when two factors are used

for stratification (SR2). The NKM, True model, and GEE True model mean interval widths

are similar to the results described in Section 2.4.1 for sets {{SR1,SR2}, {HTE0,HTE1},

CO, MS4} (Supplementary Material 2.7.7).

Across sets {{SR1,SR2}, {HTE0,HTE1}, CO, MS4}, the MAB results are similar to

those outlined in Section 2.4.1. Changing the value of νj has relatively small effects on the

coverages, interval widths and MAB (data not shown).
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Table 2.15: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.33 (0.31,0.35) 0.39 (0.37,0.41) 0.51 (0.48,0.54) 0.27 (0.26,0.29) 0.3 (0.28,0.32) 0.38 (0.36,0.4) 0.23 (0.21,0.24) 0.26 (0.25,0.28) 0.35 (0.32,0.37)
Strata 0.33 (0.31,0.35) 0.39 (0.37,0.41) 0.51 (0.48,0.53) 0.27 (0.25,0.29) 0.3 (0.29,0.32) 0.38 (0.36,0.4) 0.22 (0.21,0.23) 0.26 (0.25,0.28) 0.35 (0.33,0.37)
True 0.16 (0.14,0.17) 0.25 (0.23,0.25) 0.43 (0.4,0.45) 0.13 (0.12,0.14) 0.2 (0.19,0.21) 0.33 (0.31,0.34) 0.11 (0.1,0.12) 0.17 (0.16,0.18) 0.29 (0.27,0.31)
NKM 0.25 (0.24,0.27) 0.31 (0.3,0.32) 0.46 (0.44,0.48) 0.2 (0.19,0.22) 0.26 (0.25,0.27) 0.35 (0.33,0.37) 0.18 (0.17,0.19) 0.22 (0.21,0.23) 0.32 (0.3,0.34)

Standard 0.33 (0.31,0.35) 0.39 (0.37,0.4) 0.51 (0.48,0.54) 0.27 (0.26,0.29) 0.3 (0.29,0.32) 0.38 (0.36,0.4) 0.23 (0.21,0.24) 0.26 (0.25,0.28) 0.36 (0.33,0.37)
GEE True 0.16 (0.14,0.17) 0.24 (0.23,0.25) 0.42 (0.4,0.44) 0.13 (0.12,0.13) 0.2 (0.19,0.21) 0.33 (0.32,0.35) 0.11 (0.1,0.11) 0.17 (0.17,0.18) 0.29 (0.28,0.31)
GEE TRM 0.33 (0.32,0.35) 0.38 (0.36,0.39) 0.51 (0.48,0.53) 0.27 (0.25,0.29) 0.31 (0.29,0.33) 0.4 (0.38,0.42) 0.23 (0.21,0.24) 0.27 (0.26,0.28) 0.35 (0.33,0.37)

2.4.2 Binary Outcome Results

Models with Normally Distributed Cluster Specific Mean (MS1)

Supplementary Material 2.7.4 summarizes the results for binary outcome simulation sets

(BO). The 95% coverage rates are similar to the corresponding sets with continuous outcomes

(Table 2.16).

The mean interval width trends are similar to the ones observed for continuous outcomes

in Section 2.4.1 for continuous outcomes, although less pronounced because of the smaller

interval widths with binary outcomes (Table 2.17). All models have similar MAB across

simulation sets {{SR1,SR2}, {HTE0,HTE1}, BO, MS1}, where the bias is smaller when the

number of clusters increases and/or cluster variability decreases (Supplementary Material

2.7.4).

The results with simple randomization in sets SR0-C and SR0-D are similar to the ones

observed in Section 2.4.1 (data not shown).

Models with Cluster Specific Intercepts Follow Non-Normal Distributions (MS2

& MS3)

When cj is generated from Student’s-t distribution, coverage rates and mean interval width

trends are similar to continuous outcomes in Section 2.4.1 (Supplementary Material 2.7.6).

Across Sets {{SR1,SR2}, {HTE0,HTE1}, BO, MS2}, GEE interval widths are more similar

compared to the interval widths in Section 2.4.1, although both are generally equal or larger

than those for NKM and the True model. Across sets {{SR1,SR2}, {HTE0,HTE1}, BO,
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MS2}, all MAB are similar for all models.

When cj follows a Gamma distribution, trends in coverage, interval width, and MAB

are similar to Sections 2.4.1 and 2.4.1 and to the results when cj are generated from the

Student’s t-distribution. Below nominal coverages are observed for GEE TRM and GEE

True models in Sets {SR1, HTE1, BO, MS3} when α = 4 and number of clusters are 24 and

48. For this set, the corresponding GEE interval widths are smaller than all other models

while the bias is similar.

Models with Cluster Specific Slopes (MS4)

GLMMs have performance trends that are similar to the ones observed for continuous out-

comes in Section 2.4.1. The percent increases in interval widths for the Standard, TRM,

and GEE TRM compared to the True model range between 5% and 30% (Supplementary

Material 2.7.8).

Table 2.16: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, BO, MS1}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 97 (96,100) 96 (94,97) 96 (94,97) 95 (94,97) 95 (91,98) 96 (94,98) 97 (94,100) 96 (94,99) 97 (97,97)
Strata 96 (94,97) 95 (93,97) 96 (93,98) 94 (92,95) 95 (94,97) 96 (94,98) 96 (94,97) 94 (91,97) 96 (95,97)
True 96 (94,97) 95 (91,97) 96 (94,97) 94 (93,95) 95 (94,97) 96 (94,97) 96 (94,97) 95 (91,97) 95 (94,97)
NKM 96 (95,97) 94 (91,97) 95 (93,97) 93 (91,95) 95 (91,97) 96 (94,97) 96 (94,97) 95 (94,97) 95 (94,97)

Standard 99 (97,100) 98 (97,100) 97 (96,100) 98 (97,100) 98 (97,100) 98 (97,100) 99 (97,100) 98 (97,100) 98 (97,100)
GEE True 94 (93,96) 95 (92,96) 95 (93,96) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,96) 95 (94,97) 95 (93,97)
GEE TRM 95 (94,96) 95 (93,98) 95 (93,96) 95 (94,97) 95 (94,96) 95 (94,96) 96 (94,97) 96 (94,97) 95 (93,97)

Table 2.17: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, BO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.25 (0.23,0.26) 0.27 (0.25,0.29) 0.33 (0.31,0.34) 0.2 (0.18,0.21) 0.22 (0.2,0.23) 0.27 (0.25,0.28) 0.17 (0.16,0.18) 0.19 (0.17,0.2) 0.23 (0.22,0.24)
Strata 0.23 (0.22,0.25) 0.26 (0.24,0.27) 0.32 (0.31,0.33) 0.19 (0.17,0.2) 0.21 (0.2,0.22) 0.26 (0.24,0.27) 0.16 (0.15,0.17) 0.18 (0.17,0.19) 0.22 (0.21,0.23)
True 0.23 (0.22,0.25) 0.26 (0.24,0.27) 0.32 (0.3,0.33) 0.19 (0.17,0.2) 0.21 (0.19,0.22) 0.26 (0.24,0.27) 0.16 (0.15,0.17) 0.18 (0.16,0.18) 0.22 (0.21,0.23)
NKM 0.23 (0.22,0.25) 0.26 (0.24,0.27) 0.32 (0.3,0.33) 0.19 (0.17,0.2) 0.21 (0.19,0.22) 0.26 (0.24,0.27) 0.16 (0.15,0.17) 0.18 (0.16,0.18) 0.22 (0.21,0.23)

Standard 0.29 (0.27,0.32) 0.31 (0.29,0.34) 0.36 (0.34,0.38) 0.24 (0.22,0.26) 0.25 (0.23,0.27) 0.29 (0.28,0.3) 0.21 (0.19,0.22) 0.22 (0.2,0.23) 0.25 (0.24,0.26)
GEE True 0.24 (0.22,0.25) 0.27 (0.25,0.28) 0.33 (0.31,0.34) 0.19 (0.18,0.2) 0.21 (0.2,0.22) 0.26 (0.24,0.28) 0.17 (0.15,0.17) 0.18 (0.17,0.19) 0.23 (0.21,0.23)
GEE TRM 0.25 (0.23,0.26) 0.27 (0.26,0.29) 0.33 (0.31,0.35) 0.2 (0.18,0.21) 0.22 (0.2,0.24) 0.27 (0.25,0.28) 0.17 (0.16,0.18) 0.19 (0.17,0.2) 0.23 (0.21,0.24)

29



2.4.3 Separate Treatment Model Results

For both continuous and binary outcomes, simulations using separate models for treatment

and control observations show similar trends (data not shown). For GLMMs and GEEs,

coverage probability and mean interval widths are larger compared to their corresponding

single parallel models. Specifically, coverage probabilities are generally above nominal and

mean interval widths are wider by 10% to 25%. However, when σ2
c and σ2

ϵ differ across

intervention groups, coverage probabilities are similar and separate model mean interval

widths are wider by less than 10%. MAB for separate models and corresponding parallel

model are similar and close to zero.

2.5 Real Data Application

We examined the performance of the different models on data from the PRagmatic trial of

Video Education in Nursing Homes (PROVEN) trial (Mor et al., 2017). PROVEN examined

the effects of showing an advanced directive video on the propensity of individuals to transfer

from a nursing home to a hospital. The trial was implemented in two for-profit nursing

home healthcare systems. A total of 360 nursing homes were stratified on two variables: the

healthcare system and the hospitalization rate in the year prior to the intervention among

patients with advanced illnesses. Within each stratum nursing homes were randomized in

a ratio of 1:2 between the intervention and control conditions. The estimand of interest is

defined as the marginal difference in the probabilities to be transferred to the hospital in the

active intervention group and the control group.

Table 2.18 presents the models used for the analysis, where πij is the probability of trans-

fer to the hospital for individual i in nursing home j, cj is nursing home j specific intercept,

Tj is the intervention indicator for facility j, X1j is the proportion of individuals in nursing

home j who identify as Black, X1ij is an indicator representing whether individual i in facility

j identifies as Black, Z1j is the hospitalization rate in the year prior to intervention initiation
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in facility j, and Z2j is facility j’s indicator for the healthcare system. A stratification-level

indicator, Sj, was defined using stratification variables Z1j and Z2j.

Table 2.18: Models used for the real data application and results for each models estimated
average treatment effect and standard error. The GEE model correlation matrix was set as
exchangeable, with standard errors computed using the sandwich estimator to obtain robust
estimates.

Model Type Parallel Model Formula ATE (SE) Parallel ATE (SE) Separate

Complete logit(πij) = cj + β1Tj + β2X1j + β3X1ij + β4Z1j + β5Z2j -0.0080 (0.0142) -0.0061 (0.0192)

Standard logit(πij) = cj + β1Tj -0.0073 (0.0155) -0.0056 (0.0217)

TRM logit(πij) = cj + β1Tj + β2X1ij -0.0088 (0.0154) -0.0085 (0.0211)

Strata logit(πij) = cj + β1Tj + β2X1ij + β3Sj -0.0080 (0.0143) -0.0081 (0.0196)

NKM logit(πij) = cj + β1Tj + β2X1j + β3(X1ij −X1j) + β4Sj -0.0082 (0.0143) -0.0078 (0.0194)

GEE Complete logit(πij) = cj + β1Tj + β2X1j + β3X1ij + β4Z1j + β5Z2j -0.0074 (0.0144) -0.0064 (0.0143)

GEE TRM logit(πij) = cj + β1Tj + β2X1ij -0.0087 (0.0151) -0.0084 (0.0152)

Table 2.18 also provides estimates of the ATEs and corresponding standard errors for each

of the models. All of the models produce similar point estimates and none of these estimates

are statistically significant at the 5% nominal level. The separate TRM, Strata, NKM, and

GEE TRM models results in similar point estimates compared to the corresponding parallel

model. The separate Complete, Standard, and GEE Complete models have between 15% to

25% smaller point estimates compared to their corresponding parallel single models.

The interval widths show similar trends to the simulation study with parallel models.

The Standard model and TRM have the largest interval widths and the Complete produces

the smallest interval width. The Strata, NKM and the Complete Model have similar point

and interval estimates. For separate models, standard errors increase by 35% to 40% for

GLMMs compared to the corresponding parallel single models. GEE models do not have

substantial differences in standard error between the separate models and the corresponding

parallel models.

In the simulations, the large interval widths from the Standard model and TRM typically
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result in over-coverage of the true treatment effect. In addition, the GEE Complete with

bias-adjustment results in increased standard error compared to the GLMM with identical

mean specification.

2.6 Discussion

In many individual-level and cluster-level randomized trials investigators do not adjust for

predictors beyond the intervention (Yu et al., 2010; Assmann et al., 2000; Austin et al., 2010;

Hernandez et al., 2005). We explicitly define the marginal average treatment effect as the

estimand of interest, and provide statistical software to estimate it in continuous and binary

outcomes. Using simulations, we compare the performance of different adjustment models

for the stratification variables when estimating this estimand in SCRTs. Generally, the mul-

tilevel model that does not adjust for any additional covariates has above nominal coverage,

with the widest interval estimates compared to models that adjust for covariates. This im-

plies that models that do not adjust for covariates are generally less efficient than models

that do, resulting in lower statistical power. Similar results were observed for individual

level randomization (Ivers et al., 2012).

The performance of the different methods for mean model misspecification and varying

slope misspecification are similar for both continuous and binary outcomes. Multilevel and

GEE models that adjust for strata-defining covariates result in coverages that are at or above

nominal and are more precise than models that do not adjust for strata-defining covariates.

GLMMs that adjust for strata have similar operating characteristics to correctly specified

model when the relationships between the covariates and outcomes are linear and the effect of

the intervention is additive. When the data generating model include non-linear relationships

and interactions, GLMM models that only adjust for the strata has nominal coverage, but

with decreased precision compared to NKM and correctly specified models. When the first-

level mean is misspecified or the cluster-specific mean follows a non-Normal distribution,
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an NKM GLMM that adjusts for strata-defining covariates as well as the between and

within cluster association is a valid statistical procedure with more precise and accurate

estimates, compared to models that do not make these adjustments. These results are

observed for both continuous and binary outcomes. Although correctly specified models

have the best operating characteristics, they are rarely known in practice. The NKM GLMM

operating characteristics are similar to the correctly specified model in many configurations,

and provide an efficient alternative when the exact specification of the model is unknown.

For continuous outcomes, a sampling variance bias-adjusted (Mancl and DeRouen, 2001)

GEE model with correctly specified mean function results in nominal coverage and simi-

lar standard errors to the GLMM with correctly specified mean function when the num-

ber of clusters is 24. However, as the number of clusters increases, the standard error of

this bias-adjusted GEE is generally larger (ranging from 0.5-13%) than the corresponding

GLMM standard errors. Similar results are observed for misspecified GEE models with

bias-adjustment when compared to the GLMM with identical mean specification. For bi-

nary outcomes, similar trends are observed but are less pronounced (typical increases in

interval width ranging from 0.5-5%).

Bias-adjustment is recommended for GEEs when there are few clusters because of un-

derestimated standard errors of the sandwich estimator (Mancl and DeRouen, 2001; Li and

Redden, 2014; Huang et al., 2016). However, the improvement in coverage probability may

not be substantial compared to GEEs without bias-adjustment when the number of clus-

ters is 36 or larger for continuous outcomes, or more than 48 clusters for binary outcomes

(Supplementary Materials 2.7.9). The increase in coverage probability from bias-adjustment

stems from increased standard errors.

For both continuous and binary outcomes, modelling the treatment and control observa-

tions separately result in higher coverage rates and wider interval widths for both GLMMs

and GEEs. However, when the intervention and control groups are generated with differ-

ing variances, the performance of separate model and their corresponding parallel models
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is similar, although still less precise for separate models. These results are limited to our

set of simulations, and under more significant differences in response surfaces between the

two intervention groups, separate models may result in smaller biases and coverages that are

closer nominal. However, these cases may be less plausible in many real applications.

When analyzing the PROVEN data, all methods resulted in interval estimates that have

substantial overlap. However, there is a gain in precision when adjusting for stratification

variables.

This study is limited by simulation-based data generation, and the selection of the

marginal treatment effect as the estimand of interest. The different models may have dif-

ferent operating characteristics in other plausible scenarios. However, because the extensive

simulations show similar trends across all configurations, it reinforces the possible gains of

adjusting for covariates and the stratification variables, in stratified cluster randomized tri-

als. Moreover, because we do not define the estimand as a parameter in a model, we expect

other estimands based on the potential outcomes to have similar performance trends.

In conclusion, when the true response surfaces are unknown, a NKM model that adjusts

for within and between association of the covariates and stratification variables is a statisti-

cally valid procedure to analyze SCRTs that results in accurate and precise estimates. GEE

models with bias-adjusted sampling variance are statistically valid, but have larger interval

width compared to their corresponding GLMMs. Lastly, in applications in which the inter-

vention is expected to have a heterogeneous effects, using separate models or a joint model

that adjusts for interactions between the covariates and treatment indicator would result in

valid statistical inferences.
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2.7 CHAPTER 2 Appendix

2.7.1 CRT Variance Derivation

Take the general multilevel model from Neuhaus and Kalbfleisch,

Yij = cj + βXij + ϵij (2.9)

E(Yij|cj, Xij) = cj + βXij (2.10)

where E(cj) = µc, V (cj) = σ2
c , E(ϵij) = 0, V (ϵij) = σ2

ϵ , β is a predefined parameter, and cj,

Xij, ϵij are mutually independent. The variance of Yij,

V (Yij) = V (Yij − cj − βXij + cj + βXij)

= V (Yij − cj − βXij) + V (cj + βXij)

+ 2Cov(Yij − cj − βXij, cj + βXij)
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First compute the covariance in the line above,

Cov(Yij − cj − βXij, cj + βXij) = E
(
(Yij − cj − βXij)(cj + βXij)

)
− E

(
Yij − cj − βXij

)
E
(
cj + βXij

)
= E

(
Yijcj + YijβXij − c2j − 2cjβXij − β2X2

ij

)
− E

(
Yij − E(Yij|cj, Xij)

)
E
(
cj + βXij

)
= E(Yijcj) + βE(YijXij)− E(c2j)− 2βE(Xij)E(cj)− β2E(X2

ij)

−
(
E(Yij)− E

(
E(Yij|cj, Xij)

))
E
(
cj + βXij

)
= Cov(Yij, cj) + E(Yij)E(cj) + βE((cj + βXij + ϵij)Xij)−

(
V (cj) + E(cj)

2
)

− 2βE(Xij)µc − β2E(X2
ij)−

(
E(Yij)− E(Yij)

)
E
(
cj + βXij

)
= Cov(Yij, cj) + µc(µc + βE(Xij)) + βµcE(Xij) + β2E(X2

ij)− V (cj)− µ2
c

− 2βE(Xij)µc − β2E(X2
ij)−

(
0
)
E
(
cj + βXij

)
= Cov(Yij, cj)− V (cj)

= E(Yijcj)− E(Yij)E(cj)− V (cj)

= E
(
(cj + βXij + ϵij)cj

)
− E(Yij)E(cj)− V (cj)

= E(c2j) + βE(Xij)µc + µc(0)− µ2
c − βE(Xij)µc − V (cj)

= V (cj) + E(µc)
2 − µ2

c − V (cj)

= 0
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The variance can be written as,

V (Yij) = V (Yij − cj − βXij) + V (cj + βXij) + 2
(
0
)

= V (Yij − cj − βXij) + V (cj) + V (βXij) + 2Cov(cj, βXij)

= V (Yij − cj − βXij) + V (cj) + V (βXij) + 2Cov(cj, βXij)

Computing the covariance term,

Cov(cj, βXij) =E(cjβXij)− E(cj)E(βXij)

=βE(cj)E(Xij)− βE(cj)E(Xij)

=0

The variance can be simplified to the following form,

V (Yij) = V (Yij − cj − βXij) + V (cj) + V (βXij) (2.11)

The variance is broken down into several components, a residual variance, a cluster variance,

a predicted variance, and the covariance between the outcomes and clusters.

We can extend this derivation for

Yij(Tj) = cj + h
(
Zij,Xij,βββ, Tj

)
+ ϵij

to obtain

V (Yij(Tj)) = V
(
Yij(Tj)− cj − h

(
Zij,Xij,βββ, Tj

))
+ V

(
cj

)
+ V

(
h
(
Zij,Xij,βββ, Tj

))
.
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Additionally we can extend our model from (2.9) and (2.10) to account for between- /

within-level cluster effects and a treatment effect,

Yij = cj + βXij + βTT + βW (Xij − X̄j) + βBX̄j + ϵij

E(Yij|cj, Xij, T ) = cj + βTT + βW (Xij − X̄j) + βBX̄j

Substituting into our derivation we obtain,

V (Yij) = V
(
Yij − cj − βTT + βW (Xij − X̄j) + βBX̄j

)
+ V

(
cj

)
+ V

(
βTT + βW (Xij − X̄j) + βBX̄j

)

2.7.2 GLMM Bayesian Estimation Procedures

The R packages brmsmargins (Wiley and Hedeker, 2022) and marginaleffects (Arel-Bundock,

2022) are used to obtain the point estimates for the estimand of interest, γ, and their

corresponding sampling variance for each of the corresponding models. These estimates are

obtained directly from the posterior distribution of γ as follows,

p(γ | Yobs) =

∫ ∫ ∫ ∫ ∏
ij

p(γ | Y obs
ij ,βββ, cj,Xij,Zj)p(βββ, cj | Y obs

ij ,Xij,Zj)p(Xij,Zj) dβββ dc dX dZ
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2.7.3 Continuous Outcomes Model Specification 1 Results

Table 2.19: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, CO, MS1}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 99 (98,100) 97 (96,100) 95 (92,97) 98 (97,100) 97 (95,100) 95 (93,97) 98 (97,100) 97 (95,98) 95 (93,97)
Strata 96 (94,97) 95 (94,97) 94 (91,96) 96 (94,97) 95 (94,97) 94 (91,97) 94 (91,97) 95 (94,97) 95 (94,97)
True 95 (94,97) 95 (94,97) 94 (91,97) 96 (94,98) 96 (94,98) 94 (91,97) 95 (94,97) 94 (91,97) 94 (91,96)
NKM 95 (94,97) 95 (94,97) 94 (91,97) 96 (94,98) 95 (94,97) 94 (91,97) 95 (94,99) 95 (94,97) 94 (92,97)

Standard 99 (100,100) 99 (97,100) 95 (94,97) 99 (99,100) 98 (97,100) 96 (94,98) 99 (100,100) 98 (97,100) 96 (94,97)
GEE True 95 (94,96) 96 (96,97) 95 (94,96) 95 (94,96) 96 (94,96) 95 (93,97) 95 (94,96) 95 (94,96) 95 (94,96)
GEE TRM 98 (96,99) 98 (96,99) 96 (94,98) 98 (97,100) 97 (96,98) 95 (94,97) 99 (98,100) 97 (96,99) 96 (94,97)

Table 2.20: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, CO, MS1}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 98 (97,100) 97 (96,98) 96 (95,97) 98 (97,99) 97 (96,100) 95 (94,97) 97 (96,99) 97 (96,98) 97 (96,100)
Strata 96 (94,98) 96 (95,97) 95 (94,96) 96 (94,98) 96 (95,97) 94 (92,96) 95 (94,97) 96 (95,98) 97 (94,100)
True 95 (91,97) 95 (94,96) 94 (94,97) 96 (94,97) 94 (94,97) 93 (91,96) 95 (93,96) 95 (93,97) 96 (94,100)
NKM 94 (92,96) 95 (94,97) 95 (92,97) 95 (94,97) 96 (94,97) 95 (93,96) 95 (94,95) 96 (94,97) 96 (94,97)

Standard 99 (99,100) 98 (97,99) 97 (95,97) 99 (99,100) 98 (97,100) 96 (95,97) 99 (97,100) 98 (97,100) 98 (96,100)
GEE True 96 (94,98) 95 (94,96) 95 (94,96) 96 (94,97) 95 (95,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,96)
GEE TRM 99 (98,100) 98 (96,99) 96 (95,97) 99 (98,100) 98 (97,98) 96 (95,98) 99 (98,100) 98 (96,98) 96 (95,98)

Table 2.21: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, CO, MS1}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3

TRM 98 (97,100) 97 (95,100) 96 (94,97) 97 (96,100) 97 (94,100) 95 (94,97)
Strata 95 (94,97) 95 (94,97) 95 (94,97) 95 (92,97) 95 (94,97) 95 (94,97)
True 94 (91,97) 94 (94,97) 94 (93,97) 91 (89,94) 94 (91,97) 94 (92,97)
NKM 94 (92,97) 95 (94,97) 94 (94,97) 95 (93,97) 95 (94,97) 95 (94,97)

Standard 99 (98,100) 98 (97,100) 96 (94,99) 98 (97,100) 97 (97,100) 96 (94,97)
GEE True 95 (94,97) 95 (94,96) 95 (94,97) 92 (91,94) 94 (92,96) 94 (93,96)
GEE TRM 98 (97,99) 97 (96,98) 96 (95,97) 97 (95,98) 96 (95,98) 95 (94,97)
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Table 2.22: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, CO, MS1}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3

TRM 99 (98,100) 98 (97,98) 97 (96,98) 99 (98,100) 98 (98,99) 97 (96,99)
Strata 98 (97,100) 97 (96,98) 97 (96,98) 99 (98,100) 98 (97,99) 97 (96,99)
True 95 (93,97) 94 (93,96) 94 (91,96) 92 (90,93) 93 (92,94) 95 (93,96)
NKM 95 (94,97) 94 (93,96) 95 (93,97) 94 (93,96) 95 (94,96) 96 (94,97)

Standard 99 (98,100) 98 (97,99) 97 (97,99) 99 (98,100) 99 (98,100) 98 (97,99)
GEE True 95 (94,97) 95 (94,97) 95 (93,96) 92 (90,94) 94 (93,96) 95 (94,96)
GEE TRM 99 (98,100) 98 (98,99) 97 (97,98) 99 (98,100) 99 (98,100) 98 (97,99)

Table 2.23: Mean and interquartile range of interval widths for each model for Simulation
{SR1, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.45 (1.16,1.74) 2.02 (1.8,2.26) 3.04 (2.92,3.15) 1.15 (0.92,1.39) 1.59 (1.45,1.75) 2.46 (2.4,2.53) 0.99 (0.8,1.2) 1.37 (1.26,1.5) 2.09 (2.03,2.13)
Strata 1.13 (1.08,1.16) 1.78 (1.72,1.84) 2.91 (2.85,2.96) 0.9 (0.86,0.95) 1.41 (1.38,1.42) 2.35 (2.33,2.38) 0.77 (0.74,0.79) 1.22 (1.19,1.24) 2.01 (1.99,2.03)
True 1.05 (1.03,1.07) 1.73 (1.69,1.76) 2.9 (2.85,2.95) 0.84 (0.83,0.85) 1.38 (1.36,1.4) 2.33 (2.31,2.36) 0.72 (0.71,0.73) 1.18 (1.17,1.21) 1.97 (1.93,2.02)
NKM 1.05 (1.03,1.07) 1.74 (1.71,1.76) 2.9 (2.86,2.97) 0.84 (0.83,0.85) 1.38 (1.36,1.39) 2.34 (2.32,2.38) 0.72 (0.72,0.73) 1.18 (1.17,1.19) 1.98 (1.95,2.02)

Standard 1.82 (1.46,2.17) 2.3 (2,2.57) 3.23 (3.04,3.34) 1.46 (1.17,1.74) 1.82 (1.61,2.01) 2.6 (2.48,2.7) 1.25 (1,1.5) 1.56 (1.38,1.74) 2.2 (2.13,2.27)
GEE True 1.05 (1.04,1.07) 1.74 (1.72,1.75) 2.97 (2.94,3) 0.84 (0.83,0.85) 1.4 (1.38,1.41) 2.37 (2.35,2.39) 0.72 (0.72,0.73) 1.19 (1.18,1.19) 2.03 (2.01,2.05)
GEE TRM 1.43 (1.13,1.75) 1.97 (1.77,2.18) 3.08 (2.95,3.2) 1.14 (0.91,1.39) 1.6 (1.44,1.78) 2.48 (2.4,2.61) 0.99 (0.79,1.2) 1.37 (1.23,1.53) 2.13 (2.06,2.23)

Table 2.24: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.14 (1.09,1.19) 1.46 (1.43,1.47) 2.2 (2.18,2.2) 0.93 (0.88,0.98) 1.2 (1.17,1.2) 1.78 (1.76,1.79) 0.78 (0.76,0.79) 1.03 (1.01,1.04) 1.53 (1.52,1.56)
Strata 1 (0.98,1.01) 1.37 (1.36,1.39) 2.13 (2.1,2.15) 0.81 (0.8,0.82) 1.12 (1.11,1.12) 1.72 (1.7,1.74) 0.7 (0.69,0.71) 0.96 (0.95,0.97) 1.49 (1.48,1.5)
True 0.72 (0.72,0.73) 1.18 (1.18,1.19) 2.01 (2,2.04) 0.58 (0.58,0.59) 0.96 (0.96,0.97) 1.63 (1.61,1.64) 0.5 (0.5,0.5) 0.83 (0.82,0.83) 1.39 (1.38,1.4)
NKM 0.8 (0.79,0.81) 1.24 (1.22,1.26) 2.05 (2.03,2.08) 0.65 (0.65,0.66) 1.01 (1,1.01) 1.66 (1.65,1.67) 0.56 (0.56,0.56) 0.87 (0.86,0.87) 1.43 (1.42,1.43)

Standard 1.34 (1.26,1.43) 1.6 (1.56,1.62) 2.28 (2.23,2.29) 1.09 (1.02,1.18) 1.31 (1.27,1.32) 1.85 (1.82,1.86) 0.91 (0.87,0.92) 1.13 (1.09,1.13) 1.6 (1.58,1.61)
GEE True 0.73 (0.72,0.73) 1.21 (1.21,1.23) 2.07 (2.05,2.1) 0.59 (0.59,0.59) 0.97 (0.97,0.98) 1.66 (1.65,1.67) 0.51 (0.51,0.51) 0.84 (0.83,0.84) 1.43 (1.42,1.44)
GEE TRM 1.23 (1.1,1.37) 1.56 (1.45,1.69) 2.26 (2.19,2.34) 1 (0.89,1.12) 1.27 (1.18,1.37) 1.84 (1.79,1.91) 0.86 (0.77,0.97) 1.09 (1.02,1.18) 1.59 (1.54,1.64)

Table 2.25: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.48 (1.27,1.77) 2.04 (1.89,2.23) 3.06 (2.98,3.13) 1.18 (1.01,1.41) 1.62 (1.5,1.77) 2.45 (2.39,2.5) 1.01 (0.87,1.2) 1.39 (1.29,1.52) 2.11 (2.06,2.16)
Strata 1.2 (1.13,1.24) 1.84 (1.79,1.88) 2.95 (2.91,2.98) 0.96 (0.9,1) 1.46 (1.42,1.49) 2.37 (2.34,2.4) 0.81 (0.76,0.85) 1.24 (1.22,1.27) 2.02 (1.99,2.05)
True 1.06 (1.04,1.07) 1.74 (1.72,1.77) 2.9 (2.86,2.94) 0.84 (0.83,0.85) 1.38 (1.36,1.41) 2.32 (2.29,2.36) 0.72 (0.71,0.73) 1.19 (1.17,1.2) 1.97 (1.95,2.01)
NKM 1.12 (1.07,1.19) 1.79 (1.74,1.84) 2.93 (2.9,2.98) 0.9 (0.85,0.95) 1.43 (1.4,1.44) 2.35 (2.32,2.39) 0.77 (0.73,0.82) 1.22 (1.2,1.24) 2.01 (1.97,2.04)

Standard 2 (1.79,2.28) 2.43 (2.25,2.66) 3.31 (3.21,3.42) 1.6 (1.43,1.82) 1.95 (1.82,2.1) 2.66 (2.57,2.75) 1.37 (1.24,1.57) 1.67 (1.55,1.83) 2.3 (2.22,2.37)
GEE True 1.05 (1.04,1.07) 1.74 (1.73,1.76) 2.97 (2.94,3) 0.84 (0.84,0.85) 1.39 (1.38,1.41) 2.37 (2.35,2.4) 0.72 (0.72,0.73) 1.19 (1.18,1.2) 2.03 (2.01,2.05)
GEE TRM 1.61 (1.46,1.8) 2.14 (2.02,2.28) 3.19 (3.08,3.27) 1.3 (1.18,1.44) 1.71 (1.62,1.82) 2.56 (2.48,2.64) 1.12 (1.02,1.23) 1.48 (1.39,1.56) 2.21 (2.14,2.28)
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Table 2.26: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 2.08 (1.97,2.19) 2.26 (2.15,2.37) 2.78 (2.69,2.85) 1.69 (1.6,1.78) 1.86 (1.78,1.94) 2.28 (2.22,2.35) 1.45 (1.37,1.54) 1.6 (1.53,1.68) 1.96 (1.91,2.01)
Strata 1.97 (1.86,2.09) 2.16 (2.05,2.26) 2.68 (2.61,2.75) 1.59 (1.5,1.67) 1.76 (1.69,1.85) 2.2 (2.14,2.25) 1.37 (1.29,1.45) 1.52 (1.45,1.59) 1.9 (1.86,1.93)
True 0.72 (0.72,0.73) 1.19 (1.18,1.19) 2.01 (1.99,2.04) 0.58 (0.58,0.59) 0.96 (0.95,0.97) 1.63 (1.61,1.64) 0.5 (0.5,0.5) 0.83 (0.82,0.84) 1.4 (1.39,1.41)
NKM 1.23 (1.2,1.25) 1.55 (1.52,1.58) 2.24 (2.22,2.26) 0.99 (0.97,1.01) 1.27 (1.25,1.28) 1.83 (1.82,1.85) 0.86 (0.84,0.87) 1.09 (1.07,1.1) 1.58 (1.56,1.6)

Standard 2.19 (2.07,2.28) 2.34 (2.24,2.45) 2.83 (2.75,2.91) 1.79 (1.68,1.85) 1.92 (1.85,2) 2.33 (2.27,2.4) 1.52 (1.44,1.6) 1.66 (1.6,1.74) 2.01 (1.96,2.06)
GEE True 0.73 (0.73,0.74) 1.21 (1.2,1.22) 2.07 (2.05,2.08) 0.59 (0.59,0.59) 0.98 (0.97,0.98) 1.66 (1.65,1.67) 0.51 (0.5,0.51) 0.84 (0.83,0.84) 1.43 (1.42,1.43)
GEE TRM 2.16 (2.04,2.25) 2.36 (2.24,2.46) 2.87 (2.79,2.96) 1.75 (1.64,1.83) 1.92 (1.82,1.99) 2.34 (2.27,2.41) 1.51 (1.41,1.59) 1.65 (1.57,1.72) 2.02 (1.96,2.08)

Table 2.27: Mean and interquartile range of absolute biases for each model for Simulation
{SR1, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.22 (0.2,0.24) 0.35 (0.32,0.38) 0.58 (0.56,0.61) 0.17 (0.16,0.19) 0.28 (0.26,0.29) 0.48 (0.44,0.51) 0.15 (0.14,0.17) 0.25 (0.23,0.27) 0.4 (0.38,0.42)
Strata 0.22 (0.2,0.23) 0.35 (0.32,0.38) 0.58 (0.53,0.62) 0.17 (0.15,0.19) 0.27 (0.26,0.29) 0.48 (0.45,0.51) 0.15 (0.14,0.17) 0.25 (0.23,0.26) 0.4 (0.38,0.43)
True 0.2 (0.19,0.22) 0.34 (0.31,0.37) 0.58 (0.53,0.61) 0.16 (0.15,0.17) 0.26 (0.24,0.28) 0.48 (0.45,0.51) 0.14 (0.13,0.15) 0.24 (0.23,0.26) 0.4 (0.37,0.43)
NKM 0.2 (0.19,0.22) 0.34 (0.31,0.37) 0.59 (0.54,0.62) 0.16 (0.15,0.17) 0.26 (0.24,0.28) 0.47 (0.44,0.52) 0.14 (0.13,0.15) 0.24 (0.23,0.26) 0.4 (0.37,0.43)

Standard 0.24 (0.22,0.27) 0.36 (0.32,0.4) 0.59 (0.53,0.65) 0.19 (0.17,0.2) 0.29 (0.27,0.31) 0.48 (0.45,0.52) 0.17 (0.14,0.19) 0.26 (0.24,0.28) 0.41 (0.37,0.43)
GEE True 0.2 (0.19,0.21) 0.33 (0.31,0.34) 0.58 (0.55,0.6) 0.16 (0.15,0.17) 0.27 (0.25,0.28) 0.48 (0.45,0.5) 0.14 (0.13,0.15) 0.23 (0.21,0.25) 0.4 (0.38,0.43)
GEE TRM 0.22 (0.2,0.24) 0.33 (0.32,0.35) 0.58 (0.55,0.61) 0.18 (0.16,0.19) 0.28 (0.27,0.28) 0.48 (0.46,0.51) 0.15 (0.14,0.16) 0.24 (0.22,0.26) 0.41 (0.39,0.43)

Table 2.28: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.18 (0.17,0.19) 0.26 (0.25,0.28) 0.43 (0.39,0.46) 0.15 (0.14,0.17) 0.21 (0.2,0.22) 0.35 (0.32,0.38) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.28 (0.26,0.32)
Strata 0.18 (0.17,0.19) 0.26 (0.25,0.28) 0.42 (0.4,0.45) 0.15 (0.14,0.17) 0.21 (0.2,0.22) 0.35 (0.33,0.37) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.28 (0.25,0.32)
True 0.14 (0.13,0.15) 0.23 (0.22,0.24) 0.41 (0.38,0.43) 0.12 (0.11,0.13) 0.19 (0.18,0.2) 0.34 (0.32,0.36) 0.1 (0.1,0.11) 0.17 (0.16,0.18) 0.27 (0.24,0.31)
NKM 0.16 (0.15,0.17) 0.24 (0.23,0.25) 0.42 (0.39,0.44) 0.13 (0.13,0.14) 0.2 (0.18,0.2) 0.34 (0.32,0.36) 0.12 (0.11,0.12) 0.17 (0.16,0.19) 0.27 (0.24,0.31)

Standard 0.19 (0.18,0.2) 0.27 (0.25,0.28) 0.43 (0.39,0.45) 0.16 (0.15,0.17) 0.21 (0.2,0.23) 0.35 (0.32,0.38) 0.13 (0.13,0.14) 0.19 (0.18,0.2) 0.28 (0.26,0.32)
GEE True 0.14 (0.14,0.15) 0.24 (0.23,0.25) 0.4 (0.38,0.42) 0.12 (0.11,0.12) 0.19 (0.19,0.2) 0.34 (0.32,0.36) 0.1 (0.09,0.11) 0.17 (0.16,0.18) 0.29 (0.28,0.31)
GEE TRM 0.18 (0.17,0.19) 0.27 (0.26,0.28) 0.42 (0.4,0.43) 0.15 (0.14,0.16) 0.22 (0.21,0.23) 0.35 (0.33,0.38) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.3 (0.29,0.32)

Table 2.29: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.23 (0.21,0.25) 0.35 (0.31,0.38) 0.57 (0.52,0.6) 0.19 (0.17,0.2) 0.3 (0.28,0.32) 0.48 (0.45,0.51) 0.17 (0.15,0.18) 0.25 (0.23,0.27) 0.4 (0.37,0.42)
Strata 0.23 (0.21,0.25) 0.35 (0.32,0.38) 0.57 (0.53,0.6) 0.18 (0.17,0.2) 0.29 (0.27,0.32) 0.48 (0.44,0.51) 0.16 (0.14,0.18) 0.25 (0.23,0.27) 0.4 (0.37,0.43)
True 0.22 (0.2,0.23) 0.34 (0.31,0.37) 0.55 (0.51,0.6) 0.18 (0.15,0.19) 0.29 (0.27,0.3) 0.47 (0.44,0.51) 0.16 (0.14,0.17) 0.25 (0.23,0.26) 0.4 (0.37,0.43)
NKM 0.22 (0.2,0.23) 0.35 (0.31,0.37) 0.56 (0.51,0.6) 0.18 (0.16,0.19) 0.29 (0.27,0.31) 0.48 (0.45,0.5) 0.16 (0.14,0.17) 0.25 (0.22,0.27) 0.4 (0.37,0.42)

Standard 0.29 (0.25,0.32) 0.39 (0.36,0.41) 0.59 (0.54,0.63) 0.23 (0.2,0.26) 0.33 (0.31,0.36) 0.51 (0.47,0.54) 0.21 (0.18,0.23) 0.28 (0.25,0.31) 0.42 (0.39,0.45)
GEE True 0.22 (0.21,0.23) 0.35 (0.33,0.37) 0.57 (0.54,0.59) 0.18 (0.16,0.19) 0.28 (0.27,0.3) 0.48 (0.46,0.5) 0.15 (0.14,0.16) 0.24 (0.23,0.25) 0.41 (0.38,0.43)
GEE TRM 0.27 (0.24,0.3) 0.38 (0.36,0.41) 0.59 (0.56,0.61) 0.23 (0.2,0.25) 0.31 (0.29,0.33) 0.5 (0.48,0.52) 0.19 (0.16,0.21) 0.27 (0.25,0.29) 0.43 (0.4,0.45)

Table 2.30: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, CO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.33 (0.31,0.35) 0.39 (0.37,0.41) 0.51 (0.48,0.54) 0.27 (0.26,0.29) 0.3 (0.28,0.32) 0.38 (0.36,0.4) 0.23 (0.21,0.24) 0.26 (0.25,0.28) 0.35 (0.32,0.37)
Strata 0.33 (0.31,0.35) 0.39 (0.37,0.41) 0.51 (0.48,0.53) 0.27 (0.25,0.29) 0.3 (0.29,0.32) 0.38 (0.36,0.4) 0.22 (0.21,0.23) 0.26 (0.25,0.28) 0.35 (0.33,0.37)
True 0.16 (0.14,0.17) 0.25 (0.23,0.25) 0.43 (0.4,0.45) 0.13 (0.12,0.14) 0.2 (0.19,0.21) 0.33 (0.31,0.34) 0.11 (0.1,0.12) 0.17 (0.16,0.18) 0.29 (0.27,0.31)
NKM 0.25 (0.24,0.27) 0.31 (0.3,0.32) 0.46 (0.44,0.48) 0.2 (0.19,0.22) 0.26 (0.25,0.27) 0.35 (0.33,0.37) 0.18 (0.17,0.19) 0.22 (0.21,0.23) 0.32 (0.3,0.34)

Standard 0.33 (0.31,0.35) 0.39 (0.37,0.4) 0.51 (0.48,0.54) 0.27 (0.26,0.29) 0.3 (0.29,0.32) 0.38 (0.36,0.4) 0.23 (0.21,0.24) 0.26 (0.25,0.28) 0.36 (0.33,0.37)
GEE True 0.16 (0.14,0.17) 0.24 (0.23,0.25) 0.42 (0.4,0.44) 0.13 (0.12,0.13) 0.2 (0.19,0.21) 0.33 (0.32,0.35) 0.11 (0.1,0.11) 0.17 (0.17,0.18) 0.29 (0.28,0.31)
GEE TRM 0.33 (0.32,0.35) 0.38 (0.36,0.39) 0.51 (0.48,0.53) 0.27 (0.25,0.29) 0.31 (0.29,0.33) 0.4 (0.38,0.42) 0.23 (0.21,0.24) 0.27 (0.26,0.28) 0.35 (0.33,0.37)
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2.7.4 Binary Outcomes Model Specification 1 Results

Table 2.31: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, BO, MS1}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 97 (96,100) 96 (94,97) 96 (94,97) 95 (94,97) 95 (91,98) 96 (94,98) 97 (94,100) 96 (94,99) 97 (97,97)
Strata 96 (94,97) 95 (93,97) 96 (93,98) 94 (92,95) 95 (94,97) 96 (94,98) 96 (94,97) 94 (91,97) 96 (95,97)
True 96 (94,97) 95 (91,97) 96 (94,97) 94 (93,95) 95 (94,97) 96 (94,97) 96 (94,97) 95 (91,97) 95 (94,97)
NKM 96 (95,97) 94 (91,97) 95 (93,97) 93 (91,95) 95 (91,97) 96 (94,97) 96 (94,97) 95 (94,97) 95 (94,97)

Standard 99 (97,100) 98 (97,100) 97 (96,100) 98 (97,100) 98 (97,100) 98 (97,100) 99 (97,100) 98 (97,100) 98 (97,100)
GEE True 94 (93,96) 95 (92,96) 95 (93,96) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,96) 95 (94,97) 95 (93,97)
GEE TRM 95 (94,96) 95 (93,98) 95 (93,96) 95 (94,97) 95 (94,96) 95 (94,96) 96 (94,97) 96 (94,97) 95 (93,97)

Table 2.32: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, BO, MS1}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 96 (95,98) 97 (94,100) 96 (95,98) 97 (96,100) 97 (94,100) 96 (94,97) 96 (94,97) 97 (97,98) 95 (94,97)
Strata 96 (94,99) 96 (93,99) 96 (94,97) 97 (96,100) 97 (96,100) 95 (94,97) 95 (94,97) 97 (96,98) 95 (94,97)
True 94 (93,97) 95 (91,97) 95 (93,97) 94 (94,97) 97 (94,100) 95 (94,97) 94 (93,97) 96 (96,97) 95 (91,98)
NKM 95 (92,96) 94 (91,97) 95 (94,97) 95 (94,97) 96 (94,100) 95 (94,97) 94 (93,97) 96 (95,97) 94 (91,97)

Standard 99 (97,100) 98 (97,100) 97 (96,98) 97 (97,100) 99 (97,100) 97 (97,98) 98 (97,100) 99 (97,100) 97 (97,99)
GEE True 95 (94,96) 95 (94,97) 96 (94,97) 95 (94,97) 95 (94,96) 95 (94,96) 95 (94,96) 95 (94,97) 95 (94,96)
GEE TRM 97 (96,98) 97 (96,98) 97 (96,98) 97 (96,99) 96 (95,98) 96 (94,97) 97 (96,98) 97 (95,98) 96 (95,97)

Table 2.33: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, BO, MS1}. Results are stratified by β9 and cluster
variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 96 (94,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,97) 96 (94,97) 95 (94,98) 96 (94,97) 96 (94,99)
Strata 95 (91,97) 95 (94,97) 94 (94,97) 95 (94,97) 95 (94,97) 94 (93,97) 94 (91,97) 95 (94,97) 96 (94,97)
True 94 (91,97) 95 (94,97) 95 (92,97) 95 (91,97) 94 (92,97) 94 (91,97) 94 (91,97) 95 (93,97) 95 (94,97)
NKM 95 (94,97) 95 (94,97) 95 (93,97) 95 (92,97) 95 (94,97) 95 (93,97) 94 (92,97) 95 (94,97) 96 (94,97)

Standard 97 (95,100) 97 (94,100) 97 (96,98) 98 (97,100) 98 (96,100) 97 (94,100) 98 (97,100) 98 (97,100) 98 (97,100)
GEE True 95 (93,96) 94 (93,96) 94 (92,95) 94 (93,96) 94 (93,96) 94 (92,96) 95 (93,97) 94 (93,96) 94 (93,96)
GEE TRM 96 (94,97) 95 (94,96) 94 (93,95) 95 (94,97) 94 (92,96) 94 (93,96) 95 (94,97) 95 (93,96) 95 (94,96)
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Table 2.34: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, BO, MS1}. Results are stratified by β9 and cluster
variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 98 (97,100) 97 (96,100) 96 (94,97) 97 (96,100) 96 (94,97) 97 (95,100) 97 (97,100) 97 (94,97) 95 (94,97)
Strata 97 (97,98) 97 (96,100) 96 (94,97) 95 (94,97) 97 (96,97) 96 (94,97) 97 (96,98) 96 (94,97) 94 (94,97)
True 96 (94,97) 97 (95,98) 95 (93,97) 94 (92,95) 95 (93,97) 96 (94,97) 94 (91,97) 94 (92,95) 93 (92,95)
NKM 96 (95,97) 97 (95,100) 95 (94,97) 93 (91,94) 95 (94,97) 96 (94,97) 94 (91,97) 94 (92,96) 94 (93,95)

Standard 99 (97,100) 98 (97,100) 97 (95,100) 99 (98,100) 98 (97,100) 98 (96,100) 99 (97,100) 97 (97,100) 95 (94,97)
GEE True 95 (94,97) 95 (93,97) 95 (94,97) 95 (93,96) 95 (94,96) 95 (93,97) 95 (94,96) 95 (94,96) 96 (94,97)
GEE TRM 97 (96,98) 96 (95,98) 96 (95,97) 97 (96,98) 97 (96,98) 96 (94,97) 97 (96,98) 97 (95,98) 96 (95,98)

