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ABSTRACT 

Our daily interaction with the visual world raises questions about how humans identify and 

categorize visual stimuli. Previous research on the Perceptual Magnet Effect (PME), which 

argues that a perceptual warping occurs at an ambiguous category boundary between category X 

and category Y, has focused on replicating this perceptual warping in other perceptual domains 

and using naturalistic visual stimuli. In the present study, GAN-generated stimuli were evaluated 

against human similarity judgments in a pairwise comparison similarity task. Specifically, the 

presented study used visual stimuli from the popular CIFAR-10 and FF-HQ datasets. By 

comparing average human similarity ratings during each interpolation step from category X to 

category Y, GAN-generated stimuli were measured on their ability to replicate the warping seen 

in the PME. The results suggest that the CIFAR-10 and FF-HQ visual stimuli show hints of 

perceptual warping within-class category and across-instance category boundaries, respectively, 

but additional experimental fine-tuning is needed to strengthen the results. These findings 

provide an important first step in using GAN-generated stimuli to replicate psychophysics 

experiments analyzing perceptual phenomena like the PME. In addition to improving the sample 

size and scaling up high-resolution visual stimuli, future work should aim to investigate the 

possible application of GAN-generated stimuli with modified latent spaces to other domains like 

memory and attention. 
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INTRODUCTION 
 Studying visual recognition allows us to understand how humans perceive and encode 

visual experiences in the world around them. One key aspect of visual recognition, 

categorization, highlights how humans group visual stimuli into distinct concepts. In 

psychological research, categorization has been eagerly studied to understand how both human 

and artificial brains identify everyday objects. Early psychological theories of categorization 

emphasized two possible explanations: A rule-based model of categorization, where people learn 

rules or definitions for categories (Hull et al., 1920) (Bruner et al., 1956), and a similarity-based 

model, where categories are defined in terms of a resemblance to other objects (Rosch et al., 

1970).  

These two rule-based and similarity-based theories, later modified to the commonly 

known prototype and exemplar models of categorization, have encouraged the conception of 

numerous mathematical models to support each theory. Creating such models allows researchers 

to construct experiments to distinguish between the two theories using visual stimuli specifically 

crafted to shift category membership depending on the model being examined. 

One phenomenon that often guides the evaluation of exemplar and prototype theories is 

the Perceptual Magnet Effect (PME). The PME underscores how categories and category 

boundaries influence perception, and previous literature has been focused on its influence on 

speech sounds. Kuhl et al. (1991) first coined the term after finding that poor phonetic category 

discrimination occurs near the phonetic category prototypes. More broadly, the Perceptual 

Magnet Effect can be defined as a phenomenon where category prototypes pull – like a magnet – 

neighboring stimuli closer to them.  
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Some have suggested that categorical perception outside of speech may be conceptually 

different from the PME (Kuhl and Iverson, 2000), but most prior work has demonstrated that the 

PME can be qualitatively compared to other categorical effects. For example, Feldman and 

Griffiths (2007) related perceptual warping seen in speech perception to visual stimulus 

production. A common visualization of the Perceptual Magnet Effect can be seen in Figure 1.  

 

Figure 1 - The Perceptual Magnet Effect: Griffith and Feldman’s (2007) visualization of the Perceptual 
Magnet Effect. Each * under “actual stimuli” represents a physical stimulus within a single category, 
while each * above “perceived stimuli” represents the perceived stimuli within that same category, The 
curve represents the relationship between the actual stimuli and the perceived stimuli for that category. As 
illustrated above, category prototypes pull neighboring stimuli closer to them, causing the discrepancy 
between actual stimulus distance and perceived stimulus difference to have a non-linear effect that is 
more prominent at category boundaries.   
 

Specifically, Feldman and Griffiths (2007) compared category boundaries in speech to 

category boundaries in visual stimuli using stimuli from a Huttenlocher et al. (2000) study. In 

Huttenlocher et al. (2000), subjects were given the category structure and, consequently, used 

that structure to categorize visual stimuli when faced with uncertainty in a memory encoding 



Running Head: PERCEPTUAL SIMILARITY USING GANs  3 

task.  Importantly, in these other-domain categorical effects, perceptual space also shrinks near 

category centers, producing what can be called a “perceptual warping.”  

