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Deep learning shifts the way to build signal processing systems from coding or 

model-centric to data-centric. This paper presents a system to support data-centric deep 

learning for signal processing. Using new data from an ongoing medical case study, the 

work sets the direction for objective assessment for diagnosing neonatal opioid withdrawal 

syndrome (NOWS) through infant cry. 

Our approach to the NOWS classification decision combines two deep learning 

models, a long short-term memory recurrent neural network (LSTM-RNN) and a 

convolutional neural network (CNN), so that early decisions are not made a priori. One 

issue for this work was obtaining sufficient data, and we are sure we did not have enough. 

Also, the baseline true decisions may also be questionable. Nevertheless, with the data thus 

obtained, we were able to achieve nearly a 90% correct classification of verification data. 

Realistically, however, we are virtually certain that more data will lead to different 

performance levels and factual assessment of the important parameters of the input data 

and classifier. As clinical data becomes available over time, more work can be used with 

this classifier to improve its performance. In addition to the difficulty of training the 

Acoustic Neural Network (ANN), the work addresses issues in machine learning lifecycle 

such as the data pipeline, the testing benchmark, performance metrics, and deployment 

plan. 
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1. Introduction 

1.1. Background 

A newborn’s cry is one of the most elementary yet universal forms of communication 

that humans experience. It is both a primitive acoustic vocalization and complex 

information channel. The physical action constitutes a complex amalgamation of 

pharyngeal, laryngeal, and thoracic motion to form a language (Truby and Lind). Cries are 

deceptively informative, containing layers of emotional and physical implications. 

However, they suffer from subjective interpretation due to linguistic ambiguity. 

Nonetheless, infant cries likely hold critical information with significant biomedical 

potential. 

Infant-cry analysis is a growing field in biomedical signal processing. Among several 

studies, infant cry analysis spans three main directions: cry detection, cry diagnostics, and 

cry interpretation. Cry detection involves analyzing audio to determine whether a baby is 

crying among other sources of noise. Systems have been designed to detect baby cries in 

home and car settings to alert caretakers of danger (Cohen and Lavner), (Foo, Yap and 

Hum). Cry diagnostics focuses on detecting acoustic differences in infants experiencing 

various conditions. These may include deafness or respiratory ailments (Garcia and Reyes 

Garcia), (Saraswathy, Hariharan and Yaacob). Cry interpretation aims to “translate” infant 

utterances into a comprehensive language. Research efforts in this direction have 

categorized certain sounds to different infant demands such as hunger or sleepiness (Mima 

and Arakawa). 

Among the three directions, cry diagnosis holds vast potential. It is widely applicable 

to many conditions where infant cry is a notable biomarker. Cry diagnosis is also seeded 
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in ground truth by expert domain knowledge depending on the condition. Neonatal 

abstinence syndrome (NAS), also known as Neonatal opioid withdrawal syndrome 

(NOWS), is a prominent condition that may be able to be distinguished from a newborn’s 

cry (Devlin, Breeze and Terrin), (Chin Foo, Dansereau and Hawes). Newborns whose 

mothers may have suffered from Opioid Use Disorder (OUD) can experience mild to 

severe withdrawal symptoms. Symptoms may vary but typically involve tremors and 

hyperirritability depending on type and time of exposure among other factors. With a rise 

in newborns suffering from NAS, it becomes more crucial for standardized and objective 

treatment (University of North Carolina School of Social Work). 

Early NAS detection is difficult because a truly objective diagnosis test currently 

does not exist. The Finnegan Neonatal Abstinence Scoring Tool (FNAST) is used to predict 

if, and to what degree, a newborn suffers from NAS. It consists of 21 observer-rated 

subjective assessments with multiple subcategories that quantify NAS severity (Devlin, 

Breeze and Terrin). Moreover, the FNAST takes an assessor about 40 minutes, so it is 

expensive. Each assessment is scored between 1 to 5 and these assessments range from 

central nervous system behaviors to gastrointestinal disturbances. There are also subjective 

assessments taken from cries of the infants. Depending on the score, practitioners may 

follow various methods of pharmacologic therapy (University of North Carolina School of 

Social Work). Table 1 below depicts the standard FNAST assessments that nurses will use 

to measure NAS severity. Some of the 21 items listed have different severities associated 

with different scoring contributions. 