Table 2.35: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, BO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.25 (0.23,0.26) 0.27 (0.25,0.29) 0.33 (0.31,0.34) 0.2 (0.18,0.21) 0.22 (0.2,0.23) 0.27 (0.25,0.28) 0.17 (0.16,0.18) 0.19 (0.17,0.2) 0.23 (0.22,0.24)
Strata 0.23 (0.22,0.25) 0.26 (0.24,0.27) 0.32 (0.31,0.33) 0.19 (0.17,0.2) 0.21 (0.2,0.22) 0.26 (0.24,0.27) 0.16 (0.15,0.17) 0.18 (0.17,0.19) 0.22 (0.21,0.23)
True 0.23 (0.22,0.25) 0.26 (0.24,0.27) 0.32 (0.3,0.33) 0.19 (0.17,0.2) 0.21 (0.19,0.22) 0.26 (0.24,0.27) 0.16 (0.15,0.17) 0.18 (0.16,0.18) 0.22 (0.21,0.23)
NKM 0.23 (0.22,0.25) 0.26 (0.24,0.27) 0.32 (0.3,0.33) 0.19 (0.17,0.2) 0.21 (0.19,0.22) 0.26 (0.24,0.27) 0.16 (0.15,0.17) 0.18 (0.16,0.18) 0.22 (0.21,0.23)

Standard 0.29 (0.27,0.32) 0.31 (0.29,0.34) 0.36 (0.34,0.38) 0.24 (0.22,0.26) 0.25 (0.23,0.27) 0.29 (0.28,0.3) 0.21 (0.19,0.22) 0.22 (0.2,0.23) 0.25 (0.24,0.26)
GEE True 0.24 (0.22,0.25) 0.27 (0.25,0.28) 0.33 (0.31,0.34) 0.19 (0.18,0.2) 0.21 (0.2,0.22) 0.26 (0.24,0.28) 0.17 (0.15,0.17) 0.18 (0.17,0.19) 0.23 (0.21,0.23)
GEE TRM 0.25 (0.23,0.26) 0.27 (0.26,0.29) 0.33 (0.31,0.35) 0.2 (0.18,0.21) 0.22 (0.2,0.24) 0.27 (0.25,0.28) 0.17 (0.16,0.18) 0.19 (0.17,0.2) 0.23 (0.21,0.24)

Table 2.36: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, BO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.2 (0.2,0.21) 0.22 (0.22,0.23) 0.26 (0.26,0.26) 0.17 (0.16,0.17) 0.18 (0.18,0.18) 0.21 (0.21,0.21) 0.14 (0.14,0.15) 0.16 (0.15,0.16) 0.18 (0.18,0.19)
Strata 0.19 (0.19,0.2) 0.21 (0.21,0.22) 0.25 (0.25,0.25) 0.16 (0.16,0.16) 0.18 (0.17,0.18) 0.21 (0.2,0.21) 0.14 (0.13,0.14) 0.15 (0.15,0.15) 0.18 (0.18,0.18)
True 0.18 (0.17,0.18) 0.2 (0.2,0.2) 0.24 (0.24,0.24) 0.14 (0.14,0.15) 0.16 (0.16,0.16) 0.2 (0.2,0.2) 0.12 (0.12,0.13) 0.14 (0.14,0.14) 0.17 (0.17,0.17)
NKM 0.18 (0.17,0.18) 0.2 (0.2,0.2) 0.24 (0.24,0.24) 0.14 (0.14,0.15) 0.16 (0.16,0.16) 0.2 (0.2,0.2) 0.12 (0.12,0.13) 0.14 (0.14,0.14) 0.17 (0.17,0.17)

Standard 0.24 (0.23,0.25) 0.25 (0.25,0.26) 0.28 (0.28,0.29) 0.2 (0.19,0.21) 0.21 (0.2,0.21) 0.23 (0.23,0.23) 0.17 (0.17,0.18) 0.18 (0.18,0.18) 0.2 (0.2,0.2)
GEE True 0.18 (0.18,0.18) 0.2 (0.2,0.2) 0.25 (0.24,0.25) 0.15 (0.14,0.15) 0.16 (0.16,0.16) 0.2 (0.2,0.2) 0.12 (0.12,0.13) 0.14 (0.14,0.14) 0.17 (0.17,0.17)
GEE TRM 0.21 (0.2,0.21) 0.22 (0.22,0.23) 0.26 (0.26,0.27) 0.17 (0.16,0.17) 0.18 (0.18,0.19) 0.21 (0.21,0.22) 0.14 (0.14,0.15) 0.16 (0.15,0.16) 0.18 (0.18,0.19)

Table 2.37: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, BO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.21 (0.19,0.23) 0.23 (0.21,0.25) 0.28 (0.26,0.3) 0.16 (0.14,0.19) 0.18 (0.16,0.2) 0.22 (0.21,0.25) 0.14 (0.13,0.16) 0.15 (0.14,0.17) 0.19 (0.18,0.21)
Strata 0.2 (0.18,0.22) 0.22 (0.2,0.24) 0.27 (0.26,0.29) 0.16 (0.15,0.17) 0.17 (0.16,0.19) 0.22 (0.21,0.24) 0.14 (0.12,0.15) 0.15 (0.14,0.16) 0.19 (0.18,0.21)
True 0.19 (0.18,0.21) 0.21 (0.2,0.23) 0.27 (0.25,0.29) 0.15 (0.14,0.17) 0.17 (0.16,0.18) 0.22 (0.2,0.24) 0.13 (0.12,0.15) 0.15 (0.14,0.16) 0.19 (0.17,0.2)
NKM 0.2 (0.18,0.22) 0.22 (0.2,0.24) 0.27 (0.26,0.29) 0.16 (0.14,0.17) 0.17 (0.16,0.19) 0.22 (0.21,0.24) 0.14 (0.12,0.15) 0.15 (0.14,0.16) 0.19 (0.18,0.2)

Standard 0.25 (0.22,0.27) 0.26 (0.24,0.29) 0.31 (0.29,0.33) 0.2 (0.17,0.22) 0.21 (0.19,0.23) 0.25 (0.23,0.27) 0.17 (0.15,0.19) 0.18 (0.16,0.2) 0.21 (0.19,0.23)
GEE True 0.2 (0.18,0.22) 0.22 (0.2,0.24) 0.27 (0.25,0.3) 0.16 (0.14,0.18) 0.17 (0.16,0.19) 0.22 (0.2,0.24) 0.13 (0.12,0.15) 0.15 (0.14,0.17) 0.18 (0.17,0.2)
GEE TRM 0.2 (0.18,0.23) 0.22 (0.2,0.25) 0.27 (0.25,0.3) 0.16 (0.15,0.18) 0.18 (0.16,0.2) 0.22 (0.2,0.24) 0.14 (0.13,0.16) 0.15 (0.14,0.17) 0.19 (0.17,0.21)
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Table 2.38: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, BO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.2 (0.19,0.2) 0.21 (0.21,0.22) 0.25 (0.25,0.26) 0.16 (0.16,0.16) 0.17 (0.17,0.18) 0.21 (0.2,0.21) 0.14 (0.14,0.14) 0.15 (0.15,0.15) 0.18 (0.18,0.18)
Strata 0.19 (0.19,0.19) 0.21 (0.2,0.21) 0.25 (0.24,0.25) 0.16 (0.15,0.16) 0.17 (0.16,0.17) 0.2 (0.2,0.2) 0.13 (0.13,0.14) 0.15 (0.14,0.15) 0.17 (0.17,0.18)
True 0.17 (0.17,0.17) 0.19 (0.18,0.2) 0.23 (0.23,0.24) 0.14 (0.14,0.14) 0.16 (0.15,0.16) 0.19 (0.18,0.19) 0.12 (0.12,0.12) 0.14 (0.13,0.14) 0.16 (0.16,0.17)
NKM 0.17 (0.17,0.17) 0.19 (0.18,0.2) 0.23 (0.23,0.24) 0.14 (0.14,0.14) 0.16 (0.15,0.16) 0.19 (0.19,0.19) 0.12 (0.12,0.12) 0.14 (0.13,0.14) 0.16 (0.16,0.17)

Standard 0.23 (0.23,0.24) 0.24 (0.24,0.25) 0.27 (0.27,0.28) 0.19 (0.19,0.19) 0.19 (0.19,0.2) 0.22 (0.22,0.22) 0.16 (0.16,0.17) 0.17 (0.17,0.17) 0.19 (0.19,0.2)
GEE True 0.17 (0.17,0.17) 0.19 (0.19,0.2) 0.24 (0.23,0.24) 0.14 (0.13,0.14) 0.15 (0.15,0.16) 0.19 (0.18,0.19) 0.12 (0.12,0.12) 0.13 (0.13,0.13) 0.16 (0.16,0.17)
GEE TRM 0.2 (0.19,0.2) 0.21 (0.21,0.22) 0.25 (0.25,0.25) 0.16 (0.16,0.16) 0.17 (0.17,0.18) 0.2 (0.2,0.21) 0.14 (0.13,0.14) 0.15 (0.14,0.15) 0.17 (0.17,0.18)

Table 2.39: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, BO, MS1}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.06,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
Strata 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
True 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
NKM 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.05,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.05)

Standard 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.05,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
GEE True 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
GEE TRM 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

Table 2.40: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, BO, MS1} . Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
Strata 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)
True 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.03)
NKM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.03)

Standard 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
GEE True 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)
GEE TRM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)

Table 2.41: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, BO, MS1} . Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
Strata 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
True 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
NKM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)

Standard 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.05 (0.04,0.05) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
GEE True 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
GEE TRM 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)

Table 2.42: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, BO, MS1}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
Strata 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)
True 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.03 (0.03,0.04)
NKM 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.03 (0.03,0.04)

Standard 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
GEE True 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.03 (0.03,0.03)
GEE TRM 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.03)

52



2.7.5 Continuous Outcomes Model Specifications 2 and 3 Results

Table 2.43: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, CO, MS2}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 97 (94,100) 97 (94,97) 96 (94,97) 97 (97,97) 96 (94,98) 96 (94,97) 96 (94,97) 95 (94,97) 96 (94,97)
Strata 96 (94,98) 95 (94,97) 95 (92,97) 96 (94,97) 95 (92,98) 94 (92,97) 94 (91,97) 94 (92,96) 94 (91,96)
True 96 (94,98) 95 (94,97) 95 (94,97) 96 (94,97) 95 (94,97) 95 (94,97) 94 (91,97) 95 (94,97) 94 (94,97)
NKM 96 (94,98) 95 (94,97) 95 (94,97) 96 (94,98) 95 (94,97) 95 (92,97) 94 (94,97) 94 (91,97) 94 (93,97)

Standard 97 (96,100) 98 (97,100) 97 (96,100) 97 (97,100) 97 (95,100) 97 (95,100) 97 (96,97) 97 (94,100) 97 (96,100)
GEE True 96 (94,97) 96 (95,96) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,97) 96 (94,97) 96 (94,98) 95 (94,97)
GEE TRM 97 (96,98) 96 (95,98) 96 (95,98) 95 (94,98) 96 (94,98) 97 (96,98) 97 (96,98) 97 (95,98) 96 (95,98)

Table 2.44: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, CO, MS2}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 97 (94,98) 96 (94,97) 97 (96,99) 96 (94,97) 97 (96,100) 94 (91,97) 96 (95,97) 97 (96,99) 98 (97,100)
Strata 95 (94,97) 96 (94,97) 96 (96,98) 96 (95,97) 96 (94,100) 94 (90,97) 96 (94,97) 96 (94,98) 96 (97,97)
True 95 (93,97) 96 (94,97) 95 (94,96) 95 (94,97) 95 (93,97) 93 (90,95) 93 (89,97) 94 (93,96) 96 (95,97)
NKM 96 (94,97) 95 (94,97) 95 (94,97) 95 (93,97) 95 (93,97) 93 (93,95) 94 (92,95) 95 (94,97) 96 (96,97)

Standard 97 (97,98) 97 (97,99) 99 (98,100) 97 (97,98) 97 (96,100) 96 (94,100) 97 (96,98) 98 (97,99) 98 (97,100)
GEE True 95 (94,97) 95 (94,96) 96 (95,97) 95 (94,97) 95 (94,96) 96 (94,98) 96 (94,97) 95 (94,97) 95 (94,97)
GEE TRM 97 (96,98) 96 (95,98) 97 (96,98) 97 (96,98) 97 (96,98) 97 (96,98) 97 (96,98) 97 (96,98) 97 (97,98)

Table 2.45: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, CO, MS2}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 96 (94,99) 96 (94,97) 97 (95,100) 96 (94,100) 97 (95,100) 96 (94,97)
Strata 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (91,97)
True 95 (94,97) 95 (94,97) 95 (94,97) 95 (93,97) 94 (92,97) 94 (91,97)
NKM 96 (94,97) 95 (94,97) 95 (94,97) 95 (94,97) 96 (94,97) 95 (92,97)

Standard 97 (96,100) 98 (97,100) 98 (97,100) 97 (95,100) 98 (97,100) 97 (96,99)
GEE True 96 (94,97) 95 (94,97) 95 (94,97) 95 (93,97) 95 (93,96) 94 (93,96)
GEE TRM 96 (95,98) 96 (95,98) 96 (95,98) 96 (95,98) 96 (95,98) 96 (95,98)
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Table 2.46: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, CO, MS2}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 97 (97,99) 98 (97,100) 98 (97,99) 98 (97,99) 97 (96,98) 98 (97,99)
Strata 97 (95,99) 98 (97,100) 97 (97,98) 97 (97,98) 97 (96,98) 97 (96,98)
True 95 (93,97) 95 (94,97) 95 (93,97) 94 (91,96) 95 (92,96) 95 (93,96)
NKM 95 (94,97) 96 (94,98) 96 (94,97) 95 (94,98) 95 (94,96) 95 (93,97)

Standard 98 (96,100) 98 (97,100) 98 (97,100) 98 (97,99) 97 (97,99) 98 (97,100)
GEE True 96 (94,97) 95 (94,96) 95 (94,97) 95 (94,96) 95 (93,97) 94 (93,96)
GEE TRM 98 (97,99) 98 (97,99) 98 (97,99) 98 (97,99) 98 (97,99) 98 (98,99)

Table 2.47: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, CO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 2.86 (2.69,2.92) 2.39 (2.23,2.52) 2.24 (2.1,2.41) 2.37 (2.22,2.49) 1.91 (1.79,2.02) 1.79 (1.68,1.94) 1.98 (1.92,2.01) 1.64 (1.55,1.72) 1.55 (1.44,1.68)
Strata 2.72 (2.55,2.82) 2.2 (2.15,2.24) 2.05 (2.02,2.1) 2.26 (2.15,2.33) 1.76 (1.73,1.8) 1.64 (1.61,1.69) 1.89 (1.85,1.93) 1.51 (1.49,1.53) 1.41 (1.38,1.43)
True 2.68 (2.52,2.77) 2.16 (2.1,2.21) 2.01 (1.96,2.05) 2.24 (2.14,2.3) 1.74 (1.71,1.77) 1.62 (1.58,1.64) 1.86 (1.79,1.92) 1.48 (1.46,1.5) 1.38 (1.36,1.4)
NKM 2.69 (2.51,2.78) 2.16 (2.1,2.2) 2.01 (1.96,2.04) 2.24 (2.14,2.3) 1.74 (1.71,1.77) 1.61 (1.58,1.64) 1.86 (1.8,1.91) 1.48 (1.46,1.51) 1.38 (1.36,1.41)

Standard 3.05 (2.84,3.19) 2.63 (2.41,2.84) 2.5 (2.29,2.73) 2.53 (2.34,2.65) 2.1 (1.95,2.27) 2 (1.82,2.18) 2.14 (2.02,2.24) 1.79 (1.66,1.92) 1.71 (1.55,1.87)
GEE True 2.76 (2.68,2.84) 2.18 (2.15,2.21) 2.02 (1.99,2.05) 2.22 (2.18,2.27) 1.76 (1.74,1.78) 1.63 (1.61,1.66) 1.93 (1.9,1.96) 1.52 (1.5,1.53) 1.39 (1.37,1.4)
GEE TRM 2.9 (2.76,3.02) 2.36 (2.19,2.49) 2.22 (2.06,2.41) 2.34 (2.25,2.45) 1.93 (1.81,2.07) 1.81 (1.69,1.95) 2.03 (1.96,2.12) 1.66 (1.55,1.81) 1.54 (1.42,1.68)

Table 2.48: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, CO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 2.1 (2.06,2.15) 1.74 (1.71,1.77) 1.63 (1.61,1.67) 1.72 (1.68,1.75) 1.42 (1.39,1.46) 1.33 (1.31,1.35) 1.47 (1.44,1.49) 1.23 (1.21,1.25) 1.14 (1.12,1.16)
Strata 2.02 (1.97,2.09) 1.64 (1.63,1.67) 1.55 (1.53,1.56) 1.65 (1.62,1.69) 1.34 (1.32,1.35) 1.26 (1.25,1.27) 1.42 (1.39,1.45) 1.17 (1.16,1.17) 1.09 (1.07,1.1)
True 1.89 (1.82,1.95) 1.51 (1.48,1.52) 1.38 (1.37,1.4) 1.54 (1.52,1.56) 1.21 (1.2,1.23) 1.12 (1.12,1.13) 1.32 (1.3,1.35) 1.06 (1.05,1.06) 0.96 (0.95,0.97)
NKM 1.94 (1.89,2) 1.55 (1.53,1.57) 1.43 (1.41,1.46) 1.57 (1.54,1.62) 1.25 (1.24,1.27) 1.16 (1.16,1.17) 1.36 (1.34,1.38) 1.09 (1.08,1.09) 1 (1,1.01)

Standard 2.21 (2.19,2.24) 1.87 (1.8,1.94) 1.77 (1.72,1.81) 1.8 (1.76,1.84) 1.52 (1.47,1.58) 1.43 (1.39,1.46) 1.55 (1.5,1.58) 1.32 (1.28,1.36) 1.23 (1.2,1.24)
GEE True 1.96 (1.91,2.02) 1.55 (1.53,1.56) 1.42 (1.4,1.43) 1.58 (1.55,1.59) 1.23 (1.22,1.24) 1.14 (1.14,1.15) 1.36 (1.34,1.37) 1.06 (1.06,1.07) 0.98 (0.98,0.99)
GEE TRM 2.18 (2.12,2.22) 1.83 (1.73,1.94) 1.72 (1.62,1.84) 1.77 (1.72,1.84) 1.47 (1.4,1.56) 1.4 (1.33,1.5) 1.53 (1.48,1.57) 1.28 (1.22,1.35) 1.21 (1.14,1.29)

Table 2.49: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, CO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 2.91 (2.75,3.04) 2.44 (2.28,2.57) 2.27 (2.12,2.42) 2.35 (2.26,2.42) 1.94 (1.83,2.03) 1.82 (1.7,1.95) 2.02 (1.94,2.09) 1.66 (1.58,1.76) 1.55 (1.46,1.65)
Strata 2.75 (2.64,2.83) 2.26 (2.22,2.32) 2.1 (2.04,2.15) 2.22 (2.17,2.28) 1.8 (1.76,1.83) 1.68 (1.64,1.71) 1.91 (1.85,1.96) 1.54 (1.51,1.57) 1.43 (1.4,1.47)
True 2.7 (2.62,2.8) 2.18 (2.12,2.23) 2.02 (1.97,2.07) 2.18 (2.12,2.23) 1.73 (1.7,1.77) 1.62 (1.59,1.64) 1.86 (1.8,1.92) 1.48 (1.46,1.52) 1.37 (1.35,1.4)
NKM 2.74 (2.61,2.81) 2.22 (2.16,2.26) 2.06 (2.01,2.12) 2.21 (2.16,2.27) 1.78 (1.74,1.81) 1.65 (1.62,1.68) 1.9 (1.84,1.93) 1.52 (1.49,1.56) 1.41 (1.39,1.44)

Standard 3.2 (3.01,3.34) 2.79 (2.59,2.98) 2.64 (2.46,2.83) 2.59 (2.47,2.7) 2.22 (2.09,2.37) 2.11 (1.98,2.25) 2.22 (2.11,2.34) 1.92 (1.81,2.06) 1.81 (1.69,1.94)
GEE True 2.76 (2.68,2.82) 2.19 (2.15,2.23) 2.04 (2.01,2.06) 2.23 (2.19,2.27) 1.77 (1.74,1.79) 1.63 (1.61,1.65) 1.92 (1.87,1.97) 1.51 (1.49,1.52) 1.4 (1.39,1.41)
GEE TRM 3.01 (2.87,3.14) 2.5 (2.4,2.6) 2.38 (2.26,2.51) 2.46 (2.35,2.56) 2.03 (1.94,2.13) 1.91 (1.82,2.01) 2.11 (2.03,2.19) 1.74 (1.67,1.82) 1.65 (1.55,1.74)
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Table 2.50: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, CO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 2.75 (2.66,2.81) 2.44 (2.36,2.52) 2.38 (2.29,2.47) 2.24 (2.14,2.31) 2.01 (1.93,2.08) 1.93 (1.85,2.02) 1.95 (1.88,2.02) 1.74 (1.67,1.81) 1.68 (1.61,1.75)
Strata 2.62 (2.54,2.69) 2.33 (2.26,2.4) 2.28 (2.19,2.37) 2.15 (2.09,2.22) 1.92 (1.85,1.99) 1.85 (1.77,1.91) 1.88 (1.82,1.92) 1.66 (1.6,1.73) 1.6 (1.55,1.66)
True 1.92 (1.89,1.95) 1.5 (1.46,1.53) 1.4 (1.39,1.42) 1.55 (1.52,1.59) 1.22 (1.21,1.23) 1.12 (1.11,1.13) 1.34 (1.31,1.35) 1.05 (1.04,1.07) 0.97 (0.97,0.98)
NKM 2.17 (2.13,2.19) 1.8 (1.78,1.85) 1.72 (1.68,1.75) 1.76 (1.74,1.8) 1.48 (1.46,1.5) 1.39 (1.38,1.41) 1.54 (1.51,1.56) 1.27 (1.25,1.29) 1.2 (1.2,1.22)

Standard 2.82 (2.73,2.89) 2.53 (2.46,2.59) 2.46 (2.38,2.54) 2.32 (2.2,2.39) 2.07 (2.01,2.14) 2 (1.93,2.08) 2.01 (1.95,2.06) 1.79 (1.72,1.86) 1.73 (1.67,1.8)
GEE True 1.97 (1.93,1.99) 1.54 (1.52,1.56) 1.42 (1.41,1.44) 1.58 (1.55,1.59) 1.24 (1.23,1.25) 1.14 (1.13,1.15) 1.38 (1.35,1.4) 1.07 (1.06,1.07) 0.98 (0.97,0.99)
GEE TRM 2.84 (2.75,2.92) 2.54 (2.41,2.63) 2.47 (2.37,2.55) 2.29 (2.21,2.37) 2.06 (1.98,2.14) 2.01 (1.92,2.07) 1.99 (1.94,2.06) 1.78 (1.71,1.84) 1.73 (1.65,1.8)

Table 2.51: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, CO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 0.54 (0.5,0.58) 0.44 (0.42,0.48) 0.39 (0.37,0.41) 0.46 (0.41,0.5) 0.34 (0.31,0.37) 0.32 (0.3,0.33) 0.41 (0.37,0.44) 0.32 (0.29,0.33) 0.28 (0.26,0.3)
Strata 0.53 (0.49,0.58) 0.44 (0.42,0.47) 0.39 (0.37,0.4) 0.46 (0.42,0.49) 0.34 (0.32,0.37) 0.32 (0.3,0.34) 0.4 (0.37,0.43) 0.32 (0.29,0.35) 0.28 (0.26,0.29)
True 0.53 (0.49,0.57) 0.43 (0.4,0.46) 0.39 (0.36,0.41) 0.46 (0.42,0.48) 0.34 (0.32,0.36) 0.31 (0.29,0.33) 0.4 (0.36,0.42) 0.31 (0.28,0.33) 0.27 (0.26,0.29)
NKM 0.53 (0.49,0.57) 0.43 (0.4,0.46) 0.39 (0.36,0.41) 0.46 (0.42,0.48) 0.34 (0.32,0.36) 0.31 (0.28,0.33) 0.39 (0.36,0.42) 0.31 (0.29,0.33) 0.27 (0.26,0.29)

Standard 0.55 (0.5,0.6) 0.45 (0.42,0.49) 0.4 (0.38,0.41) 0.47 (0.42,0.5) 0.35 (0.34,0.37) 0.33 (0.31,0.35) 0.42 (0.39,0.46) 0.33 (0.3,0.36) 0.29 (0.27,0.31)
GEE True 0.54 (0.53,0.56) 0.42 (0.4,0.45) 0.39 (0.38,0.41) 0.45 (0.42,0.49) 0.36 (0.34,0.38) 0.32 (0.31,0.33) 0.39 (0.37,0.41) 0.3 (0.29,0.31) 0.28 (0.26,0.29)
GEE TRM 0.54 (0.52,0.55) 0.43 (0.41,0.45) 0.4 (0.39,0.41) 0.46 (0.42,0.49) 0.36 (0.34,0.39) 0.33 (0.32,0.34) 0.39 (0.38,0.4) 0.3 (0.29,0.31) 0.28 (0.27,0.3)

Table 2.52: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, CO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 0.41 (0.4,0.44) 0.32 (0.3,0.33) 0.31 (0.29,0.32) 0.33 (0.3,0.35) 0.26 (0.23,0.28) 0.26 (0.24,0.28) 0.29 (0.27,0.31) 0.23 (0.21,0.24) 0.2 (0.19,0.2)
Strata 0.41 (0.39,0.44) 0.31 (0.3,0.33) 0.31 (0.29,0.32) 0.33 (0.3,0.35) 0.26 (0.23,0.28) 0.26 (0.24,0.28) 0.29 (0.27,0.31) 0.23 (0.21,0.24) 0.2 (0.19,0.21)
True 0.4 (0.38,0.41) 0.29 (0.26,0.31) 0.29 (0.26,0.3) 0.31 (0.3,0.33) 0.25 (0.24,0.26) 0.24 (0.21,0.25) 0.28 (0.26,0.3) 0.22 (0.2,0.23) 0.18 (0.17,0.2)
NKM 0.41 (0.38,0.43) 0.3 (0.27,0.33) 0.29 (0.27,0.31) 0.32 (0.3,0.34) 0.25 (0.24,0.27) 0.25 (0.23,0.26) 0.29 (0.26,0.3) 0.22 (0.21,0.22) 0.19 (0.18,0.2)

Standard 0.41 (0.4,0.44) 0.32 (0.3,0.34) 0.31 (0.29,0.32) 0.33 (0.3,0.36) 0.26 (0.24,0.28) 0.26 (0.24,0.28) 0.3 (0.27,0.32) 0.23 (0.22,0.24) 0.2 (0.19,0.22)
GEE True 0.4 (0.38,0.42) 0.3 (0.28,0.32) 0.28 (0.27,0.29) 0.32 (0.31,0.34) 0.25 (0.24,0.26) 0.23 (0.21,0.24) 0.27 (0.26,0.29) 0.21 (0.2,0.22) 0.2 (0.19,0.21)
GEE TRM 0.42 (0.4,0.44) 0.33 (0.31,0.35) 0.3 (0.29,0.32) 0.34 (0.32,0.36) 0.27 (0.25,0.28) 0.25 (0.24,0.26) 0.29 (0.27,0.3) 0.23 (0.22,0.24) 0.21 (0.2,0.22)

Table 2.53: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, CO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 0.55 (0.51,0.6) 0.43 (0.4,0.47) 0.4 (0.37,0.43) 0.45 (0.41,0.48) 0.36 (0.32,0.4) 0.33 (0.31,0.36) 0.39 (0.36,0.43) 0.31 (0.28,0.32) 0.29 (0.27,0.31)
Strata 0.55 (0.51,0.59) 0.43 (0.41,0.47) 0.41 (0.37,0.45) 0.45 (0.4,0.49) 0.36 (0.32,0.39) 0.33 (0.3,0.35) 0.39 (0.36,0.43) 0.3 (0.28,0.32) 0.29 (0.27,0.31)
True 0.54 (0.51,0.58) 0.43 (0.39,0.46) 0.4 (0.36,0.44) 0.44 (0.41,0.48) 0.35 (0.33,0.38) 0.32 (0.3,0.35) 0.39 (0.35,0.42) 0.3 (0.28,0.33) 0.28 (0.26,0.3)
NKM 0.54 (0.51,0.58) 0.43 (0.4,0.45) 0.4 (0.36,0.43) 0.44 (0.4,0.47) 0.36 (0.32,0.39) 0.32 (0.3,0.34) 0.39 (0.34,0.41) 0.3 (0.28,0.32) 0.28 (0.26,0.31)

Standard 0.57 (0.54,0.61) 0.47 (0.43,0.51) 0.44 (0.41,0.48) 0.47 (0.44,0.5) 0.39 (0.35,0.43) 0.36 (0.33,0.39) 0.41 (0.37,0.44) 0.32 (0.29,0.35) 0.31 (0.28,0.34)
GEE True 0.56 (0.53,0.59) 0.43 (0.41,0.44) 0.4 (0.38,0.42) 0.45 (0.43,0.47) 0.35 (0.34,0.37) 0.32 (0.31,0.34) 0.39 (0.37,0.41) 0.3 (0.28,0.32) 0.29 (0.26,0.3)
GEE TRM 0.58 (0.55,0.61) 0.46 (0.44,0.49) 0.43 (0.41,0.45) 0.47 (0.45,0.49) 0.38 (0.36,0.39) 0.35 (0.33,0.37) 0.41 (0.39,0.44) 0.32 (0.31,0.34) 0.31 (0.29,0.32)

Table 2.54: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, CO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7 ν = 3 ν = 5 ν = 7

TRM 0.49 (0.46,0.52) 0.4 (0.36,0.43) 0.4 (0.37,0.43) 0.39 (0.37,0.41) 0.35 (0.33,0.37) 0.33 (0.31,0.34) 0.35 (0.32,0.38) 0.3 (0.28,0.32) 0.28 (0.26,0.3)
Strata 0.49 (0.47,0.52) 0.4 (0.36,0.43) 0.4 (0.37,0.43) 0.39 (0.37,0.41) 0.35 (0.33,0.37) 0.33 (0.31,0.34) 0.35 (0.32,0.38) 0.3 (0.28,0.32) 0.28 (0.27,0.3)
True 0.4 (0.38,0.43) 0.3 (0.28,0.33) 0.27 (0.26,0.29) 0.32 (0.31,0.34) 0.24 (0.22,0.26) 0.23 (0.22,0.24) 0.29 (0.27,0.3) 0.22 (0.21,0.23) 0.2 (0.2,0.22)
NKM 0.44 (0.41,0.49) 0.35 (0.34,0.38) 0.34 (0.31,0.36) 0.35 (0.34,0.37) 0.3 (0.29,0.31) 0.28 (0.27,0.3) 0.32 (0.29,0.33) 0.25 (0.24,0.26) 0.24 (0.23,0.25)

Standard 0.5 (0.47,0.52) 0.4 (0.37,0.43) 0.4 (0.37,0.43) 0.39 (0.37,0.42) 0.35 (0.33,0.37) 0.33 (0.32,0.34) 0.36 (0.33,0.38) 0.3 (0.28,0.32) 0.29 (0.27,0.3)
GEE True 0.4 (0.38,0.42) 0.31 (0.29,0.33) 0.29 (0.27,0.3) 0.32 (0.31,0.34) 0.25 (0.23,0.27) 0.23 (0.22,0.25) 0.28 (0.26,0.29) 0.21 (0.2,0.23) 0.2 (0.19,0.21)
GEE TRM 0.5 (0.48,0.53) 0.43 (0.4,0.45) 0.41 (0.39,0.44) 0.4 (0.38,0.42) 0.35 (0.33,0.37) 0.34 (0.32,0.36) 0.35 (0.33,0.37) 0.3 (0.28,0.32) 0.29 (0.27,0.3)
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Table 2.55: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, CO, MS3}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 99 (97,100) 95 (92,97) 93 (91,97) 98 (97,100) 95 (94,97) 95 (91,97) 98 (97,100) 94 (91,97) 92 (91,97)
Strata 96 (94,98) 94 (91,97) 94 (91,97) 95 (94,97) 94 (92,96) 96 (94,97) 96 (94,97) 94 (91,97) 92 (88,95)
True 96 (94,99) 94 (94,97) 95 (92,97) 95 (92,97) 94 (92,97) 95 (94,98) 95 (94,97) 94 (92,97) 92 (89,97)
NKM 96 (94,99) 94 (91,97) 94 (91,97) 94 (92,97) 95 (93,97) 96 (94,98) 96 (94,97) 94 (92,97) 91 (88,97)

Standard 99 (99,100) 94 (91,97) 95 (92,97) 99 (98,100) 94 (93,97) 95 (94,97) 99 (100,100) 94 (91,97) 92 (91,94)
GEE True 96 (95,98) 95 (94,96) 95 (94,97) 95 (94,96) 96 (94,98) 95 (94,96) 96 (94,96) 95 (94,96) 96 (94,97)
GEE TRM 98 (98,100) 95 (93,97) 95 (93,97) 98 (97,99) 96 (94,97) 95 (93,96) 98 (96,99) 95 (93,97) 96 (94,97)

Table 2.56: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, CO, MS3}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 98 (97,99) 94 (92,97) 93 (91,94) 98 (97,100) 94 (91,96) 93 (88,96) 98 (96,100) 95 (94,97) 93 (91,95)
Strata 97 (96,97) 95 (93,97) 94 (94,94) 96 (95,98) 93 (91,95) 93 (91,95) 96 (94,100) 93 (91,95) 94 (91,96)
True 95 (94,97) 93 (91,96) 93 (93,95) 96 (94,97) 92 (89,94) 90 (87,93) 94 (91,98) 94 (94,96) 90 (88,93)
NKM 95 (94,97) 94 (92,96) 93 (91,95) 95 (93,97) 93 (91,95) 90 (87,95) 95 (93,97) 93 (91,97) 92 (88,95)

Standard 100 (99,100) 95 (94,97) 93 (91,94) 99 (98,100) 95 (91,97) 93 (92,97) 99 (98,100) 95 (94,97) 94 (94,95)
GEE True 95 (94,97) 95 (94,96) 96 (95,97) 95 (94,96) 95 (94,97) 96 (94,98) 95 (94,97) 95 (94,97) 95 (94,96)
GEE TRM 99 (98,100) 95 (95,96) 95 (94,96) 98 (98,99) 95 (94,97) 96 (95,97) 98 (97,100) 95 (94,97) 95 (94,96)

Table 2.57: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, CO, MS3}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 98 (97,100) 94 (91,97) 92 (91,96) 98 (96,100) 95 (93,97) 94 (92,97)
Strata 95 (94,97) 94 (94,97) 93 (91,97) 95 (92,97) 94 (91,97) 94 (94,97)
True 95 (94,97) 94 (91,97) 94 (91,97) 92 (90,97) 94 (93,97) 94 (93,97)
NKM 96 (94,97) 94 (91,97) 93 (91,97) 95 (94,97) 94 (91,97) 94 (92,97)

Standard 99 (98,100) 95 (94,97) 94 (91,97) 98 (97,100) 95 (94,97) 94 (94,97)
GEE True 95 (94,97) 95 (94,96) 95 (93,97) 93 (91,95) 95 (94,97) 95 (94,96)
GEE TRM 98 (96,99) 95 (94,97) 95 (94,97) 97 (96,99) 95 (94,96) 95 (93,96)

Table 2.58: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, CO, MS3}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 98 (97,100) 96 (94,97) 96 (94,97) 99 (98,100) 97 (96,98) 96 (95,97)
Strata 97 (96,99) 96 (94,97) 96 (95,97) 98 (97,99) 96 (96,98) 95 (94,97)
True 95 (94,97) 94 (92,96) 93 (91,96) 93 (92,96) 93 (91,96) 93 (91,97)
NKM 95 (93,97) 95 (94,97) 95 (94,97) 96 (94,97) 96 (94,98) 95 (94,97)

Standard 99 (97,100) 96 (94,98) 96 (94,97) 99 (99,100) 97 (96,99) 95 (94,97)
GEE True 95 (94,97) 96 (94,97) 96 (95,97) 93 (92,94) 95 (93,97) 95 (94,96)
GEE TRM 99 (98,100) 96 (95,98) 96 (95,97) 99 (98,100) 97 (96,98) 96 (95,97)
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Table 2.59: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, CO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 1.61 (1.45,1.9) 4.64 (4.53,4.75) 6.26 (6.13,6.38) 1.31 (1.18,1.5) 3.77 (3.68,3.85) 5.05 (4.98,5.17) 1.09 (0.92,1.27) 3.18 (3.1,3.27) 4.27 (4.11,4.48)
Strata 1.29 (1.23,1.33) 4.6 (4.5,4.65) 6.27 (6.15,6.38) 1.06 (1,1.11) 3.72 (3.66,3.81) 5.07 (4.97,5.18) 0.88 (0.85,0.91) 3.13 (3.05,3.24) 4.26 (4.11,4.45)
True 1.21 (1.2,1.23) 4.57 (4.47,4.66) 6.3 (6.22,6.4) 1 (0.97,1.03) 3.72 (3.62,3.79) 5.06 (4.95,5.18) 0.84 (0.82,0.86) 3.14 (3.06,3.21) 4.31 (4.14,4.48)
NKM 1.21 (1.19,1.25) 4.56 (4.46,4.65) 6.28 (6.17,6.41) 0.99 (0.95,1.03) 3.69 (3.61,3.74) 5.04 (4.94,5.11) 0.84 (0.82,0.86) 3.14 (3.05,3.23) 4.27 (4.14,4.44)

Standard 1.99 (1.82,2.29) 4.74 (4.61,4.9) 6.32 (6.26,6.43) 1.6 (1.45,1.84) 3.8 (3.73,3.85) 5.06 (4.95,5.19) 1.33 (1.1,1.55) 3.22 (3.17,3.3) 4.26 (4.1,4.47)
GEE True 1.23 (1.2,1.26) 4.79 (4.73,4.84) 6.8 (6.74,6.89) 0.98 (0.96,1) 3.83 (3.78,3.87) 5.44 (5.39,5.5) 0.84 (0.83,0.85) 3.3 (3.27,3.34) 4.67 (4.61,4.71)
GEE TRM 1.57 (1.3,1.85) 4.78 (4.68,4.88) 6.7 (6.61,6.79) 1.26 (1.06,1.48) 3.85 (3.77,3.92) 5.41 (5.37,5.46) 1.08 (0.9,1.28) 3.34 (3.31,3.39) 4.66 (4.63,4.69)

Table 2.60: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, CO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 1.25 (1.19,1.3) 3.31 (3.28,3.35) 4.4 (4.32,4.5) 1.01 (0.95,1.06) 2.69 (2.66,2.71) 3.61 (3.54,3.67) 0.86 (0.83,0.9) 2.34 (2.31,2.35) 3.13 (3.11,3.19)
Strata 1.1 (1.09,1.12) 3.27 (3.24,3.31) 4.38 (4.26,4.52) 0.89 (0.88,0.9) 2.66 (2.63,2.68) 3.61 (3.54,3.68) 0.77 (0.75,0.78) 2.3 (2.28,2.32) 3.17 (3.15,3.19)
True 0.85 (0.84,0.86) 3.16 (3.11,3.22) 4.35 (4.26,4.49) 0.69 (0.67,0.7) 2.52 (2.45,2.6) 3.36 (3.18,3.53) 0.59 (0.59,0.6) 2.21 (2.18,2.25) 3.03 (2.93,3.1)
NKM 0.92 (0.91,0.93) 3.21 (3.17,3.25) 4.36 (4.26,4.45) 0.75 (0.73,0.76) 2.62 (2.58,2.67) 3.49 (3.36,3.62) 0.65 (0.64,0.65) 2.25 (2.22,2.32) 3.11 (3.05,3.16)

Standard 1.44 (1.34,1.55) 3.37 (3.32,3.41) 4.45 (4.38,4.52) 1.16 (1.07,1.25) 2.74 (2.7,2.76) 3.65 (3.58,3.73) 0.99 (0.93,1.06) 2.38 (2.36,2.41) 3.17 (3.13,3.22)
GEE True 0.86 (0.84,0.87) 3.34 (3.31,3.37) 4.73 (4.69,4.77) 0.7 (0.69,0.7) 2.69 (2.68,2.7) 3.81 (3.79,3.83) 0.6 (0.59,0.61) 2.32 (2.31,2.33) 3.28 (3.26,3.29)
GEE TRM 1.32 (1.19,1.47) 3.41 (3.36,3.46) 4.72 (4.68,4.77) 1.07 (0.97,1.18) 2.77 (2.73,2.81) 3.84 (3.81,3.85) 0.92 (0.84,1.02) 2.4 (2.38,2.42) 3.31 (3.28,3.34)

Table 2.61: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, CO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 1.64 (1.42,1.89) 4.68 (4.58,4.76) 6.24 (6.17,6.36) 1.32 (1.15,1.49) 3.75 (3.69,3.82) 5.13 (5.08,5.22) 1.12 (0.99,1.29) 3.2 (3.15,3.27) 4.28 (4.17,4.45)
Strata 1.35 (1.3,1.41) 4.61 (4.54,4.68) 6.26 (6.15,6.35) 1.09 (1.04,1.15) 3.72 (3.69,3.76) 5.11 (5.02,5.19) 0.94 (0.89,0.96) 3.16 (3.09,3.23) 4.31 (4.23,4.43)
True 1.21 (1.18,1.25) 4.58 (4.48,4.67) 6.2 (6.11,6.31) 0.98 (0.94,1.01) 3.7 (3.64,3.75) 5.11 (5,5.21) 0.85 (0.83,0.87) 3.11 (3.02,3.22) 4.26 (4.16,4.38)
NKM 1.28 (1.24,1.32) 4.6 (4.52,4.68) 6.25 (6.16,6.35) 1.04 (0.99,1.09) 3.72 (3.65,3.77) 5.12 (5.02,5.22) 0.9 (0.86,0.93) 3.16 (3.08,3.24) 4.32 (4.18,4.46)

Standard 2.15 (1.91,2.42) 4.83 (4.71,4.93) 6.38 (6.25,6.51) 1.73 (1.52,1.9) 3.9 (3.83,3.96) 5.24 (5.13,5.33) 1.47 (1.33,1.64) 3.38 (3.32,3.43) 4.46 (4.35,4.55)
GEE True 1.21 (1.18,1.23) 4.81 (4.76,4.86) 6.8 (6.74,6.86) 0.98 (0.96,1) 3.84 (3.8,3.87) 5.44 (5.41,5.49) 0.84 (0.83,0.86) 3.3 (3.28,3.32) 4.65 (4.62,4.69)
GEE TRM 1.74 (1.58,1.9) 4.88 (4.8,4.96) 6.75 (6.69,6.83) 1.4 (1.29,1.55) 3.92 (3.87,3.98) 5.46 (5.41,5.53) 1.21 (1.11,1.33) 3.39 (3.35,3.42) 4.68 (4.65,4.71)

Table 2.62: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, CO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 2.14 (2.01,2.26) 3.77 (3.72,3.83) 4.79 (4.71,4.85) 1.74 (1.65,1.83) 3.06 (3.02,3.1) 3.99 (3.93,4.07) 1.49 (1.41,1.57) 2.65 (2.59,2.7) 3.44 (3.42,3.47)
Strata 2.01 (1.9,2.14) 3.69 (3.61,3.74) 4.77 (4.72,4.8) 1.63 (1.54,1.72) 3.01 (2.95,3.05) 3.94 (3.87,3.98) 1.4 (1.34,1.48) 2.6 (2.55,2.64) 3.41 (3.39,3.43)
True 0.84 (0.83,0.86) 3.22 (3.18,3.29) 4.43 (4.42,4.48) 0.69 (0.68,0.7) 2.57 (2.52,2.64) 3.56 (3.47,3.65) 0.59 (0.58,0.6) 2.2 (2.17,2.24) 2.94 (2.69,3.13)
NKM 1.31 (1.27,1.36) 3.41 (3.36,3.44) 4.55 (4.53,4.59) 1.07 (1.06,1.09) 2.76 (2.73,2.78) 3.77 (3.74,3.78) 0.92 (0.9,0.94) 2.37 (2.36,2.39) 3.21 (3.16,3.25)

Standard 2.24 (2.11,2.34) 3.83 (3.77,3.88) 4.83 (4.79,4.88) 1.84 (1.73,1.9) 3.11 (3.07,3.16) 4.02 (3.96,4.07) 1.57 (1.49,1.64) 2.68 (2.64,2.74) 3.45 (3.44,3.48)
GEE True 0.86 (0.85,0.87) 3.35 (3.32,3.39) 4.73 (4.67,4.76) 0.7 (0.69,0.7) 2.69 (2.67,2.7) 3.81 (3.79,3.83) 0.6 (0.59,0.6) 2.32 (2.3,2.34) 3.27 (3.25,3.29)
GEE TRM 2.2 (2.1,2.29) 3.86 (3.8,3.92) 5.04 (4.99,5.1) 1.8 (1.69,1.88) 3.13 (3.07,3.17) 4.11 (4.07,4.14) 1.55 (1.46,1.61) 2.71 (2.66,2.76) 3.54 (3.51,3.56)

Table 2.63: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, CO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 0.24 (0.22,0.26) 0.9 (0.84,0.95) 1.17 (1.06,1.26) 0.21 (0.19,0.23) 0.76 (0.69,0.82) 1.06 (1,1.13) 0.18 (0.17,0.19) 0.66 (0.6,0.7) 0.93 (0.84,1.03)
Strata 0.24 (0.22,0.26) 0.89 (0.83,0.94) 1.17 (1.06,1.28) 0.21 (0.19,0.23) 0.75 (0.68,0.82) 1.05 (0.95,1.12) 0.18 (0.16,0.19) 0.64 (0.6,0.66) 0.88 (0.81,0.97)
True 0.23 (0.21,0.25) 0.9 (0.84,0.94) 1.17 (1.09,1.3) 0.2 (0.19,0.21) 0.75 (0.67,0.82) 1.06 (0.98,1.13) 0.17 (0.16,0.18) 0.64 (0.61,0.68) 0.91 (0.85,0.97)
NKM 0.23 (0.21,0.24) 0.89 (0.83,0.94) 1.16 (1.07,1.3) 0.2 (0.19,0.21) 0.76 (0.7,0.81) 1.04 (0.97,1.1) 0.17 (0.16,0.18) 0.65 (0.61,0.67) 0.89 (0.8,0.97)

Standard 0.26 (0.23,0.29) 0.9 (0.83,0.96) 1.17 (1.05,1.28) 0.23 (0.2,0.25) 0.76 (0.66,0.84) 1.07 (0.99,1.15) 0.19 (0.17,0.2) 0.65 (0.6,0.68) 0.9 (0.85,0.98)
GEE True 0.24 (0.23,0.25) 0.94 (0.88,0.99) 1.31 (1.26,1.35) 0.2 (0.19,0.22) 0.75 (0.7,0.78) 1.05 (0.98,1.08) 0.17 (0.16,0.18) 0.67 (0.63,0.7) 0.96 (0.92,1.01)
GEE TRM 0.26 (0.23,0.27) 0.93 (0.88,0.98) 1.3 (1.25,1.35) 0.21 (0.2,0.23) 0.75 (0.71,0.77) 1.05 (0.99,1.08) 0.18 (0.17,0.19) 0.67 (0.62,0.7) 0.96 (0.92,1.02)
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Table 2.64: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, CO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 0.21 (0.19,0.22) 0.67 (0.63,0.72) 0.91 (0.87,0.99) 0.17 (0.16,0.18) 0.55 (0.52,0.61) 0.76 (0.72,0.82) 0.15 (0.14,0.16) 0.49 (0.47,0.51) 0.66 (0.63,0.69)
Strata 0.2 (0.19,0.22) 0.67 (0.64,0.71) 0.9 (0.87,0.96) 0.17 (0.15,0.18) 0.56 (0.52,0.6) 0.76 (0.73,0.8) 0.15 (0.14,0.16) 0.49 (0.47,0.51) 0.64 (0.58,0.69)
True 0.17 (0.16,0.17) 0.67 (0.63,0.72) 0.9 (0.83,0.98) 0.14 (0.13,0.14) 0.57 (0.53,0.61) 0.78 (0.71,0.84) 0.12 (0.11,0.13) 0.49 (0.44,0.53) 0.66 (0.58,0.7)
NKM 0.19 (0.18,0.19) 0.67 (0.64,0.71) 0.9 (0.83,0.96) 0.15 (0.14,0.17) 0.55 (0.51,0.59) 0.8 (0.74,0.88) 0.13 (0.12,0.15) 0.48 (0.44,0.52) 0.65 (0.58,0.73)

Standard 0.21 (0.2,0.23) 0.67 (0.65,0.71) 0.92 (0.87,0.97) 0.18 (0.17,0.18) 0.54 (0.52,0.6) 0.77 (0.74,0.8) 0.16 (0.14,0.17) 0.48 (0.46,0.52) 0.65 (0.6,0.71)
GEE True 0.17 (0.16,0.18) 0.66 (0.62,0.7) 0.93 (0.86,0.99) 0.14 (0.14,0.15) 0.54 (0.52,0.57) 0.75 (0.71,0.78) 0.12 (0.12,0.13) 0.47 (0.45,0.5) 0.66 (0.63,0.68)
GEE TRM 0.22 (0.21,0.23) 0.67 (0.63,0.71) 0.93 (0.87,1.01) 0.17 (0.16,0.18) 0.55 (0.53,0.58) 0.75 (0.72,0.79) 0.15 (0.14,0.16) 0.47 (0.46,0.5) 0.66 (0.63,0.68)