A study by Guenther and Gjaja (1996) furthered Kuhl et al. (1992)’s work by illustrating 

how the PME emerges from the uneven distribution of speech stimuli. The researchers suggest 

that perceptual warping occurs from the specific distribution of speech sounds and not from 

category labels or “exemplars.” Specifically, on a neuronal level, the neural firing preferences in 

speech sound categorization take on a Gaussian distribution. Furthermore, Guenther and Gjaja 

(1996) found that the central sounds possessed a stronger neural representation than the 

peripheral category speech sounds. As a result, a speech sound halfway between the category 

periphery and the category center will perceptually appear closer to the center, or the “exemplar” 

category sound, rather than the peripheral category sound.  

Griffiths et al. (2009) unified previous literature on the PME through a Bayesian 

computational model that deployed for both perceptual and psychophysical category mapping 

strategies to assess the perceptual warping. Their model highlights potential reasons for the 

visual categorical variability seen in the PME across different domains, specifically in speech 

sounds, colors, and faces. The researchers suggest that normalized Gaussian noise, perceptual 

warping, or other category latent space shifts may influence category boundaries. Within 

perception, latent space describes the underlying psychological space of perceived features and 

properties that guide similarity judgments between two visual stimuli (Suchow et al. 2018). 

Griffiths et al. (2009) also point out that these categorical judgements may be based on learned 

categories, specifically by implicit categories formed by the specific distribution of exemplar 

stimuli. Their study accounts for both one-category and multiple-category cases, allowing their 

computational framework to be generalizable to the many categorical possibilities a listener 
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encounters during natural speech perception. Similarly, the visual stimuli used in the present 

study require the participants to identify stimuli from two categories. For example, participants 

must distinguish between an image of a dog and a cat or between an airplane and a boat without 

prior knowledge of what categories were to be presented, much like everyday visual 

classification.  

Previous research has used simple visual stimuli to study the PME and its influence on 

visual perception and categorization. The ability to physically manipulate the stimuli properties 

allows researchers to characterize changes in perceptual and cognitive ability. For example, 

Hartendorp et al. (2010) used silhouette stimuli to evaluate the categorization of morphed objects 

during a free-naming experiment. The simplistic, contextless nature of stimuli, illustrated in 

Figure 2, allowed the researchers to conclude that categorical perception depends on the 

wholeness of the visual stimuli structure during the perceptual morphing from one stimulus to 

another. Notably, in experiments like Hartendorp et al. (2010) and others, the “toy,” 

algorithmically generated stimuli do not provide an ecologically valid representation of the 

everyday perception of our visual world. 

(above) Figure 2 - Example of algorithmically generated, “toy” stimuli used in previous perceptual 
categorization experiments: Example interpolations generated in the Hartendorp et al. (2010) study. The 
stimuli morphed from a silhouette of a cat to a silhouette of a butterfly, and from a crocodile to an 
airplane, respectively.  
 

Using handcrafted naturalistic stimuli, Hampton, Estes, and Simmons (2005) conducted a 

series of experiments evaluating how human participants categorized borderline perceptual 

stimuli in the context of other similar stimuli or within and across a category boundary. The first 

few experiments in the study used pairs of hues between the colors purple and blue, and their 
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final experiments used perpetually similar black and white photographs of a dog and cat, as 

shown in the handcrafted vertical interpolation of Figure 3. Although Hampton, Estes, and 

Simmons (2005) were able to make valuable contributions as to how stimuli are categorized 

based on their visual and perceptual contrast to a category relevant stimulus, the small dataset 

and limited modalities tested impact the overall generalizability of their findings. Importantly, 

the stimuli used were handcrafted naturalistic stimuli, which 

require extensive effort and time to generate. Thus, it remains 

unclear how these results would generalize to additional 

stimuli classes.  

 
(left) Figure 3 - Example of handcrafted naturalistic stimuli 
used in previous perceptual categorization 
experiments:  Handcrafted interpolation generated in a study by 
Hampton, Estes, and Simmons’ (2005). The stimuli morphs from a 
photo of a cat (frame CD1) to a photo of a dog (frame CD7). The 
stimuli were cropped to only show the face and were gray scaled to 
allow for minimal contextual and background interference.  

 

Constructing automated but naturalistic stimuli in 

psychophysics, categorical perception, and PME experiments 

continues to be an important next step in the field. Generating 

these images will enhance the ecological validity of the 

stimuli itself and will provide a more effective naturalistic 

setting for identifying category boundaries – one that more 

closely resembles our everyday visual context. Related 

subfields of scene recognition and face perception have 

successfully used naturalistic stimuli to study visual perception (Fei-Fei et al., 2005) (Torralba et 
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al., 2003). These experiments tend to create stimuli in an isolated computational and 

neuroscience-based modeling framework. Therefore, to bridge findings in both disciplines, this 

study grounds itself in a computational modeling framework from both computational 

neuroscience and psychology literature.  