Table 2.65: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, CO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 0.27 (0.25,0.29) 0.92 (0.84,1) 1.27 (1.17,1.35) 0.22 (0.2,0.23) 0.77 (0.72,0.79) 1.03 (0.94,1.11) 0.18 (0.17,0.2) 0.68 (0.63,0.71) 0.96 (0.88,1.04)
Strata 0.27 (0.25,0.29) 0.91 (0.82,0.98) 1.26 (1.15,1.37) 0.22 (0.2,0.23) 0.75 (0.7,0.77) 1 (0.91,1.08) 0.18 (0.17,0.2) 0.68 (0.64,0.71) 0.94 (0.84,1.01)
True 0.26 (0.24,0.27) 0.9 (0.81,0.99) 1.22 (1.12,1.31) 0.21 (0.19,0.22) 0.74 (0.68,0.78) 0.99 (0.9,1.08) 0.18 (0.16,0.19) 0.67 (0.62,0.71) 0.95 (0.87,1.03)
NKM 0.26 (0.24,0.28) 0.91 (0.81,0.96) 1.27 (1.15,1.35) 0.21 (0.19,0.22) 0.75 (0.69,0.79) 1.01 (0.93,1.06) 0.18 (0.16,0.19) 0.68 (0.63,0.71) 0.95 (0.87,1.05)

Standard 0.32 (0.29,0.34) 0.93 (0.84,1.01) 1.28 (1.18,1.36) 0.26 (0.24,0.29) 0.77 (0.72,0.8) 1.02 (0.95,1.09) 0.22 (0.19,0.25) 0.68 (0.63,0.73) 0.95 (0.86,1.02)
GEE True 0.26 (0.24,0.27) 0.93 (0.89,0.97) 1.31 (1.23,1.38) 0.21 (0.19,0.22) 0.76 (0.73,0.79) 1.08 (1,1.14) 0.18 (0.17,0.19) 0.65 (0.62,0.68) 0.94 (0.9,0.99)
GEE TRM 0.3 (0.28,0.33) 0.94 (0.91,0.98) 1.32 (1.24,1.39) 0.25 (0.23,0.26) 0.77 (0.73,0.81) 1.09 (1.01,1.15) 0.21 (0.2,0.23) 0.66 (0.63,0.68) 0.95 (0.91,0.99)

Table 2.66: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, CO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16 α = 0.5 α = 8 α = 16

TRM 0.35 (0.33,0.37) 0.68 (0.63,0.73) 0.95 (0.91,1.01) 0.28 (0.27,0.3) 0.58 (0.55,0.6) 0.82 (0.76,0.87) 0.25 (0.23,0.26) 0.51 (0.47,0.53) 0.66 (0.63,0.67)
Strata 0.35 (0.33,0.37) 0.68 (0.63,0.72) 0.95 (0.91,1) 0.28 (0.26,0.3) 0.58 (0.54,0.6) 0.82 (0.75,0.87) 0.25 (0.23,0.26) 0.5 (0.47,0.52) 0.66 (0.63,0.67)
True 0.18 (0.16,0.18) 0.63 (0.59,0.69) 0.89 (0.83,0.93) 0.15 (0.15,0.16) 0.54 (0.5,0.58) 0.78 (0.73,0.82) 0.12 (0.11,0.13) 0.47 (0.44,0.48) 0.67 (0.59,0.76)
NKM 0.27 (0.25,0.28) 0.65 (0.6,0.7) 0.93 (0.87,0.96) 0.22 (0.21,0.24) 0.55 (0.52,0.57) 0.8 (0.72,0.86) 0.19 (0.18,0.2) 0.49 (0.47,0.51) 0.66 (0.62,0.69)

Standard 0.35 (0.33,0.38) 0.68 (0.64,0.73) 0.95 (0.9,0.99) 0.29 (0.27,0.31) 0.58 (0.54,0.6) 0.82 (0.75,0.93) 0.25 (0.23,0.27) 0.51 (0.47,0.53) 0.66 (0.64,0.69)
GEE True 0.18 (0.17,0.19) 0.65 (0.62,0.69) 0.93 (0.88,0.98) 0.15 (0.14,0.16) 0.53 (0.5,0.57) 0.77 (0.74,0.82) 0.13 (0.12,0.13) 0.46 (0.44,0.48) 0.65 (0.61,0.68)
GEE TRM 0.35 (0.32,0.37) 0.72 (0.69,0.76) 0.97 (0.92,1.02) 0.28 (0.27,0.3) 0.58 (0.55,0.62) 0.8 (0.76,0.84) 0.24 (0.23,0.26) 0.51 (0.48,0.54) 0.67 (0.64,0.71)
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2.7.6 Binary Outcomes Model Specifications 2 and 3 Results

Table 2.67: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, BO, MS2}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 96 (95,97) 95 (91,99) 96 (94,100) 96 (94,97) 96 (94,100) 95 (94,97) 95 (91,97) 96 (94,100) 96 (95,97)
Strata 95 (93,97) 95 (94,97) 95 (94,97) 95 (94,97) 96 (94,97) 94 (94,97) 94 (92,97) 96 (94,97) 96 (94,97)
True 94 (93,97) 95 (94,97) 96 (94,97) 95 (94,97) 96 (94,100) 95 (94,97) 95 (94,97) 96 (93,100) 95 (94,97)
NKM 95 (93,97) 95 (94,97) 95 (93,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (91,97) 96 (93,100) 96 (94,97)

Standard 96 (97,97) 97 (94,100) 97 (94,100) 96 (94,100) 97 (95,100) 96 (94,97) 97 (94,100) 97 (97,100) 97 (97,100)
GEE True 95 (94,96) 95 (94,96) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,97) 95 (95,97) 96 (94,97) 95 (94,96)
GEE TRM 95 (93,96) 95 (94,96) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,97) 96 (95,97) 96 (94,97) 95 (94,96)

Table 2.68: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, BO, MS2}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 97 (97,98) 97 (95,100) 96 (94,97) 93 (91,94) 96 (97,97) 97 (94,100) 96 (94,97) 95 (91,97) 96 (94,100)
Strata 96 (94,97) 96 (94,97) 95 (94,97) 94 (94,94) 96 (94,97) 96 (97,97) 95 (93,97) 95 (91,97) 97 (97,97)
True 96 (94,97) 96 (94,100) 93 (91,97) 92 (91,94) 95 (93,97) 96 (94,100) 95 (92,98) 95 (94,97) 95 (94,97)
NKM 96 (96,97) 96 (95,98) 94 (91,97) 91 (89,94) 96 (94,97) 96 (94,100) 96 (94,97) 95 (91,100) 96 (97,97)

Standard 98 (97,100) 97 (96,100) 96 (97,97) 95 (94,97) 97 (96,100) 98 (97,100) 97 (96,98) 97 (94,100) 98 (97,100)
GEE True 95 (94,96) 96 (95,97) 95 (94,96) 94 (92,96) 96 (96,98) 95 (94,96) 95 (94,96) 95 (94,96) 95 (94,97)
GEE TRM 95 (94,97) 96 (96,98) 96 (95,97) 95 (94,97) 97 (96,98) 96 (95,97) 96 (94,97) 96 (95,97) 96 (95,98)

Table 2.69: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, BO, MS2}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 95 (93,97) 95 (93,97) 93 (91,97) 95 (93,97) 95 (94,97) 96 (94,97)
Strata 94 (91,97) 94 (93,97) 94 (91,97) 95 (94,97) 94 (92,97) 96 (94,97)
True 95 (94,97) 95 (94,97) 94 (91,97) 94 (91,97) 94 (91,97) 95 (94,97)
NKM 94 (91,97) 94 (91,97) 93 (91,97) 95 (94,97) 94 (93,97) 95 (94,97)

Standard 96 (94,97) 96 (94,97) 96 (94,97) 96 (94,97) 96 (94,100) 97 (94,100)
GEE True 95 (94,97) 95 (93,97) 95 (94,96) 94 (92,95) 94 (92,96) 94 (93,96)
GEE TRM 95 (94,97) 95 (93,96) 95 (94,96) 94 (92,96) 94 (93,96) 95 (93,96)
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Table 2.70: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, BO, MS2}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model J = 48 J = 72 J = 96 J = 48 J = 72 J = 96

TRM 95 (94,97) 96 (93,100) 96 (94,97) 95 (94,97) 96 (94,97) 96 (94,97)
Strata 94 (93,97) 95 (92,100) 96 (94,97) 95 (94,97) 96 (94,97) 95 (94,97)
True 94 (92,97) 94 (91,100) 95 (94,97) 95 (94,97) 95 (94,97) 96 (94,97)
NKM 95 (92,97) 95 (91,98) 95 (94,97) 95 (92,97) 95 (94,97) 95 (94,97)

Standard 96 (94,97) 96 (94,99) 97 (95,100) 97 (97,97) 97 (97,97) 97 (95,99)
GEE True 95 (94,97) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,97) 95 (94,97)
GEE TRM 96 (95,97) 96 (95,97) 96 (95,97) 96 (95,97) 96 (95,98) 96 (95,97)

Table 2.71: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, BO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.39 (0.37,0.4) 0.36 (0.34,0.37) 0.35 (0.33,0.37) 0.32 (0.31,0.33) 0.29 (0.28,0.31) 0.29 (0.27,0.3) 0.27 (0.26,0.28) 0.26 (0.24,0.27) 0.25 (0.23,0.26)
Strata 0.38 (0.36,0.39) 0.35 (0.34,0.36) 0.34 (0.33,0.36) 0.31 (0.3,0.32) 0.29 (0.27,0.3) 0.28 (0.26,0.29) 0.27 (0.26,0.27) 0.25 (0.23,0.26) 0.24 (0.23,0.25)
True 0.38 (0.37,0.38) 0.35 (0.34,0.36) 0.34 (0.32,0.35) 0.31 (0.3,0.31) 0.29 (0.27,0.3) 0.28 (0.26,0.29) 0.27 (0.26,0.27) 0.25 (0.24,0.26) 0.24 (0.23,0.25)
NKM 0.38 (0.37,0.39) 0.35 (0.34,0.36) 0.34 (0.32,0.36) 0.31 (0.3,0.32) 0.29 (0.27,0.3) 0.28 (0.26,0.29) 0.26 (0.26,0.27) 0.25 (0.24,0.26) 0.24 (0.23,0.25)

Standard 0.41 (0.39,0.42) 0.38 (0.36,0.4) 0.38 (0.35,0.4) 0.33 (0.32,0.34) 0.31 (0.3,0.33) 0.31 (0.29,0.32) 0.29 (0.28,0.3) 0.27 (0.26,0.29) 0.27 (0.25,0.28)
GEE True 0.4 (0.38,0.41) 0.37 (0.34,0.38) 0.36 (0.34,0.37) 0.32 (0.3,0.33) 0.3 (0.28,0.3) 0.29 (0.27,0.3) 0.27 (0.26,0.28) 0.25 (0.24,0.26) 0.25 (0.23,0.25)
GEE TRM 0.4 (0.37,0.41) 0.37 (0.34,0.39) 0.36 (0.34,0.38) 0.32 (0.3,0.33) 0.3 (0.28,0.31) 0.29 (0.27,0.31) 0.28 (0.26,0.28) 0.26 (0.24,0.27) 0.25 (0.23,0.26)

Table 2.72: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, BO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.3 (0.29,0.3) 0.28 (0.28,0.28) 0.27 (0.27,0.28) 0.24 (0.24,0.25) 0.23 (0.23,0.23) 0.23 (0.22,0.23) 0.21 (0.21,0.21) 0.2 (0.2,0.2) 0.19 (0.19,0.2)
Strata 0.29 (0.28,0.29) 0.27 (0.27,0.27) 0.26 (0.26,0.27) 0.24 (0.24,0.24) 0.22 (0.22,0.23) 0.22 (0.21,0.22) 0.21 (0.2,0.21) 0.19 (0.19,0.19) 0.19 (0.19,0.19)
True 0.28 (0.27,0.28) 0.26 (0.26,0.27) 0.25 (0.25,0.26) 0.23 (0.23,0.23) 0.21 (0.21,0.22) 0.21 (0.21,0.21) 0.2 (0.2,0.2) 0.19 (0.19,0.19) 0.18 (0.18,0.18)
NKM 0.28 (0.27,0.28) 0.26 (0.26,0.27) 0.25 (0.25,0.25) 0.23 (0.23,0.23) 0.21 (0.21,0.22) 0.21 (0.2,0.21) 0.2 (0.2,0.2) 0.19 (0.18,0.19) 0.18 (0.18,0.18)

Standard 0.31 (0.31,0.31) 0.3 (0.29,0.3) 0.29 (0.29,0.3) 0.26 (0.26,0.26) 0.24 (0.24,0.25) 0.24 (0.24,0.25) 0.22 (0.22,0.22) 0.21 (0.21,0.22) 0.21 (0.21,0.21)
GEE True 0.29 (0.29,0.29) 0.27 (0.27,0.28) 0.27 (0.26,0.27) 0.23 (0.23,0.24) 0.22 (0.22,0.22) 0.21 (0.21,0.22) 0.2 (0.2,0.2) 0.19 (0.19,0.19) 0.18 (0.18,0.19)
GEE TRM 0.3 (0.3,0.3) 0.28 (0.28,0.29) 0.28 (0.28,0.28) 0.24 (0.24,0.25) 0.23 (0.23,0.23) 0.22 (0.22,0.23) 0.21 (0.21,0.21) 0.2 (0.2,0.2) 0.19 (0.19,0.2)

Table 2.73: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, BO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.32 (0.31,0.34) 0.3 (0.28,0.31) 0.29 (0.27,0.3) 0.26 (0.25,0.28) 0.24 (0.22,0.25) 0.23 (0.22,0.24) 0.23 (0.22,0.24) 0.21 (0.2,0.22) 0.2 (0.19,0.21)
Strata 0.32 (0.31,0.33) 0.29 (0.28,0.31) 0.28 (0.27,0.3) 0.26 (0.25,0.27) 0.24 (0.22,0.25) 0.23 (0.22,0.24) 0.23 (0.22,0.23) 0.2 (0.19,0.21) 0.2 (0.19,0.2)
True 0.32 (0.3,0.33) 0.29 (0.28,0.3) 0.28 (0.27,0.29) 0.26 (0.25,0.27) 0.23 (0.22,0.25) 0.22 (0.22,0.24) 0.22 (0.22,0.23) 0.2 (0.2,0.21) 0.19 (0.19,0.2)
NKM 0.32 (0.31,0.33) 0.29 (0.28,0.31) 0.28 (0.27,0.3) 0.26 (0.25,0.27) 0.24 (0.22,0.25) 0.23 (0.22,0.24) 0.22 (0.22,0.23) 0.2 (0.19,0.21) 0.2 (0.19,0.2)

Standard 0.35 (0.33,0.36) 0.32 (0.31,0.34) 0.31 (0.3,0.33) 0.28 (0.27,0.29) 0.26 (0.24,0.28) 0.25 (0.24,0.27) 0.25 (0.24,0.26) 0.23 (0.21,0.24) 0.22 (0.21,0.23)
GEE True 0.33 (0.32,0.35) 0.3 (0.29,0.32) 0.29 (0.28,0.31) 0.26 (0.25,0.28) 0.24 (0.23,0.26) 0.23 (0.22,0.25) 0.23 (0.22,0.24) 0.2 (0.2,0.22) 0.2 (0.19,0.21)
GEE TRM 0.33 (0.32,0.35) 0.3 (0.29,0.32) 0.29 (0.28,0.31) 0.27 (0.26,0.28) 0.24 (0.23,0.26) 0.23 (0.22,0.25) 0.23 (0.22,0.24) 0.21 (0.2,0.22) 0.2 (0.19,0.22)
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Table 2.74: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, BO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.29 (0.29,0.29) 0.27 (0.27,0.28) 0.27 (0.26,0.27) 0.24 (0.23,0.24) 0.22 (0.22,0.23) 0.22 (0.22,0.22) 0.21 (0.2,0.21) 0.19 (0.19,0.2) 0.19 (0.19,0.19)
Strata 0.28 (0.28,0.29) 0.27 (0.26,0.27) 0.26 (0.26,0.26) 0.23 (0.23,0.23) 0.22 (0.22,0.22) 0.21 (0.21,0.21) 0.2 (0.2,0.21) 0.19 (0.19,0.19) 0.18 (0.18,0.19)
True 0.27 (0.27,0.28) 0.25 (0.25,0.26) 0.25 (0.24,0.25) 0.22 (0.22,0.22) 0.21 (0.21,0.21) 0.2 (0.2,0.21) 0.19 (0.19,0.2) 0.18 (0.18,0.18) 0.17 (0.17,0.18)
NKM 0.27 (0.27,0.28) 0.26 (0.25,0.26) 0.25 (0.24,0.25) 0.22 (0.22,0.22) 0.21 (0.21,0.21) 0.2 (0.2,0.21) 0.19 (0.19,0.2) 0.18 (0.18,0.18) 0.17 (0.17,0.18)

Standard 0.3 (0.3,0.31) 0.29 (0.29,0.3) 0.28 (0.28,0.29) 0.25 (0.24,0.25) 0.24 (0.23,0.24) 0.23 (0.23,0.24) 0.22 (0.21,0.22) 0.21 (0.2,0.21) 0.2 (0.2,0.2)
GEE True 0.28 (0.27,0.29) 0.26 (0.25,0.27) 0.25 (0.25,0.26) 0.23 (0.22,0.23) 0.21 (0.2,0.21) 0.2 (0.2,0.21) 0.19 (0.19,0.2) 0.18 (0.18,0.18) 0.17 (0.17,0.18)
GEE TRM 0.29 (0.29,0.29) 0.27 (0.27,0.28) 0.27 (0.26,0.27) 0.23 (0.23,0.24) 0.22 (0.22,0.23) 0.22 (0.21,0.22) 0.2 (0.2,0.21) 0.19 (0.19,0.2) 0.19 (0.18,0.19)

Table 2.75: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, BO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.08 (0.07,0.08) 0.07 (0.06,0.07) 0.07 (0.06,0.07) 0.06 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.05 (0.04,0.05)
Strata 0.08 (0.07,0.08) 0.07 (0.06,0.07) 0.07 (0.06,0.07) 0.06 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05)
True 0.08 (0.07,0.08) 0.07 (0.06,0.07) 0.07 (0.06,0.07) 0.07 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05)
NKM 0.08 (0.07,0.08) 0.07 (0.06,0.07) 0.07 (0.06,0.07) 0.07 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05)

Standard 0.08 (0.07,0.08) 0.07 (0.06,0.07) 0.07 (0.06,0.08) 0.07 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05)
GEE True 0.08 (0.07,0.08) 0.07 (0.07,0.08) 0.07 (0.06,0.07) 0.06 (0.06,0.06) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.05)
GEE TRM 0.08 (0.07,0.08) 0.07 (0.07,0.08) 0.07 (0.06,0.07) 0.06 (0.06,0.06) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.05)

Table 2.76: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, BO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.06 (0.06,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
Strata 0.06 (0.06,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
True 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
NKM 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)

Standard 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
GEE True 0.06 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.03,0.04)
GEE TRM 0.06 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.03,0.04)

Table 2.77: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, BO, MS2}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.07 (0.06,0.07) 0.06 (0.05,0.07) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04)
Strata 0.07 (0.06,0.08) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04)
True 0.07 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04)
NKM 0.07 (0.06,0.08) 0.06 (0.05,0.07) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04)

Standard 0.07 (0.06,0.08) 0.06 (0.06,0.07) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.05)
GEE True 0.06 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04)
GEE TRM 0.06 (0.06,0.07) 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04)

Table 2.78: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, BO, MS2}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

TRM 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
Strata 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
True 0.05 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.03 (0.03,0.04)
NKM 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.03 (0.03,0.04)

Standard 0.06 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.05,0.06) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.03,0.04)
GEE True 0.06 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
GEE TRM 0.06 (0.05,0.06) 0.05 (0.05,0.05) 0.05 (0.05,0.05) 0.05 (0.04,0.05) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.04 (0.03,0.04) 0.04 (0.03,0.04)
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Table 2.79: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, BO, MS3}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 94 (91,97) 95 (93,97) 95 (94,97) 96 (94,97) 95 (94,97) 97 (97,97) 96 (94,98) 96 (94,97) 95 (92,97)
Strata 94 (91,96) 94 (91,96) 96 (94,97) 94 (93,97) 94 (92,97) 96 (94,97) 94 (91,95) 96 (94,99) 96 (94,99)
True 94 (91,97) 94 (91,96) 96 (94,98) 94 (91,97) 95 (94,97) 96 (97,97) 95 (93,98) 95 (92,99) 96 (94,97)
NKM 94 (91,97) 94 (91,97) 96 (94,97) 94 (91,97) 95 (94,97) 97 (97,97) 95 (94,97) 96 (94,99) 96 (94,97)

Standard 97 (97,99) 96 (94,98) 97 (94,99) 98 (97,100) 96 (96,99) 98 (97,100) 98 (97,100) 96 (94,100) 97 (95,100)
GEE True 94 (92,97) 94 (92,95) 92 (90,94) 95 (93,97) 95 (94,97) 94 (92,95) 95 (94,96) 95 (93,96) 92 (91,94)
GEE TRM 94 (93,96) 94 (92,95) 91 (90,93) 96 (95,98) 95 (94,97) 94 (92,96) 95 (94,97) 95 (93,97) 92 (90,94)

Table 2.80: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, BO, MS3}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 97 (95,97) 97 (96,98) 97 (96,97) 97 (96,97) 97 (96,97) 97 (97,99) 96 (97,97) 96 (94,99) 96 (94,97)
Strata 96 (95,97) 97 (95,100) 97 (96,100) 97 (97,98) 97 (96,97) 97 (97,99) 96 (96,98) 97 (94,100) 95 (93,97)
True 96 (94,98) 95 (94,96) 96 (95,97) 96 (94,97) 96 (96,97) 97 (96,99) 96 (94,98) 96 (94,97) 95 (94,97)
NKM 96 (94,97) 96 (94,97) 96 (95,97) 96 (94,97) 97 (95,97) 97 (96,99) 96 (96,98) 96 (94,98) 94 (93,97)

Standard 97 (97,100) 99 (98,100) 99 (98,100) 97 (95,100) 98 (97,100) 98 (99,100) 98 (97,100) 98 (94,100) 98 (97,100)
GEE True 95 (94,97) 95 (94,97) 95 (94,96) 95 (94,96) 96 (94,97) 95 (94,96) 95 (94,98) 96 (94,97) 95 (94,97)
GEE TRM 96 (94,98) 96 (94,98) 95 (94,97) 96 (94,97) 96 (95,98) 96 (95,98) 96 (96,98) 96 (95,98) 96 (95,98)

Table 2.81: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, BO, MS3}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 95 (94,97) 94 (92,97) 94 (92,97) 94 (93,97) 94 (91,97) 96 (94,97)
Strata 94 (91,97) 94 (91,97) 94 (91,97) 94 (91,97) 93 (91,95) 96 (94,97)
True 94 (92,97) 93 (91,97) 95 (91,97) 93 (91,97) 93 (91,97) 96 (94,97)
NKM 94 (92,97) 94 (91,97) 95 (91,97) 93 (91,97) 92 (91,94) 96 (94,97)

Standard 98 (97,100) 96 (94,97) 96 (94,97) 97 (96,100) 96 (94,97) 97 (96,100)
GEE True 94 (93,96) 94 (93,96) 94 (92,95) 94 (92,95) 94 (93,96) 94 (92,95)
GEE TRM 95 (93,97) 94 (93,96) 93 (92,95) 95 (93,97) 94 (92,96) 93 (92,95)

Table 2.82: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, BO, MS3}. Results are stratified by β9 and cluster
variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 95 (94,97) 94 (92,95) 97 (96,98) 97 (96,98) 94 (92,97) 97 (95,97) 97 (95,98) 96 (94,97) 94 (92,96)
Strata 95 (93,96) 94 (91,95) 97 (96,100) 97 (95,98) 94 (91,97) 97 (97,98) 96 (94,98) 95 (94,97) 95 (92,98)
True 93 (92,94) 94 (91,95) 97 (96,98) 94 (93,97) 95 (93,97) 96 (94,97) 96 (94,97) 94 (94,97) 96 (94,99)
NKM 93 (92,96) 93 (91,95) 96 (96,98) 95 (93,96) 94 (94,97) 96 (95,97) 96 (94,98) 94 (94,97) 96 (94,97)

Standard 98 (98,100) 94 (92,97) 97 (97,100) 99 (97,100) 96 (94,97) 97 (97,98) 98 (97,100) 97 (97,98) 95 (94,96)
GEE True 95 (93,97) 95 (94,97) 94 (93,96) 95 (94,96) 95 (94,96) 95 (94,96) 95 (93,97) 95 (94,96) 95 (94,97)
GEE TRM 97 (95,98) 96 (94,97) 94 (93,96) 97 (96,98) 95 (94,97) 95 (94,97) 97 (96,98) 96 (94,97) 95 (94,97)
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Table 2.83: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, BO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.25 (0.23,0.28) 0.3 (0.29,0.32) 0.23 (0.22,0.25) 0.21 (0.18,0.22) 0.25 (0.23,0.26) 0.18 (0.17,0.2) 0.18 (0.16,0.19) 0.21 (0.2,0.22) 0.16 (0.15,0.16)
Strata 0.24 (0.22,0.26) 0.3 (0.28,0.32) 0.23 (0.22,0.25) 0.19 (0.18,0.21) 0.24 (0.22,0.26) 0.19 (0.17,0.2) 0.17 (0.15,0.18) 0.2 (0.19,0.21) 0.16 (0.15,0.16)
True 0.24 (0.22,0.26) 0.29 (0.28,0.31) 0.23 (0.22,0.24) 0.19 (0.17,0.21) 0.24 (0.22,0.26) 0.18 (0.17,0.2) 0.17 (0.15,0.18) 0.2 (0.19,0.21) 0.16 (0.15,0.16)
NKM 0.24 (0.22,0.26) 0.29 (0.28,0.31) 0.23 (0.22,0.24) 0.19 (0.18,0.21) 0.24 (0.22,0.26) 0.18 (0.17,0.2) 0.17 (0.15,0.18) 0.2 (0.19,0.21) 0.16 (0.15,0.16)

Standard 0.3 (0.27,0.33) 0.32 (0.31,0.35) 0.25 (0.23,0.27) 0.25 (0.22,0.26) 0.27 (0.25,0.29) 0.2 (0.18,0.21) 0.21 (0.2,0.23) 0.23 (0.21,0.24) 0.17 (0.15,0.18)
GEE True 0.25 (0.23,0.27) 0.3 (0.28,0.32) 0.2 (0.19,0.22) 0.2 (0.19,0.21) 0.24 (0.22,0.26) 0.16 (0.15,0.18) 0.17 (0.16,0.18) 0.2 (0.19,0.21) 0.14 (0.13,0.15)
GEE TRM 0.25 (0.24,0.27) 0.3 (0.28,0.32) 0.2 (0.18,0.22) 0.21 (0.19,0.22) 0.24 (0.22,0.26) 0.16 (0.14,0.18) 0.18 (0.16,0.19) 0.21 (0.19,0.22) 0.14 (0.12,0.15)

Table 2.84: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, BO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.2 (0.19,0.21) 0.19 (0.18,0.21) 0.12 (0.12,0.13) 0.16 (0.16,0.17) 0.15 (0.15,0.17) 0.1 (0.09,0.11) 0.14 (0.13,0.15) 0.13 (0.13,0.14) 0.08 (0.07,0.09)
Strata 0.19 (0.18,0.19) 0.19 (0.18,0.2) 0.13 (0.12,0.13) 0.15 (0.15,0.16) 0.15 (0.15,0.17) 0.1 (0.09,0.11) 0.13 (0.13,0.14) 0.13 (0.13,0.14) 0.08 (0.08,0.09)
True 0.17 (0.17,0.17) 0.19 (0.18,0.2) 0.13 (0.12,0.13) 0.14 (0.14,0.14) 0.15 (0.14,0.16) 0.1 (0.09,0.11) 0.12 (0.12,0.12) 0.13 (0.12,0.13) 0.08 (0.08,0.09)
NKM 0.17 (0.17,0.18) 0.19 (0.18,0.2) 0.13 (0.12,0.13) 0.14 (0.13,0.14) 0.15 (0.14,0.16) 0.1 (0.09,0.11) 0.12 (0.12,0.12) 0.13 (0.12,0.13) 0.08 (0.08,0.09)

Standard 0.24 (0.23,0.25) 0.21 (0.2,0.23) 0.13 (0.13,0.14) 0.19 (0.19,0.2) 0.17 (0.16,0.19) 0.1 (0.1,0.11) 0.17 (0.16,0.18) 0.15 (0.14,0.16) 0.09 (0.08,0.1)
GEE True 0.18 (0.17,0.18) 0.19 (0.18,0.21) 0.12 (0.11,0.13) 0.14 (0.14,0.15) 0.15 (0.14,0.16) 0.1 (0.09,0.11) 0.12 (0.12,0.12) 0.13 (0.12,0.14) 0.08 (0.07,0.09)
GEE TRM 0.2 (0.19,0.21) 0.2 (0.18,0.21) 0.12 (0.1,0.13) 0.16 (0.15,0.17) 0.16 (0.15,0.17) 0.1 (0.09,0.11) 0.14 (0.13,0.15) 0.14 (0.13,0.15) 0.08 (0.07,0.09)

Table 2.85: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, BO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.22 (0.2,0.24) 0.3 (0.28,0.32) 0.28 (0.27,0.29) 0.18 (0.16,0.2) 0.25 (0.23,0.26) 0.23 (0.22,0.24) 0.15 (0.14,0.16) 0.22 (0.21,0.22) 0.2 (0.19,0.21)
Strata 0.21 (0.19,0.23) 0.3 (0.28,0.31) 0.27 (0.26,0.29) 0.17 (0.15,0.19) 0.24 (0.23,0.25) 0.23 (0.22,0.24) 0.15 (0.13,0.16) 0.21 (0.2,0.21) 0.2 (0.19,0.2)
True 0.21 (0.19,0.22) 0.29 (0.27,0.31) 0.27 (0.26,0.28) 0.17 (0.15,0.18) 0.24 (0.23,0.25) 0.23 (0.22,0.23) 0.14 (0.13,0.15) 0.21 (0.2,0.21) 0.2 (0.19,0.2)
NKM 0.21 (0.19,0.23) 0.29 (0.27,0.31) 0.27 (0.26,0.28) 0.17 (0.15,0.18) 0.24 (0.23,0.25) 0.23 (0.22,0.23) 0.14 (0.13,0.16) 0.21 (0.2,0.21) 0.2 (0.19,0.2)

Standard 0.26 (0.23,0.29) 0.32 (0.3,0.34) 0.29 (0.28,0.31) 0.21 (0.18,0.23) 0.27 (0.25,0.28) 0.24 (0.23,0.26) 0.18 (0.16,0.19) 0.23 (0.22,0.24) 0.21 (0.2,0.22)
GEE True 0.21 (0.2,0.22) 0.3 (0.29,0.31) 0.27 (0.25,0.29) 0.17 (0.15,0.18) 0.24 (0.23,0.25) 0.22 (0.2,0.23) 0.15 (0.13,0.15) 0.21 (0.2,0.22) 0.19 (0.17,0.2)
GEE TRM 0.22 (0.2,0.24) 0.3 (0.29,0.31) 0.27 (0.25,0.29) 0.18 (0.16,0.19) 0.25 (0.24,0.26) 0.22 (0.2,0.23) 0.15 (0.14,0.16) 0.21 (0.2,0.22) 0.19 (0.17,0.2)

Table 2.86: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, BO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.2 (0.2,0.2) 0.21 (0.2,0.22) 0.14 (0.13,0.14) 0.16 (0.16,0.17) 0.17 (0.16,0.18) 0.11 (0.11,0.11) 0.14 (0.13,0.14) 0.15 (0.14,0.15) 0.09 (0.09,0.09)
Strata 0.19 (0.19,0.2) 0.21 (0.2,0.22) 0.14 (0.14,0.14) 0.16 (0.16,0.16) 0.17 (0.16,0.18) 0.11 (0.11,0.11) 0.14 (0.13,0.14) 0.15 (0.14,0.15) 0.09 (0.09,0.09)
True 0.17 (0.17,0.18) 0.2 (0.19,0.21) 0.14 (0.14,0.14) 0.14 (0.14,0.14) 0.16 (0.16,0.17) 0.11 (0.11,0.11) 0.12 (0.12,0.12) 0.14 (0.14,0.14) 0.09 (0.09,0.09)
NKM 0.17 (0.17,0.18) 0.2 (0.19,0.21) 0.14 (0.14,0.14) 0.14 (0.14,0.14) 0.16 (0.16,0.17) 0.11 (0.11,0.11) 0.12 (0.12,0.12) 0.14 (0.14,0.14) 0.09 (0.09,0.09)

Standard 0.24 (0.23,0.24) 0.23 (0.22,0.24) 0.15 (0.14,0.15) 0.19 (0.19,0.2) 0.19 (0.18,0.2) 0.12 (0.11,0.12) 0.16 (0.16,0.17) 0.16 (0.15,0.17) 0.1 (0.1,0.1)
GEE True 0.18 (0.17,0.18) 0.21 (0.2,0.22) 0.14 (0.13,0.16) 0.14 (0.14,0.15) 0.17 (0.16,0.18) 0.12 (0.1,0.13) 0.12 (0.12,0.12) 0.14 (0.14,0.15) 0.1 (0.09,0.11)
GEE TRM 0.2 (0.19,0.21) 0.22 (0.2,0.23) 0.14 (0.13,0.16) 0.16 (0.15,0.17) 0.18 (0.16,0.19) 0.12 (0.1,0.13) 0.14 (0.13,0.15) 0.15 (0.14,0.16) 0.1 (0.09,0.11)

Table 2.87: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, BO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.05 (0.04,0.05) 0.06 (0.05,0.07) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03)
Strata 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03)
True 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03)
NKM 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03)

Standard 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03)
GEE True 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.03) 0.04 (0.04,0.05) 0.03 (0.02,0.03)
GEE TRM 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03)
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Table 2.88: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE0, BO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.01,0.02)
Strata 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.01,0.02)
True 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.02,0.02)
NKM 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.02,0.02)

Standard 0.04 (0.03,0.04) 0.04 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.03 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.02,0.02)
GEE True 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.01,0.02)
GEE TRM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02) 0.03 (0.02,0.03) 0.03 (0.02,0.03) 0.02 (0.01,0.02)

Table 2.89: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE1, BO, MS3}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.04 (0.04,0.05) 0.06 (0.06,0.07) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.04 (0.03,0.04)
Strata 0.04 (0.04,0.05) 0.06 (0.06,0.07) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.04 (0.03,0.04)
True 0.04 (0.04,0.05) 0.06 (0.06,0.07) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.04 (0.03,0.04)
NKM 0.04 (0.04,0.05) 0.06 (0.06,0.07) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.04 (0.03,0.04)

Standard 0.05 (0.04,0.05) 0.06 (0.06,0.07) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.05 (0.05,0.06) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.04 (0.03,0.04)
GEE True 0.04 (0.04,0.04) 0.06 (0.06,0.06) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.04 (0.04,0.04)
GEE TRM 0.04 (0.04,0.05) 0.06 (0.06,0.06) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.05 (0.05,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.04 (0.04,0.04)

Table 2.90: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR2, HTE1, BO, MS3}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4 α = 0.5 α = 2 α = 4

TRM 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)
Strata 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)
True 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)
NKM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)

Standard 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)
GEE True 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.02 (0.02,0.02) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)
GEE TRM 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.02 (0.02,0.02) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.02 (0.02,0.02)
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2.7.7 Continuous Outcomes Model Specification 4 Results

Table 2.91: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, CO, MS4}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 98 (97,100) 97 (96,100) 94 (92,97) 96 (94,98) 95 (94,97) 95 (94,97) 97 (94,100) 95 (94,97) 95 (94,97)
Strata 96 (95,97) 96 (94,100) 93 (91,97) 94 (94,96) 93 (91,96) 94 (92,97) 94 (94,96) 94 (91,97) 95 (94,97)
True 96 (94,98) 97 (94,100) 94 (91,97) 94 (94,96) 93 (91,97) 94 (94,96) 96 (94,100) 94 (93,97) 95 (93,99)
NKM 96 (95,98) 96 (94,97) 93 (91,96) 94 (93,95) 93 (91,97) 93 (91,96) 96 (94,97) 94 (94,97) 94 (93,97)

Standard 99 (99,100) 98 (97,100) 95 (94,97) 98 (97,100) 95 (94,97) 95 (91,97) 98 (97,100) 97 (96,99) 95 (94,97)
GEE True 95 (94,96) 96 (95,97) 96 (95,97) 95 (94,96) 95 (94,96) 96 (94,97) 96 (94,97) 95 (94,97) 95 (94,97)
GEE TRM 97 (97,99) 97 (96,99) 96 (94,97) 98 (96,99) 97 (95,98) 96 (94,98) 97 (96,99) 97 (96,98) 96 (95,97)

Table 2.92: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, CO, MS4}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 98 (97,99) 98 (97,100) 96 (94,99) 97 (97,99) 96 (94,97) 96 (95,97) 96 (94,100) 96 (96,98) 94 (93,95)
Strata 97 (95,98) 97 (95,100) 97 (95,99) 97 (96,97) 95 (94,97) 95 (95,97) 95 (93,100) 96 (95,98) 95 (94,97)
True 94 (94,95) 96 (94,96) 96 (95,97) 94 (92,97) 92 (91,93) 96 (94,100) 95 (91,97) 95 (94,97) 94 (93,97)
NKM 95 (94,96) 96 (94,98) 96 (95,99) 95 (94,97) 94 (94,94) 95 (94,99) 94 (91,97) 96 (94,99) 94 (94,96)

Standard 98 (97,100) 99 (97,100) 97 (95,99) 99 (98,100) 97 (97,98) 96 (95,98) 98 (97,100) 97 (97,98) 95 (94,97)
GEE True 95 (94,97) 95 (94,96) 95 (94,96) 96 (94,97) 96 (94,97) 95 (94,96) 95 (94,96) 95 (94,96) 95 (94,96)
GEE TRM 98 (97,99) 97 (96,98) 96 (95,98) 98 (97,99) 97 (97,98) 97 (96,98) 98 (97,99) 97 (96,98) 96 (94,98)

Table 2.93: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR1, HTE1, CO, MS4}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3

TRM 96 (94,97) 96 (94,97) 94 (92,97) 97 (95,100) 95 (94,97) 96 (94,97)
Strata 94 (94,97) 95 (94,97) 94 (92,97) 95 (94,97) 95 (92,97) 95 (94,97)
True 94 (91,97) 95 (94,97) 95 (94,97) 93 (91,95) 94 (91,97) 95 (92,97)
NKM 94 (94,97) 95 (94,97) 94 (91,97) 95 (94,97) 94 (92,97) 95 (94,97)

Standard 97 (96,100) 97 (97,100) 96 (94,97) 97 (97,99) 97 (96,100) 96 (96,98)
GEE True 95 (94,97) 95 (94,97) 95 (94,97) 93 (92,95) 94 (93,96) 94 (93,96)
GEE TRM 97 (96,99) 96 (95,98) 95 (94,97) 96 (95,98) 96 (95,97) 95 (93,97)
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Table 2.94: Mean and interquartile range for coverage rate of 95% interval estimates for each
model for Simulation Set {SR2, HTE1, CO, MS4}. Results are stratified by β9 and cluster
variance.

β9 = 1 β9 = 3

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3

TRM 98 (97,99) 98 (97,100) 97 (96,98) 99 (98,100) 98 (97,100) 98 (97,99)
Strata 97 (97,98) 97 (96,99) 97 (95,98) 98 (97,99) 98 (97,99) 98 (97,99)
True 94 (94,97) 95 (93,97) 94 (93,95) 94 (93,96) 94 (92,96) 95 (94,96)
NKM 95 (93,98) 96 (94,97) 95 (93,95) 95 (93,98) 95 (92,97) 95 (93,97)

Standard 99 (98,100) 98 (97,100) 98 (96,99) 99 (98,100) 99 (97,100) 98 (97,99)
GEE True 95 (94,97) 95 (93,96) 95 (94,97) 93 (91,95) 94 (93,96) 95 (93,97)
GEE TRM 99 (98,99) 98 (98,99) 97 (96,98) 99 (98,100) 99 (98,99) 98 (97,99)

Table 2.95: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE0, CO, MS4}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.71 (1.54,1.78) 2.14 (2.02,2.2) 3.1 (3.05,3.13) 1.35 (1.21,1.39) 1.72 (1.63,1.74) 2.51 (2.45,2.52) 1.13 (1.03,1.18) 1.44 (1.4,1.47) 2.14 (2.13,2.17)
Strata 1.5 (1.46,1.53) 1.99 (1.97,2.01) 3.04 (2.99,3.08) 1.19 (1.16,1.2) 1.6 (1.57,1.61) 2.45 (2.4,2.48) 1 (0.98,1.01) 1.37 (1.36,1.38) 2.09 (2.07,2.13)
True 1.46 (1.45,1.48) 2 (1.97,2.02) 3.08 (3.02,3.13) 1.15 (1.14,1.16) 1.6 (1.58,1.63) 2.49 (2.44,2.54) 0.98 (0.97,0.99) 1.37 (1.35,1.39) 2.14 (2.12,2.15)
NKM 1.46 (1.44,1.47) 1.96 (1.93,2.01) 3.03 (3.01,3.09) 1.14 (1.14,1.16) 1.57 (1.54,1.6) 2.44 (2.42,2.47) 0.98 (0.97,0.99) 1.36 (1.34,1.37) 2.09 (2.05,2.13)

Standard 2.01 (1.77,2.12) 2.38 (2.18,2.46) 3.26 (3.21,3.3) 1.61 (1.41,1.68) 1.9 (1.77,1.97) 2.61 (2.55,2.67) 1.33 (1.19,1.42) 1.58 (1.51,1.66) 2.24 (2.21,2.29)
GEE True 1.44 (1.42,1.46) 1.99 (1.97,2.01) 3.13 (3.1,3.17) 1.15 (1.14,1.16) 1.6 (1.58,1.61) 2.49 (2.48,2.51) 0.98 (0.98,0.99) 1.37 (1.36,1.38) 2.15 (2.13,2.16)
GEE TRM 1.72 (1.5,1.99) 2.19 (2.03,2.38) 3.22 (3.11,3.31) 1.39 (1.2,1.59) 1.77 (1.63,1.93) 2.59 (2.5,2.71) 1.19 (1.03,1.37) 1.52 (1.41,1.65) 2.23 (2.17,2.32)

Table 2.96: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE0, CO, MS4}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.31 (1.27,1.35) 1.61 (1.6,1.63) 2.26 (2.25,2.26) 1.08 (1.04,1.13) 1.3 (1.29,1.3) 1.86 (1.86,1.87) 0.93 (0.89,0.97) 1.11 (1.1,1.11) 1.58 (1.58,1.6)
Strata 1.2 (1.19,1.2) 1.55 (1.53,1.57) 2.23 (2.21,2.23) 0.98 (0.98,0.99) 1.24 (1.24,1.24) 1.82 (1.81,1.83) 0.84 (0.84,0.85) 1.06 (1.06,1.07) 1.55 (1.54,1.57)
True 0.98 (0.97,1) 1.38 (1.37,1.4) 2.13 (2.12,2.14) 0.8 (0.79,0.8) 1.12 (1.11,1.12) 1.75 (1.73,1.76) 0.68 (0.68,0.69) 0.95 (0.94,0.95) 1.47 (1.46,1.48)
NKM 1.04 (1.03,1.06) 1.42 (1.41,1.44) 2.13 (2.12,2.15) 0.86 (0.85,0.86) 1.15 (1.14,1.15) 1.77 (1.75,1.78) 0.73 (0.73,0.74) 0.99 (0.98,0.99) 1.5 (1.49,1.51)

Standard 1.47 (1.4,1.57) 1.72 (1.71,1.72) 2.33 (2.31,2.34) 1.21 (1.16,1.31) 1.38 (1.38,1.39) 1.93 (1.92,1.93) 1.04 (0.99,1.12) 1.18 (1.18,1.19) 1.63 (1.62,1.64)
GEE True 1 (0.99,1.01) 1.39 (1.38,1.4) 2.18 (2.16,2.19) 0.81 (0.8,0.81) 1.12 (1.12,1.12) 1.75 (1.74,1.76) 0.69 (0.69,0.69) 0.96 (0.96,0.97) 1.5 (1.5,1.51)
GEE TRM 1.41 (1.29,1.54) 1.69 (1.61,1.8) 2.36 (2.28,2.44) 1.14 (1.05,1.26) 1.38 (1.29,1.48) 1.92 (1.86,1.99) 0.98 (0.9,1.08) 1.19 (1.12,1.27) 1.65 (1.6,1.72)

Table 2.97: Mean and interquartile range of interval widths for each model for Simulation Set
{SR1, HTE1, CO, MS4}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 1.69 (1.58,1.79) 2.15 (2.07,2.22) 3.17 (3.09,3.23) 1.35 (1.26,1.42) 1.72 (1.65,1.79) 2.51 (2.48,2.54) 1.13 (1.07,1.2) 1.47 (1.41,1.54) 2.17 (2.13,2.21)
Strata 1.53 (1.48,1.57) 2.04 (2.01,2.1) 3.11 (3.07,3.16) 1.22 (1.18,1.25) 1.64 (1.61,1.66) 2.47 (2.45,2.5) 1.04 (1,1.07) 1.41 (1.38,1.43) 2.12 (2.09,2.16)
True 1.45 (1.43,1.47) 2.01 (1.97,2.05) 3.11 (3.07,3.16) 1.14 (1.13,1.16) 1.6 (1.59,1.61) 2.49 (2.46,2.52) 0.98 (0.97,1) 1.37 (1.36,1.39) 2.14 (2.11,2.17)
NKM 1.49 (1.43,1.55) 2.02 (1.95,2.06) 3.1 (3.07,3.14) 1.18 (1.14,1.21) 1.62 (1.59,1.64) 2.46 (2.44,2.49) 1.02 (0.99,1.05) 1.39 (1.37,1.41) 2.12 (2.09,2.16)

Standard 2.11 (2,2.3) 2.48 (2.37,2.63) 3.39 (3.31,3.46) 1.7 (1.61,1.83) 1.99 (1.88,2.09) 2.7 (2.65,2.73) 1.43 (1.37,1.5) 1.71 (1.64,1.82) 2.34 (2.26,2.41)
GEE True 1.44 (1.42,1.46) 2 (1.98,2.02) 3.13 (3.1,3.15) 1.15 (1.14,1.16) 1.59 (1.58,1.6) 2.5 (2.48,2.52) 0.99 (0.98,0.99) 1.37 (1.36,1.38) 2.14 (2.12,2.16)
GEE TRM 1.89 (1.77,2.05) 2.34 (2.25,2.47) 3.32 (3.22,3.43) 1.52 (1.43,1.65) 1.88 (1.79,1.99) 2.68 (2.6,2.75) 1.31 (1.23,1.41) 1.62 (1.54,1.72) 2.3 (2.25,2.37)
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Table 2.98: Mean and interquartile range of interval widths for each model for Simulation Set
{SR2, HTE1, CO, MS4}. Results are stratified by number of clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 2.14 (2.05,2.28) 2.33 (2.23,2.44) 2.86 (2.8,2.94) 1.77 (1.68,1.86) 1.93 (1.86,1.99) 2.33 (2.28,2.4) 1.52 (1.45,1.61) 1.67 (1.61,1.73) 2.03 (1.95,2.1)
Strata 2.03 (1.94,2.18) 2.22 (2.11,2.34) 2.77 (2.69,2.84) 1.68 (1.59,1.78) 1.84 (1.78,1.91) 2.26 (2.22,2.32) 1.44 (1.38,1.51) 1.59 (1.54,1.64) 1.97 (1.9,2.04)
True 0.99 (0.98,0.99) 1.38 (1.37,1.39) 2.14 (2.12,2.16) 0.79 (0.79,0.8) 1.1 (1.09,1.11) 1.73 (1.72,1.73) 0.68 (0.68,0.69) 0.95 (0.95,0.96) 1.49 (1.49,1.49)
NKM 1.39 (1.37,1.4) 1.68 (1.64,1.71) 2.35 (2.33,2.36) 1.14 (1.12,1.16) 1.37 (1.36,1.39) 1.91 (1.9,1.92) 0.98 (0.96,1) 1.19 (1.18,1.21) 1.65 (1.64,1.66)

Standard 2.22 (2.13,2.37) 2.4 (2.3,2.52) 2.93 (2.86,3.01) 1.84 (1.76,1.93) 2 (1.94,2.05) 2.38 (2.32,2.45) 1.59 (1.51,1.67) 1.73 (1.66,1.8) 2.07 (2,2.15)
GEE True 1 (0.99,1.01) 1.39 (1.38,1.4) 2.18 (2.16,2.19) 0.8 (0.8,0.81) 1.12 (1.11,1.12) 1.75 (1.74,1.76) 0.69 (0.69,0.7) 0.96 (0.95,0.96) 1.51 (1.5,1.51)
GEE TRM 2.26 (2.13,2.37) 2.44 (2.34,2.55) 2.96 (2.86,3.04) 1.83 (1.73,1.91) 2 (1.9,2.06) 2.4 (2.33,2.46) 1.58 (1.5,1.65) 1.72 (1.65,1.78) 2.07 (2.01,2.12)

Table 2.99: Mean and interquartile range of absolute biases for each model for Simulation Set
{SR1, HTE0, CO, MS4}. Results are stratified by number of clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.28 (0.26,0.29) 0.38 (0.33,0.42) 0.61 (0.53,0.66) 0.24 (0.22,0.26) 0.33 (0.31,0.35) 0.48 (0.44,0.5) 0.2 (0.19,0.22) 0.28 (0.26,0.3) 0.43 (0.4,0.46)
Strata 0.28 (0.26,0.29) 0.38 (0.33,0.4) 0.61 (0.55,0.65) 0.24 (0.21,0.25) 0.33 (0.3,0.35) 0.48 (0.44,0.51) 0.2 (0.18,0.22) 0.28 (0.26,0.3) 0.43 (0.39,0.46)
True 0.28 (0.26,0.29) 0.37 (0.34,0.41) 0.61 (0.56,0.65) 0.23 (0.21,0.23) 0.32 (0.3,0.35) 0.49 (0.45,0.52) 0.19 (0.18,0.21) 0.28 (0.26,0.3) 0.42 (0.38,0.46)
NKM 0.27 (0.26,0.28) 0.37 (0.34,0.4) 0.6 (0.55,0.65) 0.23 (0.21,0.23) 0.33 (0.3,0.34) 0.49 (0.44,0.5) 0.19 (0.18,0.21) 0.28 (0.25,0.3) 0.43 (0.4,0.45)

Standard 0.29 (0.26,0.31) 0.39 (0.34,0.42) 0.61 (0.57,0.65) 0.25 (0.23,0.28) 0.34 (0.3,0.37) 0.5 (0.45,0.52) 0.21 (0.2,0.23) 0.29 (0.27,0.31) 0.43 (0.39,0.46)
GEE True 0.27 (0.26,0.28) 0.37 (0.35,0.39) 0.6 (0.57,0.63) 0.22 (0.21,0.23) 0.32 (0.3,0.32) 0.48 (0.45,0.49) 0.2 (0.18,0.21) 0.27 (0.26,0.29) 0.42 (0.4,0.45)
GEE TRM 0.28 (0.27,0.3) 0.38 (0.36,0.39) 0.6 (0.56,0.63) 0.23 (0.22,0.24) 0.32 (0.3,0.34) 0.48 (0.45,0.49) 0.2 (0.19,0.22) 0.27 (0.26,0.28) 0.43 (0.4,0.45)

Table 2.100: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR2, HTE0, CO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.23 (0.22,0.23) 0.27 (0.27,0.29) 0.42 (0.4,0.42) 0.18 (0.18,0.19) 0.25 (0.24,0.26) 0.35 (0.34,0.35) 0.17 (0.15,0.19) 0.2 (0.19,0.22) 0.34 (0.31,0.37)
Strata 0.22 (0.22,0.23) 0.27 (0.27,0.29) 0.41 (0.38,0.43) 0.18 (0.18,0.19) 0.25 (0.24,0.26) 0.35 (0.34,0.35) 0.17 (0.15,0.18) 0.2 (0.19,0.22) 0.34 (0.31,0.37)
True 0.2 (0.19,0.21) 0.24 (0.25,0.27) 0.41 (0.37,0.44) 0.16 (0.15,0.17) 0.23 (0.22,0.24) 0.34 (0.34,0.36) 0.14 (0.13,0.15) 0.19 (0.18,0.21) 0.32 (0.3,0.33)
NKM 0.21 (0.2,0.22) 0.26 (0.26,0.28) 0.39 (0.36,0.44) 0.17 (0.16,0.18) 0.24 (0.23,0.24) 0.34 (0.33,0.34) 0.15 (0.14,0.17) 0.19 (0.17,0.21) 0.33 (0.31,0.36)

Standard 0.24 (0.23,0.24) 0.27 (0.27,0.29) 0.41 (0.39,0.42) 0.19 (0.18,0.2) 0.26 (0.25,0.27) 0.35 (0.34,0.36) 0.17 (0.16,0.18) 0.21 (0.19,0.23) 0.34 (0.31,0.38)
GEE True 0.2 (0.19,0.2) 0.27 (0.26,0.29) 0.43 (0.4,0.45) 0.16 (0.15,0.17) 0.22 (0.21,0.23) 0.34 (0.33,0.36) 0.14 (0.13,0.14) 0.2 (0.19,0.2) 0.3 (0.28,0.31)
GEE TRM 0.23 (0.22,0.24) 0.3 (0.29,0.31) 0.45 (0.42,0.46) 0.19 (0.18,0.2) 0.24 (0.23,0.26) 0.36 (0.34,0.38) 0.16 (0.15,0.17) 0.22 (0.21,0.22) 0.31 (0.29,0.32)

Table 2.101: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR1, HTE1, CO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.3 (0.28,0.32) 0.4 (0.36,0.45) 0.59 (0.55,0.64) 0.24 (0.22,0.26) 0.32 (0.3,0.34) 0.5 (0.44,0.55) 0.21 (0.2,0.22) 0.28 (0.26,0.3) 0.44 (0.42,0.46)
Strata 0.3 (0.27,0.32) 0.4 (0.36,0.46) 0.6 (0.54,0.64) 0.23 (0.21,0.25) 0.32 (0.29,0.34) 0.5 (0.46,0.54) 0.21 (0.2,0.22) 0.28 (0.26,0.29) 0.43 (0.41,0.46)
True 0.29 (0.27,0.31) 0.4 (0.35,0.45) 0.6 (0.55,0.64) 0.23 (0.21,0.25) 0.32 (0.29,0.34) 0.49 (0.46,0.54) 0.21 (0.19,0.22) 0.27 (0.26,0.3) 0.43 (0.41,0.46)
NKM 0.29 (0.27,0.31) 0.4 (0.36,0.44) 0.6 (0.55,0.65) 0.23 (0.21,0.25) 0.32 (0.29,0.35) 0.49 (0.46,0.53) 0.21 (0.19,0.22) 0.28 (0.26,0.3) 0.43 (0.41,0.45)

Standard 0.35 (0.31,0.38) 0.44 (0.4,0.46) 0.63 (0.59,0.68) 0.28 (0.26,0.3) 0.35 (0.32,0.38) 0.52 (0.48,0.58) 0.25 (0.23,0.27) 0.3 (0.28,0.33) 0.45 (0.43,0.47)
GEE True 0.29 (0.27,0.31) 0.39 (0.37,0.41) 0.61 (0.58,0.64) 0.23 (0.22,0.25) 0.32 (0.3,0.34) 0.49 (0.46,0.52) 0.2 (0.19,0.21) 0.28 (0.26,0.29) 0.43 (0.41,0.45)
GEE TRM 0.33 (0.3,0.37) 0.42 (0.39,0.45) 0.63 (0.6,0.66) 0.27 (0.25,0.29) 0.35 (0.33,0.36) 0.51 (0.49,0.54) 0.24 (0.22,0.25) 0.3 (0.29,0.32) 0.45 (0.43,0.47)
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Table 2.102: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR2, HTE1, CO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

TRM 0.33 (0.3,0.36) 0.4 (0.38,0.41) 0.5 (0.48,0.52) 0.29 (0.28,0.3) 0.33 (0.3,0.34) 0.41 (0.39,0.43) 0.25 (0.23,0.27) 0.29 (0.26,0.29) 0.35 (0.34,0.37)
Strata 0.33 (0.31,0.36) 0.4 (0.38,0.41) 0.5 (0.48,0.52) 0.29 (0.29,0.3) 0.33 (0.3,0.35) 0.41 (0.4,0.43) 0.25 (0.23,0.27) 0.28 (0.26,0.29) 0.35 (0.33,0.37)
True 0.19 (0.18,0.21) 0.27 (0.26,0.29) 0.42 (0.41,0.44) 0.17 (0.16,0.18) 0.24 (0.22,0.25) 0.36 (0.34,0.38) 0.14 (0.13,0.15) 0.19 (0.18,0.19) 0.3 (0.28,0.3)
NKM 0.26 (0.24,0.28) 0.33 (0.31,0.35) 0.45 (0.43,0.47) 0.23 (0.22,0.24) 0.28 (0.26,0.29) 0.38 (0.37,0.4) 0.2 (0.19,0.21) 0.24 (0.22,0.25) 0.33 (0.32,0.34)

Standard 0.34 (0.31,0.37) 0.4 (0.38,0.41) 0.51 (0.49,0.53) 0.29 (0.28,0.3) 0.33 (0.3,0.35) 0.42 (0.4,0.43) 0.25 (0.23,0.27) 0.29 (0.26,0.29) 0.35 (0.33,0.37)
GEE True 0.2 (0.19,0.21) 0.28 (0.27,0.3) 0.43 (0.41,0.45) 0.17 (0.16,0.18) 0.23 (0.22,0.24) 0.35 (0.33,0.37) 0.14 (0.14,0.15) 0.19 (0.18,0.2) 0.31 (0.29,0.32)
GEE TRM 0.36 (0.33,0.38) 0.41 (0.38,0.44) 0.52 (0.49,0.54) 0.29 (0.28,0.31) 0.32 (0.3,0.34) 0.42 (0.4,0.44) 0.25 (0.24,0.26) 0.28 (0.26,0.29) 0.37 (0.35,0.38)
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2.7.8 Binary Outcomes Model Specification 4 Results

Table 2.103: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE0, BO, MS4}. Results are stratified by number of
clusters and cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 95 (91,97) 94 (91,97) 94 (91,97) 95 (94,97) 96 (95,97) 95 (94,97) 96 (94,97) 97 (94,98) 96 (94,100)
Strata 95 (93,97) 93 (91,95) 95 (94,97) 94 (92,97) 95 (93,97) 94 (93,97) 96 (94,97) 96 (94,100) 95 (94,97)
True 95 (92,97) 93 (91,97) 94 (94,97) 95 (94,98) 95 (94,97) 95 (94,97) 95 (94,97) 96 (94,97) 94 (93,97)
NKM 95 (94,97) 93 (91,97) 94 (93,96) 94 (94,97) 95 (94,97) 94 (91,97) 95 (94,97) 96 (94,100) 95 (94,97)

Standard 97 (95,100) 96 (95,99) 96 (94,97) 96 (94,98) 98 (97,100) 97 (97,97) 97 (95,99) 97 (97,100) 98 (97,100)
GEE True 95 (94,97) 95 (93,97) 94 (92,96) 95 (94,96) 95 (94,96) 95 (93,96) 96 (94,98) 95 (94,96) 95 (94,97)
GEE TRM 96 (94,97) 96 (94,98) 94 (92,96) 95 (94,96) 95 (94,97) 95 (93,96) 96 (96,98) 95 (94,96) 95 (94,97)

Table 2.104: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE0, BO, MS4}. Results are stratified by number of
clusters and cluster variance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 95 (93,97) 98 (97,100) 95 (92,97) 95 (94,97) 96 (97,97) 94 (91,97) 94 (94,96) 95 (94,97) 96 (93,99)
Strata 94 (94,96) 96 (94,98) 95 (94,98) 95 (93,97) 97 (97,98) 93 (91,97) 94 (91,96) 96 (95,97) 96 (94,98)
True 93 (91,95) 96 (94,97) 94 (91,96) 94 (91,96) 97 (96,98) 91 (87,94) 93 (91,96) 96 (94,97) 95 (91,97)
NKM 93 (92,94) 96 (94,97) 95 (93,100) 94 (94,95) 96 (94,98) 91 (88,94) 92 (91,94) 94 (92,96) 95 (92,97)

Standard 98 (97,100) 98 (97,100) 96 (94,98) 98 (97,100) 98 (97,99) 96 (94,98) 97 (96,97) 98 (97,100) 97 (95,99)
GEE True 95 (94,96) 95 (94,96) 95 (94,97) 94 (92,96) 95 (94,98) 95 (94,97) 95 (94,97) 96 (95,97) 95 (92,97)
GEE TRM 96 (95,97) 96 (95,98) 96 (95,97) 96 (95,98) 97 (95,98) 96 (95,98) 96 (95,98) 97 (96,98) 96 (94,98)

Table 2.105: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR1, HTE1, BO, MS4}. Results are stratified by β9 and
cluster variance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 96 (95,98) 97 (94,98) 96 (94,97) 95 (94,98) 94 (93,97) 96 (94,99) 95 (94,97) 95 (93,97) 95 (94,97)
Strata 96 (94,97) 96 (94,97) 96 (94,97) 95 (92,97) 94 (91,97) 96 (94,97) 94 (92,97) 94 (91,97) 95 (91,97)
True 96 (94,97) 95 (92,98) 95 (94,97) 94 (91,97) 94 (92,97) 96 (94,97) 93 (91,97) 94 (91,97) 95 (93,97)
NKM 96 (94,97) 96 (93,100) 96 (94,97) 95 (92,97) 94 (91,97) 96 (94,98) 94 (93,97) 94 (91,97) 95 (93,98)

Standard 98 (97,100) 98 (97,100) 97 (95,100) 97 (95,100) 96 (96,98) 97 (94,100) 97 (95,97) 97 (94,100) 96 (94,98)
GEE True 94 (93,95) 94 (92,96) 94 (92,96) 94 (93,96) 95 (93,97) 94 (93,96) 94 (93,96) 95 (94,96) 95 (93,96)
GEE TRM 94 (93,96) 94 (93,96) 94 (92,96) 95 (93,96) 95 (94,97) 94 (93,95) 95 (93,96) 96 (94,97) 95 (94,96)
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Table 2.106: Mean and interquartile range for coverage rate of 95% interval estimates for
each model for Simulation Set {SR2, HTE1, BO, MS4}. Results are stratified by β9 and
cluster variance.

β9 = 0.5 β9 = 1

Model J = 48 J = 72 J = 96 J = 48 J = 72 J = 96

TRM 97 (95,98) 96 (94,97) 96 (93,98) 95 (94,98) 96 (94,98) 96 (93,99)
Strata 97 (94,98) 96 (94,97) 96 (94,98) 95 (94,97) 96 (94,97) 96 (94,97)
True 96 (94,98) 94 (92,97) 95 (92,98) 94 (94,97) 94 (92,97) 94 (91,96)
NKM 96 (94,98) 94 (93,97) 96 (93,97) 94 (94,97) 94 (92,96) 95 (93,96)

Standard 98 (97,100) 98 (97,100) 97 (95,100) 98 (97,100) 98 (97,100) 97 (96,98)
GEE True 95 (94,97) 95 (93,96) 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,96)
GEE TRM 96 (95,97) 96 (95,97) 97 (95,98) 96 (95,98) 97 (95,98) 96 (95,98)

Table 2.107: Mean and interquartile range of interval widths for each model for Simulation
Set {SR1, HTE0, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.29 (0.27,0.31) 0.3 (0.29,0.32) 0.35 (0.34,0.37) 0.24 (0.22,0.25) 0.25 (0.24,0.26) 0.29 (0.27,0.3) 0.2 (0.19,0.22) 0.21 (0.2,0.23) 0.24 (0.23,0.26)
Strata 0.28 (0.26,0.29) 0.29 (0.28,0.31) 0.34 (0.33,0.36) 0.23 (0.21,0.24) 0.24 (0.23,0.25) 0.28 (0.27,0.29) 0.2 (0.18,0.21) 0.2 (0.19,0.21) 0.24 (0.23,0.25)
True 0.28 (0.27,0.3) 0.29 (0.28,0.31) 0.34 (0.33,0.36) 0.23 (0.21,0.24) 0.24 (0.23,0.25) 0.28 (0.27,0.29) 0.19 (0.18,0.2) 0.2 (0.19,0.21) 0.24 (0.23,0.24)
NKM 0.28 (0.26,0.29) 0.29 (0.28,0.3) 0.34 (0.33,0.36) 0.22 (0.21,0.24) 0.24 (0.23,0.25) 0.28 (0.26,0.28) 0.19 (0.18,0.2) 0.2 (0.19,0.21) 0.24 (0.23,0.24)

Standard 0.33 (0.31,0.35) 0.34 (0.32,0.36) 0.38 (0.37,0.39) 0.27 (0.24,0.28) 0.28 (0.26,0.29) 0.31 (0.29,0.32) 0.23 (0.22,0.24) 0.24 (0.22,0.25) 0.26 (0.25,0.28)
GEE True 0.29 (0.27,0.3) 0.31 (0.28,0.32) 0.36 (0.33,0.38) 0.23 (0.21,0.24) 0.25 (0.23,0.26) 0.29 (0.27,0.3) 0.2 (0.18,0.2) 0.21 (0.19,0.22) 0.25 (0.23,0.26)
GEE TRM 0.29 (0.28,0.31) 0.31 (0.29,0.33) 0.36 (0.34,0.38) 0.23 (0.22,0.25) 0.25 (0.23,0.27) 0.29 (0.27,0.3) 0.2 (0.19,0.21) 0.22 (0.2,0.23) 0.25 (0.23,0.26)

Table 2.108: Mean and interquartile range of interval widths for each model for Simulation
Set {SR2, HTE0, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.24 (0.24,0.24) 0.25 (0.25,0.25) 0.28 (0.27,0.28) 0.19 (0.19,0.19) 0.2 (0.2,0.2) 0.23 (0.22,0.23) 0.17 (0.16,0.17) 0.17 (0.17,0.18) 0.2 (0.2,0.2)
Strata 0.23 (0.23,0.23) 0.24 (0.24,0.24) 0.27 (0.27,0.27) 0.18 (0.18,0.19) 0.2 (0.19,0.2) 0.22 (0.22,0.22) 0.16 (0.16,0.16) 0.17 (0.17,0.17) 0.19 (0.19,0.19)
True 0.21 (0.21,0.22) 0.23 (0.23,0.23) 0.26 (0.26,0.26) 0.17 (0.17,0.18) 0.19 (0.18,0.19) 0.21 (0.21,0.21) 0.15 (0.15,0.15) 0.16 (0.16,0.16) 0.18 (0.18,0.19)
NKM 0.21 (0.21,0.22) 0.23 (0.23,0.23) 0.26 (0.26,0.26) 0.17 (0.17,0.18) 0.19 (0.18,0.19) 0.21 (0.21,0.21) 0.15 (0.15,0.15) 0.16 (0.16,0.16) 0.18 (0.18,0.19)

Standard 0.27 (0.26,0.27) 0.27 (0.27,0.28) 0.29 (0.29,0.3) 0.22 (0.21,0.22) 0.22 (0.22,0.23) 0.24 (0.24,0.25) 0.19 (0.18,0.19) 0.19 (0.19,0.2) 0.21 (0.21,0.21)
GEE True 0.22 (0.21,0.22) 0.23 (0.23,0.24) 0.27 (0.27,0.27) 0.17 (0.17,0.18) 0.19 (0.18,0.19) 0.22 (0.21,0.22) 0.15 (0.15,0.15) 0.16 (0.16,0.16) 0.19 (0.18,0.19)
GEE TRM 0.24 (0.23,0.24) 0.25 (0.25,0.25) 0.28 (0.28,0.28) 0.19 (0.19,0.19) 0.2 (0.2,0.2) 0.23 (0.22,0.23) 0.16 (0.16,0.17) 0.17 (0.17,0.18) 0.2 (0.19,0.2)

Table 2.109: Mean and interquartile range of interval widths for each model for Simulation
Set {SR1, HTE1, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.24 (0.22,0.27) 0.26 (0.24,0.27) 0.3 (0.28,0.33) 0.2 (0.17,0.22) 0.2 (0.18,0.22) 0.24 (0.22,0.26) 0.17 (0.15,0.19) 0.17 (0.16,0.19) 0.21 (0.19,0.23)
Strata 0.24 (0.22,0.25) 0.25 (0.24,0.27) 0.3 (0.28,0.32) 0.19 (0.17,0.21) 0.2 (0.18,0.22) 0.23 (0.22,0.25) 0.17 (0.15,0.18) 0.17 (0.16,0.19) 0.2 (0.19,0.22)
True 0.24 (0.22,0.25) 0.25 (0.24,0.26) 0.3 (0.28,0.31) 0.19 (0.17,0.2) 0.2 (0.18,0.21) 0.23 (0.22,0.25) 0.16 (0.15,0.18) 0.17 (0.16,0.18) 0.2 (0.19,0.22)
NKM 0.24 (0.22,0.25) 0.25 (0.24,0.26) 0.3 (0.28,0.32) 0.19 (0.17,0.21) 0.2 (0.19,0.21) 0.23 (0.22,0.25) 0.16 (0.15,0.18) 0.17 (0.16,0.18) 0.2 (0.19,0.22)

Standard 0.28 (0.25,0.3) 0.29 (0.27,0.31) 0.33 (0.31,0.35) 0.22 (0.2,0.25) 0.23 (0.2,0.25) 0.26 (0.24,0.28) 0.19 (0.18,0.21) 0.2 (0.18,0.22) 0.22 (0.2,0.24)
GEE True 0.24 (0.22,0.26) 0.25 (0.23,0.28) 0.3 (0.28,0.33) 0.19 (0.17,0.21) 0.2 (0.19,0.22) 0.24 (0.22,0.26) 0.16 (0.15,0.18) 0.17 (0.16,0.19) 0.2 (0.19,0.22)
GEE TRM 0.24 (0.21,0.27) 0.26 (0.23,0.28) 0.3 (0.27,0.33) 0.19 (0.17,0.21) 0.21 (0.19,0.23) 0.24 (0.22,0.26) 0.17 (0.15,0.18) 0.18 (0.16,0.2) 0.21 (0.19,0.23)
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Table 2.110: Mean and interquartile range of interval widths for each model for Simulation
Set {SR2, HTE1, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.22 (0.22,0.23) 0.24 (0.23,0.24) 0.27 (0.26,0.27) 0.18 (0.18,0.19) 0.19 (0.19,0.2) 0.22 (0.21,0.22) 0.16 (0.15,0.16) 0.17 (0.16,0.17) 0.19 (0.19,0.19)
Strata 0.22 (0.22,0.22) 0.23 (0.23,0.24) 0.26 (0.26,0.26) 0.18 (0.18,0.18) 0.19 (0.19,0.19) 0.22 (0.21,0.22) 0.16 (0.15,0.16) 0.16 (0.16,0.17) 0.19 (0.18,0.19)
True 0.2 (0.2,0.21) 0.22 (0.22,0.22) 0.25 (0.25,0.26) 0.17 (0.16,0.17) 0.18 (0.18,0.18) 0.21 (0.2,0.21) 0.14 (0.14,0.15) 0.15 (0.15,0.16) 0.18 (0.17,0.18)
NKM 0.2 (0.2,0.21) 0.22 (0.22,0.22) 0.25 (0.25,0.25) 0.17 (0.16,0.17) 0.18 (0.18,0.18) 0.21 (0.2,0.21) 0.14 (0.14,0.15) 0.15 (0.15,0.16) 0.18 (0.18,0.18)

Standard 0.25 (0.25,0.26) 0.26 (0.25,0.26) 0.28 (0.28,0.29) 0.21 (0.2,0.21) 0.21 (0.21,0.22) 0.23 (0.23,0.24) 0.18 (0.17,0.18) 0.18 (0.18,0.19) 0.2 (0.2,0.2)
GEE True 0.2 (0.2,0.21) 0.22 (0.21,0.23) 0.26 (0.25,0.26) 0.16 (0.16,0.17) 0.18 (0.17,0.18) 0.21 (0.2,0.21) 0.14 (0.14,0.14) 0.15 (0.15,0.16) 0.18 (0.17,0.18)
GEE TRM 0.22 (0.22,0.23) 0.24 (0.23,0.24) 0.27 (0.26,0.27) 0.18 (0.18,0.18) 0.19 (0.19,0.2) 0.22 (0.21,0.22) 0.16 (0.15,0.16) 0.16 (0.16,0.17) 0.19 (0.18,0.19)

Table 2.111: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR1, HTE0, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.07 (0.06,0.07) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05)
Strata 0.06 (0.05,0.06) 0.06 (0.06,0.07) 0.07 (0.06,0.07) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05)
True 0.06 (0.05,0.06) 0.06 (0.06,0.06) 0.07 (0.07,0.07) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05)
NKM 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.07 (0.06,0.07) 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05)

Standard 0.06 (0.05,0.06) 0.06 (0.06,0.07) 0.07 (0.07,0.07) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05)
GEE True 0.05 (0.05,0.06) 0.06 (0.06,0.06) 0.07 (0.07,0.07) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05)
GEE TRM 0.06 (0.05,0.06) 0.06 (0.05,0.06) 0.07 (0.07,0.07) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05)

Table 2.112: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR2, HTE0, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.03 (0.03,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.04)
Strata 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.03 (0.03,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.04)
True 0.04 (0.05,0.05) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04)
NKM 0.04 (0.04,0.05) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.03 (0.03,0.03) 0.05 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04)

Standard 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.04 (0.03,0.04) 0.03 (0.03,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.04)
GEE True 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.04 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04)
GEE TRM 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.05 (0.05,0.05) 0.04 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04)

Table 2.113: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR1, HTE1, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

24 Clusters 36 Clusters 48 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.04 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.03,0.05)
Strata 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
True 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
NKM 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.06 (0.05,0.06) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

Standard 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.05,0.07) 0.04 (0.03,0.05) 0.04 (0.04,0.05) 0.05 (0.04,0.05) 0.04 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
GEE True 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.06 (0.05,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.05)
GEE TRM 0.05 (0.04,0.05) 0.05 (0.04,0.05) 0.06 (0.05,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.03 (0.03,0.04) 0.03 (0.03,0.04) 0.04 (0.04,0.05)
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Table 2.114: Mean and interquartile range of absolute biases for each model for Simulation
Set {SR2, HTE1, BO, MS4}. Results are stratified by number of clusters and cluster vari-
ance.

48 Clusters 72 Clusters 96 Clusters

Model σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

TRM 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.03,0.04)
Strata 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)
True 0.04 (0.03,0.04) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)
NKM 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.03 (0.03,0.04)

Standard 0.04 (0.04,0.04) 0.05 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.03 (0.03,0.04)
GEE True 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
GEE TRM 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
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2.7.9 GEE Bias-Adjusted Methods vs. No Bias Adjustment

Table 2.115: Mean and interquartile range for coverage rate of 95% interval estimates
for GEE models with different Bias-Adjustments for Simulation {SR1, HTE0, CO, MS1}.
”M&D” represents Mancl and DeRouen (2001) bias-adjustment, ”K&C” represents Kauer-
mann and Carroll (2001) bias-adjustment, and ”None” represents GEE results with no bias-
adjustment implemented.

24 Clusters 36 Clusters 48 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

G
E
E
T
ru
e M&D 95 (94,96) 96 (96,97) 95 (94,96) 95 (94,96) 96 (94,96) 95 (93,97) 95 (94,96) 95 (94,96) 95 (94,96)

K&C 93 (92,94) 95 (94,96) 93 (92,95) 94 (93,96) 95 (94,96) 94 (92,95) 95 (94,96) 95 (93,96) 94 (93,96)

None 92 (89,94) 92 (91,94) 90 (85,94) 94 (91,97) 94 (91,97) 92 (89,96) 94 (92,97) 94 (91,97) 94 (91,97)

G
E
E
T
R
M M&D 98 (96,99) 98 (96,99) 96 (94,98) 98 (97,100) 97 (96,98) 95 (94,97) 99 (98,100) 97 (96,99) 96 (94,97)

K&C 97 (96,99) 97 (96,98) 95 (93,97) 98 (96,100) 96 (95,97) 95 (93,97) 98 (98,100) 97 (95,98) 95 (94,97)

None 98 (95,100) 96 (94,98) 93 (91,95) 97 (96,100) 97 (94,100) 94 (91,97) 98 (97,100) 97 (94,100) 95 (93,97)

Table 2.116: Mean and interquartile range for coverage rate of 95% interval estimates for
GEE models with different Bias-Adjustments for Simulation Set {SR2, HTE0, CO, MS1}.
”M&D” represents Mancl and DeRouen (2001) bias-adjustment, ”K&C” represents Kauer-
mann and Carroll (2001) bias-adjustment, and ”None” represents GEE results with no bias-
adjustment implemented.

48 Clusters 72 Clusters 96 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

G
E
E
T
ru
e M&D 96 (94,98) 95 (94,96) 95 (94,96) 96 (94,97) 95 (95,97) 95 (94,97) 95 (94,97) 95 (94,97) 95 (94,96)

K&C 95 (93,97) 94 (93,95) 94 (93,95) 95 (94,96) 95 (94,96) 94 (93,96) 95 (93,96) 95 (93,97) 95 (93,97)

None 93 (89,96) 93 (92,94) 93 (91,95) 94 (91,97) 94 (91,95) 93 (91,95) 94 (92,97) 94 (93,96) 96 (93,98)

G
E
E
T
R
M M&D 99 (98,100) 98 (96,99) 96 (95,97) 99 (98,100) 98 (97,98) 96 (95,98) 99 (98,100) 98 (96,98) 96 (95,98)

K&C 99 (98,99) 97 (96,99) 95 (94,97) 99 (98,100) 97 (97,98) 96 (94,97) 99 (98,100) 97 (96,98) 96 (95,98)

None 98 (97,99) 96 (95,97) 95 (94,97) 98 (97,98) 97 (95,98) 95 (94,96) 97 (95,99) 97 (96,98) 97 (94,100)
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Table 2.117: Mean and interquartile range for coverage rate of 95% interval estimates for
GEE models with different Bias-Adjustments for Simulation Set {SR1, HTE0, BO, MS1}.
”M&D” represents Mancl and DeRouen (2001) bias-adjustment, ”K&C” represents Kauer-
mann and Carroll (2001) bias-adjustment, and ”None” represents GEE results with no bias-
adjustment implemented.

24 Clusters 36 Clusters 48 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

G
E
E
T
ru
e M&D 94 (93,96) 95 (92,96) 95 (93,96) 95 (94,96) 95 (93,96) 95 (94,96) 95 (94,96) 95 (94,97) 95 (93,97)

K&C 93 (92,95) 93 (90,96) 93 (92,94) 94 (93,95) 94 (92,96) 94 (93,95) 94 (93,95) 95 (94,96) 94 (92,96)

None 93 (91,94) 91 (88,94) 91 (87,96) 91 (88,94) 92 (88,94) 93 (91,97) 94 (91,96) 92 (88,94) 93 (91,96)

G
E
E
T
R
M M&D 95 (94,96) 95 (93,98) 95 (93,96) 95 (94,97) 95 (94,96) 95 (94,96) 96 (94,97) 96 (94,97) 95 (93,97)

K&C 94 (93,95) 94 (92,97) 94 (92,95) 95 (94,96) 95 (94,96) 94 (93,95) 95 (94,96) 95 (94,97) 94 (92,97)

None 94 (92,97) 92 (90,94) 92 (88,97) 93 (91,95) 93 (91,97) 94 (91,97) 96 (94,97) 93 (88,97) 94 (91,97)

Table 2.118: Mean and interquartile range for coverage rate of 95% interval estimates for
GEE models with different Bias-Adjustments for Simulation Set {SR2, HTE0, BO, MS1}.
Results are stratified by number of clusters and cluster variance. ”M&D” represents Mancl
and DeRouen (2001) bias-adjustment, ”K&C” represents Kauermann and Carroll (2001)
bias-adjustment, and ”None” represents GEE results with no bias-adjustment implemented.

48 Clusters 72 Clusters 96 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

G
E
E
T
ru
e M&D 95 (94,96) 95 (94,97) 96 (94,97) 95 (94,97) 95 (94,96) 95 (94,96) 95 (94,96) 95 (94,97) 95 (94,96)

K&C 95 (93,96) 94 (93,96) 95 (93,96) 95 (93,96) 94 (93,96) 94 (92,95) 94 (93,96) 95 (93,96) 94 (93,96)

None 94 (91,96) 93 (90,97) 93 (90,95) 94 (94,96) 94 (93,97) 94 (93,97) 93 (90,95) 95 (94,97) 94 (91,97)

G
E
E
T
R
M M&D 97 (96,98) 97 (96,98) 97 (96,98) 97 (96,99) 96 (95,98) 96 (94,97) 97 (96,98) 97 (95,98) 96 (95,97)

K&C 97 (95,98) 97 (96,98) 96 (95,97) 97 (96,98) 96 (95,98) 95 (94,96) 97 (95,98) 97 (95,98) 96 (95,97)

None 96 (95,97) 95 (93,98) 95 (94,97) 97 (96,100) 97 (94,100) 95 (94,97) 95 (93,97) 96 (95,97) 95 (94,97)

Table 2.119: Mean and interquartile range for interval widths for GEE models with different
Bias-Adjustments for Simulation Set {SR1, HTE0, CO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

24 Clusters 36 Clusters 48 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

G
E
E
T
ru
e M&D 1.05 (1.04,1.07) 1.74 (1.72,1.75) 2.97 (2.94,3) 0.84 (0.83,0.85) 1.4 (1.38,1.41) 2.37 (2.35,2.39) 0.72 (0.72,0.73) 1.19 (1.18,1.19) 2.03 (2.01,2.05)

K&C 0.98 (0.97,0.99) 1.62 (1.61,1.64) 2.78 (2.75,2.8) 0.8 (0.8,0.81) 1.34 (1.32,1.35) 2.27 (2.25,2.29) 0.7 (0.69,0.7) 1.15 (1.14,1.15) 1.97 (1.95,1.98)

None 0.92 (0.9,0.93) 1.52 (1.49,1.55) 2.58 (2.53,2.62) 0.77 (0.77,0.78) 1.27 (1.25,1.28) 2.18 (2.15,2.2) 0.68 (0.67,0.69) 1.12 (1.11,1.13) 1.9 (1.88,1.92)

G
E
E
T
R
M M&D 1.43 (1.13,1.75) 1.97 (1.77,2.18) 3.08 (2.95,3.2) 1.14 (0.91,1.39) 1.6 (1.44,1.78) 2.48 (2.4,2.61) 0.99 (0.79,1.2) 1.37 (1.23,1.53) 2.13 (2.06,2.23)

K&C 1.36 (1.08,1.67) 1.88 (1.69,2.09) 2.95 (2.82,3.06) 1.11 (0.89,1.35) 1.55 (1.4,1.73) 2.41 (2.33,2.53) 0.96 (0.77,1.17) 1.34 (1.2,1.5) 2.09 (2.02,2.18)

None 1.3 (1.04,1.56) 1.82 (1.62,2.02) 2.79 (2.69,2.89) 1.08 (0.86,1.31) 1.5 (1.35,1.66) 2.34 (2.26,2.42) 0.94 (0.76,1.15) 1.32 (1.19,1.46) 2.03 (1.97,2.1)
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Table 2.120: Mean and interquartile range for interval widths for GEE models with different
Bias-Adjustments for Simulation Set {SR2, HTE0, CO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

48 Clusters 72 Clusters 96 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

G
E
E
T
ru
e M&D 0.73 (0.72,0.73) 1.21 (1.21,1.23) 2.07 (2.05,2.1) 0.59 (0.59,0.59) 0.97 (0.97,0.98) 1.66 (1.65,1.67) 0.51 (0.51,0.51) 0.84 (0.83,0.84) 1.43 (1.42,1.44)

K&C 0.7 (0.69,0.7) 1.16 (1.16,1.17) 1.97 (1.95,2) 0.57 (0.57,0.57) 0.95 (0.94,0.95) 1.61 (1.6,1.62) 0.5 (0.49,0.5) 0.82 (0.82,0.82) 1.4 (1.39,1.4)

None 0.67 (0.66,0.67) 1.1 (1.1,1.11) 1.9 (1.89,1.92) 0.56 (0.55,0.56) 0.92 (0.92,0.93) 1.56 (1.55,1.57) 0.48 (0.48,0.49) 0.8 (0.8,0.8) 1.37 (1.36,1.38)

G
E
E
T
R
M M&D 1.23 (1.1,1.37) 1.56 (1.45,1.69) 2.26 (2.19,2.34) 1 (0.89,1.12) 1.27 (1.18,1.37) 1.84 (1.79,1.91) 0.86 (0.77,0.97) 1.09 (1.02,1.18) 1.59 (1.54,1.64)

K&C 1.2 (1.07,1.34) 1.53 (1.42,1.66) 2.2 (2.13,2.28) 0.98 (0.88,1.11) 1.25 (1.16,1.35) 1.81 (1.76,1.88) 0.85 (0.76,0.96) 1.08 (1.01,1.16) 1.57 (1.52,1.62)

None 1.08 (1.03,1.14) 1.39 (1.36,1.4) 2.1 (2.08,2.11) 0.9 (0.86,0.95) 1.16 (1.14,1.17) 1.73 (1.71,1.75) 0.76 (0.74,0.78) 1.01 (0.99,1.01) 1.51 (1.49,1.53)

Table 2.121: Mean and interquartile range for interval widths for GEE models with different
Bias-Adjustments for Simulation Set {SR1, HTE0, BO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

24 Clusters 36 Clusters 48 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

G
E
E
T
ru
e M&D 0.24 (0.22,0.25) 0.27 (0.25,0.28) 0.33 (0.31,0.34) 0.19 (0.18,0.2) 0.21 (0.2,0.22) 0.26 (0.24,0.28) 0.17 (0.15,0.17) 0.18 (0.17,0.19) 0.23 (0.21,0.23)

K&C 0.22 (0.21,0.24) 0.25 (0.23,0.26) 0.31 (0.29,0.32) 0.18 (0.17,0.19) 0.21 (0.19,0.22) 0.25 (0.23,0.26) 0.16 (0.15,0.17) 0.18 (0.16,0.19) 0.22 (0.2,0.23)

None 0.21 (0.19,0.22) 0.23 (0.21,0.25) 0.28 (0.26,0.3) 0.17 (0.16,0.19) 0.19 (0.18,0.2) 0.24 (0.22,0.26) 0.15 (0.14,0.16) 0.17 (0.15,0.18) 0.21 (0.19,0.22)

G
E
E
T
R
M M&D 0.25 (0.23,0.26) 0.27 (0.26,0.29) 0.33 (0.31,0.35) 0.2 (0.18,0.21) 0.22 (0.2,0.24) 0.27 (0.25,0.28) 0.17 (0.16,0.18) 0.19 (0.17,0.2) 0.23 (0.21,0.24)

K&C 0.24 (0.22,0.25) 0.26 (0.24,0.28) 0.32 (0.3,0.34) 0.19 (0.18,0.21) 0.21 (0.19,0.23) 0.26 (0.24,0.28) 0.17 (0.15,0.18) 0.18 (0.17,0.2) 0.22 (0.21,0.24)

None 0.22 (0.2,0.24) 0.24 (0.22,0.26) 0.3 (0.28,0.32) 0.18 (0.17,0.2) 0.2 (0.18,0.22) 0.25 (0.23,0.26) 0.16 (0.15,0.18) 0.18 (0.16,0.19) 0.22 (0.2,0.23)

Table 2.122: Mean and interquartile range for interval widths for GEE models with different
Bias-Adjustments for Simulation Set {SR2, HTE0, BO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

48 Clusters 72 Clusters 96 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

G
E
E
T
ru
e M&D 0.18 (0.18,0.18) 0.2 (0.2,0.2) 0.25 (0.24,0.25) 0.15 (0.14,0.15) 0.16 (0.16,0.16) 0.2 (0.2,0.2) 0.12 (0.12,0.13) 0.14 (0.14,0.14) 0.17 (0.17,0.17)

K&C 0.17 (0.17,0.18) 0.19 (0.19,0.2) 0.24 (0.23,0.24) 0.14 (0.14,0.14) 0.16 (0.15,0.16) 0.19 (0.19,0.2) 0.12 (0.12,0.12) 0.14 (0.13,0.14) 0.17 (0.17,0.17)

None 0.17 (0.17,0.17) 0.19 (0.19,0.19) 0.23 (0.23,0.23) 0.14 (0.14,0.14) 0.16 (0.15,0.16) 0.19 (0.19,0.19) 0.12 (0.12,0.12) 0.14 (0.13,0.14) 0.17 (0.17,0.17)

G
E
E
T
R
M M&D 0.21 (0.2,0.21) 0.22 (0.22,0.23) 0.26 (0.26,0.27) 0.17 (0.16,0.17) 0.18 (0.18,0.19) 0.21 (0.21,0.22) 0.14 (0.14,0.15) 0.16 (0.15,0.16) 0.18 (0.18,0.19)

K&C 0.2 (0.2,0.21) 0.22 (0.21,0.22) 0.26 (0.25,0.26) 0.16 (0.16,0.17) 0.18 (0.17,0.18) 0.21 (0.21,0.21) 0.14 (0.14,0.15) 0.15 (0.15,0.16) 0.18 (0.18,0.18)

None 0.19 (0.19,0.2) 0.21 (0.21,0.21) 0.25 (0.25,0.25) 0.16 (0.16,0.16) 0.17 (0.17,0.17) 0.21 (0.2,0.21) 0.14 (0.14,0.14) 0.15 (0.15,0.15) 0.18 (0.18,0.18)
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Table 2.123: Mean and interquartile range for absolute biases for GEE models with different
Bias-Adjustments for Simulation Set {SR1, HTE0, CO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

24 Clusters 36 Clusters 48 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

G
E
E
T
ru
e M&D 0.2 (0.19,0.21) 0.33 (0.31,0.34) 0.58 (0.55,0.6) 0.16 (0.15,0.17) 0.27 (0.25,0.28) 0.48 (0.45,0.5) 0.14 (0.13,0.15) 0.23 (0.21,0.25) 0.4 (0.38,0.43)

K&C 0.2 (0.19,0.21) 0.33 (0.31,0.34) 0.58 (0.55,0.6) 0.16 (0.15,0.17) 0.27 (0.25,0.28) 0.48 (0.45,0.5) 0.14 (0.13,0.15) 0.23 (0.21,0.25) 0.4 (0.38,0.43)

None 0.2 (0.19,0.22) 0.34 (0.32,0.37) 0.59 (0.54,0.64) 0.16 (0.15,0.17) 0.26 (0.25,0.28) 0.48 (0.44,0.52) 0.14 (0.13,0.15) 0.24 (0.22,0.26) 0.39 (0.37,0.42)

G
E
E
T
R
M M&D 0.22 (0.2,0.24) 0.33 (0.32,0.35) 0.58 (0.55,0.61) 0.18 (0.16,0.19) 0.28 (0.27,0.28) 0.48 (0.46,0.51) 0.15 (0.14,0.16) 0.24 (0.22,0.26) 0.41 (0.39,0.43)

K&C 0.22 (0.2,0.24) 0.33 (0.32,0.35) 0.58 (0.55,0.61) 0.18 (0.16,0.19) 0.28 (0.27,0.28) 0.48 (0.46,0.51) 0.15 (0.14,0.16) 0.24 (0.22,0.26) 0.41 (0.39,0.43)

None 0.22 (0.2,0.23) 0.35 (0.32,0.38) 0.59 (0.54,0.62) 0.17 (0.15,0.19) 0.27 (0.26,0.29) 0.48 (0.44,0.52) 0.15 (0.14,0.17) 0.25 (0.23,0.26) 0.39 (0.38,0.41)

Table 2.124: Mean and interquartile range for absolute biases for GEE models with different
Bias-Adjustments for Simulation Set {SR2, HTE0, CO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

48 Clusters 72 Clusters 96 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1 σ2
c = 3 σ2

c = 1/3 σ2
c = 1 σ2

c = 3 σ2
c = 1/3 σ2

c = 1 σ2
c = 3

G
E
E
T
ru
e M&D 0.14 (0.14,0.15) 0.24 (0.23,0.25) 0.4 (0.38,0.42) 0.12 (0.11,0.12) 0.19 (0.19,0.2) 0.34 (0.32,0.36) 0.1 (0.09,0.11) 0.17 (0.16,0.18) 0.29 (0.28,0.31)

K&C 0.14 (0.14,0.15) 0.24 (0.23,0.25) 0.4 (0.38,0.42) 0.12 (0.11,0.12) 0.19 (0.19,0.2) 0.34 (0.31,0.36) 0.1 (0.09,0.11) 0.17 (0.16,0.18) 0.29 (0.28,0.31)

None 0.14 (0.13,0.15) 0.23 (0.21,0.25) 0.41 (0.39,0.43) 0.12 (0.11,0.13) 0.19 (0.18,0.2) 0.34 (0.33,0.35) 0.1 (0.1,0.11) 0.17 (0.15,0.18) 0.27 (0.23,0.31)

G
E
E
T
R
M M&D 0.18 (0.17,0.19) 0.27 (0.26,0.28) 0.42 (0.4,0.43) 0.15 (0.14,0.16) 0.22 (0.21,0.23) 0.35 (0.33,0.38) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.3 (0.29,0.32)

K&C 0.18 (0.17,0.19) 0.27 (0.26,0.28) 0.42 (0.39,0.44) 0.15 (0.14,0.16) 0.22 (0.21,0.23) 0.35 (0.33,0.38) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.3 (0.29,0.32)

None 0.18 (0.17,0.19) 0.26 (0.25,0.28) 0.43 (0.39,0.46) 0.15 (0.14,0.17) 0.21 (0.2,0.22) 0.35 (0.32,0.37) 0.13 (0.12,0.14) 0.19 (0.18,0.2) 0.28 (0.25,0.32)

Table 2.125: Mean and interquartile range for absolute biases for GEE models with different
Bias-Adjustments for Simulation Set {SR1, HTE0, BO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

24 Clusters 36 Clusters 48 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

G
E
E
T
ru
e M&D 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

K&C 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

None 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.05,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

G
E
E
T
R
M M&D 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

K&C 0.05 (0.04,0.05) 0.05 (0.05,0.06) 0.06 (0.06,0.07) 0.04 (0.04,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.04) 0.04 (0.03,0.04) 0.04 (0.04,0.05)

None 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.06 (0.05,0.07) 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.06) 0.03 (0.03,0.03) 0.04 (0.03,0.04) 0.04 (0.04,0.05)
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Table 2.126: Mean and interquartile range for absolute biases for GEE models with different
Bias-Adjustments for Simulation Set {SR2, HTE0, BO, MS1}. Results are stratified by
number of clusters and cluster variance. ”M&D” represents Mancl and DeRouen (2001)
bias-adjustment, ”K&C” represents Kauermann and Carroll (2001) bias-adjustment, and
”None” represents GEE results with no bias-adjustment implemented.

48 Clusters 72 Clusters 96 Clusters

Bias-Adjustment σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1 σ2

c = 1/3 σ2
c = 1/2 σ2

c = 1 σ2
c = 1/3 σ2

c = 1/2 σ2
c = 1

G
E
E
T
ru
e M&D 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)

K&C 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)

None 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.02 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.03)

G
E
E
T
R
M M&D 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)

K&C 0.04 (0.03,0.04) 0.04 (0.04,0.04) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.03) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.03 (0.03,0.04)

None 0.04 (0.03,0.04) 0.04 (0.04,0.05) 0.05 (0.05,0.05) 0.03 (0.03,0.03) 0.03 (0.03,0.04) 0.04 (0.04,0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.03) 0.04 (0.03,0.04)
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Chapter 3

Designing an Adaptive Trial to

Address Noncompliance
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3.1 Introduction

Randomized clinical trials can be placed on a continuum between explanatory and prag-

matic. (Schwartz and Lellouch, 1967; Gamerman et al., 2019). Trials that are close to the

explanatory end aim to examine the magnitude and effectiveness of an intervention under

ideal conditions. Explanatory trials are designed to adjust for factors that increase the het-

erogeneity of the intervention to maximize the standardized intervention effect. Trials that

are closer to the pragmatic end aim to investigate if an intervention is effective in real-world

settings (Roland and Torgerson, 1998; Godwin et al., 2003; Patsopoulos, 2011; Ware and

Hamel, 2011). These trials are usually implemented in clinical settings in which the patients

are expected to receive the intervention rather than specific research sites (Gamerman et al.,

2019). They comprise of heterogeneous population that the intervention is intended for and

they include outcomes that inform optimal healthcare decisions (Gamerman et al., 2019).

In addition, interventions in pragmatic trials are commonly complex and include multiple

components (Ford and Norrie, 2016). Some of these components aim to ensure adherence

and compliance with the active intervention and some components are the active ingredients

that will improve efficacy if administered.