To generate automated, naturalistic stimuli for visual recognition tasks, researchers have 

been forced to consider the perceptual and mathematical features that underlie categorical 

perception in humans. One way to construct human-like computational models of categorization 

is by evaluating how closely model-perceived perceptual similarity aligns with human-perceived 

similarity. Most research in this field, like the popular ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), seek to establish a benchmark for predicting class categories, rather than 

evaluating the perceptual progression between categories. Roads and Love (2021) expanded the 

ILSVRC validation set to create ImageNet Human Similarity Judgment (ImageNet-HSJ), 

creating a more general benchmark of human perception and reasoning. Using the ImageNet-

HSJ allowed the researchers to assess how well human similarity judgements of visual stimuli 

(i.e., respondents provided a similarity rating while viewing a beer bottle and a soda can versus a 

beer bottle and a cigarette) aligned with popular computational models of visual perception. 

Their findings point to the experimental usefulness of psychological embedding spaces, which 

are extracted from human judgements, that can then be used to infer categorical similarity 

between visual stimuli.  

 Another recent study by Peterson et al. (2018) combined cognitive science and machine 

learning methods to introduce a method of estimating the structure of human categories. In their 

proof of concept, the researchers used a dcGAN (deep convolutional generative adversarial 

network) and a biGAN (bidirectional generative adversarial network) to mathematically evaluate 
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category boundaries and classification on images from the Asian Faces and ILSVRC12 datasets. 

Afterwards, their model-generated samples were compared to human classification ratings on 

images from all ten categories present in the prior datasets. Peterson et al. (2018)’s findings 

importantly demonstrated that generative models allowed for the visualization of multi-modal 

category templates and for a better approximation of human classification ratings. Furthermore, 

the results from Peterson et al. (2018) highlight the possibility that diverse datasets and 

categories can be effectively classified by a generative model.  

The current study hopes to expand upon the current categorical perception literature by 

specifically improving the visual stimuli themselves as an important first step in validating and 

refining automated, naturalistic stimuli against human similarity ratings. To do so, generative 

adversarial networks (GANs) were chosen to generate the photorealistic stimuli. Prior literature 

in artificial intelligence (AI) has pointed to GANs as a valuable computational method for 

constructing images that balance both experimental control and ecological validity 

(Goetschalckx et al., 2021) Most relevant to the current study is a GAN’s powerful ability to 

generate a continuous space of stimuli while maintaining latent space control. Unlike 

handcrafted, naturalistic stimuli, which take a long time to generate, GANs can be scaled up to 

generate thousands of controlled, high-quality images in a much shorter period. Thus, GANs 

present a promising computational method for generating sequences of automated, naturalistic 

stimuli between two image categories that can subsequently be measured against human 

similarity judgements.  

In the present study, GAN-generated visual stimuli were evaluated against human 

similarity judgements in an attempt to replicate the perceptual warping seen in the Perceptual 

Magnet Effect. Like the Peterson et al. (2018) study, this study trained the well-established 
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CIFAR-10 dataset on a conditional dcGAN and a StyleGAN. Additionally, the FF-HQ dataset 

and the silhouette dataset from Hartendorp et al. (2010) assess perceptual differences in visual 

stimuli quality and context. All experimental stimuli were then interpolated to create 16-step 

visual interpolations from stimuli class A to stimuli class B. To compare the three datasets of 

generated visual stimuli to human perceptual similarity judgements, an Amazon Mechanical 

Turk experiment was run to collect similarity ratings from pairwise presentations of the 

generated images. If the GAN-generated stimuli effectively capture the categorical boundary 

effects seen in the PME, human similarity ratings should exhibit a perceptual warping in its 

transformation from a visual stimulus in class A to a visual stimulus in class B.  

METHODS 

Participants:  
 Participants were recruited online via Amazon Mechanical Turk (AMT) to complete the 

human similarity judgment task for the CIFAR-10, FF-HQ, and the Hartendorp Silhouette 

datasets. No participants were excluded from the final analysis, as exclusion criteria were pre-set 

in AMT. To ensure high quality results, all participants had to be in the United States, had to 

have been accepted as a participant in 95% of their previous experiments, and had to have 

participated in over 1,000 experiments via the AMT platform. The task was conducted entirely 

online via AMT and all participants were compensated for their participation with a monetary 

reward per image comparison submitted.  