The estimand of interest in pragmatic trials commonly follows the intention-to-treat

(ITT) principle (Zuidgeest et al., 2017; Hernán and Robins, 2017). This is because the goal is

to estimate the effects of interventions in practice, where participants are subject to different

degrees of compliance with the intervention. When participants do not comply with the

assigned intervention, the intention-to-treat principle may not provide an unbiased estimate

of the effectiveness and harms of the intervention if all participants would have complied

with the assigned intervention (Ten Have et al., 2008; Hernán and Robins, 2017). Moreover,

when the compliance in the trial differs from the compliance that would be observed in the

population, the ITT effects estimated in the trial may not represent the effects that would

be observed in the population (Hernán and Robins, 2017).

With a binary intervention, noncompliance can be one- or two-sided (Imbens and Rubin,
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2015). In a one-sided noncompliance scenario, individuals that are assigned to the treatment-

arm may not comply with the treatment, while those in the control-arm do not have access to

the intervention and adhere to the assigned protocol. In a two-sided noncompliance scenario,

individuals may not adhere to either protocol. We will concentrate on trials that can only

experience one sided noncompliance.

As noncompliance increases, summary statistics of the effect of an intervention will tend

towards the null, requiring larger sample sizes to achieve a pre-defined power. Common

procedures to adjust for noncompliance at the design stage involve increasing the full com-

pliance required sample size by a function of the expected noncompliance proportion (Hickey

et al., 2018; Lachin and Foulkes, 1986; Wittes, 2002). However, these procedures may lead

to studies with insufficient power when the expected non-compliance rate is higher than

expected.

In the analysis stage, randomized trials with one-sided noncompliance can also be con-

sidered as Randomized Encouragement Designs (Imbens and Rubin, 2015). Considering

randomization as the instrument, instrumental variable analysis can be used to estimate the

complier average causal effect (CACE) (Angrist et al., 1996). CACE estimates the effect

of an intervention within a sub-population of individuals who complied with their interven-

tion assignment (Imbens and Rubin, 1997). Imbens and Rubin (1997) developed a Bayesian

framework to estimate the CACE. Frangakis and Rubin (2002) provide an extended frame-

work to address two-sided noncompliance. Using the principal stratification framework other

extensions involved addressing missing outcomes (Mealli and Rubin, 2002), partial noncom-

pliance (Jin and Rubin, 2008), and multi-arm studies (Long et al., 2010). Under one-sided

noncompliance, the compliance of individuals to the active intervention is commonly un-

known for participants in the control group. Identifying the sub-group of individuals who

would have complied with the assigned intervention requires assumptions. These assump-

tions cannot always be verified from the data and are not controlled by randomization.

Addressing noncompliance at the design stage could limit the need for such assumptions.
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Prespecified interim analyses offer researchers an early assessment of intervention perfor-

mance. Interim analyses may include summary statistics on the patient population, safety

data on adverse events, efficacy data of the intervention, and reasons for early stopping (Ar-

mitage, 1991). Determining the number of interim analyses to perform depends on multiple

factors such as the expected effect size, the expected power, and the sample size (McPherson,

1982). As the number of interim analyses increases, the probability of a spurious significant

result increases (Armitage et al., 1969). To maintain appropriate Type I error rates, it

is advised that researchers adjust their significance levels in accordance with the number

of interim analyses planned or performed (Armitage et al., 1969; Geller and Pocock, 1987;

Pocock, 1977). It has been argued that no such adjustment is required when working under

a Bayesian framework (Berry, 1985). Interim analyses can be used to assess compliance in

the study in order to modify the administration of the interventions.

Adaptive designs aim to pre-specify possible modifications to the trial’s design, while

maintaining the trial’s validity and integrity (Chang, 2014). In these designs, investigators

evaluate interventions as data are accrued and modify the trial. To ensure the validity

and the integrity of the trials, the modifications should be prospectively defined in the

trial protocol (Guidance, 2018; Chow et al., 2005). Current adaptive designs adjust different

components of the trial (Chang, 2014). For example, group sequential designs are an adaptive

design that allow premature termination of the trial because of efficacy or futility. Sample

size reestimation designs enable sample-size adjustments based on interim analyses. Drop-

loser designs stop assigning to inferior interventions after interim analyses according to a

predefined criteria. Adaptive randomization designs adjust the randomization schedules

during the conduct of the trial, and it may be based on observed responses. Adaptive dose-

finding designs adjust the dose of the next patient based on the toxicity that is observed in

previous patients. Treatment-switching designs allow switching of patient’s initial assignment

if there is evidence for lack of efficacy or safety concerns. Biomarker adaptive designs allow

for adaption based on information obtained from biomarkers.
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None of these adaptive designs specifically target lack of compliance with the assigned

intervention, and many of them require interim analyses of the outcome data. We propose

a new adaptive design for multi-component interventions, in which some components influ-

ence the compliance, and some components include the active ingredients. We describe the

design of the adaptive trial, the corresponding analysis methods, and their required causal

assumptions. Using simulations, we show that the proposed adaptive randomized trial result

is statistically valid and with shorter interval estimates, compared to trials that do not adjust

for noncompliance.

The paper proceeds as follows: Section 2 introduces the design, notations, and assump-

tions of the adaptive trial. Section 3 describes the design stage of the proposed trial and

Section 4 describes its analysis stage. Possible analysis models, and simulations that show

the operating characteristics of the design under these models are presented in Section 5.

Section 6 implements the methods on a study that adjusted the intervention to address

compliance. Section 7 provides discussion and conclusions.

3.2 Background

3.2.1 Design Setting and Notation

Let the number of individuals in the study be N = NS +NA +NC , where NS is the number

of individuals assigned to the standard active intervention (”standard intervention”), NA

is the number of individuals assigned to the augmented active intervention (”augmented

intervention”), and NC is the number of individuals assigned to the control intervention.

Let NT = NS + NA be the total number of individuals assigned to the active intervention

arms, such that under 1:1 randomization NT = NC . For individual i ∈ {1, . . . , N}, let

Zi ∈ {(Ti, Ai)} be the treatment assignment indicators for individuals in the trial, where

Ti = 1 if individual i is assigned to the active ingredient of the intervention and Ti = 0

otherwise, and Ai = 1 if individual i is assigned to augmented compliance and Ai = 0
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otherwise. Because we only consider one-sided noncompliance, Ai = 1 can only occur in the

active intervention arm, such that Zi ̸= (0, 1), ∀i. Thus, there are three possible intervention

assignments for unit i, Zi ∈ {(0, 0), (1, 0), (1, 1)} representing the control, standard, and

augmented interventions, respectively.

The proposed adaptive design consists of three steps:

1. Randomize individuals to the control (Zi = (0, 0)) or the standard intervention group

(Zi = (1, 0)) using individual-level randomization scheme (e.g. simple randomization,

stratified randomization).

2. At a pre-defined point, examine the rates of compliance within the active intervention

arm without unblinding the primary outcome data. If the compliance is at or above the

expected compliance, continue the randomization in Step 1. If the compliance is below

the threshold, adjust the compliance components of the multi-component intervention

to increase compliance, and randomize individuals to the control arm (Zi = (0, 0)) or

the augmented intervention arm (Zi = (1, 1)).

3. Estimate the ITT estimand for the effect of the standard or augmented intervention arm

over the entire study population. This population comprises individuals in the control

arm, individuals in the standard intervention arm, and individuals in the augmented

intervention arm.

Let nS ∈ {1, . . . , NS} be the pre-defined number of individuals that would be observed

before compliance rates are examined. Thus, let NS ∈ {nS, NT}, such that if the augmented

intervention is not implemented, then nS < NS = NT . If the augmented intervention is

implemented then 0 < NA, and nS = NS < NT .

3.2.2 Potential Outcomes

To describe the ITT estimands, causal assumptions, and analysis methods, we will use the

potential outcome framework (Rubin, 1978). This framework posits that for each unit i we
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have three primary potential outcomes Yi(Z) = (Yi(0, 0), Yi(1, 0), Yi(1, 1)) representing the

outcome under each of the three possible interventions. In addition, each individual has

three potential compliance statuses Wi(Z) = (Wi(0, 0),Wi(1, 0),Wi(1, 1)), where Wi(Zi) =

1 if individual i complied with assignment Zi and 0 otherwise. Because we assume that

individuals in the control arm always comply with their assigned interventionWi(0, 0) = 1,∀i.

For each unit i we record P pre-intervention covariates, Xi = (Xi1, . . . , XiP ).

Only one of the potential outcomes and one of the compliance statuses are realized and

observed for unit i. Under the stable unit treatment value assumption (Rubin, 1980, 1990),

the observed and missing compliance outcomes for unit i can be written as,

W obs
i = Wi(Zi) =


Wi(0, 0) = 1 ifZi = (0, 0)

Wi(1, 0),Wi(0, 0) ifZi = (1, 0)

Wi(1, 1),Wi(0, 0) ifZi = (1, 1)

Wmis
i =


Wi(1, 0),Wi(1, 1) ifZi = (0, 0)

Wi(1, 1) ifZi = (1, 0)

Wi(1, 0) ifZi = (1, 1)

Similarly, the observed and missing primary outcomes for unit i can be written as,

Y obs
i = Yi(Zi) =


Yi(0, 0) ifZi = (0, 0)

Yi(1, 0) ifZi = (1, 0)

Yi(1, 1) ifZi = (1, 1)

Y mis
i =



(
Yi(1, 0), Yi(1, 1)

)
ifZi = (0, 0)(

Yi(0, 0), Yi(1, 1)
)

ifZi = (1, 0)(
Yi(0, 0), Yi(1, 0)

)
ifZi = (1, 1)

Let Xh
l = {Xi}hl ,Th

l = {Ti}hl ,Ah
l = {Ai}hl , the matrix of covariates, assignment to active

ingredient, and assignment to augmented compliance status for participants i such that

l ≤ i ≤ h, respectively. In addition, let Zh
l = (Th

l ,A
h
l ), Wh

l = {Wi(Z)}hl and Yh
l =

{Yi(Z)}hl , the complete intervention assignment, the potential compliances matrix and the

potential outcomes matrix for participants i such that l ≤ i ≤ h, respectively. Wh
l can be

partitioned into Wh,obs
l = {W obs

i }hl the matrix of observed compliance statuses and Wh,mis
l =

{Wmis
i }hl the matrix of missing compliance statuses, similarly Yh

l can be partitioned into
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Yh,obs
l = {Y obs

i }hl the vector of observed outcomes and Yh,mis
l = {Y mis

i }hl the matrix of

missing outcomes.

3.2.3 Estimands

Our proposed adaptive trial comprises two distinct stages. The design stage, which es-

tablishes the unit-level randomization scheme, the sample size of the trial, the compliance

threshold, and the pre-defined point to examine rates of compliance within the active inter-

vention arm. The second stage is the analysis stage, which provides estimation procedures

for the rate of compliance of nS standard intervention units, and the estimation of the inter-

vention effect using the outcome data of the entire study population following the completion

of the trial.

Compliance Estimand

The trial begins by selecting 2·nS units from a pool of available units, and randomizing half of

them to the control arm and half to the standard intervention arm. Without unblinding the

outcomes, investigators use the observed Wi(1, 0) for the nS units assigned to the standard

intervention arm to summarize the super-population compliance rate, CR := E(Wi(1, 0)).

Primary Outcome Estimands

Pragmatic trials intend to examine the effectiveness of intervention among all individuals in

the population. A commonly used estimand to summarize this effectiveness is the super-

population difference between the mean of the outcomes if all units were assigned to the

standard intervention and if all units were assigned to the control (ITT). When compliance to

the standard intervention is high and no augmented intervention is employed the estimand of

interest is ITT S := E(Yi(1, 0)−Yi(0, 0)). If compliance is low and the augmented intervention

is introduced, the estimand of interest is ITTA := E(Yi(1, 1)− Yi(0, 0)). The expectation in

both estimands is over the super-population of units.
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Bayesian Methodology Overview

The analysis stage of the proposed adaptive trial relies on Bayesian model-based imputation

(Imbens and Rubin (2015)). Bayesian inference for causal estimand τ considersX,T,A,Yobs

and Wobs as a realization of random variables and Ymis and Wmis as unobserved random

variables. This perspective explicitly confronts the missing values by conditioning on ob-

served variables and sampling from the posterior predictive distribution of τ ,

p(τ |YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 )

=

∫
p(τ |YN,obs

1 ,YN,mis
1 ,WN,obs

1 ,WN,mis
1 ,XN

1 ,Z
N
1 )

· p(YN,mis
1 ,WN,mis

1 |YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 ) dYN,mis

1 dWN,mis
1

(3.1)

Equation (3.1) shows that estimating the posterior distribution of τ involves integrating over

p(YN,mis
1 ,WN,mis

1 |YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 ).

3.2.4 Simplifying Assumptions

We assume that the N study participants are available at the onset of the study, and that

all participants are randomized to either control intervention, Ti = 0, or active intervention,

Ti = 1. We assume there is no effect of time on the compliance, outcomes, or assignment

of the first 2 · nS units or the N − 2 · nS units assigned to an intervention following the

compliance assessment,

Assumption 1. P (Y2nS
1 ,W2nS

1 ,Z2nS
1 ,X2nS

1 ) = P (YN
2nS+1,W

N
2nS+1,Z

N
2nS+1,X

N
2nS+1)

We express the joint distribution of potential outcomes, intervention assignment, and

covariates as the following,

86



Assumption 2.

p(Z,Y,W,X) = p(A,T,Y,W,X)

= p(A2nS
1 ,T2nS

1 ,Y2nS
1 ,W2nS

1 ,X2nS
1 )

· p(AN
2nS+1,T

N
2nS+1,Y

N
2nS+1,W

N
2nS+1,X

N
2nS+1 | A2nS

1 ,T2nS
1 ,Y2nS

1 ,W2nS
1 ,X2nS

1 )

= p(A2nS
1 | T2nS

1 ,Y2nS
1 ,W2nS

1 ,X2nS
1 ) · p(T2nS

1 | Y2nS
1 ,W2nS

1 ,X2nS
1 )

· p(Y2nS
1 | W2nS

1 ,X2nS
1 ) · p(W2nS

1 | X2nS
1 ) · p(X2nS

1 )

· p(AN
2nS+1 | TN

2nS+1,Y
N
2nS+1,W

N
2nS+1,X

N
2nS+1,A

2nS
1 ,T2nS

1 ,Y2nS
1 ,W2nS

1 ,X2nS
1 )

· p(TN
2nS+1 | YN

2nS+1,W
N
2nS+1,X

N
2nS+1,A

2nS
1 ,T2nS

1 ,Y2nS
1 ,W2nS

1 ,X2nS
1 )

· p(YN
2nS+1 | WN

2nS+1,X
N
2nS+1,A

2nS
1 ,T2nS

1 ,Y2nS
1 ,W2nS

1 ,X2nS
1 )

· p(WN
2nS+1 | XN

2nS+1,A
2nS
1 ,T2nS

1 ,Y2nS
1 ,W2nS

1 ,X2nS
1 )

· p(XN
2nS+1 | A2nS

1 ,T2nS
1 ,Y2nS

1 ,W2nS
1 ,X2nS

1 )

= p(A2nS
1 | T2nS

1 ,X2nS
1 ) · p(T2nS

1 | X2nS
1 )

· p(Y2nS
1 | W2nS

1 ,X2nS
1 ) · p(W2nS

1 | X2nS
1 ) · p(X2nS

1 )

· p(AN
2nS+1 | TN

2nS+1,X
N
2nS+1,W

2nS ,obs
1 ) · p(TN

2nS+1 | XN
2nS+1)

· p(YN
2nS+1 | WN

2nS+1,X
N
2nS+1) · p(WN

2nS+1 | XN
2nS+1) · p(XN

2nS+1)

=
N∏
i=1

p(Ai | Ti,Wobs
nS
,Xi) · p(Ti | Xi)

· p(Yi(Z) | Wi(Z),Xi) · p(Wi(Z) | Xi) · p(Xi)
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where for any individual i,

Ai =



0 if Ti = 0

0 if Ti = 1,
∑

j≤i Tj ≤ nS

0 if Ti = 1,
∑

j≤i Tj > nS,W
obs
nS

≥ ϕ

1 if Ti = 1,
∑

j≤i Tj > nS,W
obs
nS

< ϕ

where
∑

j≤i Tj ≤ nS identifies the original nS individuals randomized to the standard inter-

vention to observe compliance, Wobs
nS

represents the observed compliance statuses of these

nS standard intervention individuals, and ϕ is some compliance threshold where Wobs
nS

< ϕ

represents CR estimation below the compliance threshold and Wobs
nS

≥ ϕ represents CR es-

timation at or above the compliance threshold. We note that the distribution of Ai is a

degenerate distribution conditional on Ti, W
obs
nS

, and Xi.

Assumption 2 implies ignorability of the assignment mechanism of Z, where A depends

only on T, Wobs
nS

, and X, but not the missing compliance statuses or any missing or observed

primary outcomes. Because we assumeT is randomized prior to the start of the trial and that

the outcome data remains blinded during the compliance rate estimation, T is independent

of all missing and observed primary and compliance outcomes.

The ignorable assignment mechanism is of particular importance in the outcome estima-

tion procedures, such that we assume the results of the analysis would be the same had Ai

been randomized prior to the trial for all i in the active intervention arms. ? details an

example where assignment to the active intervention depends on an individuals covariates

and thereby leads to covariate imbalance between the intervention arms. ? shows that when

there is covariate imbalance, and in this particular example, ignoring a nonignorable inter-

vention assignment, analysis of the outcomes can actually lead to the opposite and incorrect

conclusions.

We assume that the potential primary outcomes of the active intervention arms are equal
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in expectation when the potential compliance statuses of these interventions are also equal.

Formally,

Assumption 3. For all i = 1, . . . , N , E[Yi(1, 0) | Wi(1, 0) = Wi(1, 1) = w] = E[Yi(1, 1) |

Wi(1, 0) = Wi(1, 1) = w] for w = 0, 1.

3.3 Addressing Noncompliance in the Design Stage

3.3.1 Background

Current methods to address noncompliance at the design stage rely on expected propor-

tion of compliance, p0, to adjust the required sample size to achieve predefined power with

p0 = 1. (Hickey et al., 2018; Lachin and Foulkes, 1986; Lachin, 1981; Wittes, 2002). For

example, in a trial with 1:1 randomization scheme, when comparing the means under the

active intervention and control arms, NT can be estimated from the following,

NT = 2 ·
[
Z1−α/2 + Z1−β

p0 · ES

]2
(3.2)

where α is the Type 1 Error, 1 − β is the Power, ES = µT−µC

σ
is the assumed Effect

Size, with µT and µC the means of the active intervention and control arms, respectively,

σ common standard deviation of the two populations, and where Z1−α/2 = Φ−1(1 − α/2),

Z1−β = Φ−1(1− β), with Φ−1(·) the inverse of the Cumulative Distribution Function (CDF)

of the Standard Normal Distribution.

We demonstrate via simulation that Equation (3.2) is an appropriate sample size formula

in settings of one-sided noncompliance, such that it achieves expected Power given the data

generating mechanism is defined by p0, ES, α, and the estimated NT (Appendix 3.8.1).

When the noncompliance is two-sided, where p0 is the proportion of compliance in both

the active intervention arms and control arm, Equation (3.2) does not achieve expected

Power (Appendix 3.8.1). When the noncompliance is two-sided, Lachin and Foulkes (1986)
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suggest replacing p0 in Equation (3.2) with 1 − qT − qC , where qT and qC are the assumed

proportions of noncompliance in the active intervention arms and control arm, respectively.

Using simulation, we show that this formulation achieves expected Power under the estimated

NT and correct data generating mechanism (Appendix 3.8.1).

3.3.2 Type 1 Error

Our three-step adaptive trial tests two hypotheses during the analysis stage: one for the

compliance rate of the nS individuals assigned to the standard intervention and one for

the ITT effect of the primary potential outcomes for assignment to the active intervention

compared to control. By performing multiple tests, there may be increased probability of a

spurious significant ITT result due to increased Type 1 Error (Pocock et al., 1987). There

exists substantial literature addressing inflated Type 1 Error due to multiple tests, or multiple

comparisons (Hochberg, 1988; Tukey, 1991; Benjamini and Hochberg, 1995; Benjamini and

Braun, 2002). A key component of this literature adjusts the significance value for each test

or comparison, to control the overall Type 1 Error at some pre-specified value.

However, we argue that under the null hypothesis, H0, that there is no effect of the

active interventions, the Type 1 Error for estimating the ITT remains unaffected by the CR

estimation. Formally, consider Fisher’s sharp null hypothesis (Imbens and Rubin, 2015) and

let H0 : Yi(0, 0) = Yi(1, 0) = Yi(1, 1). For individual i, Wi(1, 0) influences Yi(1, 0) through

the effect of the active intervention Ti = 1, such that the active intervention effect may only

be observed when Wi(1, 0) = 1. However, under H0, there cannot be an effect of the active

intervention because Ti = 0 when Zi = (0, 0) for all i, and thus, under H0, compliance to the

active intervention does not influence Yi(1, 0). This holds similarly for Wi(1, 1) with Yi(1, 1).

We show both analytically and numerically, that the ITT Type 1 Error remains unchanged

at the pre-defined rate of α regardless of the CR results and estimation itself (see Appendix

3.8.2).
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3.3.3 Defining Compliance Thresholds

It is possible that p0 will differ from the true compliance of the study population, ptrue.

When ptrue ̸= p0, the trial may be under- or over-powered. Table 3.1 presents the Power

of a trial for possible values of ptrue, while ES, NT , and α remain constant. The Power is

calculated as follows,

1− β = Φ(Z1−β) = Φ

(
ptrue · ES

√
NT

2
− Z1−α/2

)
(3.3)

where Φ(·) is the Standard Normal CDF.

Table 3.1: The Power, 1 − β, of a trial with α = 0.05, given NT and ES, and the true
compliance being ptrue.

NT = 50 NT = 100 NT = 500

ptrue ES = 1.1 ES = 1.3 ES = 1.5 ES = 0.8 ES = 0.9 ES = 1.0 ES = 0.4 ES = 0.5 ES = 0.6

0.1 0.079 0.095 0.113 0.082 0.093 0.105 0.092 0.121 0.156
0.2 0.195 0.255 0.323 0.204 0.246 0.293 0.243 0.352 0.475
0.3 0.378 0.496 0.614 0.396 0.480 0.564 0.475 0.660 0.812
0.4 0.595 0.739 0.851 0.619 0.721 0.807 0.716 0.885 0.967
0.5 0.785 0.901 0.963 0.807 0.889 0.942 0.885 0.977 0.997
0.6 0.910 0.974 0.995 0.924 0.968 0.989 0.967 0.997 1
0.7 0.971 0.995 1 0.977 0.994 0.999 0.993 1 1
0.8 0.993 0.999 1 0.995 0.999 1 0.999 1 1
0.9 0.999 1 1 0.999 1 1 1 1 1

We observe in Table 3.1 that if p0 is much greater than ptrue, the trial is likely to be

under-powered at the conclusion of the study. Similarly, if p0 is much smaller than ptrue, the

trial is likely to be over-powered at the study conclusion.

Defining compliance thresholds to compare against estimated rates of compliance can pro-

tect against large differences between p0 and ptrue. Factors in defining compliance thresholds

may include recruitment limitations or acceptable levels of Power.

For example, let Nmax > NT be the maximum achievable intervention arm size of a trial

and NT be the estimated intervention arm size of the same trial using Equation (3.2). The

minimum compliance threshold, δL, needed to obtain α and 1 − β with Nmax intervention
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arm size can be determined by rearranging Equation (3.2) as follows,

δL =
Z1−α/2 + Z1−β

ES ·
√
Nmax/2

. (3.4)

Alternatively, replacing Nmax in Equation (3.4) with NT and replacing Z1−β with Z1−βmin
,

where 1 − β > 1 − βmin, derives δL for a minimally acceptable power, given the estimated

NT .

Similar to Equation (3.4), a maximum compliance threshold, δU , given a maximum de-

sired power, 1− βmax > 1− β, α, ES, and NT , is derived from the following,

δU =
Z1−α/2 + Z1−βmax

ES ·
√
NT/2

(3.5)

Replacing NT in Equation (3.5) with Nmin < NT and replacing Z1−βmax with Z1−β derives

δU for the minimal intervention arm size needed to achieve Power of 1− β.

3.3.4 Defining Point of Compliance Estimation

Investigators determine nS by balancing two criteria. First, as λS increases, so too does nS,

resulting in increased precision of the estimate for CR. Second, increasing nS decreases NA,

resulting in worsened precision of the estimate for ITTA if the augmented intervention is

implemented. We consider nS

NT
∈ [0.1, 0.2] for the remainder of the paper.

3.4 Addressing Noncompliance in the Analysis Stage

3.4.1 Rate of Compliance Estimation

Following the observation of nS individuals in the standard intervention arm, the rate of

compliance is estimated and compared to the compliance thresholds. When the rate of

compliance is below the pre-defined threshold, investigators randomize remaining individuals
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to the augmented intervention or control.

Berry et al. (2010) outline Bayesian procedures to estimate the probability of success of a

binary intervention at an interim analyses of an adaptive trial. We extend these methods to

estimate CR (Section 3.2.3), using the nS unblinded compliance statuses. The compliance

thresholds, δL and δU , define decision rules in order to implement the augmented intervention.

For the following compliance estimation procedures, we assume Wi(1, 0) ∼ Bernoulli(p)

and
∑nS

i=1Wi(1, 0) ∼ Binomial(nS, p),∀i, with a non-informative prior distribution on the

compliance probability, p ∼ Beta(1, 1). We obtain the following posterior probability for p,

p|
nS∑
i=1

Wi(1, 0) ∼ Beta(1 +

nS∑
i=1

Wi(1, 0), 1 + nS −
nS∑
i=1

Wi(1, 0)). (3.6)

We utilize Equation (3.6) for each of the following methods. Appendix 3.8.3 provides an

example illustrating the application of the following methods when p0 = 0.5, nS = 10,

NT = 50, ES = 1.3, and α = 0.05, for multiple values of δL and δU .

Posterior Probability Method

The posterior probability method utilizes the compliance thresholds, δL and δU (Section

3.3.3), and Equation (3.6). Additionally, investigators must apriori define probability thresh-

olds required to trigger a decision to switch to the augmented intervention or maintain

the standard intervention. Specifically, define the probability threshold for switching to

the augmented intervention as πs, and maintaining the standard intervention as πm, where

πs, πm ∈ [0, 1]. Threshold values closer to 1 indicate greater probability required to trigger

these decisions. We use πs, πm, δL, and δU to determine the following,

P

(
p < δL |

nS∑
i=1

Wi(1, 0)

)
(3.7)

P

(
p > δU |

nS∑
i=1

Wi(1, 0)

)
(3.8)
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We adhere to the following decision rules:

• If Equation (3.7) > πs, switch to the augmented intervention, else

• if Equation (3.8) > πm, maintain the standard intervention with option for NT reduc-

tion, otherwise

• maintain standard intervention with pre-defined NT for the remainder of the trial.

Predictive Probability Method

The Predictive Probability Method extends the Posterior Probability Method in Section

3.4.1 by considering the future compliance statuses of individuals assigned to the active

intervention, Wi(1, 0) for i ∈ {nS + 1, . . . , NT}. Additional to pre-defining nS, δL, δU ,

πs, and πm, this method requires the investigator to specify an additional threshold value,

θT ∈ [0, 1], to inform the indicator function in Equations (3.9) and (3.10) which define the

predictive probabilities of compliance below δL and above δU , respectively,

NT−nS∑
j=0

P

( NT∑
i=nS+1

Wi(1, 0) = j |
nS∑
i=1

Wi(1, 0)

)
· 1j

[
P
(
p < δL |

nS∑
i=1

Wi(1, 0),

NT∑
i=nS+1

Wi(1, 0) = j
)
> θT

]
(3.9)

NT−nS∑
j=0

P

( NT∑
i=nS+1

Wi(1, 0) = j |
nS∑
i=1

Wi(1, 0)

)
· 1j

[
P
(
p > δU |

nS∑
i=1

Wi(1, 0),

NT∑
i=nS+1

Wi(1, 0) = j
)
> θT

]
(3.10)
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We have the following distributions on
∑NT

i=nS+1Wi(1, 0) and p,

NT∑
i=nS+1

Wi(1, 0) |
nS∑
i=1

Wi(1, 0) ∼ BetaBin

(
NT − nS, 1 +

nS∑
i=1

Wi(1, 0), 1 + nS −
nS∑
i=1

Wi(1, 0)

)
(3.11)

p |
nS∑
i=1

Wi(1, 0),

NT∑
i=nS+1

Wi(1, 0) = j ∼ Beta

(
1 + j +

nS∑
i=1

Wi(1, 0), 1 +NT − j −
nS∑
i=1

Wi(1, 0)

)
(3.12)

We adhere to the following decision rules:

• If Equation (3.9) > πs, switch to the augmented intervention, else

• if Equation (3.10) > πm, maintain the standard intervention with option for NT reduc-

tion, otherwise

• maintain the standard intervention with pre-defined NT for the remainder of the trial.

Indifference Zone Method

The indifference zone method utilizes Equation (3.6) to determine the lower and upper

100(1 − α)% posterior credible interval bounds, pL and pU , respectively, for p, defined in

Equations (3.13) and (3.14),

P

(
p < pL |

nS∑
i=1

Wi(1, 0)

)
= α/2 (3.13)

P

(
p > pU |

nS∑
i=1

Wi(1, 0)

)
= 1− α/2 (3.14)

Using the compliance thresholds, δL and δU , and pL and pU , we adhere to the following

decision rules:

• If pL < δL and pU < δU , switch to the augmented intervention, or
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• if pL > δL and pU > δU , maintain standard intervention with option for NT reduction,

or

• if pL > δL and pU < δU , maintain standard intervention with pre-defined NT for the

remainder of the trial, or

• if pL < δL and pU > δU , follow apriori preference of investigator to maintain standard

intervention for the remainder of the trial or switch to augmented intervention.

The final scenario of pL < δL and pU > δU indicates that the posterior credible interval of

p contains both the upper and lower compliance thresholds. Therefore, the uncertainty of

p does not lead to a decision through this method. Investigators should consider defining

an active intervention switch decision if this scenario arises. In trials considering multiple

interim analyses, a decision rule for this scenario would be well-suited to maintain standard

intervention method until the subsequent interim compliance analysis.

3.4.2 Primary Outcomes Estimation

Bayesian Modelling

There are four steps required for our Bayesian model-based imputation approach. Recall we

define our joint distributions as the product of N unit-level distributions from Assumption

2, however, for ease of notation we summarize the steps in vector form.

Step 1: Derive p(YN,mis
1 ,WN,mis

1 | YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 , θθθ). This requires the specifi-

cation of the joint distribution of the potential outcomes and potential compliance statuses

given the covariates and θθθ, p(YN
1 ,W

N
1 | XN

1 , θθθ), and the specification of the intervention

assignment mechanism p(ZN
1 | XN

1 ,W
N
1 ,Y

N
1 ) to obtain p(YN

1 ,W
N
1 ,Z

N
1 | XN

1 , θθθ) and then

p(YN
1 ,W

N
1 | XN

1 ,Z
N
1 , θθθ). We use the transformations h(Yi(Z), Zi) and g(Wi(Z), Zi) to ob-

tain p(YN,obs
1 ,YN,mis

1 ,WN,obs
1 ,WN,mis

1 | XN
1 ,Z

N
1 , θθθ) and subsequently derive p(YN,mis

1 ,WN,mis
1 |

YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 , θθθ).
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Step 2: Derive the posterior distribution of the parameters given the observed data, which

is proportional to,

p(θθθ | YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 ) ∝ p(θθθ)

∫
p(YN,obs

1 ,YN,mis
1 ,WN,obs

1 ,WN,mis
1 | XN

1 ,Z
N
1 , θθθ)dY

N,mis
1 dWN,mis

1

(3.15)

Step 3: Derive the posterior predictive distribution of the missing outcomes and missing

compliance statuses using Steps 1 and 2,

p(YN,mis
1 ,WN,mis

1 | YN,obs
1 ,WN,obs

1 ,XN
1 ,Z

N
1 )

=

∫
p(YN,mis

1 ,WN,mis
1 | YN,obs

1 ,WN,obs
1 ,XN

1 ,Z
N
1 , θθθ) · p(θθθ | YN,obs

1 ,WN,obs
1 ,XN

1 ,Z
N
1 ) dθθθ

(3.16)

Step 4: Derive the posterior distribution of the estimand of interest given the observed

data, as defined in Equation (3.1).

Metropolis-Gibbs Sampling Algorithm

We utilize a combination of Metropolis and Gibbs sampling algorithms to appromixate the

posterior distribution of the estimand of interest. The algorithm iterates between drawing

from the posterior predictive distribution of (YN,mis
1 ,WN,mis

1 ) given the observed data to

impute the missing values and then drawing new parameter values for θθθ from its posterior

distribution given all other variables. The algorithm comprises the following steps (?),

1. Initialize parameters θθθ(0) = {θ(0)r } for r ∈ 1, . . . , R.

2. For t = 1, 2, . . . :

(a) Draw (Y
N,mis,(t)
1 ,W

N,mis,(t)
1 ) ∼ p(YN,mis

1 ,WN,mis
1 | YN,obs

1 ,WN,obs
1 ,XN

1 ,Z
N
1 , θθθ

(t−1)).

(b) Draw θ
(t)
r ∼ p(θm | θθθ(t−1)

−r ,Y
N,mis,(t)
1 ,W

N,mis,(t)
1 ,YN,obs

1 ,WN,obs
1 ,XN

1 ,Z
N
1 ) for r ∈

1, . . . , R.

(c) Calculate τ (t).
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(d) Repeat steps 2(a) - 2(d) sufficiently large number of times.

where θθθ
(t)
−r = (θ

(t)
1 , . . . , θ

(t)
r−1, θ

(t−1)
r+1 , . . . , θ

(t−1)
R ).

For any θr, r ∈ 1, . . . , R, with a conditional posterior distribution that is not of closed

form, we utilize a Metropolis-Hastings algorithm (?) to draw θ
(t)
r in Step 2(b) of the algorithm

above, as follows,

i. Draw a starting point θ
(0)
r for which f(θ0r | θθθ(t)−r,Y

N,mis,(t)
1 ,W

N,mis,(t)
1 ,YN,obs

1 ,WN,obs
1 ,XN

1 ,Z
N
1 ) >

0 from a starting distribution f0(θr).

ii. For t = 1, 2, . . . :

(a) Sample a proposal θ∗r from a jumping distribution at time t, Jt(θ
∗
r | θt−1

r ), for a

symmetric jumping distribution that satisfies Jt(θa | θb) = Jt(θb | θa) for all θa, θb,

and t.

(b) Calculate q =
f(θ∗r |θθθ

(t)
−r,Y

N,mis,(t)
1 ,W

N,mis,(t)
1 ,YN,obs

1 ,WN,obs
1 ,XN

1 ,ZN
1 )

f(θ
(t−1)
r |θθθ(t)−r,Y

N,mis,(t)
1 ,W

N,mis,(t)
1 ,YN,obs

1 ,WN,obs
1 ,XN

1 ,ZN
1 )
.

(c) Set θtr =


θ∗r with probability min(q,1)

θ
(t−1)
r otherwise.

(d) Repeat steps ii(a) - ii(d) sufficiently large number of times.

Non-Imputation Estimation

We consider three possible non-imputation based estimators for our three step adaptive trial,

to estimate the estimands of interest in Section 3.2.3. When compliance to the standard inter-

vention is low and the augmented intervention is employed, let ÎTTA1 = 1
NA

∑
i:Zi=(1,1) Y

obs
i −

1
NC

∑
i:Zi=(0,0) Y

obs
i and ÎTTA2 = 1

NA+NS

(∑
i:Zi=(1,1) Y

obs
i +

∑
i:Zi=(1,0) Y

obs
i

)
− 1

NC

∑
i:Zi=(0,0) Y

obs
i .

When compliance is high and no augmented intervention is employed, let ÎTT S = 1
NS

∑
i:Zi=(1,0) Y

obs
i −

1
NC

∑
i:Zi=(0,0) Y

obs
i .
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3.5 Simulation Study

3.5.1 Data Generating Mechanism

We perform simulation analysis to test the methodology outlined in Section 3.4.2 and to

test the assumptions of our three step adaptive trial. The simulation study focusses on the

setting when compliance to the standard intervention is low and the augmented intervention

is implemented.

We first define the size of the study population, N , and the point to examine the compli-

ance rates, nS = NS. Let p0 be the assumed rate of compliance to the standard intervention.

Under a 1:1 simple randomization scheme, we randomize Ti for all i. Therefore, NC = N/2

and NA = N − NS − NC . We assume Ai = 1 for any unit i randomized to Ti = 1 entering

the trial subsequent to the nS standard intervention unit.

For each unit i, we generate Xi = (Xi1, Xi2, Xi3) from Xi1 ∼ N(0, 1), Xi2 ∼ N(0, 1), and

Xi3 ∼ N(1, 1), where Xi1, Xi2, and Xi3 are mutually independent. We generate potential

compliance statuses under the active interventions from two independent Probit models,

Wi(1, 0) ∼ Ber(pi) and Wi(1, 1) ∼ Ber(qi), where pi = Φ
(
βp0 + βp1Xi1 + βp2Xi2 + βp3Xi3

)
,

qi = Φ
(
βq0 + βq1Xi1 + βq2Xi2 + βq3Xi3

)
, βuv are the pre-defined parameter values for all u ∈

{p, q} and v ∈ {0, 1, 2, 3}, and Φ(·) is the standard normal CDF. We define βp0 = Φ−1(λpp0),

and βq0 = Φ−1((1+λq)p0) for (1+λq)p0 < 1, where λp =
ptrue
p0

and ptrue is the true population

rate of compliance to the standard intervention, and λq represents the proportion of increased

compliance relative to the assumed compliance that investigators achieve via the augmented

intervention.

We generate the potential outcomes of unit i such thatYi(Z) | Wi(Z),Xi, θθθ ∼ G3(µ̃µµi, Σ̃ΣΣ),

for trivariate distribution G, with 3-dimensional location vector µ̃µµi, and 3 × 3 matrix Σ̃ΣΣ.
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Specifically, we define µ̃µµi = E[Yi(Z) | Wi(Z),Xi, θθθ] to be the following,

E[Yi(0, 0) | Wi(Z),Xi, θθθ] = β0 + β1Xi1 + β2Xi2 + β3Wi(1, 0) + β4Wi(1, 1)

+ β5exp{Xi1}+ β6Xi3

E[Yi(1, 0) | Wi(Z),Xi, θθθ] = β0 + β1Xi1 + β2Xi2 + β3Wi(1, 0) + β4Wi(1, 1)

+ β5exp{Xi1}+ β6Xi3 + β7Xi2Wi(1, 0)Ti + µTWi(1, 0)Ti

E[Yi(1, 1) | Wi(Z),Xi, θθθ] = β0 + β1Xi1 + β2Xi2 + β3Wi(1, 0) + β4Wi(1, 1)

+ β5exp{Xi1}+ β6Xi3 + β8Xi2Wi(1, 1)Ti + µTWi(1, 1)Ti

(3.17)

where βb, b = 1, . . . , 8 and µT are pre-defined parameter values. Additionally, define Σ̃ΣΣ such

that Σ̃11 = σ2
0, Σ̃22 = σ2

10, Σ̃33 = σ2
11, and define Σ̃ij = ρ

√
Σ̃ii

√
Σ̃jj for i, j ∈ {1, 2, 3} and

i ̸= j.

We separate these simulations into four groups: Design Stage Assumptions, Potential

Outcome Model Assumptions, Compliance Model Assumptions, and Normality Assump-

tions.

To test the Design Stage Assumptions we vary the variables relevant to the design stage

of the trial: p0, ptrue, nS/NS = λnS
, NT , and the receipt of active ingredient effect size, µ1.

To test the Potential Outcome Model Assumptions we assign non-zero values to β5, β6,

β7, and β8 in Equation (3.17) for the data generating mechanism to intentionally misspecify

our potential outcome models defined in the following section.

To test the Compliance Model Assumptions we vary parameter values related to compli-

ance statuses. In addition, we assign non-zero values to βp3 and βq3 for the data generating

mechanism to intentionally misspecify our compliance statuses model defined in the following

section.

Finally, to test the Normality Assumptions we specify parameter values from a combi-
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Table 3.2: The pre-defined variables for simulations assessing Design and Modelling Assump-
tions.

Variable Design PO Model Compliance Normality

p0 0.35, 0.50, 0.65 0.50 0.50 0.50
λp 0.50, 0.75 0.75 0.75 0.75
λq 0.10 0.10 0.10 0.10
λnS

0.10, 0.20 0.20 0.20 0.20
NT 500, 1000 500 500 500
G N3 N3 N3 tν
ν - - - 5
β0 0 0 0 0
β1 1 0 1 1
β2 0.50 0.50 0.50 0.50
β3 0 0.75 0.25, 1 0.50
β4 0 0.50 0.25, 0.50 0.50
β5 0 0.10, 0.25 0 0, 0.25
β6 0 0, 0.25 0 0, 0.25
β7 0 0, 0.25 0 0, 0.25
β8 0 0, 0.25 0 0, 0.25
µ1 0.50, 1 1 1 1
σ0 1 1 1 1
σ10 1 1 1 1
σ11 1 1 1 1
ρ 0.50 0.50 0.50 0.50
g(·) Probit Probit Probit Probit
βp1 0.25 0.25 0.25 0.25
βp2 0.25 0.25 0.25 0.25
βp3 0 0 0.10, 0.25 0
βq1 0.25 0.25 0.25 0.25
βq2 0.25 0.25 0.25 0.25
βq3 0 0 0.10, 0.25 0.10

nation of the three previous simulation groups, where the potential outcomes are generated

from a t-distribution with ν degrees of freedom. Table 3.2 summarizes the variable values

within each simulation.

3.5.2 Simulation Models and Estimation Procedures

We define four Bayesian imputation-based models and two non-imputation-estimation pro-

cedures for our simulation analysis. We follow the assumptions outlined in Sections 3.2.4.
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Primary Outcome Models

To implement the methods outlined in Sections 3.4.2 and 3.4.2, the Bayesian models require

the specification of p(Y,W|X, θθθ) = p(Y | W,X, θθθ)p(W|X, θθθ). We assume Xi = {Xi1, Xi2},

such that investigators do not record or do not have knowledge of Xi3. We first define the

unit-level conditional distribution of the potential outcomes for any individual i as Yi(Z) |

Wi(Z),Xi, θθθ ∼ N3(µµµi,ΣΣΣ) for trivariate normal distribution N3 with expectation µµµi and 3×3

covariance matrix ΣΣΣ. We define µµµi = E[Yi(Z) | Wi(Z),Xi, θθθ] for all four Bayesian models

as,

E[Yi(0, 0) | Wi(Z),Xi, θθθ] = β0 + β1Xi1 + β2Xi2 + β3Wi(1, 0) + β4Wi(1, 1)

E[Yi(1, 0) | Wi(Z),Xi, θθθ] = β0 + β1Xi1 + β2Xi2 + β3Wi(1, 0) + β4Wi(1, 1) + µTWi(1, 0)Ti

E[Yi(1, 1) | Wi(Z),Xi, θθθ] = β0 + β1Xi1 + β2Xi2 + β3Wi(1, 0) + β4Wi(1, 1) + µTWi(1, 1)Ti

(3.18)

where βb, b = 1, . . . , 4 and µT represent unknown parameters. We distinguish between the

four Bayesian models through the specification of their covariance matrix, ΣΣΣ, defined in

Table 3.3. We denote these models by their covariance matrix assumptions: Independent

(abbreviated as Indep), Equal Variance and constant correlation (abbreviated as EqVar),

Differing Variance for compliance to active interventions versus noncompliance and constant

correlation (abbreviated as DifVar), and Differing Variance and Correlation for compliance

to active intervetions versus noncompliance (abbreviated as DifCov). The motivation for

DifCov is presented in Appendix 3.8.4. In Table 3.3, for DifVar we define σ2
10 = σ2

1 ·Wi(1, 0)+

σ2
0 · (1−Wi(1, 0)) and σ

2
11 = σ2

1 ·Wi(1, 1) + σ2
0 · (1−Wi(1, 1)).

Compliance Models

For all four Bayesian imputation-based models we define the unit-conditional distribution of

the potential compliance statuses, for all i, as p(Wi(Z) | Xi, θθθ) = p(Wi(1, 0) | Xi, θθθ)p(Wi(1, 1) |
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Table 3.3: Conditional covariance matrices of the potential response outcomes, given the
potential compliance outcomes, the covariates, and the model parameters.

Model Name ΣΣΣ

Indep

σ2
0 0 0
0 σ2

10 0
0 0 σ2

11



EqVar

 σ2
0 ρσ2

0 ρσ2
0

ρσ2
0 σ2

0 ρσ2
0

ρσ2
0 ρσ2

0 σ2
0



DifVar

 σ2
0 ρσ0σ10 ρσ0σ11

ρσ0σ10 σ2
10 ρσ10σ11

ρσ0σ11 ρσ10σ11 σ2
11



DifCov

σ2
0 σ2

0 σ2
0

σ2
0 σ2

0 + τ 2δ +Wi(1, 0) · τ 21 σ2
0 +Wi(1, 0) ·Wi(1, 1) · τ 21

σ2
0 σ2

0 +Wi(1, 0) ·Wi(1, 1) · τ 21 σ2
0 + τ 2ϵ +Wi(1, 1) · τ 21



Xi, θθθ). Recall, we assume Wi(0, 0) = 1, ∀i. Similar to the data generating mechanism, we

define Wi(1, 0) | Xi, θθθ ∼ Ber(pi) and Wi(1, 1) | Xi, θθθ ∼ Ber(qi), where pi = Φ
(
βp0+βp1Xi1+

βp2Xi2

)
, qi = Φ

(
βq0+βq1Xi1+βq2Xi2

)
, with βuv representing the unknown parameter values

for all u ∈ {p, q} and v ∈ {0, 1, 2}.

However, conditional independence of the compliance statuses for unit i given their

covariates may not be a preferred assumption by all investigators. It may be preferred

to make assumptions that relate the observed compliance to the missing compliance sta-

tuses. For example, investigators may believe that an individual who has complied to

the standard intervention would then also comply to the augmented intervention, such

that p(Wi(Z) | Xi, θθθ) = p(Wi(1, 1) | Wi(1, 0),Xi, θθθ)p(Wi(1, 0) | Xi, θθθ). Under this as-

sumption, when W obs
i = Wi(1, 0) = 1 for unit i, investigators would then directly impute

Wmis
i = Wi(1, 1) = 1. This improves the efficiency of the compliance estimation, compared

to the conditional independence assumption, as there is no uncertainty of the augmented

intervention compliance when unit i complies to the standard intervention. When this as-
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sumption is true, this may lead to overall efficiency gains in compliance estimation, however

when the assumption is untrue, it may lead to poor compliance estimation.

Investigators may weaken the previous assumption by assuming that an individual’s com-

pliance probability is larger in expectation for the augmented intervention compared to the

standard intervention, such that P (Wi(1, 1) = 1 | Wi(1, 0),Xi, θθθ) = pi + λWi(1, 0) and

P (Wi(1, 0) = 1 | Xi, θθθ) = qi, where pi > qi and λ ∈ [0, 1 − pi] represents the proportion

of increased compliance probability to the augmented intervention, given unit i complied to

the standard intervention. Again, there may be efficiency gains in the compliance estima-

tion, compared to the conditional independence assumption, when this assumption is true,

however, the impact on efficiency of ITT estimation may not be substantial.

These two alternative assumptions for the potential compliance status distribution may

lead to efficiency gains in the compliance estimation, compared to the conditional indepen-

dence assumption. However, they rely on the augmented intervention improving compliance

in specific ways, which may not happen in practice. Conditional independence given an

individual’s covariates protects against these violations, while possibly losing efficiency if the

alternative assumptions are true. Ultimately, these assumptions are often impossible to val-

idate with observed data because an individual will only observe a single compliance status

during a trial. Moreover, any efficiency gains in the compliance estimation may not lead to

efficiency gains in the ITT estimation which focusses on the primary potential outcomes.

Investigators must decide the modelling assumptions they wish to make about compliance

behavior while considering the possible gains or losses they may encounter from those as-

sumptions.

Priors, Sampling Algorithm, and Alternative Estimation Procedures

We define a prior distribution for each parameter with the assumption of mutual indepen-

dence, such that, p(θθθ) = p(θ1, θ2, . . . , θR) = p(θ1)p(θ2) . . . p(θR) for all R parameters in θθθ.

Specifically, we define βb ∼ N(0, 1002) for all b ∈ {0, 1, 2, 3, 4}, µT ∼ N(0, 1002), p(βuv) ∝ 1
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for all u ∈ {p, q} and v ∈ {0, 1, 2}, p(ρ) ∼ Beta(1, 10), and then all remaining terms within

ΣΣΣ as σ2
0, σ

2
1, σ

2
10, σ

2
11, τ

2
1 , τ

2
ϵ , and τ

2
δ following a Half-Cauchy distribution with support [0,∞)

and scale 25.

For each Bayesian model, we employ the Metropolis-Gibbs algorithm defined in Section

3.4.2. We set the number of Gibbs iterations to 3500 and the number of Metropolis-Hastings

iterations to 250. We utilize the Metropolis-Hastings algorithm to draw each parameter in

Σ defined in Table 3.3.

We implement two non-imputation-based estimation procedures outlined in Section 3.4.2,

and define AugInt := ÎTTA1 and BothInt := ÎTTA2.

3.5.3 Simulation Evaluation Metrics

Table 3.2 presents 96 unique combinations of variable values across the simulation groups.

We denote each combination as configuration l for l ∈ {1, . . . , L}, where L = 96. The data

generating mechanism defined by configuration l is simulated and analyzed 100 times, for all

l. We denote the simulated dataset for configuration l by m ∈ {1, . . . ,M}, where M = 100.

Because our simulations focus on the setting when compliance to the standard inter-

vention is low and the augmented intervention is implemented, we define the estimand of

interest to be τl = ITTA, for configuration l. We consider four evaluation metrics for τ̂l, the

estimate of τl: coverage probability of τl, mean variance, mean bias of τ̂l, and mean absolute

bias of τ̂l (MAB).

3.5.4 Simulation Study Results

Design Stage Assumptions

As shown in Table 3.2, there are 48 configurations that are each replicated 100 times. Table

3.4 summarizes the coverage probability, mean variance, mean bias of τ̂l, and mean absolute

bias of τ̂l (MAB), averaging across the 48 configurations, for each of the four Bayesian
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imputation-based models (Indep, EqVar, DifVar, DifCov) and the two non-imputation-based

procedures (BothInt, AugInt).

Each of the methods have approximately 90% or higher coverage, with the exception of

Indep, which has the lowest coverage. The remaining methods achieve nominal coverage

via the distribution of coverage probabilities across configurations. The Bayesian models

are similar in mean variance ranging from 0.0031 to 0.0035 on average, whereas the mean

variance under the non-imputation methods is twice as large. AugInt has the largest mean

variance at 0.0080 on average from all configurations.

The mean bias of τ̂l is approximately 0 for all methods, with the greatest difference

from 0 as -0.007 for Indep and 0.025 for BothInt. The Bayesian models have the smallest

mean absolute bias of τ̂l compared to the non-imputation methods. DifVar and EqVar have

the smallest MAB respectively, with DifCov only 10% larger and Indep nearly 50% larger.

BothInt and AugInt have more than a 50% increase in mean absolute bias of τ̂l relative to

DifVar and EqVar.

Table 3.4: Coverage probability, mean variance, mean bias of τ̂l, and mean absolute bias
of τ̂l of each method for the Design Stage Assumptions Simulation, averaged across the 48
configurations. Standard deviations of these values are provided in parentheses.

Metric

Model Coverage Variance Bias MAB

Indep 0.873 (0.04) 0.0035 (0.0011) -0.007 (0.009) 0.061 (0.01)
EqVar 0.948 (0.02) 0.0031 (0.001) 0.001 (0.006) 0.044 (0.008)
DifVar 0.944 (0.02) 0.0032 (0.0011) 0.001 (0.006) 0.044 (0.008)
DifCov 0.912 (0.03) 0.0032 (0.0011) 0.002 (0.007) 0.049 (0.009)
BothInt 0.934 (0.03) 0.0073 (0.0025) 0.025 (0.019) 0.071 (0.013)
AugInt 0.952 (0.02) 0.0080 (0.0027) 0.000 (0.009) 0.070 (0.013)

Potential Outcome Model Assumptions

Table 3.5 presents the coverage probabilities, mean variance, mean bias of τ̂l, and mean

absolute bias of τ̂l, averaged across the 16 configurations of this simulation group. Each

method has above 90% coverage probability on average, achieving nominal coverage via the
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distribution of coverage probabilities across configurations. Again, the Bayesian models have

the smallest mean variances ranging from 0.0056 to 0.0061 on average. The non-imputation

methods, BothInt and AugInt, on average have an increased mean variance by 45% and 67%,

respectively, relative to Bayesian models.

The mean bias of τ̂l is smallest for AugInt at 0.001 and for DifCov at -0.005, averaged over

the configurations. The mean bias of τ̂l is similar between the remaining methods ranging

from 0.027 to 0.043 in magnitude difference from 0.

Each method has an increase in mean absolute bias of τ̂l relative to their respective results

in the Design Stage Assumptions simulation from Table 3.4. The non-imputation methods

again have the largest mean absolute bias of τ̂l ranging from 8% to 20% larger than all of

the Bayesian models, on average.

Table 3.5: Coverage probability, mean variance, mean bias of τ̂l, and mean absolute bias of τ̂l
of each method for the Potential Outcome Model Assumptions Simulation, averaged across
the 16 configurations. Standard deviations of these values are provided in parentheses.

Metric

Model Coverage Variance Bias MAB

Indep 0.91 (0.03) 0.0061 (4e-04) -0.043 (0.016) 0.072 (0.008)
EqVar 0.917 (0.03) 0.0056 (2e-04) -0.030 (0.013) 0.067 (0.005)
DifVar 0.921 (0.03) 0.0057 (2e-04) -0.027 (0.012) 0.066 (0.004)
DifCov 0.916 (0.02) 0.0058 (2e-04) -0.005 (0.015) 0.066 (0.003)
BothInt 0.946 (0.02) 0.0089 (7e-04) 0.035 (0.011) 0.078 (0.006)
AugInt 0.956 (0.02) 0.0102 (8e-04) 0.001 (0.009) 0.079 (0.006)

Compliance Model Assumptions

Table 3.6 presents the coverage probabilities, mean variance, mean bias of τ̂l, and mean

absolute bias of τ̂l of each configuration, averaged across the 16 configurations of this simula-

tion group. Each method has above 90% coverage probability on average, achieving nominal

coverage via the interior distribution of coverage probabilities across configurations. The

Bayesian models have the smallest mean variances and are similar to one another, ranging

from 0.0052 to 0.0054 on average. The non-imputation methods, BothInt and AugInt, on av-
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erage have an increased mean variance by 132% and 162%, respectively, relative to Bayesian

models.

The mean bias of τ̂l is smallest for AugInt at 0.001 and largest for BothInt at 0.035, on

average. The mean bias of τ̂l is similar between the Bayesian models ranging from 0.009 to

0.012 in magnitude difference from 0.

Again, each method has an increase in MAB of τ̂l relative to their respective results in the

Design Stage Assumptions simulation from Table 3.4, although not as large of an increase

relative to the Potential Outcome Model Assumptions results. The non-imputation methods

have the largest MAB of τ̂l ranging from 37% to 61% larger than all of the Bayesian models,

on average.

Table 3.6: Coverage probability, mean variance, mean bias of τ̂l, and mean absolute bias of
τ̂l of each method for the Compliance Model Assumptions Simulation, averaged across the
16 configurations. Standard deviations of these values are provided in parentheses.

Metric

Model Coverage Variance Bias MAB

Indep 0.922 (0.03) 0.0054 (6e-04) -0.012 (0.02) 0.065 (0.005)
EqVar 0.945 (0.02) 0.0052 (4e-04) -0.01 (0.01) 0.057 (0.005)
DifVar 0.945 (0.02) 0.0053 (4e-04) -0.009 (0.009) 0.057 (0.004)
DifCov 0.93 (0.02) 0.0054 (3e-04) 0.009 (0.011) 0.061 (0.005)
BothInt 0.95 (0.02) 0.0123 (0.0011) 0.035 (0.014) 0.089 (0.007)
AugInt 0.957 (0.02) 0.0139 (0.0011) 0.001 (0.015) 0.092 (0.005)

Normality Assumptions

We summarize the Normality Assumptions simulation results for coverage probability, mean

variance, mean bias of τ̂l, and MAB of τ̂l in Table 3.7, averaged across the 16 configurations

for this group. All methods have nominal coverage via the distribution of coverage probabil-

ities across configurations. On average, each method has mean variance more than double

compared to their respective mean variance from Table 3.4. Again, on average the Bayesian

models have the smallest mean variances, ranging from 0.0076 to 0.0078 for EqVar, DifVar,

and DifCov, and at 0.0096 for Indep. The non-imputation methods, BothInt and AugInt, on
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average have an increased mean variance by 136% and 164%, respectively, relative to DifVar.

The mean bias of τ̂l is smallest in magnitude difference from 0 for AugInt at 0.002 and

largest for Indep at 0.061, on average. The mean bias of τ̂l for the remaining methods ranges

from 0.025 to 0.041 in magnitude difference from 0.

The Bayesian models have the smallest MAB of τ̂l on average, ranging from 0.073 to

0.074 for EqVar, DifVar, and DifCov, and at 0.084 for Indep. The non-imputation methods

have the largest MAB of τ̂l, on average, ranging from 26% to 51% larger than all of the

Bayesian models.

Table 3.7: Coverage probability, mean variance, mean bias of τ̂l, and mean absolute bias
of τ̂l of each method for the Normality Assumptions Simulation, averaged across the 16
configurations. Standard deviations of these values are provided in parentheses.

Metric

Model Coverage Variance Bias MAB

Indep 0.933 (0.03) 0.0096 (5e-04) -0.061 (0.015) 0.084 (0.01)
EqVar 0.925 (0.03) 0.0076 (4e-04) -0.041 (0.011) 0.074 (0.007)
DifVar 0.935 (0.04) 0.0076 (3e-04) -0.039 (0.011) 0.073 (0.007)
DifCov 0.929 (0.03) 0.0078 (3e-04) -0.025 (0.012) 0.073 (0.007)
BothInt 0.948 (0.02) 0.0176 (0.0025) 0.039 (0.013) 0.106 (0.01)
AugInt 0.963 (0.02) 0.0201 (0.0028) -0.002 (0.012) 0.11 (0.012)

3.6 Real Data Application

We assess our methods for the outcome estimation at the analysis stage on data from the

PRagmatic trial of Video Education in Nursing Homes (PROVEN) trial (Mor et al., 2017).

PROVEN presented individuals assigned to the active intervention an advanced directive

video and examined its effect on an individual’s propensity to transfer from a nursing home

to the hospital. Assignment to the control intervention did not view any video. The trial

was implemented across 360 nursing homes and it was the job of nursing home staff to

ensure patients assigned to the active intervention were shown the advanced directive video.

Part-way through the trial, some nursing homes assigned to the active intervention began
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receiving weekly phone calls reminding staff to show the advanced directive video.

For any individual i in the trial, we define the advanced directive video as the standard

active intervention, Zi(1, 0), and compliance to this intervention, Wi(1, 0), as the act of

being shown the advanced directive video. We define the advanced directive video with

weekly reminders to be shown the video as the augmented active intervention, Zi(1, 1), and

compliance to this intervention, Wi(1, 1), again as the act of being shown the advanced

directive video. Thus, we let Zi(0, 0) be assignment to control with assumed one-sided

noncompliance, Wi(0, 0) = 1, ∀i. We let the outcome of interest Yi(Zi) = 1 if patient

i transferred to hospital under intervention assignment Zi, and 0 otherwise. We denote

the covariates for patient i, Xi = {Xip} for p = 1, . . . , 12. The covariates we consider for

each individual i are, age, race identifying as Black, having experienced heart failure, having

Alzheimer’s disease, having non-Alzheimer’s dementia, having asthma/COPD, mortality risk

score, ADL score, nursing home total beds, the nursing home healthcare system, the nursing

home hospitalization rate the year prior to intervention assignment, and if the nursing home

was considered poor. We define our estimand of interest τ = ITTA from Section 3.2.3. We

evaluate our models with the estimate of the estimand, τ̂ , and its corresponding estimated

variance, V ar(τ̂).

We define one Bayesian imputation-based model and two non-imputation-based estima-

tion procedures for the analysis of the PROVEN data. We define the two non-imputation-

based estimation procedures identically to Section 3.5.2 where AugInt := ÎTTA1 and BothInt :=

ÎTTA2. For the Bayesian imputation-based model, for each unit i, we assume independent

Probit models for the distributions of potential compliance statuses, p(Wi(Z) | Xi, θθθ) =

p(Wi(1, 0) | Xi, θθθ)p(Wi(1, 1) | Xi, θθθ). Here, each potential outcome is binary and we utilize

Probit models to define p(Yi(Z) | Wi(Z),Xi, θθθ) for all units i. For each intervention assign-

ment, Zi, we let E[Yi(Zi) | Wi(Z),Xi, θθθ] = Φ(βZi,0+βZi,1Wi(1, 0)+βZi,2Wi(1, 1)+βZi,1Xi1+

· · · + βZi,12Xi12). We denote the Bayesian model as Indep which assumes conditional in-

dependence of the potential outcomes given potential compliance statuses, covariates, and
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parameters. We assume independent prior distributions of parameters where p(βuv) ∝ 1 for

all u ∈ {p, q, } and v ∈ {0, 1, 2} and p(βZi,r) ∝ 1 for all Zi and r ∈ {0, 1, 2, 3, 4}.

Table 3.8: PROVEN data analysis for the two Bayesian imputation-based models and the
two non-imputation-based models, with model evaluation metrics as the estimated ITTA

and estimated variance of ITTA.

Model

Metric Indep BothInt AugInt

τ̂ -0.0445 0.0028 -0.0492
V ar(τ̂) 0.00073 0.00012 0.00083

Table 3.8 presents the point estimate and estimated variance of ITTA for each estimation

procedure. Indep and AugInt produce similar point estimates identifying an approximate five

percent significant decrease in an individual’s propensity to transfer to hospital care from

their nursing home under the augmented intervention. Opposingly, BothInt results in an

approximate one-third percent significant increase in an individual’s propensity to transfer

to hospital care from their nursing home under the active intervention arms.

Similar to the simulation study, BothInt has improved precision compared to AugInt,

approximately one-seventh as large. However, the point estimates of the non-imputation-

based estimators result in opposing conclusions. Indep produces a similar point estimate

and conclusion compared to AugInt, with increased precision.

3.7 Discussion

We have proposed a three step adaptive trial to address noncompliance in the active inter-

vention arms of a study at the design stage and the analysis stage of the trial. This project

is rooted in the importance of addressing noncompliance prior to trial completion and the

lack of literature targeting this issue.

We have extended work by Berry et al. (2010) to propose estimation procedures to es-

timate rate of compliance to the standard intervention at a pre-defined point of the trial,
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while keeping the outcome of interest blinded. At the design stage of the trial, these proce-

dures establish decision rules and flexible decision criteria in order to maintain the standard

intervention when compliance is high or switch to the augmented intervestion when compli-

ance is low. Investigators set a priori thresholds about compliance, corresponding to trial

limitations or preferences with power and sample size, defined during the design stage.

During the analysis stage, our compliance rate estimation procedures present three sep-

arate methods in which investigators may choose. The Posterior Probability Method allows

investigators to define decision rules based exclusively on the observed data and the pre-

defined determined compliance thresholds. The Predictive Probability Method extends the

Posterior Probability Method to incorporate the number of individuals remaining in the

trial and to consider the possible number of compliers remaining in the trial. Finally, the

Indifference Zone Method is generally the most liberal of the estimation methods but flexi-

ble enough to accommodate different levels of desired precision of the compliance estimate.

Choosing a rate of compliance estimation method requires investigators to determine which

set of assumptions they are comfortable making and which method best fits their preferences.

At the analysis stage following the completion of the trial, we have proposed a fully

Bayesian imputation-based estimation procedure for the outcomes of interest in the pres-

ence of covariates and noncompliance to the active intervention arms. Our methodology

retains all information collected from the trial, including the observed compliance and out-

come for individuals assigned to the standard intervention arm, to help better estimate our

model parameters. Our Bayesian imputation-based methods result in good frequentist prop-

erties through coverage probability, mean variance, mean bias, and mean absolute bias when

compared to the proposed alternative frequentist estimators. Similar results were observed

even after deliberate misspecifications to the assumptions of our Bayesian imputation-based

methods through the data generating mechanism.

Among the Bayesian models, EqVar, DifVar, and DifCov perform similarly throughout

the simulations and are typically superior in each evaluation metric relative to Indep and
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the non-imputation-based methods, AugInt and BothInt. Generally, Indep results in larger

variance estimation due to the independence assumption between the potential outcomes

conditional on the covariates and compliance statuses. This was shown in both simulation

and analysis of real-trial data. However, Indep provides investigators a potentially desired

conservative estimation approach, relative to the Bayesian models assuming positive correla-

tion between potential primary outcomes. While the conditional independence of potential

outcomes assumption may be reasonable, the simulations show that improvements in pre-

cision can be made when allowing for non-zero correlation. The equal variance assumption

made by EqVar works well when this assumption holds but will not necessarily always be

true. In recommending a model, the choice between DifVar and DifCov will depend on the

investigators preferences. Both models result in similar evaluation metrics which generally

improve upon the remaining models. However, DifVar utilizes the estimation of the correla-

tion coefficient, ρ, which in practice has no observed data to estimate this parameter. This

typically should not be an issue as the estimation of the ITT does not depend on ρ. But, it is

possible some investigators wish to avoid the estimation of ρ altogether while still gaining the

precision improvements over the Indep model. DifCov defines the covariance matrix entirely

with parameters that can be estimated from observed data and assumes non-zero correlation.

However, DifCov assumes that the conditional variance of the active interventions outcomes

will always be larger than the conditional variance of the control outcomes. Although, this

does not necessarily result in larger mean variance of the ITT compared to DifVar, as shown

in the simulations. However, this property still may be undesirable to some investigators. It

is therefore up to the investigator to decide which assumption they are willing to make in

order to choose between DifVar and DifCov.

When analyzing the PROVEN data, the Bayesian imputation-based model resulted in

a similar point estimate to AugInt, with an improvement in precision. As the simulation

study identified, the Indep model produces the most conservative interval estimates of the

Bayesian imputation-based methods examined.
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The design stage compliance rate estimation method is limited by the assumption of a

single interim analysis. Some investigators may wish to extend this method for two or more

interim analyses, or possibly continuous monitoring of compliance. In doing so, issues may

arise in Type 1 Error, and thus further simulations would be needed to inspect this issue.

Additionally, the assumption to examine the rate of compliance to the standard intervention

arm after observing between 10-20% of the total active interventions study population may be

limiting. While some investigators may wish to observe a greater percentage of individuals in

the standard intervention, this does come at the expense of worsened precision in estimating

the ITT between the augmented and control interventions, which is the estimand of interest

in our simulation study.

The analysis method is limited by simulation-based data generation, as there may be addi-

tional plausible scenarios in which to generate the data. However, as the results have similar

trends across the configurations and simulation groups, the performance of the Bayesian

imputation-based methods relative to the alternative procedures holds up well.

Both the design and analysis stage methods outlined are limited by dependence on the

one-sided noncompliance assumption. Additional work would be required to test the per-

formance of the compliance estimation and the analysis methods when this assumption is

violated. Potentially more beneficial would be the extension of these methods to the two-

sided noncompliance setting.

In conclusion, when there is the possibility for treatment noncompliance in a trial, our

methodology gives investigators the ability to prepare for noncompliance before the trial

begins, while the trial is ongoing, and after the trial has been completed. Our methods are

flexible in that they allow for investigators to define different preferences, assumptions, and

various estimands of interest.
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V. Gamerman, T. Cai, and A. Elsäßer. Pragmatic randomized clinical trials: Best practices

and statistical guidance. Health Services and Outcomes Research Methodology, 19(1):

23–35, 2019. doi: 10.1007/s10742-018-0192-5.

N. L. Geller and S. J. Pocock. Interim analyses in randomized clinical trials: Ramifications

and guidelines for practitioners. Biometrics, 43(1):213, 1987. doi: 10.2307/2531962.

M. Godwin, L. Ruhland, I. Casson, S. MacDonald, D. Delva, R. Birtwhistle, M. Lam, and

R. Seguin. Pragmatic controlled clinical trials in primary care: The struggle between

external and internal validity. BMC Medical Research Methodology, 3(1), 2003. doi: 10.

1186/1471-2288-3-28.

D. Guidance. “adaptive designs for clinical trials of drugs and biolog-

ics guidance, adaptive designs for clinical trials of drugs and biolog-

ics.” center for biologics evaluation and research, 2018. URL https:

//www.fda.gov/regulatory-information/search-fda-guidance-documents/

adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry.

M. A. Hernán and J. M. Robins. Per-protocol analyses of pragmatic trials. New England

Journal of Medicine, 377(14):1391–1398, 2017. doi: 10.1056/nejmsm1605385.

116

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry


G. L. Hickey, S. W. Grant, J. Dunning, and M. Siepe. Statistical primer: Sample size and

power calculations—why, when and how?†. European Journal of Cardio-Thoracic Surgery,

54(1):4–9, 2018. doi: 10.1093/ejcts/ezy169.

Y. Hochberg. A sharper bonferroni procedure for multiple tests of significance. Biometrika,

75(4):800–802, 1988. doi: 10.1093/biomet/75.4.800.

G. W. Imbens and D. B. Rubin. Bayesian inference for causal effects in randomized ex-

periments with noncompliance. The Annals of Statistics, 25(1), 1997. doi: 10.1214/aos/

1034276631.

G. W. Imbens and D. B. Rubin. Causal inference for statistics, social, and Biomedical

Sciences: An Introduction. Cambridge University Press, 2015.

H. Jin and D. B. Rubin. Principal stratification for causal inference with extended partial

compliance. Journal of the American Statistical Association, 103(481):101–111, 2008. doi:

10.1198/016214507000000347.

J. M. Lachin. Introduction to sample size determination and power analysis for clinical trials.

Controlled Clinical Trials, 2(2):93–113, 1981. doi: 10.1016/0197-2456(81)90001-5.

J. M. Lachin and M. A. Foulkes. Evaluation of sample size and power for analyses of

survival with allowance for nonuniform patient entry, losses to follow-up, noncompliance,

and stratification. Biometrics, 42(3):507, 1986. doi: 10.2307/2531201.

Q. Long, R. J. Little, and X. Lin. Estimating causal effects in trials involving multitreatment

arms subject to non-compliance: A bayesian framework. Journal of the Royal Statistical

Society Series C: Applied Statistics, 59(3):513–531, 2010. doi: 10.1111/j.1467-9876.2009.

00709.x.

K. McPherson. On choosing the number of interim analyses in clinical trials. Statistics in

Medicine, 1(1):25–36, 1982. doi: 10.1002/sim.4780010105.

117



F. Mealli and D. B. Rubin. Assumptions when analyzing randomized experiments with non-

compliance and missing outcomes. Health Services and Outcomes Research Methodology,

3:225–232, Dec 2002. doi: https://doi.org/10.1023/A:1025802028890.

V. Mor, A. E. Volandes, R. Gutman, C. Gatsonis, and S. L. Mitchell. Pragmatic trial

of video education in nursing homes: The design and rationale for a pragmatic cluster

randomized trial in the nursing home setting. Clinical Trials, 14(2):140?151, 2017. doi:

10.1177/1740774516685298.

N. A. Patsopoulos. A pragmatic view on pragmatic trials. Dialogues in Clinical Neuroscience,

13(2):217–224, 2011. doi: 10.31887/dcns.2011.13.2/npatsopoulos.

S. J. Pocock. Group sequential methods in the design and analysis of clinical trials.

Biometrika, 64(2):191–199, 1977. doi: 10.1093/biomet/64.2.191.

S. J. Pocock, M. D. Hughes, and R. J. Lee. Statistical problems in the reporting of

clinical trials. New England Journal of Medicine, 317(7):426–432, Aug 1987. doi:

10.1056/nejm198708133170706.

M. Roland and D. J. Torgerson. Understanding controlled trials: What are pragmatic trials?

BMJ, 316(7127):285–285, 1998. doi: 10.1136/bmj.316.7127.285.

D. B. Rubin. Bayesian inference for causal effects: The role of randomization. The Annals

of Statistics, 6(1):34–58, 1978. doi: 10.1214/aos/1176344064.

D. B. Rubin. Comment on randomization analysis of experimental data: The fisher random-

ization test. Journal of the American Statistical Association, 75(371):591–593, 1980. doi:

10.2307/2287649.

D. B. Rubin. Formal modes of statistical inference for causal effects. Journal of Statistical

Planning and Inference, 25:279–292, 1990. doi: 10.1016/0378-3758(90)90077-8.

118



D. Schwartz and J. Lellouch. Explanatory and pragmatic attitudes in therapeutical trials.

Journal of Chronic Diseases, 20(8):637–648, 1967. doi: 10.1016/0021-9681(67)90041-0.

T. R. Ten Have, S.-L. T. Normand, S. M. Marcus, C. H. Brown, P. Lavori, and

N. Duan. Intent-to-treat vs. non-intent-to-treat analyses under treatment non-adherence

in mental health randomized trials. Psychiatric Annals, 38(12), 2008. doi: 10.3928/

00485713-20081201-10.

J. W. Tukey. The philosophy of multiple comparisons. Statistical Science, 6(1), Feb 1991.

doi: 10.1214/ss/1177011945.

J. H. Ware and M. B. Hamel. Pragmatic trials — guides to better patient care? New

England Journal of Medicine, 364(18):1685–1687, 2011. doi: 10.1056/nejmp1103502.

J. Wittes. Sample size calculations for randomized controlled trials. Epidemiologic Reviews,

24(1):39–53, 2002. doi: 10.1093/epirev/24.1.39.

M. G. Zuidgeest, P. M. Welsing, G. J. van Thiel, A. Ciaglia, R. Alfonso-Cristancho, L. Eckert,

M. J. Eijkemans, and M. Egger. Series: Pragmatic trials and real world evidence: Paper

5. usual care and real life comparators. Journal of Clinical Epidemiology, 90:92–98, 2017.

doi: 10.1016/j.jclinepi.2017.07.001.

119



3.8 CHAPTER 3 Appendix

3.8.1 Sample Size Estimation

One-Sided Noncompliance Power Simulation

Table 3.9: The true numerical Power, 1 − β, of a trial given NT from Equation (3.2) using
1 − β0 with α = 0.05, and ES, and the one-sided true compliance p0. Each configuration
had the data simulated 10,000 times.

ES = 0.2 ES = 0.5 ES = 0.8

1− β0 p0 = 0.7 p0 = 0.8 p0 = 0.9 p0 = 0.7 p0 = 0.8 p0 = 0.9 p0 = 0.7 p0 = 0.8 p0 = 0.9

0.80 0.801 0.805 0.806 0.787 0.800 0.795 0.789 0.795 0.793
0.85 0.847 0.846 0.852 0.839 0.849 0.853 0.833 0.839 0.846
0.90 0.900 0.895 0.900 0.895 0.894 0.895 0.887 0.880 0.890

Two-Sided Noncompliance Power Simulation Using Equation (1)

Table 3.10: The true numerical Power, 1− β, of a trial given NT from Equation (3.2) using
1 − β0 with α = 0.05, and ES, and the two-sided compliance in both groups is p0. Each
configuration had the data simulated 10,000 times.

ES = 0.2 ES = 0.5 ES = 0.8

1− β0 p0 = 0.7 p0 = 0.8 p0 = 0.9 p0 = 0.7 p0 = 0.8 p0 = 0.9 p0 = 0.7 p0 = 0.8 p0 = 0.9

0.80 0.354 0.555 0.700 0.350 0.550 0.693 0.334 0.529 0.692
0.85 0.407 0.608 0.762 0.388 0.597 0.747 0.370 0.572 0.736
0.90 0.442 0.678 0.821 0.442 0.665 0.810 0.418 0.641 0.804

Two-Sided Noncompliance Power Simulation Lachin and Foulkes (1986)

Table 3.11: The true numerical Power, 1− β, of a trial given NT from Equation (3.2) with
p0 = 1 − qT − qC using 1 − β0 with α = 0.05, and ES, and compliances qT = qC . Each
configuration had the data simulated 10,000 times.

ES = 0.2 ES = 0.5 ES = 0.8

1− β0 qT = 0.7 qT = 0.8 qT = 0.9 qT = 0.7 qT = 0.8 qT = 0.9 qT = 0.7 qT = 0.8 qT = 0.9

0.80 0.800 0.804 0.801 0.785 0.793 0.793 0.753 0.765 0.778
0.85 0.845 0.847 0.849 0.831 0.839 0.841 0.808 0.813 0.829
0.90 0.900 0.898 0.902 0.885 0.890 0.895 0.870 0.870 0.887
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3.8.2 Type 1 Error

Analytical Type 1 Error

Define the null hypothesis, H0, such that H0 : Yi(0, 0) = Yi(1, 0) = Yi(1, 1). Recall, the

estimand of interest, E(Yi(1, 1))−E(Yi(0, 0)). Additionally, recall the number of individuals

assigned to the standard intervention, NS, the augmented intervention, NA, and the control

intervention, NC , such that NT = NS +NA = NC , and the number of standard individuals

observed prior to compliance rate examination, nS. We define the following estimator for

the estimand of interest,

Y ∆ =
1

NT

∑
i:Ti=1

Ŷi(1, 1)−
1

NC

∑
i:Ti=0

Y obs
i

where

Ŷi(1, 1) =



Yi(1, 0) = Y obs
i ifW obs

nS
≥ ϕ, i ≤ nS

Yi(1, 0) = Y obs
i ifW obs

nS
≥ ϕ, i > nS

Ỹi(1, 1) ifW obs
nS

< ϕ, i ≤ nS

Yi(1, 1) = Y obs
i ifW obs

nS
< ϕ, i > nS

which we can write as follows,

Ŷi(1, 1) = 1(W obs
nS

≥ ϕ) · 1(i ≤ nS) · Y obs
i

+ 1(W obs
nS

≥ ϕ) · 1(i > nS) · Y obs
i

+ 1(W obs
nS

< ϕ) · 1(i ≤ nS) · Ỹi(1, 1)

+ 1(W obs
nS

< ϕ) · 1(i > nS) · Y obs
i
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and where

Ỹi(1, 1) ∼ N

(
W obs

i ·W̃i(1, 1)·µ11 + (1−W obs
i )·W̃i(1, 1)·µ01 +W obs

i ·(1−W̃i(1, 1))·µ10 + (1−W obs
i )·(1−W̃i(1, 1))·µ00 , σ

2

)

with

W̃i(1, 1) ∼ Bernoulli

(
1

NA

∑
i:Zi=(1,1)

W obs
i

)
.

The mean parameters of this mixture, µ11, µ01, µ10 and µ00, represent the observed means of

the active intervention individuals, conditional on observed compliance statuses. Formally,

µ11 =

( ∑
i≤nS

Zi=(1,0)

W obs
i +

∑
i>nS

Zi=(1,1)

W obs
i

)−1[ ∑
i≤nS ,Ti=1
W obs

i =1

Y obs
i +

∑
i>nS ,Ti=1
W obs

i =1

Y obs
i

]

µ01 =

( ∑
i≤nS

Zi=(1,0)

(1−W obs
i ) +

∑
i>nS

Zi=(1,1)

W obs
i

)−1[ ∑
i≤nS ,Ti=1
W obs

i =0

Y obs
i +

∑
i>nS ,Ti=1
W obs

i =1

Y obs
i

]

µ10 =

( ∑
i≤nS

Zi=(1,0)

W obs
i +

∑
i>nS

Zi=(1,1)

(1−W obs
i )

)−1[ ∑
i≤nS ,Ti=1
W obs

i =1

Y obs
i +

∑
i>nS ,Ti=1
W obs

i =0

Y obs
i

]

µ00 =

( ∑
i≤nS

Zi=(1,0)

(1−W obs
i ) +

∑
i>nS

Zi=(1,1)

(1−W obs
i )

)−1[ ∑
i≤nS ,Ti=1
W obs

i =0

Y obs
i +

∑
i>nS ,Ti=1
W obs

i =0

Y obs
i

]

We claim that 1
M

∑M
i=1 Ỹi(1, 1) −→ E(Yi(1, 1)) as M −→ ∞ and therefore E(Ỹi(1, 1)) =

E(Yi(1, 1)). Moreover, we claim that under H0, E(Y ∆ | W obs
nS

(ϕ), H0) = 0. First, when

122



W obs
nS

≥ ϕ we have the following,

E(Y ∆

∣∣∣∣ W obs
nS

≥ ϕ,H0) = E

[
1

NT

∑
i:Ti=1

Ŷi(1, 1)−
1

NC

∑
i:Ti=0

Y obs
i

∣∣∣∣ W obs
nS

≥ ϕ,H0

]
=

1

NT

∑
i:Ti=1

E

[
Ŷi(1, 1)

∣∣∣∣ W obs
nS

≥ ϕ,H0

]
− 1

NC

∑
i:Ti=0

E

[
Y obs
i

∣∣∣∣ Zi = (0, 0),W obs
nS

≥ ϕ,H0

]
=

1

NT

∑
i:Ti=1

E

[
Y obs
i

∣∣∣∣ Zi = (1, 0),W obs
nS

≥ ϕ,H0

]
− 1

NC

∑
i:Ti=0

E

[
Y obs
i

∣∣∣∣ Zi = (0, 0),W obs
nS

≥ ϕ,H0

]
=

1

NT

∑
i:Ti=1

E

[
Yi(1, 0)

∣∣∣∣ W obs
nS

≥ ϕ,H0

]
− 1

NC

∑
i:Ti=0

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

≥ ϕ,H0

]
=

1

NT

∑
i:Ti=1

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

≥ ϕ,H0

]
− 1

NC

∑
i:Ti=0

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

≥ ϕ,H0

]
= 0

where the difference in expectations results in 0 because NT = NC and E(Yi(0, 0)) =

E(Yi(1, 0)) = E(Yi(1, 1)) for all i under H0. Second, when W
obs
nS

< ϕ we have the following,

E(Y ∆

∣∣∣∣ W obs
nS

< ϕ,H0) = E

[
1

NT

∑
i:Ti=1

Ŷi(1, 1)−
1

NC

∑
i:Ti=0

Y obs
i

∣∣∣∣ W obs
nS

< ϕ,H0

]
= E

[
1

NT

(∑
i≤nS
Ti=1

Ỹi(1, 1) +
∑
i>nS
Ti=1

Y obs
i

)
− 1

NC

∑
i:Ti=0

Y obs
i

∣∣∣∣ W obs
nS

< ϕ,H0

]

=
1

NT

(∑
i≤nS
Ti=1

E

[
Ỹi(1, 1)

∣∣∣∣ W obs
nS

< ϕ,H0

]
+
∑
i>nS
Ti=1

E

[
Y obs
i

∣∣∣∣ Zi = (1, 1),W obs
nS

< ϕ,H0

])

− 1

NC

∑
i:Ti=0

E

[
Y obs
i

∣∣∣∣ Zi = (0, 0),W obs
nS

< ϕ,H0

]
=

1

NT

(∑
i≤nS
Ti=1

E

[
Yi(1, 1)

∣∣∣∣ W obs
nS

< ϕ,H0

]
+
∑
i>nS
Ti=1

E

[
Yi(1, 1)

∣∣∣∣ W obs
nS

< ϕ,H0

])

− 1

NC

∑
i:Ti=0

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

< ϕ,H0

]
=

1

NT

∑
i:Ti=1

E

[
Yi(1, 1)

∣∣∣∣ W obs
nS

< ϕ,H0

]
− 1

NC

∑
i:Ti=0

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

< ϕ,H0

]
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=
1

NT

∑
i:Ti=1

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

< ϕ,H0

]
− 1

NC

∑
i:Ti=0

E

[
Yi(0, 0)

∣∣∣∣ W obs
nS

< ϕ,H0

]
= 0

Now denote S∆10 and S∆11 as the sample standard deviations of our estimator, Y ∆, condi-

tional on W obs
nS

≥ ϕ and W obs
nS

< ϕ, respectively. Therefore, under H0, we assume

Y ∆ ∼ N

(
0 , 1(W obs

nS
≥ ϕ) · S2

∆10 + 1(W obs
nS

< ϕ) · S2
∆11

)

Using the entirety of the above, we may derive the Type 1 Error of our procedure as follows,

P (Reject H0 | H0)

= P (Reject H0 | H0,W
obs
nS

≥ ϕ)P (Wobs
nS

≥ ϕ) + P (Reject H0 | H0,W
obs
nS

< ϕ)P (Wobs
nS

< ϕ)

=

[
P

(
Y ∆ − Z1−α/2 · S∆10 > 0

∣∣∣∣ H0,W
obs
nS

≥ ϕ

)
+ P

(
Y ∆ + Z1−α/2 · S∆10 < 0

∣∣∣∣ H0,W
obs
nS

≥ ϕ

)]
P
(
Wobs

nS
≥ ϕ

)
+

[
P

(
Y ∆ − Z1−α/2 · S∆11 > 0

∣∣∣∣ H0,W
obs
nS

< ϕ

)
+ P

(
Y ∆ + Z1−α/2 · S∆11 < 0

∣∣∣∣ H0,W
obs
nS

< ϕ

)]
P
(
Wobs

nS
< ϕ

)
=

[
P

(
Y ∆ > Z1−α/2 · S∆10

∣∣∣∣ H0,W
obs
nS

≥ ϕ

)
+ P

(
Y ∆ < −Z1−α/2 · S∆10

∣∣∣∣ H0,W
obs
nS

≥ ϕ

)]
P
(
Wobs

nS
≥ ϕ

)
+

[
P

(
Y ∆ > Z1−α/2 · S∆11

∣∣∣∣ H0,W
obs
nS

< ϕ

)
+ P

(
Y ∆ < −Z1−α/2 · S∆11

∣∣∣∣ H0,W
obs
nS

< ϕ

)]
P
(
Wobs

nS
< ϕ

)

=

[
P

(
Y ∆ − 0

S∆10
> Z1−α/2

∣∣∣∣ H0,W
obs
nS

≥ ϕ

)
+ P

(
Y ∆ − 0

S∆10
< −Z1−α/2

∣∣∣∣ H0,W
obs
nS

≥ ϕ

)]
P
(
Wobs

nS
≥ ϕ

)
+

[
P

(
Y ∆ − 0

S∆11
> Z1−α/2

∣∣∣∣ H0,W
obs
nS

< ϕ

)
+ P

(
Y ∆ − 0

S∆11
< −Z1−α/2

∣∣∣∣ H0,W
obs
nS

< ϕ

)]
P
(
Wobs

nS
< ϕ

)
=

[
1− Φ

(
Z1−α/2

)
+Φ

(
− Z1−α/2

)]
P
(
Wobs

nS
≥ ϕ

)
+

[
1− Φ

(
Z1−α/2

)
+Φ

(
− Z1−α/2

)]
P
(
Wobs

nS
< ϕ

)
=

[
1− Φ

(
Z1−α/2

)
+Φ

(
Zα/2

)]
P
(
Wobs

nS
≥ ϕ

)
+

[
1− Φ

(
Z1−α/2

)
+Φ

(
Zα/2

)]
P
(
Wobs

nS
< ϕ

)
=

[
1− 1 + α/2 + α/2

]
P
(
Wobs

nS
≥ ϕ

)
+

[
1− 1 + α/2 + α/2

]
P
(
Wobs

nS
< ϕ

)
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= α · P
(
Wobs

nS
≥ ϕ

)
+ α · P

(
Wobs

nS
< ϕ

)
= α ·

[
P
(
Wobs

nS
≥ ϕ

)
+ P

(
Wobs

nS
< ϕ

)]
= α ·

[
1

]
= α

Thus we have that the Type 1 Error remains at our pre-defined rate of α regardless of the

CR results and estimation itself.

Numerical Type 1 Error

Table 3.12: Numerically derived Type 1 Error of our three-step adaptive trial where NT is
estimated from Equation 3.2 using ES = 1−0

σ
, α = 0.05, β = 0.2, and p0. ROC estimation

follows the posterior probability method with δL = p0 − 0.05, δU = p0 + 0.05, and πS =

πM = 0.85. ITT estimations follows ÎTTA1 when augmented intervention is implemented

and ÎTT S when augmented intervention is not implemented, both defined in Section 3.4.2.
Similar results are obtained using Indep for ITT estimation.

p0 = 0.50 p0 = 0.75

nS

NT
= 0.1 nS

NT
= 0.2 nS

NT
= 0.1 nS

NT
= 0.2

ptrue ES = 0.25 ES = 0.50 ES = 0.25 ES = 0.50 ES = 0.25 ES = 0.50 ES = 0.25 ES = 0.50

0.75p0 0.0484 0.0497 0.0501 0.0494 0.0499 0.0545 0.0494 0.0495
0.90p0 0.0498 0.0490 0.0476 0.0503 0.0542 0.0489 0.0470 0.0483
p0 0.0511 0.0501 0.0498 0.0516 0.0531 0.0469 0.0523 0.0525

3.8.3 Compliance Estimation Example

For a trial design with assumed p0 = 0.5, nS = 10, NT = 50, ES = 1.3, α = 0.05, Table 3.13

presents the Power of the trial given the true compliance ptrue.

Table 3.13: Trial Power, 1− β, given nS = 10, NT = 50, ES = 1.3, α = 0.05 and ptrue.

ptrue

0.30 0.35 0.40 0.425 0.45 0.50 0.55 0.60 0.65 0.70

1− β 0.496 0.624 0.739 0.789 0.833 0.901 0.947 0.974 0.988 0.995
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Posterior Probability Method

Table 3.14: Posterior probability that the compliance probability is greater than δU or less
than δL given the observed compliance

∑nS

i=1Wi(1, 0).

δL δU∑nS

i=1Wi(1, 0) 0.30 0.35 0.40 0.425 0.45 0.50 0.55 0.60 0.65 0.70

0 0.980 0.991 0.996 0.998 0.999 0.001 0 0 0 0
1 0.887 0.939 0.970 0.979 0.986 0.006 0.002 0.001 0 0
2 0.687 0.800 0.881 0.911 0.935 0.033 0.015 0.006 0.002 0.001
3 0.430 0.574 0.704 0.760 0.809 0.113 0.061 0.029 0.012 0.004
4 0.210 0.332 0.467 0.536 0.603 0.274 0.174 0.099 0.050 0.022
5 0.078 0.149 0.246 0.304 0.367 0.500 0.367 0.246 0.149 0.078
6 0.022 0.050 0.099 0.133 0.174 0.726 0.603 0.467 0.332 0.210
7 0.004 0.012 0.029 0.043 0.061 0.887 0.809 0.704 0.574 0.430
8 0.001 0.002 0.006 0.009 0.015 0.967 0.935 0.881 0.800 0.687
9 0 0 0.001 0.001 0.002 0.994 0.986 0.970 0.939 0.887
10 0 0 0 0 0 1 0.999 0.996 0.991 0.980

Indifference Zone Method, α = 0.05, 95% Credible Interval

Table 3.15: Posterior credible intervals of the compliance probability given the observed
compliance

∑nS

i=1Wi(1, 0) and an indicator if pL < δL and pU > δU .

δL δU∑nS

i=1Wi(1, 0) CI (pL, pU) 0.30 0.35 0.40 0.425 0.45 0.50 0.55 0.60 0.65 0.70

0 (0.002, 0.285) 1 1 1 1 1 0 0 0 0 0
1 (0.023, 0.413) 1 1 1 1 1 0 0 0 0 0
2 (0.060, 0.518) 1 1 1 1 1 1 0 0 0 0
3 (0.109, 0.610) 1 1 1 1 1 1 1 1 0 0
4 (0.167, 0.692) 1 1 1 1 1 1 1 1 1 0
5 (0.234, 0.766) 1 1 1 1 1 1 1 1 1 1
6 (0.308, 0.833) 0 1 1 1 1 1 1 1 1 1
7 (0.390, 0.891) 0 0 1 1 1 1 1 1 1 1
8 (0.482, 0.940) 0 0 0 0 0 1 1 1 1 1
9 (0.587, 0.977) 0 0 0 0 0 1 1 1 1 1
10 (0.715, 0.998) 0 0 0 0 0 1 1 1 1 1
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Predictive Probability Method, θT = 0.90

Table 3.16: Predictive probability that the compliance probability will be greater than δU
or less than δL given the observed compliance

∑nS

i=1Wi(1, 0) and the future NT − nS = 40
compliance observations.

δL δU∑nS

i=1Wi(1, 0) 0.30 0.35 0.40 0.425 0.45 0.50 0.55 0.60 0.65 0.70

0 0.952 0.982 0.991 0.994 0.996 0 0 0 0 0
1 0.756 0.880 0.930 0.947 0.961 0 0 0 0 0
2 0.440 0.642 0.752 0.797 0.837 0.003 0.001 0 0 0
3 0.173 0.347 0.475 0.538 0.599 0.020 0.006 0.002 0.001 0
4 0.044 0.131 0.218 0.269 0.325 0.087 0.033 0.015 0.005 0.001
5 0.007 0.033 0.069 0.095 0.125 0.249 0.125 0.069 0.033 0.007
6 0.001 0.005 0.015 0.022 0.033 0.503 0.325 0.218 0.131 0.044
7 0 0.001 0.002 0.003 0.006 0.759 0.599 0.475 0.347 0.173
8 0 0 0 0 0.001 0.922 0.837 0.752 0.642 0.440
9 0 0 0 0 0 0.986 0.961 0.930 0.880 0.756
10 0 0 0 0 0 0.999 0.996 0.991 0.982 0.952

3.8.4 Covariance and Correlation Derivations

Covariance

Consider a model where Yi(1, 0) = g(Yi(0, 0),Wi(Z), Ti, ϵi) and Yi(1, 1) = h(Yi(0, 0),Wi(Z), Ti, δi)

for some functions g(·) and h(·), where Yi(0, 0) ∼ N
(
µ0, σ

2
0

)
, Ti ∼ N

(
µ1, τ

2
1

)
, ϵi ∼ N

(
0, τ 2ϵ

)
,

and δi ∼ N
(
0, τ 2δ

)
, and each variable mutually independent for all i. Table 3.17 defines g(·)

and h(·).

Table 3.17: Potential response outcomes assumptions conditional on potential compliance
outcomes, for a model which sets the potential outcomes as a function of one another.

Wi(1, 0) Wi(1, 1) Yi(1, 0) Yi(1, 1)

1 1 Yi(0, 0) + Ti + δi Yi(0, 0) + Ti + ϵi
0 0 Yi(0, 0) + δi Yi(0, 0) + ϵi
0 1 Yi(0, 0) + δi Yi(0, 0) + Ti + ϵi
1 0 Yi(0, 0) + Ti + δi Yi(0, 0) + ϵi

Conditional on the potential compliance outcomes, we can derive the covariance of each
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pair of potential response outcomes using the assumptions above. For example we derive

the covariance of Yi(1, 0) and Yi(0, 0) when Wi(1, 0) = 1 and Wi(1, 1) = 1. The derivations

follow similarly for the other covariance values. For notation convenience, we let Wi11 =(
Wi(1, 0) = 1,Wi(1, 1) = 1

)
.

Cov
(
Yi(1, 0), Yi(0, 0)|Wi11

)
= E

(
Yi(1, 0) · Yi(0, 0)|Wi11

)
− E

(
Yi(1, 0)|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
= E

([
Yi(0, 0) + Ti + δi

]
· Yi(0, 0)|Wi11

)
− E

([
Yi(0, 0) + Ti + δi

]
|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
= E

([
Yi(0, 0)

2 + TiYi(0, 0) + δiYi(0, 0)
]
|Wi11

)
− E

(
Yi(0, 0)|Wi11

)2
− E

(
Ti|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
− E

(
δi|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
= E

(
Yi(0, 0)

2|Wi11

)
+ E

(
TiYi(0, 0)|Wi11

)
+ E

(
δiYi(0, 0)|Wi11

)
− E

(
Yi(0, 0)|Wi11

)2
− E

(
Ti|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
− E

(
δi|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
= E

(
Yi(0, 0)

2|Wi11

)
+ E

(
Ti|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
+ E

(
δi|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
− E

(
Yi(0, 0)|Wi11

)2
− E

(
Ti|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
− E

(
δi|Wi11

)
· E
(
Yi(0, 0)|Wi11

)
= E

(
Yi(0, 0)

2|Wi11

)
− E

(
Yi(0, 0)|Wi11

)2
= V ar

(
Yi(0, 0)|Wi11

)
= σ2

0
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Correlation

Under the model assumption outlined in Appendix 3.8.4, we can similarly derive the corre-

lation of two potential response outcomes,

ρYi(1,0),Yi(0,0)|Wi11
=

Cov
(
Yi(1, 0), Yi(0, 0)|Wi11

)
√
V ar

(
Yi(1, 0)|Wi11

)√
V ar

(
Yi(0, 0)|Wi11

)
=

σ2
0√(

σ2
0 + τ 21 + τ 2δ

)
· σ0

=
σ0√(

σ2
0 + τ 21 + τ 2δ

)
3.9 Compliance Model Comparison

Table 3.18: Model comparison between conditional independence of the compliance statuses
(IndepW) against the assumption that compliers to the standard intervention always comply
to the augmented intervention (CorrW). Four configurations each replicated 100 times and
presented as the ITT estimate, its sampling variance, and its mean bias. Corr is the setting
defining the compliance generation true to CorrW, Indep follows IndepW, BadAug gener-
ates compliance such that augmented intervention has worse compliance than the standard
intervention, and finally IncW improves compliance with no effect of covariates from the
standard to augmented intervention.