For the CIFAR-10 dataset, each comparison of two perceptually sequential images were 

evaluated by nine unique participants, making for a total of 4,275 similarity ratings for the batch 

of 475 pairwise comparison. In the FF-HQ dataset, each comparison of two perceptually 

sequential images were also evaluated by nine unique participants, resulting in a total of 675 
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similarity ratings for the batch of 75 pairwise comparisons. Finally, on the Hartendorp Silhouette 

dataset, each comparison of two perceptually sequential images were evaluated by nine unique 

participants, making for a total of 288 similarity ratings for the batch of 32 pairwise 

comparisons. 

Human Similarity Judgment Task:  

 To measure perceptual similarity between the generated stimuli participants completed a 

perceptual task that asked them to rate the similarity between two of the images on a scale from 

1-9. The template was modified from an AMT Item Equity template to put the two generated 

images side by side on the screen. Each trial consisted of pairwise comparison between two 

generated images from randomized positions in two different classes. Alongside the two 

generated images, instructions asked the participants to click on the score (1-9), 1 being the 

extremely different and 9 being extremely similar, based on how similar they thought the two 

images were. The scale was labeled as follows: 1 - extremely different, 2 - very different, 3 - 

mostly different, 4 - somewhat different, 5 - neither different nor similar, 6 - somewhat similar, 7 

- mostly similar, 8 - very similar, and 9 - extremely similar.  Each participant was expected to 

spend around 25 minutes evaluating the collection of pairwise stimuli but was given up to 1 hour 

to do so. An example trial of the similarity judgment task presented to participants is shown in 

Figure 4.  
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Figure 4 - Example Trial of the Human Similarity Judgment Task on the FF-HQ dataset on 
Amazon Mechanical Turk: Visualization of the similarity judgment task that participants completed. 
Participants were instructed to look at the two stimuli on the left and select a box on the right based on 
how similar they perceived the two images to be. For the FF-HQ dataset, participants were asked to 
evaluate the similarity between the two “faces” rather than “images.” After clicking on an option bar, the 
participant had to select a submit button before moving to the next trial. Here, the participant was viewing 
pairwise stimuli from an interpolation between a young man and a young woman with long hair.  
 
CIFAR-10 Dataset: 

The first set of visual stimuli used in the human similarity judgment task was generated 

using a conditional StyleGAN trained on the CIFAR-10 dataset. The CIFAR-10 dataset consists 

of 60,000 32x32 color images from 10 different image classes. There are 6,000 images in each of 

the 10 classes. The 10 classes used during training were airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship, and truck. 

 
FF-HQ Dataset: 

To provide quality control on the contextual variability of the CIFAR-10 dataset, the 

second set of visual stimuli evaluated in the human similarity judgment task were generated 

using a conditional StyleGAN trained on the Flick-Faces-HQ (FF-HQ) dataset. The FF-HQ 

dataset consists of 70,000 high quality faces taken from Flickr in a 1024 x 1024 resolution. In the 

present study, a subset of the face stimuli were chosen for interpolation. 
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The Hartendorp Silhouette Dataset: 

Finally, to compare machine-generated, naturalistic stimuli to algorithmically generated, 

“toy” stimuli, a final set of images used in the human similarity judgment task were taken from 

the morphed silhouette images used in Hartendorp et al. (2010). The entire dataset consisted of 

15 morphed interpolations made using the Sqirlz-Morph software. The morphs were constructed 

between two living objects, two non-living objects, and between living and non-living objects. 

Additionally, the series were created between different basic-level categories. In the present 

study, a subset of the morphs (cat to butterfly, crocodile to airplane, gun to rabbit, and truck to 

peacock) were selected to be shown and evaluated by participants during the human similarity 

judgment task.  

 
Neural Network Architecture:  

To determine which specific GAN architecture would produce the best naturalistic 

images, two GAN architectures were tested and compared for image quality: a conditional 

dcGAN and a conditional StyleGAN. In a basic GAN architecture, two computational models 

work against each other during training. In the first model, the generator learns to generate 

samples of a given image distribution. The second model, the discriminator, learns to identify 

whether the samples generated by the generator model are real or fake (Goetschalckx et al. 

2021). 

The first network model, a dcGAN, is a direct extension of a GAN architecture and uses 

convolutional and convolutional-transpose layers in both the generator and the discriminator. 

These transposed convolutional layers perform up-sampling of the 2D image size initially fed 

into the network (Inkawhich, DCGAN tutorial). The network for this study was modified for the 
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CIFAR-10 dataset from an official PyTorch implementation of a DcGAN, which can be found 

here: https://github.com/pytorch/examples/blob/main/dcgan/main.py.  

After initially establishing baseline image results, the DcGAN model was retrained to be 

class conditional in order to interpolate between image classes. To do so, the DcGAN 

architecture was modified via this PyTorch implementation of a cDCGAN (conditional dcGAN) 

by GitHub user “togheppi”: https://github.com/togheppi/cDCGAN. Later, additional 

modifications were made to increase learning, improve image quality, and accommodate the 

CIFAR-10 image dimensions. Initially, the network was trained on 50 epochs, but was later 

changed to 100 and then to 200 to further enhance network learning. The cDCGAN was also re-

trained to increase the image pixel size from 32 to 64.  

 The conditional StyleGAN neural network is an alternative architecture for generative 

adversarial networks (GANs). Unlike a traditional GAN, the latent code in a StyleGAN is not fed 

through an input layer but rather through a learned constant, an intermediate latent space that 

then controls the generator model through adaptive instance normalization at each convolutional 

layer. The computational model was modified to accommodate a CIFAR-10 dataset from this 

PyTorch implementation of a StyleGAN2: https://github.com/NVlabs/stylegan2-ada-pytorch. For 

the FF-HQ dataset (https://github.com/NVlabs/ffhq-dataset), a StyleGAN3 was modified from an 

official PyTorch implementation found here: https://github.com/huangzh13/StyleGAN.pytorch.   

 

Class Conditional Network Training:  

After training both the cDCGAN and the StyleGAN, images generated from the 

generator of each model were compared. Conclusively, the StyleGAN was found to produce 

images with greater clarity and quality. This comparison is in line with the current literature on 

StyleGANs, as StyleGANs are known for being able to produce a high image quality that is often 
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compromised in other GAN architectures when training on the CIFAR-10 dataset (Karras et al., 

2020). Additionally, the StyleGAN architecture improves traditional distribution quality metrics, 

which in turn produces better interpolation properties (Karras et al., 2020). Training the 

StyleGAN resulted in the generation of 23,040 randomized images from the CIFAR-10 dataset. 

In the FF-HQ dataset, 80 face stimuli were selected for interpolation after training. Notably, the 

Hartendorp Silhouette stimuli were algorithmically generated, so they were not trained on a 

neural network.  

 

Interpolation: 

 To interpolate each of the generated images along class boundaries in the CIFAR-10 

dataset, a python script accounting for the class label, random seed generation, and the number of 

steps in each interpolation series (16) was created. Another Python script generated both 

individual images representing each position within the series and a complete 16-step 

interpolation series image. Sequential stimuli positions (i.e., Position 3 and Position 4, Position 

5, and Position 6) in all interpolations were then paired to be used as the pair-wise stimuli 

presented in the AMT online experiment.  

Specifically, for the CIFAR-10 stimuli, interpolation between class labels was completed 

from Class A to Class B, and from Class B to Class A for all 10 class labels. A total of 1,666 

pairs of sequential images were generated for all interpolations in the complete CIFAR-10 set. 

For the FF-HQ dataset, five 16-step interpolations were produced. A subset of pairwise 

comparisons taken from the CIFAR-10 interpolations, consisting of 475 comparisons, was 

shown to the AMT participants during the human similarity judgment task. In the FF-HQ dataset, 

five interpolations, resulting in a total of 75 comparisons, were shown to AMT participants.  
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Finally, the Hartendorp dataset consisted of 9-step interpolations that were split into 

pairwise comparisons, resulting in the presentation of 32 comparisons during the human 

similarity judgment task. An example of an interpolation series and the generated stimuli from 

each of the three experimental datasets can be found below in Figure 5a (Hartendorp), Figure 

5b (CIFAR-10), and Figure 5d (FF-HQ).  