Simulation Model ˆITT Var( ˆITT ) ˆITT Bias

C
or
r CorrW 0.751 0.00606 0.0151

IndepW 0.739 0.00612 0.0028

In
d
ep CorrW 0.606 0.00542 0.0103

IndepW 0.600 0.00536 0.0042

B
ad

A
u
g CorrW 0.303 0.00383 0.0385

IndepW 0.288 0.00279 0.0239

In
cW

CorrW 0.662 0.00606 0.0037

IndepW 0.665 0.00623 0.0071
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Chapter 4
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regression model with cyclic splines

for analysis of TDP-43 on the ALS

disease spectrum
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4.1 Introduction

Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease.

Approximately 10% of ALS affected individuals have other affected family member (familial

ALS), the remaining individuals have no prior family history (sporadic ALS) (Mejzini et al.,

2019). ALS is characterized by motor function impairment , and many ALS patients also ex-

perience cognitive and behavioral symptoms that resemble those of frontotemporal dementia

(Rusina et al., 2021). The ALS disease spectrum can be characterized by the RNA-binding

protein, TDP-43. This characterization exists in both familial and sporadic ALS (Fisher

et al., 2023). Defining the role of TDP-43 in the neurodegeneration process can lead to

treatment development of ALS.

The complexity and heterogeneity of ALS makes early diagnosis a challenge (Zarei et al.,

2015). Moreover, there is no single diagnostic test for ALS, but only a combination of tests

that are used to rule out other diagnoses (Zarei et al., 2015). There is currently no known

treatment that stops or reverses the progression of ALS, but there are some treatments

that can prolong survival, reduce the rate of decline, or help managing symptoms (Zarei

et al., 2015). Understanding the genetics and molecular mechanisms underlying ALS has

proven challenging because of the obstacles in acquiring living tissue or cells from the central

nervous system of ALS patients (Mejzini et al., 2019). One way to learn about human biology

and disease is by using animal models. Animal models enable researchers to manipulate

genetics and environmental factors to investigate their roles in development, behavior, and

health outcomes of a disease. Mice models are frequently used because of their phylogenetic

proximity and physiological resemblance to humans. (Perlman, 2016). Knock-in mouse

model is a mouse model in which specific genes are replaced or mutated (Doyle et al., 2011).

These mouse models enable to clarify gene expression pattern, replace a gene with a related

gene to study the effect of subtle variations between genes, or alter a gene to mimic human

mutations that lead to a gain or change of function (Nilles and London, 2007). To investigate

the contribution of TDP-43 to impaired cognition, White et al. (2018) created a knock-in
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mouse model with a human mutation in the mouse Tardbp gene.

Many studies that utilize mouse models to examine behavior, motor, and cognitive func-

tions are generally performed using data that are collected over short time periods while

the mice undergo a single test (Alfieri et al., 2014; Mar et al., 2013; Heath et al., 2015).

For example, in the mouse model developed by Alfieri et al. (2014), one behavioral test

assessed the grip strength of mice by having each mouse grasp a wire cage, and recording

the time to fall from the cage to a soft bedding below. Commonly, multiple single tests are

performed to change multiple behaviors. However, to perform comprehensive phenotypic

analyses, it is preferable to consider multiple mouse behaviors simultaneously over longer

duration. However, performing these tasks manually are generally costly and may not be

reproducible.

The automated home-cage behavioral phenotyping of mice (ACBM) (Jhuang et al., 2010)

is a computer vision system that is trained with manually annotated behaviors of interest and

tracks these behaviors in freely behaving mice in cages. The ACBM enables investigators to

record and analyze multiple behaviors over multiple days for multiple mice. ACBM is trained

on manual annotation of behaviors, and is then used to predict the annotated behavior on

future camera frames. In cross validation, the average agreement of ACBM with human

annotations was 78% for individual behavior and 83% across all individual frames. Using

the frame-level predicted annotation, the ACBM algorithm aggregates the data to complete

hour by summarizing the number of seconds that a mouse perform a specific behavioral task.

Analysis of Variance (ANOVA) and repeated-measure ANOVA are commonly used statis-

tical tools to compare two or more types of animals across multiple behavioral tasks (Alfieri

et al., 2014; White et al., 2018; Heath et al., 2015). The ANOVA model may produce unreli-

able inference and predictions when the results of a test are correlated over time and within

mice, as well as when the outcomes are non-Normally distributed (Monohan, 2008; Rice,

1995). The repeated measures ANOVA, attempts to address correlations within the same

mouse, but may still produce unreliable results and predictions when trends are not linear
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over time (Mundo et al., 2022), or when the data is bounded (Hutmacher et al., 2011; Jan-

icki, 2019). The results produced by the ACBM algorithm are correlated across behaviors,

bounded, non-Normally distributed, and are repeated for each mouse across days and hours.

Following a Bayesian framework, we compare the goodness of fit of multiple models to

data annotated by the ACBM algorithm over 5 days for 20 mice. We show that ANOVA,

repeated measure ANOVA and transformed values repeated measures ANOVA models result

in poor model fit. We propose a hierarchical zero-inflated generalized Dirichlet multinomial

regression model (abbreviated ZIHGDM) (Tang and Chen, 2018) with cyclic splines to model

the time mice spent performing certain behaviors at each circadian hour. This model can

integrate periods in which mice do not perform certain behaviors, correlation between the

time spent performing the different behaviors, repeated measurement for each mouse and

day of the week, and cyclic effects of hours within a day. ZIHGDM outperforms existing

models by providing accurate posterior predictive checks of multiple test statistics. Using

ZIHGDM we identify phenotypic differences in behavior time between TDP-43 and WT mice

at circadian hours that are not detected by the hierarchical Dirichlet regression model with

cyclic splines or the hierarchical multivariate Normal-Normal model with cyclic splines.

The paper proceeds as follows: Section 2 provides a description of the mice data. Sec-

tion 3 and 4 considers separate Bayesian ANOVA models and Bayesian multiple ANOVA

models to analyze the data, and describes the procedures that were used to examine the fit

of the models. Sections 5 and 6 describe hierarchical models and hierarchical spline models,

respectively, as well as their fit with the data. Section 7 introduces the hierarchical Dirich-

let regression model with cyclic splines. Section 8 presents the zero-inflated hierarchical

generalized Dirichlet multinomial regression model with cyclic splines. Section 9 compares

ZIHGDM to hierarchical Normal and Dirichlet models with cyclic splines. Section 10 pro-

vides discussion and conclusions.
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4.2 Description of Data

Our study comprise of ACBM generated output on 20 mice, aged 180 days, across 5 days.

Equal numbers of mice were recorded to have 10 TDP-43 and 10 WT (Wild-Type, control)

mice. Each type of mouse had equal numbers of male and female mice. Each recording day

consisted of 12 hours of light and darkness. The recording of each mouse was annotated

for 9 possible behaviors at each second using ACBM (Jhuang et al., 2010). The 9 mutually

exclusive behaviors included drinking, eating, eating by hand (EBH), grooming, hanging,

rearing, resting, sniffing, and walking. Using the annotated data per second, the data was

aggregated to the number of seconds in hour j ∈ {0, . . . , 23} on day k ∈ {1, . . . , 6} that

mouse i ∈ {1, . . . , 20} was performing each of the 9 behaviors, Yijk = {Yijk1, . . . , Yijk9},

where
∑9

m=1 Yijkm = 3600 and Yijkm ≥ 0, ∀ i, j, k. Figure ?? presents the median observed

behavior times across the 20 mice at each hour for all 9 behaviors, stratified by TDP-43 and

WT mice.

For mouse i, define Ti = 1 for genotype TDP-43 and Ti = 0 for genotype WT, and define

Gi = 1 for male and Gi = 0 for female mice, for all i. For each hour of observation j, define

Hijk = Hj = j. We suppress additional indices for Ti, Gi, and Hj due to redundancy. In

general, for observation ijk, let Xijk represent the vector of P covariates.

Each mouse was recorded for 120 hours. Because mice recording did not begin at hour

0 of day 1, 6 calendar days were used to complete these hours. Two mice were missing

one hour of observation, one from the test and control group. This missing hour was not

related to the 9 behaviors or any other variables in the dataset and were considered missing

completely at random. The total number of observations, N , across all mice was 2398 hours.

Let Y = {Yijk} be the N × 9 matrix of behavior times observed.
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Figure 4.1: Median observed behavior time for each behavior at each hour, stratified by
TDP-43 and WT mice

4.3 Bayesian ANOVA Model

Because we were interested in examining the fit of the different models using multiple test

statistics as well as having the capability to extend the models with latent structures, we

decided to rely on a full Bayesian approach.

To be consistent with previously implemented statistical analysis with ACBM data we

relied on models that assumed that either Yijkm or a transformation of it are conditionally

Normally distributed. The two-way ANOVA model considers the effects of two factors on an

outcome of interest, where each factor has two or more levels (Rice, 1995). The observation

produced by ACBM, Yijkm, are bounded between 0 and 1. To satisfy the ANOVA normality

assumption we applied a transformation g(xi) =
[
1 + exp

{
log(xi+1(xi=0))−x̄

σx

}]−1

to Yijkm,

where x̄ and σx are the sample mean and sample standard deviation of x, respectively.

Formally, Bayesian ANOVA model that we examined included an indicator variable for
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TDP-43 genotype and the time of the day,

g(Yijkm) = µm + αmTi + βjm + ϵijkm (1)

where µm is the grand mean response for behavior m, αm is the association between TDP-

43 genotype and behavioral outcome m, βjm is the effect of the hour of observation for

j ∈ {1, . . . , 23}, and ϵijkm are independently distributed as N(0, σ2
m). To complete the

Bayesian model we assume that p(µm, αm, βjm, σm) = p(µm|σm)p(αm|σm)p(βjm|σm)p(σm),

and p(µm|σm) ∝ 1, p(αm|σm) ∝ 1, p(βjm|σm) ∝ 1 and σm ∼ half − tdf=3, where half − tdf

is a half Student-t prior with 3 degrees of freedom (Bürkner, 2017).

4.3.1 Test Statistics

To examine the fit of the different models we implemented a series of posterior predictive

checks (Gelman et al., 2014). For behavior m at hour j ∈ {1, . . . , 23} among TDP-43 and

WT mice, we examined the posterior predictive minimum, 25th percentile, median, 75th

percentile, and the maximum. These posterior predictive statistics were compared to the

corresponding statistics among Yijkm. The 25th, 50th and 75th percentiles assess the model’s

ability to capture the most frequently observed values. The minimum and maximum assess

the model’s ability to approximate boundary conditions and predict the extreme-valued

observations.

4.3.2 Computation

Many Bayesian models do not have an analytically closed form or are based on large num-

ber of parameters (Gelman et al., 2014). To make inference with such models, a more

elaborate computational method, such as Markov chain Monte-Carlo (MCMC) algorithms,

are required. We implemented all of the models using the Stan software (Carpenter et al.,

2017). Stan allows researchers to define a wide variety of probability models. Posterior
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samples from these models are obtained using a No-U-Turn Sampler, which is a MCMC

algorithm that is similar to the Hamiltonian Monte Carlo but removes the requirement of

choosing the number-of-steps parameter (Hoffman and Gelman, 2014). To ensure conver-

gence of the MCMC algorithm we examined the improved R̂ statistic (Vehtari et al., 2021)

and autocorrelation plots.

4.3.3 ANOVA Results

We generate 4000 samples with from the posterior distribution based on Equation (1). We

discard the first 500 samples and conducted posterior predictive checks with the remaining

samples. Appropriate convergence is achieved as indicated by the R̂ values remaining at

or below 1.1 for each of the parameters and the trace plot of all the parameters displaying

convergence to stable distribution (data not shown).

The posterior predictive plots for each behavior indicate a poor model fit such that the

solid red and blue lines (representing observed quantities of WT and TDP-43 mice, respec-

tively) are frequently outside or on the border of their correspondingly colored shaded regions

(representing predicted quantities) (Appendix 4.11.1). In particular, Drink, Eat, and Hang

behaviors do not capture the median time at most circadian hours. Although some behaviors

do capture the median time at many hours, such as Groom and Sniff, none of the behaviors

capture the maximum observed time for most circadian hours. Each behavior has predictions

for minimum below 0 and maximum above 1, both of which are impossible for the observed

data. Separate ANOVA models could not model the dependency that exists between be-

haviors within any given hour. Assumptions of normality, independence, and homogeneous

variance of the outcomes may not be completely satisfied even after transformation.
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4.4 The Multivariate Normal-Normal Model

The ANOVA model does not account for the relationship between behaviors. At each hour

j, the sum of seconds performing behaviors equals 3600 seconds, therefore an increase in

time spent performing behavior m must result in a decrease in cumulative time performing

the remaining 8 behaviors. A possible model to address this limitation is the multivariate

normal distribution. Let Ỹijk = g(Yijk) be the 9-dimensional vector of transformed Yijk,

for g(·) defined in Section 4.3. Let Xijk = {X1ijk, Hj, Ti, Gi}, where X1ijk = 1 represents an

intercept, and Hj, Ti and Gi as in Section 4.2. The likelihood of the multivariate Normal-

Normal model is,

L(βββ,ΣΣΣ|Ỹ,X) =
20∏
i=1

23∏
j=0

6∏
k=1

(2π)−
9
2det(ΣΣΣ)−

9
2 e−

1
2
(Ỹijk−Xijkβββ)

TΣΣΣ−1(Ỹijk−Xijkβββ), (2)

where Ỹ = {Ỹijk}, X = {Xijk}, βββ = {βpm, p = 1, . . . , P ;m = 1, . . . , 9} represents the

covariate parameters and ΣΣΣ represents the covariance matrix.

To complete the Bayesian model we assumed that apriori,

βββT
m ∼ NP (000, 5

2III)

ΣΣΣ ∼ Inv −Wish9(III)

for m = 1, . . . , 9 where βββT
m represents the P -dimensional vector of parameter effects for the

mth behavior. This model allows the covariates to have separate effects for each behavior

m and describe the conditional correlations between behaviors with ΣΣΣ. We implement the

No-U-Turn Sampler through Stan to obtain posterior samples.

4.4.1 Multivariate Normal-Normal Model Results

Models were run for 4000 simulations with the first 500 being warm-up runs. Convergence

was assessed using the R̂ values and visual inspection of trace plots. The R̂ of the param-
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eters were at or below 1.1. Model fit was assessed by the posterior predictive plots for all

five test statistics which indicated a poor model fit due to lack of accurate predictions of

the observed behavior times (Appendix 4.11.2). Each plot had low containment of the ob-

served test statistics within each 95% credible interval for all behaviors. Model performance

was similar across behaviors such that the minimum and 75th percentile contained their re-

spective observed values more frequently than the remaining three test statistics. However,

the minimum had credible intervals partially below zero for each behavior. Similarly, the

maximum had credible intervals partially above one for each behavior. These violated the

constraints of the data to be between zero and one following the transformation described

in Section 4.3. For most behaviors, the observed median was generally outside the credible

intervals at the earliest and latest hours of the day. For Hang and Groom, the observed

median was outside of the credible intervals during the middle circadian hours, as well. For

all behaviors, observed maximums were almost entirely outside of their respective credible

intervals.

4.5 The Multivariate Hierarchical Normal-Normal Model

In settings where data is collected longitudinally, there may be correlation between obser-

vations recorded by the same subject. The multivariate normal model in Section 4.4 does

not account for correlation for repeated measurement for the same mouse. Additionally,

there may be correlation between observations within the same day. By extending to the

multivariate hierarchical normal model we can account for these correlations. We specified

additional effects through the mean of the distribution. Define Xijk as in Section 4.4. The
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likelihood function is as follows,

L(βββ,ΣΣΣ,λλλ,δδδ|Ỹ,X) =
20∏
i=1

23∏
j=0

6∏
k=1

(2π)−
9
2det(ΣΣΣ)−

9
2

× exp

(
− 1

2
(Ỹijk − (Xijkβββ + λi111 + δk111))

T

ΣΣΣ−1(Ỹijk − (Xijkβββ + λi111 + δk111)

) (3)

where λλλ = {λi} is a 20-dimensional vector representing the effect of each mouse and δδδ = {δk}

is a 6-dimensional vector representing the effect of each day. We set the prior distributions

for the effects of λλλ and δδδ as follows,

λi ∼ N(0, τλ)

δk ∼ N(0, τδ)

for all i ∈ {1, . . . , 20} and k ∈ {1, . . . , 6}. The distributions for βββ andΣΣΣ are defined identically

as in Section 4.4. Posterior samples from this model are obtained from the No-U-Turn

Sampler through Stan, as in Section 4.3.

Again this model achieved appropriate convergence indicated by each of the parameters

R̂ values and visual inspection of trace plots. The model fit was assessed through posterior

predictive plots for the test statistics described in Section 4.3. Model fit was similarly poor

to the multivariate normal-normal model for each test statistic, shown in Appendix 4.11.3.

For all behaviors, the observed minimum and 75th percentile values were contained within

their respective credible intervals at most hours. Containment of the observed values within

credible intervals decreased in frequency from the median, to the 25th percentile, and finally

to the maximum, for all behaviors. The minimum and maximum credible intervals were

again partially below zero and above one, respectively, violating the constraints of the data.
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4.6 The Multivariate Hierarchical Normal-Normal Model

with Cyclic Splines

The posterior predictive plots from the hierarchical normal-normal model (Section 4.5) in-

dicate that assuming a linear effect of time may not be appropriate. Therefore, we further

extend the multivariate hierarchical normal-normal model to allow for a non-linear effect for

the hour of observation. Cyclic splines are an appropriate method to capture a non-linear

effect that varies over a repeating time-frame (e.g. seasons, months, years). Cyclic splines

require endpoints to have similar values to satisfy the periodical nature of the effect. This

is suitable, for example, for the hourly effect such that H23 from day k and H0 from day

k + 1 produce similar responses. Let Xijk = {X1ijk, Ti, Gi}, where X1ijk = 1 represents

an intercept, and Ti and Gi as in Section 4.2. Introducing the spline into the mean of the

likelihood function takes the following form,

L(βββ,ΣΣΣ,λλλ,δδδ,ααα,θθθ|Ỹ,X,H)

=
20∏
i=1

23∏
j=0

6∏
k=1

(2π)−
9
2det(ΣΣΣ)−

9
2

× exp

(
− 1

2

(
Ỹijk −

(
Xijkβββ + λi111 + δk111 +ψψψ (Hj) +ααα⊙ψψψ (Hj)Ti

))T

ΣΣΣ−1

(
Ỹijk −

(
Xijkβββ + λi111 + δk111 +ψψψ (Hj) +ααα⊙ψψψ (Hj)Ti

)))
(4)

whereH = {Hj}, ψψψ (Hj) is a 9-dimensional vector of cyclic splines on the hour of observation,

ααα = {αm} represents the 9-dimensional vector of parameter effects for the interaction between

the cyclic splines, ψψψ (Hj), and genotype, Ti, and ⊙ represents element-wise multiplication.

We can express the cyclic splines as,

ψm (Hj) =
L∑
l=1

θlm Cl (Hj) (5)
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for all m ∈ {1, . . . , 9}, where θθθm is an L-dimensional vector of basis coefficients for behavior

m, and Cl(·) is the basis function for the cyclic spline. To complete the Bayesian regression

model we set prior distributions for θθθ = {θlm} and ααα,

θlm ∼ N
(
0, 1
)

αm ∼ N
(
0, 52

)
for all l ∈ {1, . . . , L} and m ∈ {1, . . . , 9}. The remaining parameters, βββ, ΣΣΣ, λλλ, and δδδ are

defined identically to the previous model in Section 4.5. The No-U-Turn Sampler through

Stan is implemented to obtain posterior samples, as in Section 4.3.

Again the model converged as indicated by the R̂ value being at or less than 1.1 for each

parameter and trace plots indicating a stable distribution. The posterior predictive plots

identified this to be a better fitting model such that the observed values were more frequently

contained in the credible intervals compared to previous models for all behaviors, shown in

Appendix 4.11.4. The test statistics characterizing the interior of the distribution contain

the observed value within their credible intervals at many hours, for several behaviors, such

as EBH, Groom, and Sniff. However, across test statistics and behaviors, such as Drink and

Hang, many observed values were outside the credible intervals. For all behaviors, results

for the minimum test statistic was similar to the previous models. The maximum test

statistic improved compared to previous models for each behavior, having some observed

values correctly predicted by the model, although most were overestimated. However, both

minimum and maximum credible intervals violated the constraints of the data, predicting

values below zero and above one, respectively.

4.7 Hierarchical Dirichlet Model with Cyclic Splines

The multivariate normal-normal models fail to account for
∑M

m=1 Ỹijkm = 1 for all i, j, and k.

This shortcoming leads us to consider extending our methods to an alternative distribution.
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The Dirichlet distribution imposes an appropriate constraint on the sum of the outcomes

for a multivariate response. This model is suitable following a transformation of our data to

be proportional values, such that Ỹijkm = g(Yijkm) =
Ỹijkm∑9

m=1 Ỹijkm
∀ i, j, k,m. We let Xijk be

defined as in Section 4.6. For observation Ỹijk the Dirichlet distribution takes the following

form,

f
(
Ỹijk1, . . . , Ỹijk9|γ1, . . . , γM

)
=

1

B(γγγ)

M∏
m=1

Ỹ
(γm−1)
ijkm (6)

where γγγ = {γm}, γm > 0 for all m,
∑M

m=1 Ỹijkm = 1 for all i, and B(γγγ) =
∏M

m=1 Γ(γm)

Γ(
∑M

m=1 γm)

represents the multivariate beta function. Note that the mean response of each outcome is

E(Ỹijkm) = γm
γ0
, where γ0 =

∑M
m=1 γm, and variance V ar(Ỹijkm) = γm(γ0−γm)

γ2
0(γ0+1)

(Douma and

Weedon, 2019).

An alternative parameterization of the Dirichlet distribution allows direct specification

of the mean responses. We obtain this paramterization by making the transformations

γm = µijkmϕijk and γ0 = ϕijk, where E(Ỹijkm) = µijkm and V ar(Ỹijkm) =
µijkm(1−µijkm)

ϕijk+1

(Douma and Weedon, 2019).

Dirichlet regression links the linear predictor, ηηηijk = {ηijkm}, with the mean responses,

µijkm, through some link function. The multinomial logit function is an appropriate link for

this regression, such that

µijkm =
eηijkm∑M

m=1 e
ηijkm

(7)

µijkM =
1∑M

m=1 e
ηijkm

(8)

where the first M − 1 outcome means are specified through the function (7) of the linear

predictor ηijkm and theM th linear predictor ηijkM = 0 to impose the constraint on the sums,∑M
m=1 µijkm = 1. The precision parameter ϕijk is modelled through a log link function such

that log(ϕijk) = Xijkξξξ, for parameters ξξξ = {ξp}, p = 1, . . . , P .

We specify the linear predictor of the Dirichlet regression to be the mean specification as
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defined in the hierarchical multivariate normal-normal model with cyclic splines from Section

4.6,

ηηηijk = Xijkβββ + λi111 + δk111 +ψψψ (Hj) +ααα⊙ψψψ (Hj)Ti (9)

where each variable is defined identically to Section 4.6 with the same prior distributions.

This model accounts for the covariates of interest, correlated observations due to repeated

observations within mice and days, a non-linear effect for hour of observation, and an inter-

action between the spline for hour of observation and genotype.

The test statistics and computation for this model followed the methods described in Sec-

tion 4.3, respectively, with further guidance for model implementation in Stan by Sennhenn-

Reulen (2018). Here we define Ỹijkm = g(Yijkm) =
Yijkm+10∑9

m=1(Yijkm+10)
∀ i, j, k,m, to satisfy

the constraint of the Dirichlet distribution such that
∑9

m=1 Ỹijkm = 1 ∀ i, j, k and enforce

non-zero probabilities for each behavior m for all i, j, and k.

The model reached appropriate convergence determined by appropriate R̂ values and

trace plot inspection (data not shown), and was assessed for fit using the posterior predictive

plots across each hour of observation (Appendix 4.11.5). Overall, specific behaviors, such as

Eat and Groom, contained the observed value within their credible intervals at most hours,

across all test statistics. However, there was varied model success within each test statistic

across behaviors. For the interior distribution test statistics, the model failed to accurately

predict values that were observed at more extreme ends of the distribution, i.e. very large

or small amounts of time performing a behavior. For these interior test statistics, behaviors

Drink, Hang, Rear, and Walk had predictions too large during the middle hours of the day.

Whereas the Rest behavior had predictions too small during the same timeframe and same

test statistics. Across behaviors, minimum values were generally predicted well with some

observed values being outside the credible intervals due to the additional 10 seconds added to

each observation, although this difference was small. Observed maximum values were poorly

predicted but still improved compared to previous models. The observed Drink and Walk

maximums for each hour were not contained in all but four combined hours of their credible
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intervals. However, neither the minimum or maximum credible intervals predicted values

outside of the constraints requiring observations to be between zero and one, inclusive.

4.7.1 Skewed Link Function

The logistic function is a symmetric link function which may not be appropriate for all data.

The hierarchical Dirichlet model with cyclic splines under-performs when predicting values

close to zero which may be indicative of an inappropriate link function. Skewed, or asym-

metrical, link functions may be a suitable method to improve this performance. Caron et al.

(2018) have studied the performance of and compared several symmetric and asymmetric

link functions. Each function was considered in the binary and multinomial settings, with

the Weibull function performing the best across evaluation metrics for multinomial data.

However, the Weibull link function requires a non-negative linear predictor which we cannot

guarantee. An appropriate, asymmetric alternative that does not restrict the linear predictor

values is the log-log link, g−1(ηijkm) = exp(−exp(ηijkm)). We can use the log-log link for the

Dirichlet regression such that the mean responses are defined as,

µijkm =
e−e

ηijkm∑M
m=1 e

−e
ηijkm

(10)

µijkM =
e−1∑M

m=1 e
−e

ηijkm
(11)

where we again set the M th linear predictor equal to zero to constrain the sum of the means

to equal one. The model was run identically in construction, computation, and analysis as

the hierarchical Dirichlet model with cyclic splines.

Overall, model performance for predicting the observed values was similar to the previous

hierarchical Dirichlet model (Appendix 4.11.6). Observed Eat and Groom behaviors were

predicted well across most test statistics whereas Hang and Rear, for example, had varying

success. Notably, the credible intervals for Rest and Walk contained the observed values

much less frequently with this asymmetric link function compared to the symmetric link.
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From hours 7 to 17 the model predicted values too low for Rest at each test statistic except

the minimum. The same held true for Walk with predicted values too large during the same

timeframe and test statistics.

4.8 Zero-Inflated Hierarchical Generalized Dirichlet Multi-

nomial (ZIHGDM) Model with Cyclic Splines

To account for the high frequency of zero responses we consider the zero-inflated generalized

Dirichlet multinomial regression model (ZIGDM) (Tang and Chen, 2018). LetXijk be defined

as in Section 4.6. We begin by summarizing the ZIGDM model from Tang and Chen (2018)

in the context of our data. Let ∆ijk∆ijk∆ijk = {∆ijkm} represent the vector of binary (zero/non-zero)

outcomes for the first 8 behaviors. We assume

∆ijkm ∼ Bernoulli (πijkm) (12)

where πijkm represents the probability that mouse ijk will have a zero response for behavior

m ∈ {1, . . . , 8}. Similar to Section 4.7, we do not estimate any parameter effects for the last

outcome to satisfy the constraint of the Dirichlet distribution probabilities summing to one.

We postulate that Yijk follows a multinomial distribution with probabilities given by

Pijk = {Pijk1, . . . , Pijk9}. We construct a prior on Pijk using the Generalized Dirichlet (GD)

distribution (Tang and Chen, 2018). Specifically, let Zijk = {Zijk1, . . . , Zijk8} represent a set

of mutually independent random variables, such that each Zijkm follows a Beta distribution.

The zero-inflated GD multinomial model (ZIGDM) is,

Zijkm = 0 if ∆ijkm = 1, Zijkm | ∆ijkm = 0 ∼ Beta
(
aijkm, bijkm

)
, m = 1, . . . , 8 (13)

Pijk1 = Zijk1, Pijkm = Zijkm

m−1∏
h=1

(1− Zijkh), m = 2, . . . , 8 (14)
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Yijk ∼Multinomial(Pijk, N) (15)

where the behavioral outcomes,Y, are integers and satisfy
∑9

m=1 Yijkm = 3600, and
∑9

m=1 Pijkm =

1 for all i, j, and k. An alternative parameterization of the Beta distribution defines

µijkm =
aijkm

aijkm + bijkm
(16)

σijkm =
1

1 + aijkm + bijkm
(17)

where µijkm and σijkm represent the mean and dispersion of the Beta distribution. We can

then link µijkm, σijkm, and πijkm to a matrix of covariates using the logit link function. We

specify µijkm and πijkm similar to the mean specification for the hierarchical Dirichlet model

such that

log

(
µijkm

1− µijkm

)
= Xijkβββ1m + λ1i + δ1k + ψ1m (Hj) + α1m ψ1m (Hj)Ti (18)

log

(
πijkm

1− πijkm

)
= Xijkβββ2m + λ2i + δ2k + ψ2m (Hj) + α2m ψ2m (Hj)Ti (19)

for all m ∈ {1, . . . , 8} and where each of the parameters on the right-hand-side of equations

(18) and (19) are defined similarly to Section 4.7. We specify the dispersion parameter,

σijkm, such that,

log

(
σijkm

1− σijkm

)
= Xijkϕϕϕm (20)

where ϕϕϕ = {ϕpm, p = 1, . . . , P ;m = 1, . . . , 8} represents a parameter matrix. It was not

required for the covariate matrix, Xijk, to be specified identically for equations (18), (19),

and (20), but was chosen as such due to the a small number of covariates.
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Let Ω represent all of the parameters in the model. We define the log likelihood to be,

log(L(ΩΩΩ | Y,X))

=
∑
i

∑
j

∑
k

log{f(Yijk | Pijk)}

+
∑
i

∑
j

∑
k

∑
m

{
∆ijkmlog(πijkm) + (1−∆ijkm)log(1− πijkm)

+ (1−∆ijkm)log{f(Zijkm | aijkm, bijkm)}
}

(21)

where f(Zijkm | aijkm, bijkm) represents the Beta distribution with parameters, aijkm =

µijkm(1/σijkm − 1) and bijkm = (1− µijkm)(1/σijkm − 1) (Tang and Chen, 2018).

The test statistics and computation of this model are similar to those described in Section

4.3 with two exceptions. First, the ZIHGDM model required greater than 4000 simulations

to provide stable estimates. Thus, the model was run for 12,000 iterations, with 2000 warm-

up iterations, and results were analyzed on a subsample of 2500 of these simulation runs.

Second, the data was transformed to ensure observations were integer values and still satisfy∑9
m=1 Yijkm = 3600 for all i, j, k.

The model reached appropriate convergence following 10,000 iterations as identified by

R̂, trace plot inspection, and the additional confirmation of sufficient effective sample size for

each of the parameters. For every behavior, and every test statistic, and at nearly every hour

of observation, the observed values were contained within their respective credible intervals

(Appendix 4.11.7). The model was able to accurately predict values across the distribution

of observed values. No predictions violated the constraints of the data, requiring values to

be between 0 and 3600. Unlike all previous models, for individual behaviors there were many

hours that had credible intervals which did not overlap between different genotypes. This

was the first model to produce non-overlapping credible intervals for any behavior between

the WT and TDP-43 mice. The ZIHGDM model was able to appropriately capture the

relationships within the data as evidenced by the posterior predictive plots. Small, moderate,

and large time spent performing a behavior was accurately predicted for all behaviors. These
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results lead us to trust this model to predict the observed data and to subsequently predict

future outcomes.

4.9 Model Comparisons

4.9.1 Estimands and Evaluation Metrics

We are interested in mouse behavior time for both TDP-43 and WT genotypes, and their

differences in behavior time. We define the following estimands: τττ 1j = E[Yijk | Ti = 1, Hj =

j] represents the mean behavior time for TDP-43 mice at hour j, τττ 0j = E[Yijk | Ti =

0, Hj = j] represents the mean behavior time for WT mice at hour j, and τττ 10j = E[Yijk |

Ti = 1, Hj = j] − E[Yijk | Ti = 0, Hj = j] represents the mean difference in behavior time

between TDP-43 and WT mice at hour j, for all j.

We obtain point estimates, τ̂ττ 1j, and 95% central credible intervals for τττ 1j directly from

the posterior distribution of the estimand of interest p(τττ 1j | Y, T = 1, H = j) for all

j ∈ {0, . . . , 23}. We obtain this posterior distribution for hour j as follows,

p(τττ 1j |Y, T = 1, H = j)

=

∫
p(τττ 1j | Y,X,ΩΩΩ, T = 1, H = j)

· p(ΩΩΩ | Y,X, T = 1, H = j) · p(X) dΩΩΩ dX

where ΩΩΩ represents each parameter in the model. We repeat this procedure similarly for τττ 0j

and τττ 10j from their respective posterior distributions.

4.9.2 Results

We perform the procedure outlined in Section 4.9.1 for the ZIHGDM, hierarchical Dirichlet

(HDIR), and hierarchical multivariate normal-normal models (HMVNN), each with cyclic

splines. To compare estimates of the estimands of interest between models, we perform the
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inverse transformation defined in Section 4.3 to the HMVNN posterior distribution to return

to the original outcome range.

Table 4.1 displays the posterior mean behavior times and 95% credible interval for TDP-

43 and WT mice at hour 12 specifically, where responses are recorded in seconds per hour.

For TDP-43 mice, the ZIHGDM model estimates less time drinking, eating, eating by hand,

rearing, and resting than the HDIR and HMVNN models. Each of the corresponding cred-

ible intervals for these behaviors were most precise for the HMVNN model, with intervals

generally less than 20 seconds in width. Similar trends were observed between models for

the WT mice.

At hour 12, the HDIR model estimated sniffing time for mice of both genotypes to be

approximately 40-50% of the estimates from the ZIHGDM and HMVNN models. For all

models, interval estimates for sniffing were generally wider than all other behaviors with

the exception of resting. The HMVNN model estimated the average time spent resting was

approximately 50% greater than estimated by the ZIHGDM and HDIR models, and more

than twice as large for WT mice compared to the ZIHGDM model.

The mean time spent hanging was estimated to be approximately three times larger for

the HDIR model compared to the ZIHGDM and HMVNN models. For this behavior, the

HVMNN model had the smallest credible intervals (interval width = 2 seconds) and HDIR

the largest intervals for this behavior (interval width = 30 seconds) which was observed for

both genotypes.

The ZIHGDM and HDIR models satisfy the constraints that sum of estimated mean

times equals 3600 for each hour. However, the HVMNN violate this constraint such that the

sum of behavior estimates at each hour is approximately 50% greater than 3600.

Across the 24 hours, results of the three models are generally similar to the patterns

described for hour 12 (Appendix 4.11.8), with the exception of resting and sniffing. Resting

estimates were larger for ZIHGDM model compared to HDIR estimates for TDP-43 mice

during early and late circadian hours. Additionally, for some early and late circadian hours,
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HDIR sniffing estimates are larger than ZIHGDM model estimates. In most behaviors,

the ZIHGDM model reported smaller mean estimates for both genotypes. The HMVNN

model violates the data constraints, generally overestimating the time spent performing

many behaviors, and has credible intervals that are exceptionally small. The HDIR model

has difficulty estimating smaller behavior times evidenced by larger mean estimates and

larger lower credible interval bounds compared to the ZIHGDM model.

Table 4.1: Mean time in seconds per hour performing each behavior at hour 12 for TDP-43
and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and hierarchical multivari-
ate normal-normal (HMVNN) models, each with cyclic splines. 95% credible intervals are
reported in parenthesis.

ZIHGDM HDIR HMVNN

Hour Behavior TDP-43 WT TDP-43 WT TDP-43 WT

12 Drink 15 (11,19) 25 (20,31) 104 (92,120) 117 (98,134) 38 (37,39) 39 (38,40)
12 Eat 148 (120,178) 101 (80,125) 169 (150,190) 136 (119,155) 505 (493,517) 472 (459,486)
12 EBH 117 (100,136) 93 (78,110) 186 (167,207) 162 (138,188) 322 (317,328) 306 (299,312)
12 Groom 493 (435,555) 464 (421,511) 486 (444,530) 455 (410,506) 744 (738,749) 740 (736,745)
12 Hang 26 (17,38) 37 (24,53) 105 (93,117) 106 (91,123) 25 (24,26) 24 (23,25)
12 Rear 116 (95,138) 150 (127,175) 149 (132,165) 171 (147,196) 381 (374,387) 399 (392,406)
12 Rest 1769 (1644,1890) 1216 (1161,1274) 1838 (1772,1904) 1848 (1781,1910) 2590 (2536,2642) 2603 (2558,2652)
12 Sniff 735 (609,863) 1288 (1210,1367) 454 (406,503) 474 (436,513) 977 (970,984) 982 (976,988)
12 Walk 182 (141,226) 225 (188,269) 109 (97,122) 132 (117,147) 86 (84,87) 90 (88,92)

Table 4.2 presents the posterior mean difference in behavior times and 95% credible

intervals between TDP-43 and WT mice at hour 12. Credible intervals that do not contain

zero-valued responses can be considered significant mean differences between the genotypes.

A positive mean difference estimate indicates that TDP-43 mice spend more time performing

the behavior than WT mice, and less time when estimates are negative.

The ZIHGDM model results from Table 4.2 indicate a significant difference between

genotypes in the time spent drinking, eating, eating by hand, rearing, resting, sniffing, and

walking at hour 12. According to ZIHGDM, TDP-43 mice spend significantly more time

eating, eating by hand, and resting while they spend significantly less time drinking, rearing,

sniffing, and walking. The HDIR and HMVNN models result in significant mean differences

for eating, rearing, and walking, with overlapping credible intervals for these three behaviors

with ZIHGDM. The HMVNN model also identifies significant mean differences for eating
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by hand, again with an overlapping credible interval to the ZIHGDM model. The HMVNN

model reports the smallest credible intervals for each of these significant mean differences.

Across all hours of the day, the HMVNN model generally results in posterior mean

behavior time differences less than 10 seconds in magnitude, with the exception of eating,

rearing, and resting (Appendix 4.11.8). The HDIR model results in smaller absolute valued

posterior mean differences at nearly every hour for all behaviors compared to the ZIHGDM

model. The ZIHGDM model reports significant mean differences for each behavior at some

hours across the day. The largest mean differences are shown for resting and sniffing whose

differences surpass 600 seconds in magnitude at their peaks.

Table 4.2: Mean difference in time (seconds/hour) performing each behavior at hour 12
between TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and hi-
erarchical multivariate normal-normal (HMVNN) models, each with cyclic splines. 95%
credible intervals are reported in parenthesis.

Hour Behavior ZIHGDM HDIR HMVNN

12 Drink -11 (-16,-5) -13 (-28,5) -1 (-2,0)
12 Eat 47 (22,73) 33 (16,51) 33 (20,45)
12 EBH 24 (6,42) 24 (-4,56) 17 (11,23)
12 Groom 29 (-25,79) 31 (-12,67) 3 (-2,8)
12 Hang -11 (-23,1) 0 (-14,13) 1 (0,2)
12 Rear -34 (-57,-13) -22 (-45,-1) -18 (-25,-11)
12 Rest 552 (413,688) -10 (-73,64) -12 (-62,32)
12 Sniff -553 (-699,-410) -20 (-64,25) -5 (-11,2)
12 Walk -43 (-87,-4) -23 (-34,-11) -4 (-6,-2)

4.10 Discussion

We developed a model to appropriately and accurately model the time mice spend performing

a set of 9 behaviors. The zero-inflated hierarchical generalized Dirichlet multinomial regres-

sion model with cyclic splines captures the relationships and characteristics of the data that

previous models were unable to do. The fully Bayesian ZIHGDM model accounts for the

covariate effects of genotype and gender, correlated observations within the same mouse and

day, and a non-linear effect of time. Importantly, this model adheres to the constraints of the
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data such that hourly sums of time must be constant and no single behavior time can exceed

the hourly sum. The ZIHGDM model takes into account the large proportion of zero-valued

observations within our data, which the previous models did not consider.

The ZIHGDM model performed better than all previous models through the posterior

predictive checks. The posterior predictive plots indicated that the ZIHGDM model was able

to accurately predict observed values at nearly every hour of the day, for every behavior,

across all 5 test statistics, for both TDP-43 and WT mice. None of the earlier models

were able to accurately predict observed values across hours for a single test statistic for

most behaviors. In addition, the ZIHGDM model was able to predict observed values with

noticeably improved precision, such that credible intervals between the genotypes at the

same hour did not overlap for many hours, across behaviors and test statistics. Again, this

was not observed for any previous model.

Subsequently, we used the ZIHGDM model determine posterior mean behavior times us-

ing the fitted parameters. We observed significant differences between the genotypes across

all behaviors at multiple hours. These differences ranged from several seconds to 600 sec-

onds in magnitude. Similar results were not observed for the posterior mean differences of

the hierarchical Dirichlet (HDIR) and hierarchical multivariate normal-normal (HMVNN)

models both with cyclic splines. Although significant mean differences were still reported

for the HDIR and HMVNN models, the magnitude of the differences were generally smaller,

with too small of variance under the HMVNN and worse precision under the HDIR, both

compared to the ZIHGDM model.

The posterior mean behavior time differences produced by ZIHGDM identify important

phenotypes of TDP-43 mice compared to WT mice. In particular, TDP-43 have signifi-

cant differences in sleep behavior with WT mice, such that TDP-43 mice are more active

throughout the dark hours and rest more during light hours of the 24 hour cycle. Similarly,

TDP-43 mice are sniffing more than WT mice during dark hours and much less during light

hours. All other mean differences in behavior are only positive or negative across the 24
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hours. Thus through resting and sniffing, we identify important differences in sleep behavior

between these two genotypes.

The ZIHGDM model remains flexible for future application to alternative datasets. Ad-

ditional covariates are able to be added to the model as needed, as well as additional hier-

archical effects. The tradeoff may be the need to run the model for more iterations than the

12,000 in Section 4.8. Furthermore, the ZIHGDM model is not limited to a single non-linear,

cyclic effect, as subsequent non-linear effects of different kinds may be added. However, the

application of this model is best suited for data under a constant constraint on the sum of

the multivariate outcomes, which may hinder its ability for widespread use. However, in

these settings, the ZIHGDM model has shown promising ability to achieve desirable results.
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4.11 CHAPTER 4 Appendix

4.11.1 ANOVA Posterior Predictive Plots

−0.2

0.0

0.2

0.4

0 5 10 15 20
Drink Hour

D
rin

k 
M

in

0.2

0.4

0.6

0 5 10 15 20
Drink Hour

D
rin

k 
25

th
 P

er
ce

nt
ile

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
Drink Hour

D
rin

k 
M

ed
ia

n

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
Drink Hour

D
rin

k 
75

th
 P

er
ce

nt
ile

0.6

0.8

1.0

1.2

0 5 10 15 20
Drink Hour

D
rin

k 
M

ax

TDP TDP − Obs WT WT − Obs

Figure 4.2: ANOVA Drink behavior posterior predictive plots.
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Figure 4.3: ANOVA Eat behavior posterior predictive plots.
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Figure 4.4: ANOVA EBH behavior posterior predictive plots.
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Figure 4.5: ANOVA Groom behavior posterior predictive plots.
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Figure 4.6: ANOVA Hang behavior posterior predictive plots.
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Figure 4.7: ANOVA Rear behavior posterior predictive plots.
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Figure 4.8: ANOVA Rest behavior posterior predictive plots.
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Figure 4.9: ANOVA Sniff behavior posterior predictive plots.

162



0.0

0.2

0.4

0 5 10 15 20
Walk Hour

W
al

k 
M

in

0.2

0.4

0.6

0 5 10 15 20
Walk Hour

W
al

k 
25

th
 P

er
ce

nt
ile

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
Walk Hour

W
al

k 
M

ed
ia

n

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
Walk Hour

W
al

k 
75

th
 P

er
ce

nt
ile

0.6

0.8

1.0

0 5 10 15 20
Walk Hour

W
al

k 
M

ax

TDP TDP − Obs WT WT − Obs

Figure 4.10: ANOVA Walk behavior posterior predictive plots.

4.11.2 Multivariate Normal-Normal Posterior Predictive Plots
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Figure 4.11: Median test statistic posterior predictive plot for the multivariate normal-
normal model.
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Figure 4.12: 25th-percentile test statistic posterior predictive plot for the multivariate normal-
normal model.
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Figure 4.13: 75th-percentile test statistic posterior predictive plot for the multivariate normal-
normal model.
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Figure 4.14: Maximum test statistic posterior predictive plot for the multivariate normal-
normal model.
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Figure 4.15: Minimum test statistic posterior predictive plot for the multivariate normal-
normal model.
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4.11.3 Hierarchical Multivariate Normal-Normal Posterior Pre-

dictive Plots
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Figure 4.16: Median test statistic posterior predictive plot for the hierarchical multivariate
normal-normal model.
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Figure 4.17: 25th-percentile test statistic posterior predictive plot for the hierarchical multi-
variate normal-normal model.
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Figure 4.18: 75th-percentile test statistic posterior predictive plot for the hierarchical multi-
variate normal-normal model.
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Figure 4.19: Maximum test statistic posterior predictive plot for the hierarchical multivariate
normal-normal model.
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Figure 4.20: Minimum test statistic posterior predictive plot for the hierarchical multivariate
normal-normal model.

4.11.4 Hierarchical Multivariate Normal-Normal with Cyclic Splines

Posterior Predictive Plots
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Figure 4.21: Median test statistic posterior predictive plot for the hierarchical multivariate
normal-normal model with cyclic splines.

168



0.2

0.4

0.6

0 5 10 15 20
Drink Hour

D
rin

k 
25

th
 P

er
ce

nt
ile

0.2

0.4

0.6

0 5 10 15 20
Eat Hour

E
at

 2
5t

h 
P

er
ce

nt
ile

 

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
EBH Hour

E
B

H
 2

5t
h 

P
er

ce
nt

ile

0.2

0.4

0.6

0 5 10 15 20
Groom Hour

G
ro

om
 2

5t
h 

P
er

ce
nt

ile

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
Hang Hour

H
an

g 
25

th
 P

er
ce

nt
ile

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
Rear Hour

R
ea

r 
25

th
 P

er
ce

nt
ile

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
Rest Hour

R
es

t 2
5t

h 
P

er
ce

nt
ile

0.2

0.4

0.6

0 5 10 15 20
Sniff Hour

S
ni

ff 
25

th
 P

er
ce

nt
ile

0.2

0.4

0.6

0 5 10 15 20
Walk Hour

W
al

k 
25

th
 P

er
ce

nt
ile

TDP TDP − Obs WT WT − Obs

Figure 4.22: 25th-percentile test statistic posterior predictive plot for the hierarchical multi-
variate normal-normal model with cyclic splines.
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Figure 4.23: 75th-percentile test statistic posterior predictive plot for the hierarchical multi-
variate normal-normal model with cyclic splines.
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Figure 4.24: Maximum test statistic posterior predictive plot for the hierarchical multivariate
normal-normal model with cyclic splines.
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Figure 4.25: Minimum test statistic posterior predictive plot for the hierarchical multivariate
normal-normal model with cyclic splines.
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4.11.5 Hierarchical Dirichlet with Cyclic Splines Posterior Pre-

dictive Plots
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Figure 4.26: Median test statistic posterior predictive plot for the hierarchical Dirichlet
model with cyclic splines.
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Figure 4.27: 25th-percentile test statistic posterior predictive plot for the hierarchical Dirich-
let model with cyclic splines.
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Figure 4.28: 75th-percentile test statistic posterior predictive plot for the hierarchical Dirich-
let model with cyclic splines.
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Figure 4.29: Maximum test statistic posterior predictive plot for the hierarchical Dirichlet
model with cyclic splines.
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Figure 4.30: Minimum test statistic posterior predictive plot for the hierarchical Dirichlet
model with cyclic splines.

4.11.6 Hierarchical Dirichlet with Skewed Link and Cyclic Splines

Posterior Predictive Plots
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Figure 4.31: Median test statistic posterior predictive plot for the hierarchical Dirichlet
model with skewed link and cyclic splines.
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Figure 4.32: 25th-percentile test statistic posterior predictive plot for the hierarchical Dirich-
let model with skewed link and cyclic splines.
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Figure 4.33: 75th-percentile test statistic posterior predictive plot for the hierarchical Dirich-
let model with skewed link and cyclic splines.
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Figure 4.34: Maximum test statistic posterior predictive plot for the hierarchical Dirichlet
model with skewed link and cyclic splines.
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Figure 4.35: Minimum test statistic posterior predictive plot for the hierarchical Dirichlet
model with skewed link and cyclic splines.
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4.11.7 Zero-Inflated Hierarchical Generalized Dirichlet Multino-

mial Model with Cyclic Splines Posterior Predictive Plots
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Figure 4.36: Median test statistic posterior predictive plot for the ZIHGDM model with
cyclic splines.
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Figure 4.37: 25th-percentile test statistic posterior predictive plot for the ZIHGDM model
with cyclic splines.
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Figure 4.38: 75th-percentile test statistic posterior predictive plot for the ZIHGDM model
with cyclic splines.
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Figure 4.39: Maximum test statistic posterior predictive plot for the ZIHGDM model with
cyclic splines.
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Figure 4.40: Minimum test statistic posterior predictive plot for the ZIHGDM model with
cyclic splines.
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4.11.8 Model Comparison Results

Table 4.3: Mean time in seconds per hour performing Drink, Eat, and EBH at all hours for
TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and hierarchical
multivariate normal-normal (HMVNN) models, each with cyclic splines. 95% credible inter-
vals are reported in parenthesis.