RESULTS 

 

 

Figure 5 - Example Interpolations (9-step) from Different Visual Stimuli Datasets:  
a) Algorithmically generated, “toy” dataset: an example interpolation between a gun and a rabbit in the 
Hartendorp Silhouette dataset.  b) Automated, naturalistic dataset: CIFAR-10 example interpolation 
from a dog to a cat. c) Another example of an automated, naturalistic dataset: an interpolation between 
a fox and a wolf in the Animal Faces Dataset, which was not used in the current experiment. d) A high-
resolution automated, naturalistic dataset (context-controlled): FF-HQ dataset example interpolation 
between a young man and woman with long hair. Each interpolation from a-d also increased in 
resolution, with CIFAR-10, the Animal Faces, and the FF-HQ datasets having a pixel resolution of 
64x64, 512x512, and 1024x1024, respectively.   
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Hartendorp Silhouette Dataset: 
 First, to evaluate the feasibility of the Perceptual Magnet Effect (PME) against human 

similarity judgments on Amazon Mechanical Turk, the Hartendorp Silhouette dataset was used 

as a positive control. An example interpolation from this dataset can be seen in Figure 5a. As 

illustrated in Figure 6, average similarity ratings for the Hartendorp dataset reveal a perceptual 

warping effect, as indicated by the lower average similarity rating in positions 4-7. Thus, these 

results demonstrate that the PME can be replicated using the current experimental paradigm on 

algorithmically generated, “toy” stimuli like the Hartendorp dataset.  

 
Figure 6 - Average Human Similarity Rating on the Hartendorp Silhouette Dataset: Average human 
similarity ratings on the human similarity judgment task for the Hartendorp Silhouette dataset along each 
of the 9 interpolation steps. The drop in average similarity rating between stimuli positions 4-7 illustrate 
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where participants perceive the largest perceptual difference between the two stimuli. Error bars represent 
one standard deviation from the average human similarity rating at that interpolation position.   
 
CIFAR-10 Dataset: 

To replicate the encouraging findings seen in the Hartendorp dataset on automated, 

naturalistic stimuli, the experimental paradigm was repeated using the CIFAR-10 and FF-HQ 

datasets. To generate visual stimuli that could be interpolated between multiple classes (class A 

to class B, class B to class C, class C to class B), the CIFAR-10 dataset was trained on a 

conditional StyleGAN. An example of the resulting visual stimuli from CIFAR-10 training can 

be seen via an example interpolation in Figure 5b. Notably, the human similarity judgment task 

on the CIFAR-10 dataset did not reveal a strong PME across all 10 CIFAR-10 classes (“within-

instance”). 

However, analyzing the average human similarity rating within a class did indicate a 

perceptual curvature like that in the PME. For example, As seen in Figure 7, average human 

similarity ratings were the highest near category prototypes (stimuli interpolation positions 1 and 

16) and were the lowest near category boundaries (stimuli interpolation positions 4 through 7) in 

Class 0 (airplanes). This trend indicates that participants perceptually evaluated stimuli near the 

category boundary as being more dissimilar, even though the physical latent space between each 

interpolation was the same. Thus, a noticeable “perceptual warping” occurred within a category 

in the CIFAR-10 dataset. Figure 8 illustrates similar warping effects for another class, Class 9 

(trucks), with the lowest average similarity rating occurring at stimuli interpolation positions 8 

through 11. 

The lack of a strong PME in the CIFAR-10 is likely due to several confounding factors. 

For example, the low resolution of the generated stimuli (64 x 64) could have forced AMT 

participants to use other metrics, like texture, color, or context to quantify stimulus similarity.  
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a) 
 

b) 
 

 
Figure 7 - Within-class Interpolation on the CIFAR-10 Dataset Evaluated Against Human 
Similarity Ratings: a) An example interpolation between Class 0 (airplanes) and Class 4 (deer). b) 
Average human similarity ratings on the human similarity judgment task between Class 0 (airplanes) and 
any of the other 9 classes for each of the 16 interpolation steps. The red box in Figure 7a illustrates where 
humans are most likely to perceive the largest perceptual difference between two stimuli within the 
interpolation, even though each position along the interpolation changes by equal steps. Within this 
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interpolation, the largest perceptual difference also happens to be close to the category boundary between 
the airplane and the deer. Error bars represent one standard deviation from the average human similarity 
rating at that interpolation position.   
 
 

 
(above) Figure 8 - Within-class Interpolation on the CIFAR-10 Dataset Evaluated Against Human 
Similarity Ratings: Average Human Similarity ratings on the human similarity judgment task for Class 9 
(trucks) and any of the other 9 classes for each of the 16 interpolation steps. The drop in average 
similarity rating between stimuli positions 8-11illustrate where participants perceive the largest perceptual 
difference between the two stimuli. Conversely, the “ends” of the interpolation (position 1 and 16) have 
higher average similarity ratings, thus indicating where humans perceive the smallest perceptual 
difference between the two stimuli. Error bars represent one standard deviation from the average human 
similarity rating at that interpolation position.   
 
FF-HQ Dataset: 

To untangle one of these confounding factors, context, another automatic, naturalistic 

dataset, FF-HQ, was evaluated by AMT participants. Unlike the CIFAR-10 dataset, the FF-HQ is 
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context controlled, meaning that during interpolation, the background context stays constant. 

Additionally, the dataset stimuli had a higher resolution of 1024x1024. An example of a 

generated interpolation from the FF-HQ dataset can be observed in Figure 5d. As shown in 

Figure 9, average human similarity ratings exhibited hints of perceptual warping, with a lower 

average human similarity rating occurring in stimuli interpolation positions 7 through 10.  Due to 

the time it takes to generate the high-quality resolution seen in the FF-HQ dataset, a smaller 

number of stimuli and interpolations were generated in comparison to the CIFAR-10 dataset. 

Thus, the weaker PME effect seen in the FF-HQ dataset could be attributed to a smaller number 

of interpolations and the perceptual curve may be strengthened with additional interpolations or 

more participants. Additionally, the smaller number of interpolations did not permit within-class 

analysis, as was done on the CIFAR-10 classes.  
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 (above) Figure 9- Average Human Similarity Rating on the FF-HQ Dataset: Average human 
similarity ratings on the human similarity judgment task for the FF-HQ dataset along each of the 16 
interpolation steps. The average human similarity reveals a slight perceptual difference between stimuli 
interpolation positions 7-10. Error bars represent one standard deviation from the average human 
similarity rating at that interpolation position.   
 

DISCUSSION 

 The present study demonstrates promising results for using automatic, naturalistic visual 

stimuli to evaluate perceptual similarity. Average human similarity ratings on the Hartendorp 

Silhouette dataset revealed that the human similarity judgment task on AMT was a viable 

experimental paradigm to test perceptual warping in visual stimuli. Though the across-instance 

average similarity ratings on the CIFAR-10 dataset did not demonstrate significant perceptual 

warping,  

within-class analysis on the CIFAR-10 dataset indicated lower human similarity ratings at 

category boundaries, and thus producing a noticeable warping effect. Similarly, the FF-HQ 

dataset illustrated hints of perceptual warping at category boundaries.  

 Future work should carefully consider sample size, experimental protocol, and inherent 

noise from AMT when evaluating human similarity judgements using GAN-generated stimuli. 

Perceptual warping effects for each of the three experimental stimuli datasets might have been 

more robust with a larger sample size of both participants and interpolations tested. Every 

pairwise comparison in the three datasets was evaluated by 9 unique participants, but more 

participants should be included to strengthen observed trends. Though the Hartendorp Silhouette 

dataset did illustrate perceptual warping, the warping and the category boundary for the 

interpolations may become pronounced with the addition of the 11 other interpolations included 

in the original Hartendorp et al. (2010) study. Due to timing constraints and pre-set Amazon 

Mechanical Turk experimental paradigm configurations, larger datasets like CIFAR-10 and FF-
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HQ could only be evaluated in groups of 475 comparisons at time. Ideally, a revised 

experimental setup would allow AMT participants to complete trials for all comparisons within 

the CIFAR-10 dataset in one sitting. Particularly for the FF-HQ dataset, more face stimuli should 

be evaluated during the human similarity judgment task to standardize for the natural variability 

of faces in the dataset.  

 Presentation of the visual stimuli may have also affected the accessibility and accuracy of 

the human similarity judgment task. Due to the low resolution of certain datasets, particularly the 

64x64 resolution of the CIFAR-10 dataset, the visual stimuli may have looked unclear to some of 

the participants during the task. Furthermore, the standard configurations of the AMT task setup 

display each image at its current pixel size, making each visual stimuli physically smaller and 

potentially less discernible, as can be seen in Figure 4. In terms of the experimental protocol, 

participants were only given simple instructions to complete the task. The instructions were as 

follows: “Determine the similarity between the two images [or in the case of FF-HQ: faces], on a 

scale from 1-9, with 1 being extremely different and 9 being extremely similar.” Because 

participants may have different perceptions of what they deem “similar” or “different,” future 

iterations of this paradigm should provide a reference pairwise comparison for how to calibrate 

similarity ratings.  

Additionally, presentation quality and participant response quality can only be minimally 

controlled on Amazon Mechanical Turk. In an ideal experimental setup, the experimental 

paradigm would be hard-coded, rather than modified from a premade Amazon template, to best 

fit the current study’s goals. Increasing the number of participants is also essential due to the 

variability in participant quality on AMT. Though the present study was configured with the 

intention of excluding participants who did not have a reliable response record on the platform, 
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there is still a possibility that participants were randomly clicking on similarity rating responses 

during the task or were disengaged during the task’s completion. 