ZIHGDM HDIR HMVNN

Hour Behavior TDP-43 WT TDP-43 WT TDP-43 WT

0 Drink 34 (29,39) 49 (42,56) 153 (136,170) 164 (145,186) 45 (44,46) 48 (47,49)
1 Drink 26 (22,31) 40 (34,45) 143 (128,159) 158 (139,175) 44 (43,44) 46 (45,47)
2 Drink 23 (18,28) 36 (31,42) 135 (118,154) 149 (127,170) 43 (42,44) 45 (43,46)
3 Drink 28 (23,33) 42 (36,49) 145 (129,162) 158 (138,178) 44 (43,45) 46 (45,47)
4 Drink 37 (32,42) 53 (45,61) 153 (134,171) 166 (146,190) 46 (45,47) 49 (48,50)
5 Drink 37 (32,43) 51 (43,60) 153 (132,174) 167 (144,194) 46 (45,47) 49 (48,51)
6 Drink 29 (25,33) 37 (31,43) 144 (126,163) 160 (140,180) 44 (43,45) 46 (45,48)
7 Drink 21 (17,25) 26 (22,31) 121 (103,139) 134 (113,155) 41 (40,42) 43 (42,44)
8 Drink 17 (14,21) 23 (20,27) 107 (94,121) 119 (103,135) 40 (39,40) 41 (40,42)
9 Drink 16 (12,20) 24 (19,30) 106 (93,123) 119 (102,137) 39 (37,40) 40 (39,41)
10 Drink 16 (12,20) 25 (21,31) 107 (94,122) 120 (105,136) 38 (37,39) 39 (38,40)
11 Drink 15 (12,19) 26 (21,32) 106 (92,122) 119 (101,136) 38 (37,39) 39 (38,40)
12 Drink 15 (11,19) 25 (20,31) 104 (92,120) 117 (98,134) 38 (37,39) 39 (38,40)
13 Drink 14 (11,18) 25 (21,30) 104 (91,119) 117 (101,134) 38 (37,39) 39 (38,40)
14 Drink 15 (11,19) 26 (21,32) 107 (92,125) 120 (102,139) 39 (38,40) 40 (39,41)
15 Drink 18 (14,22) 30 (25,36) 113 (100,130) 126 (110,143) 40 (39,41) 41 (40,42)
16 Drink 21 (16,25) 33 (27,40) 118 (104,138) 131 (111,151) 41 (40,42) 43 (41,44)
17 Drink 22 (18,26) 31 (26,36) 120 (108,135) 131 (114,147) 42 (41,43) 44 (43,45)
18 Drink 24 (20,28) 29 (25,35) 125 (110,141) 134 (116,153) 43 (42,45) 46 (44,47)
19 Drink 29 (25,32) 34 (29,40) 139 (120,157) 147 (129,170) 45 (44,46) 48 (46,49)
20 Drink 36 (32,41) 47 (40,54) 152 (131,170) 158 (137,187) 46 (45,48) 50 (48,51)
21 Drink 41 (36,47) 58 (49,67) 157 (136,177) 162 (138,198) 47 (46,48) 51 (49,52)
22 Drink 40 (35,45) 57 (49,66) 157 (140,174) 164 (144,191) 47 (46,48) 50 (49,51)
23 Drink 34 (29,39) 49 (42,56) 153 (136,170) 164 (145,186) 45 (44,46) 48 (47,49)
0 Eat 477 (431,524) 413 (368,459) 484 (450,523) 435 (394,480) 604 (592,616) 605 (590,619)
1 Eat 348 (315,383) 282 (250,316) 370 (345,398) 326 (295,356) 583 (571,594) 576 (563,589)
2 Eat 296 (260,334) 232 (201,267) 315 (286,345) 274 (241,307) 572 (560,585) 562 (547,577)
3 Eat 366 (330,407) 300 (265,339) 393 (360,428) 350 (314,387) 588 (576,600) 583 (570,597)
4 Eat 506 (456,561) 443 (394,495) 525 (480,573) 486 (438,532) 614 (600,627) 618 (602,633)
5 Eat 489 (440,547) 425 (376,479) 511 (467,557) 473 (425,523) 610 (596,624) 613 (596,629)
6 Eat 300 (264,339) 236 (205,271) 345 (315,379) 300 (269,336) 571 (559,582) 559 (546,573)
7 Eat 175 (147,207) 123 (101,148) 208 (182,234) 167 (146,191) 531 (519,543) 506 (492,520)
8 Eat 143 (120,168) 96 (80,115) 167 (148,187) 131 (116,149) 512 (500,523) 481 (469,493)
9 Eat 146 (120,176) 99 (79,120) 172 (151,194) 137 (116,157) 506 (494,519) 474 (461,487)
10 Eat 149 (122,177) 101 (82,123) 175 (156,196) 140 (122,159) 504 (492,515) 471 (460,482)
11 Eat 147 (118,177) 100 (80,123) 170 (151,191) 136 (119,155) 503 (491,516) 470 (457,483)
12 Eat 148 (120,178) 101 (80,125) 169 (150,190) 136 (119,155) 505 (493,517) 472 (459,486)
13 Eat 156 (128,184) 107 (87,132) 176 (157,195) 143 (125,161) 510 (498,521) 479 (465,490)
14 Eat 168 (138,200) 118 (94,144) 186 (165,207) 152 (129,173) 517 (506,529) 489 (475,502)
15 Eat 184 (157,213) 131 (109,155) 198 (179,218) 161 (141,181) 528 (517,539) 503 (490,514)
16 Eat 209 (177,243) 152 (127,183) 219 (195,244) 179 (155,204) 543 (531,555) 522 (507,537)
17 Eat 253 (223,287) 192 (167,223) 260 (237,284) 218 (195,244) 562 (550,573) 547 (535,561)
18 Eat 327 (291,365) 262 (229,299) 338 (305,370) 295 (263,329) 583 (570,595) 576 (561,591)
19 Eat 444 (397,492) 379 (337,428) 462 (421,506) 416 (374,460) 603 (590,616) 604 (589,619)
20 Eat 582 (527,644) 526 (471,579) 582 (532,632) 529 (480,578) 619 (606,634) 625 (610,641)
21 Eat 657 (594,730) 607 (540,671) 628 (578,684) 567 (515,628) 625 (612,640) 634 (617,652)
22 Eat 607 (552,668) 551 (499,603) 585 (545,627) 526 (481,576) 620 (608,633) 627 (613,641)
23 Eat 477 (431,524) 413 (368,459) 484 (450,523) 435 (394,480) 604 (592,616) 605 (590,619)
0 EBH 191 (171,212) 166 (147,185) 289 (259,314) 255 (220,295) 342 (337,346) 339 (333,345)
1 EBH 169 (151,186) 144 (129,161) 266 (240,289) 240 (212,271) 336 (332,340) 330 (325,336)
2 EBH 167 (146,190) 142 (124,162) 253 (226,280) 229 (197,262) 334 (330,339) 327 (320,333)
3 EBH 198 (177,224) 172 (152,193) 284 (260,310) 257 (225,291) 339 (335,344) 335 (330,342)
4 EBH 239 (211,267) 211 (188,236) 316 (287,345) 284 (249,321) 347 (342,352) 349 (342,355)
5 EBH 238 (210,267) 210 (184,235) 321 (289,354) 279 (244,317) 347 (341,352) 348 (342,355)
6 EBH 188 (167,210) 162 (143,182) 295 (266,331) 242 (208,277) 337 (333,342) 331 (326,337)
7 EBH 145 (126,166) 120 (102,141) 238 (209,274) 188 (155,221) 328 (324,333) 316 (309,322)
8 EBH 136 (117,154) 110 (94,128) 203 (183,230) 169 (144,194) 326 (322,331) 312 (307,318)
9 EBH 140 (119,161) 113 (95,134) 197 (177,220) 175 (149,204) 327 (323,332) 314 (308,320)
10 EBH 134 (115,152) 108 (91,126) 195 (175,215) 176 (153,202) 327 (322,331) 313 (308,319)
11 EBH 122 (104,142) 98 (82,115) 190 (170,211) 168 (146,192) 324 (319,329) 309 (303,315)
12 EBH 117 (100,136) 93 (78,110) 186 (167,207) 162 (138,188) 322 (317,328) 306 (299,312)
13 EBH 121 (103,138) 95 (81,112) 186 (169,205) 163 (140,187) 322 (317,327) 305 (299,311)
14 EBH 130 (109,148) 102 (84,121) 190 (170,212) 168 (142,193) 324 (319,329) 308 (301,314)
15 EBH 140 (121,159) 112 (95,129) 200 (182,219) 176 (153,200) 327 (322,331) 313 (308,318)
16 EBH 153 (131,176) 126 (107,146) 212 (190,237) 188 (158,220) 331 (326,335) 320 (314,326)
17 EBH 172 (152,194) 145 (128,164) 227 (206,254) 207 (178,238) 336 (331,340) 329 (323,334)
18 EBH 197 (175,220) 171 (150,193) 253 (224,285) 236 (204,272) 340 (336,345) 337 (331,344)
19 EBH 228 (203,255) 201 (178,227) 293 (262,328) 268 (234,304) 345 (340,350) 345 (339,351)
20 EBH 254 (226,284) 226 (202,252) 322 (292,352) 276 (242,311) 348 (343,353) 350 (343,356)
21 EBH 253 (224,284) 224 (198,252) 324 (291,356) 267 (232,307) 348 (343,354) 351 (344,357)
22 EBH 224 (203,247) 197 (178,218) 309 (282,335) 261 (229,293) 346 (341,350) 347 (341,352)
23 EBH 191 (171,212) 166 (147,185) 289 (259,314) 255 (220,295) 342 (337,346) 339 (333,345)
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Table 4.4: Mean time in seconds per hour performing Groom, Hang, and Rear at all hours
for TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and hierarchi-
cal multivariate normal-normal (HMVNN) models, each with cyclic splines. 95% credible
intervals are reported in parenthesis.

ZIHGDM HDIR HMVNN

Hour Behavior TDP-43 WT TDP-43 WT TDP-43 WT

0 Groom 605 (550,664) 514 (475,555) 654 (607,701) 548 (501,593) 752 (748,757) 746 (742,750)
1 Groom 629 (575,687) 537 (498,578) 698 (647,759) 617 (568,661) 754 (749,759) 748 (744,751)
2 Groom 684 (611,760) 572 (523,622) 718 (650,800) 652 (597,706) 758 (752,764) 750 (746,754)
3 Groom 713 (646,782) 583 (540,632) 714 (662,776) 638 (585,684) 759 (753,764) 751 (747,755)
4 Groom 689 (628,749) 558 (515,603) 643 (586,702) 554 (503,609) 756 (751,761) 749 (745,754)
5 Groom 657 (595,722) 541 (496,588) 615 (553,682) 533 (483,589) 753 (748,759) 747 (742,751)
6 Groom 622 (566,681) 535 (492,577) 649 (599,700) 591 (544,639) 751 (746,755) 745 (741,749)
7 Groom 562 (499,631) 506 (460,554) 600 (552,654) 559 (508,611) 747 (742,753) 743 (739,747)
8 Groom 506 (451,565) 473 (432,516) 511 (469,553) 475 (437,514) 744 (739,749) 740 (736,744)
9 Groom 474 (412,537) 452 (404,500) 469 (422,513) 431 (389,473) 741 (735,747) 738 (733,743)
10 Groom 471 (418,529) 450 (405,493) 467 (426,505) 430 (392,471) 741 (735,746) 738 (734,742)
11 Groom 484 (424,543) 459 (414,504) 481 (441,523) 448 (406,498) 742 (737,748) 739 (735,744)
12 Groom 493 (435,555) 464 (421,511) 486 (444,530) 455 (410,506) 744 (738,749) 740 (736,745)
13 Groom 493 (439,549) 464 (421,503) 479 (439,519) 446 (405,488) 744 (739,749) 741 (736,745)
14 Groom 494 (435,555) 464 (422,507) 481 (438,524) 444 (399,492) 744 (739,750) 741 (736,745)
15 Groom 510 (455,565) 473 (436,514) 505 (465,546) 464 (425,507) 746 (740,750) 742 (738,745)
16 Groom 553 (489,622) 498 (454,550) 550 (500,601) 503 (454,559) 749 (742,754) 744 (739,748)
17 Groom 634 (573,701) 545 (504,593) 609 (562,660) 554 (509,610) 754 (749,759) 748 (744,752)
18 Groom 730 (664,800) 597 (548,646) 682 (627,743) 612 (560,673) 760 (755,765) 752 (748,757)
19 Groom 793 (727,864) 624 (572,681) 736 (684,793) 641 (590,694) 764 (759,769) 755 (750,760)
20 Groom 790 (723,857) 610 (560,664) 715 (662,771) 594 (548,643) 764 (759,770) 755 (750,761)
21 Groom 729 (662,799) 568 (523,622) 662 (602,723) 529 (477,586) 761 (755,767) 753 (748,757)
22 Groom 649 (597,705) 528 (492,567) 637 (589,687) 511 (467,554) 756 (751,760) 749 (745,752)
23 Groom 605 (550,664) 514 (475,555) 654 (607,701) 548 (501,593) 752 (748,757) 746 (742,750)
0 Hang 185 (160,210) 248 (214,284) 265 (240,291) 334 (298,373) 38 (36,39) 39 (38,41)
1 Hang 122 (99,141) 166 (138,197) 209 (192,227) 248 (222,275) 34 (33,35) 35 (33,36)
2 Hang 94 (74,116) 132 (103,163) 173 (155,191) 192 (166,219) 32 (31,33) 32 (31,34)
3 Hang 121 (102,142) 169 (142,200) 189 (171,206) 204 (180,230) 35 (33,36) 35 (34,37)
4 Hang 162 (141,186) 225 (195,257) 218 (197,240) 238 (209,269) 39 (38,41) 41 (39,43)
5 Hang 165 (143,190) 227 (196,261) 216 (194,237) 234 (204,264) 39 (38,41) 41 (39,43)
6 Hang 112 (90,134) 154 (123,185) 177 (160,194) 183 (161,207) 33 (32,35) 34 (32,35)
7 Hang 50 (35,69) 70 (48,94) 128 (112,145) 126 (107,147) 28 (26,29) 27 (26,28)
8 Hang 29 (19,42) 41 (28,57) 108 (97,120) 106 (91,120) 25 (24,26) 24 (23,26)
9 Hang 25 (15,38) 35 (22,51) 108 (96,122) 108 (91,126) 25 (24,26) 24 (23,25)
10 Hang 24 (16,36) 34 (22,48) 110 (99,122) 110 (95,127) 25 (24,26) 24 (23,25)
11 Hang 25 (16,36) 35 (23,50) 108 (96,120) 108 (92,126) 25 (24,26) 24 (23,25)
12 Hang 26 (17,38) 37 (24,53) 105 (93,117) 106 (91,123) 25 (24,26) 24 (23,25)
13 Hang 29 (18,42) 41 (27,58) 105 (94,115) 105 (90,121) 25 (24,26) 24 (23,26)
14 Hang 33 (20,48) 46 (28,67) 108 (95,120) 108 (91,125) 26 (25,27) 25 (24,26)
15 Hang 36 (24,50) 50 (33,69) 114 (103,126) 115 (100,131) 26 (25,27) 25 (24,26)
16 Hang 42 (29,58) 60 (41,81) 122 (108,137) 122 (105,141) 28 (26,29) 27 (26,28)
17 Hang 57 (43,74) 81 (61,103) 128 (116,142) 126 (111,142) 30 (29,31) 30 (29,31)
18 Hang 86 (68,105) 123 (98,149) 146 (131,161) 145 (125,168) 33 (32,35) 34 (32,35)
19 Hang 137 (116,160) 196 (167,229) 194 (175,212) 205 (178,233) 37 (36,38) 38 (37,40)
20 Hang 205 (182,231) 286 (255,324) 262 (237,288) 305 (269,342) 40 (39,42) 42 (40,44)
21 Hang 250 (220,283) 340 (300,387) 309 (275,346) 386 (337,436) 42 (40,43) 44 (42,46)
22 Hang 240 (216,267) 321 (284,365) 306 (276,338) 392 (354,435) 41 (39,42) 43 (41,45)
23 Hang 185 (160,210) 248 (214,284) 265 (240,291) 334 (298,373) 38 (36,39) 39 (38,41)
0 Rear 319 (287,353) 456 (416,503) 349 (320,379) 513 (464,565) 438 (432,445) 456 (449,463)
1 Rear 234 (209,258) 320 (289,351) 287 (265,308) 402 (366,438) 423 (417,428) 441 (434,447)
2 Rear 193 (167,217) 259 (228,293) 247 (225,269) 329 (291,369) 415 (408,421) 433 (425,439)
3 Rear 229 (203,254) 322 (287,358) 282 (259,304) 376 (336,417) 424 (418,431) 442 (435,449)
4 Rear 308 (275,339) 454 (412,503) 336 (308,366) 467 (419,517) 441 (434,448) 459 (452,467)
5 Rear 322 (287,357) 472 (426,521) 339 (309,370) 472 (417,527) 443 (435,451) 461 (454,469)
6 Rear 238 (210,266) 325 (289,360) 278 (253,300) 363 (323,408) 424 (417,430) 442 (436,449)
7 Rear 158 (132,182) 198 (170,230) 198 (178,220) 239 (207,277) 402 (395,409) 420 (413,427)
8 Rear 130 (110,151) 163 (142,187) 162 (146,179) 189 (166,213) 390 (384,397) 408 (402,414)
9 Rear 125 (101,147) 164 (138,191) 157 (141,175) 183 (155,212) 385 (378,392) 403 (396,410)
10 Rear 121 (99,142) 161 (138,185) 155 (140,171) 180 (157,205) 382 (375,388) 400 (393,406)
11 Rear 116 (95,138) 153 (130,178) 151 (134,168) 173 (148,199) 380 (374,387) 398 (391,405)
12 Rear 116 (95,138) 150 (127,175) 149 (132,165) 171 (147,196) 381 (374,387) 399 (392,406)
13 Rear 119 (98,139) 155 (132,179) 151 (137,166) 175 (153,199) 383 (377,390) 401 (395,407)
14 Rear 124 (102,146) 163 (136,190) 156 (140,173) 184 (156,213) 387 (380,393) 404 (397,411)
15 Rear 128 (108,149) 171 (148,194) 165 (150,180) 193 (169,220) 390 (383,396) 407 (401,414)
16 Rear 141 (118,164) 185 (157,214) 177 (157,195) 208 (177,238) 395 (388,402) 413 (406,421)
17 Rear 164 (143,184) 210 (184,238) 194 (176,211) 233 (205,260) 406 (400,413) 424 (418,431)
18 Rear 197 (174,221) 263 (233,298) 229 (210,251) 285 (249,321) 421 (414,428) 439 (432,446)
19 Rear 260 (232,286) 375 (336,416) 292 (268,319) 383 (339,430) 436 (429,443) 454 (447,461)
20 Rear 341 (309,375) 518 (474,564) 359 (328,392) 495 (448,544) 448 (440,455) 466 (458,473)
21 Rear 393 (353,433) 596 (544,649) 395 (358,437) 566 (508,628) 453 (445,461) 471 (463,479)
22 Rear 386 (353,420) 570 (526,615) 390 (356,427) 573 (523,624) 449 (443,456) 467 (461,474)
23 Rear 319 (287,353) 456 (416,503) 349 (320,379) 513 (464,565) 438 (432,445) 456 (449,463)
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Table 4.5: Mean time in seconds per hour performing Rest, Sniff, and Walk at all hours for
TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and hierarchical
multivariate normal-normal (HMVNN) models, each with cyclic splines. 95% credible inter-
vals are reported in parenthesis.

ZIHGDM HDIR HMVNN

Hour Behavior TDP-43 WT TDP-43 WT TDP-43 WT

0 Rest 406 (341,481) 789 (743,836) 209 (184,233) 287 (258,315) 2077 (2036,2117) 2171 (2131,2212)
1 Rest 682 (596,770) 947 (897,996) 435 (397,471) 550 (510,588) 2237 (2197,2278) 2307 (2269,2346)
2 Rest 807 (689,928) 998 (942,1050) 632 (573,691) 761 (705,822) 2325 (2277,2376) 2381 (2340,2428)
3 Rest 559 (472,654) 908 (855,957) 414 (375,453) 534 (490,580) 2233 (2189,2281) 2304 (2265,2347)
4 Rest 282 (222,342) 750 (695,796) 182 (160,204) 265 (235,294) 2076 (2031,2120) 2171 (2131,2213)
5 Rest 286 (229,350) 768 (715,814) 166 (146,187) 249 (220,280) 2068 (2021,2112) 2163 (2121,2207)
6 Rest 619 (534,707) 996 (944,1048) 417 (383,454) 558 (517,601) 2253 (2206,2296) 2321 (2283,2361)
7 Rest 1187 (1049,1330) 1167 (1113,1227) 1064 (988,1137) 1213 (1144,1282) 2470 (2416,2522) 2503 (2460,2547)
8 Rest 1602 (1486,1724) 1214 (1157,1268) 1608 (1542,1682) 1676 (1613,1739) 2569 (2520,2613) 2585 (2541,2628)
9 Rest 1782 (1650,1906) 1211 (1152,1267) 1814 (1735,1887) 1826 (1757,1890) 2582 (2528,2636) 2596 (2549,2644)
10 Rest 1825 (1715,1928) 1212 (1157,1269) 1853 (1783,1922) 1852 (1790,1912) 2582 (2533,2632) 2596 (2554,2642)
11 Rest 1802 (1677,1917) 1220 (1160,1277) 1842 (1773,1909) 1848 (1782,1908) 2587 (2534,2638) 2600 (2556,2650)
12 Rest 1769 (1644,1890) 1216 (1161,1274) 1838 (1772,1904) 1848 (1781,1910) 2590 (2536,2642) 2603 (2558,2652)
13 Rest 1750 (1637,1860) 1200 (1143,1257) 1851 (1788,1921) 1856 (1790,1914) 2589 (2540,2638) 2602 (2559,2648)
14 Rest 1735 (1614,1858) 1182 (1125,1238) 1839 (1767,1918) 1839 (1772,1906) 2584 (2529,2638) 2597 (2552,2648)
15 Rest 1704 (1589,1808) 1168 (1117,1221) 1766 (1702,1835) 1771 (1712,1833) 2575 (2528,2626) 2590 (2551,2635)
16 Rest 1600 (1459,1717) 1142 (1089,1200) 1615 (1538,1695) 1636 (1566,1705) 2564 (2513,2623) 2581 (2536,2630)
17 Rest 1375 (1260,1483) 1086 (1035,1140) 1362 (1296,1425) 1416 (1356,1475) 2542 (2495,2590) 2562 (2520,2607)
18 Rest 1015 (890,1136) 982 (930,1030) 955 (887,1019) 1052 (988,1116) 2461 (2413,2511) 2496 (2449,2539)
19 Rest 569 (474,661) 813 (763,859) 479 (437,519) 585 (542,632) 2276 (2233,2320) 2340 (2299,2380)
20 Rest 260 (204,317) 623 (573,667) 198 (175,225) 272 (244,302) 2056 (2014,2097) 2153 (2115,2190)
21 Rest 169 (126,218) 538 (485,585) 113 (97,131) 165 (144,187) 1933 (1887,1976) 2047 (2007,2090)
22 Rest 224 (180,271) 616 (567,661) 121 (107,137) 175 (156,194) 1955 (1917,1992) 2067 (2028,2106)
23 Rest 406 (341,481) 789 (743,836) 209 (184,233) 287 (258,315) 2077 (2036,2117) 2171 (2131,2212)
0 Sniff 1179 (1077,1277) 723 (665,779) 1023 (957,1091) 868 (812,922) 1024 (1017,1031) 1016 (1011,1022)
1 Sniff 1191 (1083,1302) 918 (854,982) 1034 (972,1101) 875 (826,928) 1019 (1013,1025) 1012 (1007,1017)
2 Sniff 1143 (1010,1275) 996 (923,1066) 979 (898,1059) 839 (784,896) 1015 (1008,1022) 1010 (1004,1016)
3 Sniff 1195 (1084,1300) 885 (817,952) 1013 (943,1083) 887 (836,938) 1021 (1014,1028) 1014 (1009,1020)
4 Sniff 1189 (1097,1282) 693 (630,752) 1042 (973,1114) 926 (873,979) 1031 (1025,1039) 1021 (1015,1028)
5 Sniff 1236 (1133,1331) 695 (636,754) 1090 (1014,1176) 972 (912,1035) 1035 (1028,1043) 1024 (1018,1031)
6 Sniff 1337 (1218,1446) 945 (880,1013) 1122 (1049,1196) 992 (933,1056) 1028 (1021,1035) 1019 (1013,1025)
7 Sniff 1145 (995,1286) 1173 (1100,1247) 902 (826,984) 803 (745,866) 1013 (1006,1020) 1008 (1002,1014)
8 Sniff 874 (752,996) 1263 (1188,1338) 616 (565,667) 592 (555,633) 995 (989,1001) 995 (990,1000)
9 Sniff 718 (597,849) 1279 (1201,1354) 463 (413,514) 485 (443,524) 981 (973,988) 985 (978,991)
10 Sniff 683 (583,793) 1286 (1209,1362) 426 (383,470) 457 (418,493) 975 (969,982) 981 (975,987)
11 Sniff 713 (595,834) 1293 (1214,1371) 443 (395,491) 468 (427,507) 976 (969,983) 981 (975,987)
12 Sniff 735 (609,863) 1288 (1210,1367) 454 (406,503) 474 (436,513) 977 (970,984) 982 (976,988)
13 Sniff 723 (618,830) 1271 (1194,1349) 439 (394,485) 464 (426,498) 975 (969,982) 981 (975,986)
14 Sniff 703 (587,826) 1250 (1170,1328) 422 (372,475) 453 (413,491) 973 (966,981) 979 (973,985)
15 Sniff 697 (593,807) 1229 (1152,1302) 424 (381,468) 457 (419,491) 973 (967,980) 979 (974,985)
16 Sniff 724 (602,858) 1189 (1112,1263) 466 (415,518) 489 (446,532) 978 (971,986) 983 (977,989)
17 Sniff 796 (687,908) 1111 (1038,1180) 572 (524,625) 563 (525,605) 991 (985,997) 992 (987,997)
18 Sniff 902 (767,1030) 979 (914,1047) 729 (666,799) 674 (631,722) 1006 (998,1013) 1003 (997,1009)
19 Sniff 984 (868,1090) 779 (717,840) 837 (769,910) 764 (717,813) 1016 (1009,1023) 1010 (1004,1016)
20 Sniff 957 (861,1043) 568 (515,623) 825 (763,892) 765 (717,816) 1020 (1013,1027) 1013 (1008,1020)
21 Sniff 931 (838,1023) 471 (420,520) 819 (751,896) 751 (693,807) 1023 (1015,1030) 1015 (1010,1021)
22 Sniff 1041 (952,1129) 541 (491,591) 910 (855,977) 798 (749,847) 1025 (1018,1031) 1017 (1012,1022)
23 Sniff 1179 (1077,1277) 723 (665,779) 1023 (957,1091) 868 (812,922) 1024 (1017,1031) 1016 (1011,1022)
0 Walk 204 (160,259) 244 (199,300) 174 (157,194) 196 (175,221) 103 (101,105) 108 (106,110)
1 Walk 201 (156,260) 246 (201,302) 158 (142,176) 185 (166,210) 99 (97,101) 104 (102,106)
2 Walk 193 (140,264) 232 (185,288) 149 (131,166) 177 (156,200) 97 (95,99) 102 (99,104)
3 Walk 191 (143,255) 219 (177,272) 166 (149,183) 196 (175,217) 99 (97,101) 104 (102,106)
4 Walk 188 (146,242) 214 (174,264) 185 (167,206) 215 (194,238) 104 (102,106) 109 (107,111)
5 Walk 170 (134,215) 210 (171,261) 189 (168,212) 222 (199,247) 104 (102,106) 110 (107,112)
6 Walk 154 (122,192) 211 (173,258) 174 (157,192) 211 (189,234) 99 (97,101) 104 (102,106)
7 Walk 157 (125,195) 216 (178,259) 139 (124,156) 171 (151,192) 93 (91,95) 98 (96,100)
8 Walk 163 (131,204) 217 (183,256) 118 (106,130) 143 (129,159) 90 (88,92) 94 (92,96)
9 Walk 175 (135,218) 223 (185,266) 113 (101,126) 136 (120,152) 88 (86,90) 92 (90,95)
10 Walk 178 (137,221) 221 (182,266) 112 (100,124) 134 (120,149) 87 (85,89) 91 (89,93)
11 Walk 176 (137,218) 218 (181,262) 110 (98,123) 133 (119,147) 86 (84,88) 90 (88,92)
12 Walk 182 (141,226) 225 (188,269) 109 (97,122) 132 (117,147) 86 (84,87) 90 (88,92)
13 Walk 194 (153,239) 241 (200,287) 109 (98,121) 131 (117,146) 86 (84,88) 90 (88,92)
14 Walk 199 (155,248) 249 (204,299) 111 (98,124) 133 (117,148) 87 (85,89) 91 (89,93)
15 Walk 184 (145,230) 236 (196,282) 115 (104,128) 137 (122,152) 88 (86,89) 92 (90,94)
16 Walk 157 (121,199) 216 (177,261) 121 (107,135) 143 (127,160) 89 (87,91) 94 (92,96)
17 Walk 128 (100,165) 199 (164,241) 129 (116,142) 151 (135,167) 93 (91,94) 97 (95,99)
18 Walk 122 (92,161) 194 (158,238) 144 (128,160) 166 (149,185) 97 (95,99) 102 (100,104)
19 Walk 156 (112,217) 198 (161,243) 168 (152,186) 191 (171,212) 101 (99,103) 106 (104,108)
20 Walk 177 (137,228) 198 (163,247) 187 (167,207) 206 (184,231) 104 (102,106) 110 (108,112)
21 Walk 176 (139,224) 199 (161,257) 191 (171,215) 206 (183,235) 106 (103,108) 111 (109,114)
22 Walk 189 (153,237) 219 (181,272) 185 (167,207) 201 (182,227) 105 (103,107) 111 (109,113)
23 Walk 204 (160,259) 244 (199,300) 174 (157,194) 196 (175,221) 103 (101,105) 108 (106,110)
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Table 4.6: Mean difference in time (seconds/hour) performing Drink, Eat, and EBH at all
hours between TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and
hierarchical multivariate normal-normal (HMVNN) models, each with cyclic splines. 95%
credible intervals are reported in parenthesis.

Hour Behavior ZIHGDM HDIR HMVNN

0 Drink -15 (-22,-8) -11 (-38,7) -3 (-4,-2)
1 Drink -13 (-20,-8) -14 (-32,3) -2 (-3,-1)
2 Drink -13 (-20,-8) -14 (-32,7) -2 (-3,-1)
3 Drink -14 (-20,-8) -13 (-32,6) -2 (-3,-1)
4 Drink -16 (-24,-8) -12 (-37,10) -3 (-4,-2)
5 Drink -14 (-22,-6) -14 (-37,10) -3 (-4,-2)
6 Drink -8 (-13,-2) -16 (-34,8) -2 (-4,-1)
7 Drink -5 (-11,0) -13 (-30,12) -2 (-3,-1)
8 Drink -6 (-11,-1) -13 (-27,5) -1 (-2,0)
9 Drink -8 (-14,-3) -13 (-30,3) -1 (-2,0)
10 Drink -10 (-15,-4) -13 (-28,1) -1 (-2,0)
11 Drink -10 (-16,-5) -13 (-29,4) -1 (-2,0)
12 Drink -11 (-16,-5) -13 (-28,5) -1 (-2,0)
13 Drink -11 (-16,-6) -13 (-30,2) -1 (-2,0)
14 Drink -11 (-17,-6) -13 (-32,2) -1 (-2,0)
15 Drink -13 (-19,-7) -13 (-32,2) -1 (-2,0)
16 Drink -12 (-19,-6) -13 (-32,5) -2 (-3,-1)
17 Drink -9 (-14,-3) -11 (-25,6) -2 (-3,-1)
18 Drink -5 (-11,0) -9 (-23,10) -2 (-3,-1)
19 Drink -6 (-11,0) -8 (-27,10) -3 (-4,-2)
20 Drink -11 (-17,-4) -6 (-31,14) -3 (-5,-2)
21 Drink -16 (-26,-7) -5 (-40,15) -3 (-5,-2)
22 Drink -17 (-26,-8) -7 (-37,11) -3 (-5,-2)
23 Drink -15 (-22,-8) -11 (-38,7) -3 (-4,-2)
0 Eat 64 (21,113) 49 (8,86) -1 (-16,14)
1 Eat 66 (34,98) 44 (19,67) 7 (-6,20)
2 Eat 64 (35,92) 41 (18,64) 11 (-2,23)
3 Eat 66 (33,99) 43 (16,69) 5 (-9,18)
4 Eat 63 (15,115) 39 (-2,80) -4 (-21,12)
5 Eat 64 (19,113) 38 (-1,77) -3 (-18,13)
6 Eat 64 (35,93) 45 (19,70) 11 (-2,23)
7 Eat 52 (28,76) 41 (18,65) 25 (13,36)
8 Eat 46 (24,70) 36 (17,56) 31 (18,42)
9 Eat 47 (24,71) 35 (17,54) 32 (19,44)
10 Eat 47 (24,73) 35 (18,53) 33 (20,45)
11 Eat 47 (22,73) 34 (17,52) 33 (20,45)
12 Eat 47 (22,73) 33 (16,51) 33 (20,45)
13 Eat 49 (23,74) 33 (16,51) 31 (19,44)
14 Eat 51 (25,76) 34 (17,52) 29 (17,41)
15 Eat 53 (29,79) 37 (20,54) 25 (13,37)
16 Eat 57 (31,83) 40 (22,58) 21 (9,33)
17 Eat 61 (35,88) 41 (24,60) 14 (3,26)
18 Eat 65 (35,96) 43 (21,65) 7 (-6,20)
19 Eat 65 (25,107) 46 (12,81) 0 (-15,14)
20 Eat 57 (-3,122) 53 (0,104) -6 (-22,10)
21 Eat 50 (-24,130) 61 (-6,120) -9 (-25,8)
22 Eat 55 (-9,125) 58 (3,109) -7 (-22,9)
23 Eat 64 (21,113) 49 (8,86) -1 (-16,14)
0 EBH 25 (7,43) 33 (-22,72) 2 (-3,8)
1 EBH 24 (7,42) 25 (-15,57) 6 (1,12)
2 EBH 25 (8,42) 25 (-20,64) 8 (2,13)
3 EBH 26 (7,46) 28 (-14,64) 4 (-2,10)
4 EBH 28 (3,54) 32 (-14,73) -2 (-8,4)
5 EBH 28 (3,54) 42 (-2,91) -2 (-8,4)
6 EBH 26 (8,45) 53 (13,110) 6 (1,11)
7 EBH 25 (7,42) 50 (12,103) 13 (7,18)
8 EBH 25 (7,43) 35 (8,75) 14 (8,20)
9 EBH 26 (8,45) 22 (-9,58) 13 (8,19)
10 EBH 25 (8,44) 19 (-11,46) 14 (8,19)
11 EBH 24 (7,42) 22 (-6,52) 16 (9,21)
12 EBH 24 (6,42) 24 (-4,56) 17 (11,23)
13 EBH 26 (7,44) 23 (-4,53) 17 (11,23)
14 EBH 28 (8,47) 22 (-10,57) 16 (11,22)
15 EBH 28 (9,46) 24 (-3,56) 14 (8,19)
16 EBH 27 (9,44) 24 (-10,63) 11 (5,16)
17 EBH 26 (8,43) 20 (-16,57) 7 (2,12)
18 EBH 26 (7,45) 17 (-28,54) 3 (-2,9)
19 EBH 27 (4,49) 25 (-19,66) 0 (-6,6)
20 EBH 28 (-1,57) 45 (-1,88) -2 (-8,4)
21 EBH 29 (-1,59) 57 (5,103) -3 (-9,3)
22 EBH 27 (4,50) 49 (2,86) -1 (-7,5)
23 EBH 25 (7,43) 33 (-22,72) 2 (-3,8)
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Table 4.7: Mean difference in time (seconds/hour) performing Groom, Hang, and Rear at all
hours between TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and
hierarchical multivariate normal-normal (HMVNN) models, each with cyclic splines. 95%
credible intervals are reported in parenthesis.

Hour Behavior ZIHGDM HDIR HMVNN

0 Groom 92 (49,136) 106 (62,157) 6 (2,10)
1 Groom 92 (47,139) 81 (37,133) 7 (3,11)
2 Groom 112 (62,170) 66 (11,139) 8 (3,13)
3 Groom 129 (76,187) 77 (38,124) 8 (3,13)
4 Groom 131 (81,184) 89 (34,146) 7 (3,12)
5 Groom 116 (72,163) 82 (9,151) 6 (2,10)
6 Groom 87 (46,131) 58 (11,106) 5 (1,9)
7 Groom 56 (7,106) 41 (4,80) 4 (0,9)
8 Groom 33 (-20,83) 35 (5,69) 3 (-2,8)
9 Groom 22 (-32,76) 38 (5,73) 3 (-3,8)
10 Groom 21 (-32,73) 38 (4,70) 2 (-3,8)
11 Groom 25 (-28,76) 34 (-6,68) 3 (-3,8)
12 Groom 29 (-25,79) 31 (-12,67) 3 (-2,8)
13 Groom 29 (-22,80) 33 (-6,66) 3 (-2,8)
14 Groom 30 (-22,81) 36 (-2,69) 4 (-1,8)
15 Groom 37 (-13,87) 41 (2,76) 4 (-1,8)
16 Groom 55 (6,103) 48 (0,88) 5 (0,9)
17 Groom 89 (42,136) 55 (0,105) 6 (2,10)
18 Groom 133 (82,191) 69 (7,127) 8 (3,13)
19 Groom 169 (107,240) 95 (46,143) 9 (3,15)
20 Groom 180 (116,253) 121 (76,167) 9 (3,15)
21 Groom 161 (103,226) 133 (72,196) 8 (3,14)
22 Groom 121 (77,171) 126 (68,193) 7 (3,12)
23 Groom 92 (49,136) 106 (62,157) 6 (2,10)
0 Hang -63 (-95,-34) -69 (-109,-32) -1 (-3,0)
1 Hang -45 (-70,-21) -39 (-65,-17) -1 (-2,1)
2 Hang -37 (-59,-15) -19 (-40,0) 0 (-1,1)
3 Hang -48 (-72,-26) -16 (-35,3) -1 (-2,1)
4 Hang -63 (-90,-39) -20 (-44,2) -2 (-3,0)
5 Hang -62 (-89,-38) -18 (-43,6) -2 (-3,0)
6 Hang -42 (-67,-20) -7 (-27,14) 0 (-2,1)
7 Hang -20 (-37,-2) 2 (-15,20) 1 (0,2)
8 Hang -12 (-25,1) 3 (-10,17) 1 (0,2)
9 Hang -10 (-22,1) 1 (-13,15) 1 (0,2)
10 Hang -10 (-22,1) -1 (-15,13) 1 (0,2)
11 Hang -10 (-22,1) -1 (-15,13) 1 (0,2)
12 Hang -11 (-23,1) 0 (-14,13) 1 (0,2)
13 Hang -12 (-25,1) 0 (-13,14) 1 (0,2)
14 Hang -13 (-26,1) 0 (-13,15) 1 (0,2)
15 Hang -14 (-28,0) 0 (-13,13) 1 (0,2)
16 Hang -17 (-32,-1) 0 (-14,14) 1 (0,2)
17 Hang -24 (-41,-6) 2 (-12,15) 0 (-1,1)
18 Hang -37 (-56,-16) 1 (-15,18) 0 (-2,1)
19 Hang -59 (-85,-37) -11 (-33,9) -1 (-3,0)
20 Hang -82 (-116,-49) -43 (-76,-13) -2 (-4,0)
21 Hang -90 (-136,-46) -77 (-129,-28) -2 (-4,0)
22 Hang -81 (-123,-43) -85 (-139,-37) -2 (-4,0)
23 Hang -63 (-95,-34) -69 (-109,-32) -1 (-3,0)
0 Rear -136 (-174,-103) -164 (-217,-116) -18 (-25,-11)
1 Rear -86 (-112,-61) -115 (-155,-83) -18 (-24,-12)
2 Rear -67 (-90,-43) -82 (-117,-53) -18 (-24,-12)
3 Rear -93 (-119,-66) -95 (-130,-66) -18 (-25,-12)
4 Rear -146 (-185,-112) -130 (-176,-94) -18 (-25,-11)
5 Rear -150 (-188,-115) -133 (-180,-92) -18 (-26,-11)
6 Rear -86 (-114,-61) -86 (-118,-52) -18 (-24,-11)
7 Rear -40 (-66,-18) -40 (-68,-10) -18 (-24,-12)
8 Rear -33 (-57,-12) -27 (-48,-4) -18 (-24,-11)
9 Rear -39 (-63,-17) -26 (-47,-2) -18 (-25,-11)
10 Rear -40 (-63,-19) -24 (-45,-2) -18 (-25,-11)
11 Rear -37 (-60,-15) -22 (-45,0) -18 (-25,-11)
12 Rear -34 (-57,-13) -22 (-45,-1) -18 (-25,-11)
13 Rear -36 (-60,-14) -24 (-45,-3) -18 (-25,-11)
14 Rear -40 (-65,-18) -27 (-49,-3) -18 (-25,-11)
15 Rear -43 (-67,-22) -29 (-50,-7) -18 (-25,-11)
16 Rear -44 (-69,-21) -32 (-54,-7) -18 (-24,-11)
17 Rear -46 (-70,-24) -39 (-62,-16) -18 (-24,-12)
18 Rear -66 (-90,-43) -56 (-85,-27) -18 (-24,-12)
19 Rear -115 (-146,-87) -91 (-128,-56) -18 (-25,-11)
20 Rear -177 (-219,-137) -136 (-180,-99) -18 (-26,-10)
21 Rear -202 (-258,-150) -170 (-230,-115) -18 (-26,-9)
22 Rear -184 (-234,-138) -182 (-241,-127) -18 (-26,-10)
23 Rear -136 (-174,-103) -164 (-217,-116) -18 (-25,-11)
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Table 4.8: Mean difference in time (seconds/hour) performing Rest, Sniff, and Walk at all
hours between TDP-43 and WT mice from the ZIHGDM, hierarchical dirichlet (HDIR), and
hierarchical multivariate normal-normal (HMVNN) models, each with cyclic splines. 95%
credible intervals are reported in parenthesis.

Hour Behavior ZIHGDM HDIR HMVNN

0 Rest -382 (-460,-300) -78 (-102,-53) -94 (-140,-56)
1 Rest -265 (-357,-162) -114 (-148,-80) -70 (-113,-33)
2 Rest -191 (-319,-62) -129 (-170,-88) -56 (-98,-19)
3 Rest -348 (-441,-249) -121 (-156,-87) -71 (-111,-33)
4 Rest -468 (-543,-394) -83 (-109,-56) -94 (-138,-54)
5 Rest -482 (-555,-410) -83 (-108,-57) -96 (-139,-55)
6 Rest -377 (-476,-275) -141 (-176,-105) -68 (-109,-31)
7 Rest 20 (-133,171) -149 (-203,-93) -33 (-78,6)
8 Rest 389 (265,514) -67 (-128,-2) -16 (-64,27)
9 Rest 571 (433,698) -12 (-78,56) -14 (-63,31)
10 Rest 612 (493,729) 1 (-62,70) -14 (-63,30)
11 Rest 582 (446,718) -6 (-68,65) -13 (-63,31)
12 Rest 552 (413,688) -10 (-73,64) -12 (-62,32)
13 Rest 550 (421,675) -5 (-71,65) -13 (-62,33)
14 Rest 553 (416,685) 0 (-68,66) -14 (-62,32)
15 Rest 536 (411,652) -4 (-74,60) -15 (-63,29)
16 Rest 458 (311,591) -22 (-86,46) -17 (-65,27)
17 Rest 289 (170,404) -55 (-111,1) -21 (-69,21)
18 Rest 33 (-101,157) -97 (-141,-50) -34 (-80,7)
19 Rest -244 (-345,-144) -107 (-142,-74) -64 (-105,-28)
20 Rest -364 (-433,-291) -74 (-99,-47) -97 (-143,-56)
21 Rest -368 (-430,-306) -52 (-72,-31) -114 (-165,-68)
22 Rest -392 (-447,-332) -54 (-74,-35) -111 (-160,-66)
23 Rest -382 (-460,-300) -78 (-102,-53) -94 (-140,-56)
0 Sniff 456 (347,565) 155 (87,230) 8 (2,14)
1 Sniff 273 (152,398) 159 (93,236) 6 (0,12)
2 Sniff 148 (4,296) 140 (71,219) 6 (0,11)
3 Sniff 310 (194,430) 127 (67,192) 7 (1,13)
4 Sniff 496 (400,596) 115 (55,185) 10 (3,16)
5 Sniff 540 (447,642) 118 (47,195) 11 (4,18)
6 Sniff 392 (277,507) 130 (60,208) 9 (3,15)
7 Sniff -28 (-183,135) 99 (32,172) 5 (-1,10)
8 Sniff -389 (-522,-256) 23 (-19,67) 0 (-5,5)
9 Sniff -561 (-701,-411) -22 (-68,21) -4 (-10,2)
10 Sniff -603 (-728,-468) -32 (-76,14) -5 (-12,1)
11 Sniff -580 (-724,-439) -25 (-71,22) -5 (-12,1)
12 Sniff -553 (-699,-410) -20 (-64,25) -5 (-11,2)
13 Sniff -548 (-686,-415) -24 (-65,18) -5 (-12,1)
14 Sniff -547 (-691,-399) -30 (-74,15) -6 (-13,1)
15 Sniff -532 (-655,-393) -32 (-77,14) -6 (-13,1)
16 Sniff -465 (-609,-317) -23 (-74,24) -5 (-11,2)
17 Sniff -315 (-441,-187) 9 (-36,53) -1 (-7,5)
18 Sniff -77 (-217,68) 55 (4,109) 3 (-2,8)
19 Sniff 205 (76,322) 73 (17,134) 6 (0,11)
20 Sniff 389 (280,490) 59 (-3,119) 7 (1,12)
21 Sniff 460 (363,559) 68 (-3,136) 8 (1,14)
22 Sniff 500 (405,602) 112 (46,179) 8 (2,14)
23 Sniff 456 (347,565) 155 (87,230) 8 (2,14)
0 Walk -40 (-91,9) -22 (-39,-4) -6 (-8,-3)
1 Walk -45 (-93,5) -27 (-42,-12) -5 (-7,-3)
2 Walk -39 (-90,15) -28 (-42,-14) -5 (-7,-3)
3 Walk -28 (-76,28) -30 (-45,-14) -5 (-7,-3)
4 Walk -26 (-75,23) -30 (-47,-12) -6 (-8,-3)
5 Walk -40 (-86,2) -33 (-51,-14) -6 (-8,-3)
6 Walk -57 (-99,-20) -37 (-54,-21) -5 (-7,-3)
7 Walk -59 (-97,-26) -31 (-45,-18) -5 (-7,-3)
8 Walk -54 (-89,-21) -26 (-37,-14) -4 (-6,-3)
9 Walk -48 (-87,-9) -23 (-35,-11) -4 (-6,-3)
10 Walk -43 (-83,-5) -22 (-34,-10) -4 (-6,-2)
11 Walk -42 (-83,-4) -23 (-34,-11) -4 (-6,-2)
12 Walk -43 (-87,-4) -23 (-34,-11) -4 (-6,-2)
13 Walk -47 (-95,-4) -23 (-34,-11) -4 (-6,-2)
14 Walk -50 (-98,-6) -22 (-34,-10) -4 (-6,-2)
15 Walk -52 (-94,-11) -22 (-33,-10) -4 (-6,-3)
16 Walk -59 (-96,-21) -22 (-33,-9) -4 (-6,-3)
17 Walk -71 (-107,-39) -22 (-34,-9) -5 (-6,-3)
18 Walk -72 (-109,-36) -23 (-35,-9) -5 (-7,-3)
19 Walk -42 (-86,9) -23 (-38,-8) -5 (-7,-3)
20 Walk -21 (-68,27) -19 (-37,-2) -6 (-8,-3)
21 Walk -23 (-69,24) -15 (-34,5) -6 (-8,-3)
22 Walk -30 (-78,15) -16 (-35,4) -6 (-8,-3)
23 Walk -40 (-91,9) -22 (-39,-4) -6 (-8,-3)
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