 Although the evaluation of human similarity judgements on the FF-HQ datasets allowed 

more contextual control, other perceptual cues should be taken into consideration during stimuli 

generation and experimental testing. For example, in the positive control condition using the 

Hartendorp Silhouette dataset, participants were not able to use other perceptual cues, like 

texture and color, to evaluate stimuli similarity. Therefore, although the Hartendorp dataset was 

effective in illustrating the potential of the experimental paradigm on “toy” stimuli, the average 

human similarity ratings may not encapsulate all components of human perceptual similarity 

judgment or demonstrate as much of a pronounced effect as it would in other domains.  

 In addition to improving the experimental paradigm and the visual stimuli, future 

research should focus on manipulating the latent space between each stimulus position to 

regularize the perceptual space. A useful starting point would be taking the human similarity 

judgments (HSJ) collected in the aforementioned study by Roads and Love (2021) and applying 

it to the GAN latent space used in this present study. The Roads and Love (2021) study directly 

applied the generated HSJ data to a psychological embedding (latent space) trained on the human 

similarity judgements. Because the GAN latent space reflects the step size inherent to the neural 

network and not the psychological and perceptual latent space that humans observe, embedding 

the HSJ could regularize the GAN latent space. Re-running the human similarity judgment task 

on this modified latent space could highlight the potential of GAN-generated stimuli in 

mimicking human-like models of visual categorization and perception. 

Conversely, GAN-generated stimuli can also be “perceptually straightened,” rather than 

regularized, through latent space manipulations. A study by Hénaff et al. (2019) proposed that 
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humans internally transform perceptual judgments needed to perceive continuous stimuli. This 

“temporal straightening” hypothesis provides a methodology for examining the perceptual 

curvature of an internal trajectory from human perceptual and similarity judgments. Hénaff et al. 

(2019) investigated this hypothesis on natural videos and found that humans internally 

“straighten” perceptual latent space when the visual stimuli are highly curved, as would be the 

case with the PME. Thus, extending these findings to GAN-generated stimuli could reveal 

meaningful differences between our “internal” and “external” visual perception of categories.  

 Other future work could use these high-quality generated stimuli to study other cognitive 

domains like memory and attention. For example, Goetschalckx et al. (2019) manipulated GAN-

generated images to investigate memorability, aesthetics, and emotional valence. By navigating 

the latent space along a desired quality, the researchers were able to visualize what properties 

make a visual stimulus memorable. Their results demonstrated that the latent space 

manipulations did correlate with differential human memory performance. Unlike the present 

study, Goetschalckx et al. (2019) explored these image properties by training images on a class 

conditional BigGAN rather than a StyleGAN. Furthermore, the visual stimuli originated from 

pretrained ImageNet images. Therefore, future extensions in this field should also consider 

comparing different types of conditional GANs and high-quality image datasets to generate 

optimal experimental results. Furthermore, their model framework, called GANalyze, also alters 

perceptual attributes like brightness, color, and object size in their assessment of memorability. 

Importantly, their successful manipulations highlight the potential of using GANalyze to 

investigate how these attributes could influence human attention and other aspects of vision.  

A similar latent space manipulation was explored by Suchow et al. (2018) in their study 

of human face perception. Rather than manipulating memorability, as Goetschalckx et al. (2019) 
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did, this study controlled perceptual latent space relating to human identity and appearance using 

a variational autoencoder. The researchers were able to generate high-quality, photorealistic 

human portraits using a smooth and navigable psychological latent space. Applying the 

knowledge from Suchow e al. (2018) study to the current GAN-generated stimuli, particularly 

the FF-HQ dataset, could help in the development of GAN-stimuli that can be manipulated to 

generate a face, place, or object that is usually only accessible in a person’s mind.   

 In conclusion, the current study stresses the potential utility of GAN-generated images to 

investigate how humans define categories in everyday visual stimuli. It will be worth evaluating 

different (and perhaps newer) GANs, training on larger datasets, recruiting more participants, 

and improving relevant experimental paradigms. Many questions in this line of work remain 

unanswered. What properties within these GAN-generated stimuli contribute to their perceived 

similarity? To what extent does the “type” (faces, landscapes, animals, etc.) of visual stimuli 

impact category boundary effects? And finally, what are the limits of computer-generated 

stimuli, and to what extent can we use them to evaluate fundamental aspects of human 

cognition?  
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