Table 1: 21 Item Finnegan Test 
Item Severity Score Max 
High-pitched crying Excessive 2 
 Continuous 3 
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Sleeps after feeding, h <3 1 
 <2 2 
 <1 3 
Moro reflex Hyperactive 2 
 Markedly hyperactive 3 
Tremors when disturbed Mild 1 
 Moderate to severe 2 
Tremors when 
undisturbed 

Mild 3 

 Moderate to severe 4 
Increased muscle tone 2 
Excoriation 1 
Myoclonic jerks 3 
Generalized convulsions 5 
Sweating 1 
Body temperature 37.2-38.3 1 
 ≥38.4 2 
Yawning >3 times/scoring interval 1 
Mottling 1 
Nasal stuffiness 1 
Sneezing >3 times/scoring interval 1 
Nasal flaring 2 
Respiratory rate >60/min 1 
 >60/min with 

retractions 
2 

Excessive sucking 1 
Poor feeding 2 
Regurgitation 2 
Projectile vomiting 3 
Stools Loose 2 
 Watery 3 

 

 Based on the Finnegan test score, a number of treatments may be administered. 

Initial treatment may include supportive care such as low-stimulation, increased feeding, 

and other measures to reduce infant stress. However, more severe symptoms call for 

pharmacologic therapy, and it is found that 50-75% of substance-exposed infants will 

require this treatment. Common medications include small doses of morphine sulfate and 

methadone. After frequent monitoring, the patient is discharged after no longer showing 
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signs of NAS (University of North Carolina School of Social Work). Figure 1 below 

depicts a standard flowchart clinicians may use when treating NAS. 

 
Figure 1: Finnegan Test Treatment Methods (University of North Carolina School of 

Social Work) 
 

 A significant issue with the Finnegan test is that it suffers from scoring subjectivity 

and high variability between different assessors. This is largely from being a human-

administered assessment that is subject to different conditions. Several changes have been 

proposed to the current Finnegan test that involve editing assessment categories. A recent 

study compared percent endorsement of FNAST categories among three (Louisville, Tufts, 

and University of Kentucky) different geographical regions that totaled 424 infants. The 

three subjective measurements that exhibited the largest discrepancies were convulsions, 

high-pitched cry, and hyperactive Moro reflex. In particular, high-pitched cry received high 

marks from the Louisville [77.2%] and Kentucky [79.8%] groups but low marks from the 

Tufts group [20.7%] (Devlin, Breeze and Terrin). This suggests the high-pitched cry 
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assessment is likely to be very subjective, depending on nurse judgement. What sounds 

“high-pitched” might be different for a nurse with less experience treating NAS than one 

with more. 

 Another study compared FNAST performance to another NAS assessment called 

the NICU Network Neurobehavioral Scale (NNNS) (Chin Foo, Dansereau and Hawes). 

NNNS analyzes an infant’s neurologic development and signs of stress or withdrawal. 

Unlike FNAST, it is applicable to both healthy and substance-exposed patients. The study 

compared FNAST and NNNS results on the same 78 infants and found several categories 

to be closely correlated, which included FNAST’s cry category and NNNS’s high-pitched 

cry and predominant state categories. This suggests that infant cry may be a valid category 

when screening for NAS but suffers from subjectivity between nurses. This thesis aims to 

establish an objective and noninvasive method to assess infant cry for NAS using Machine 

Learning (ML) with Signal Processing (SP). 

 

1.2. List of Past Work 

As a subfield of artificial intelligence (AI), machine-learning applications are 

increasingly more popular in signal processing analysis. Today, with significant data for 

training, neural-network technology is being adopted for most of the AI solutions in use. 

A large segment of the AI work is now used for pattern recognition and the classification 

of data formulated into images, vector functions of time or combinations of both. Recurrent 

Neural Networks (RNNs) are feedforward neural that are popular for classifying sequential 

data such as speech where temporal information and context is important (Sutskever). More 

sophisticated RNN architectures have also been proposed negating the need for pre-
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segmented data or output post-processing (Graves, Fernandez and Gomez). As training 

methods improve, neural networks approach human-level performance as observed in 

studies in object recognition (Geirhos, Janssen and Schutt). There has also been great 

success in using RNNs for acoustic modeling, sound event detection, speech recognition 

and speaker diarization (Graves, Mohamed and Hinton), (Hinton, Deng and Yu), (Nguyen, 

Nguyen and Phan), (Zhang, Wang and Zhu). 

However, RNNs are often difficult to train. They may suffer from the exploding or 

vanishing gradient phenomenon resulting in loss of long-term correlations (Pascanu, 

Mikolov and Bengio). RNNs are also susceptible to overfitting and can fail to learn over a 

generalized range of domains (Bronstein, Bruna and LeCun). Increasing model complexity 

or data size may also decrease performance as observed in the double-descent phenomenon 

(Nakkiran, Kaplun and Bansal). Like other machine learning networks, training is data-

centric, heavily dependent on quality and quantity of data used. Often, the most labor 

comes from data preprocessing to ensure good RNN performance and the removal of 

unintended correlations (Press). Ethics and end users’ trust become important 

considerations if the data is security-sensitive (Paleyes, Urma and Lawrence). For example, 

hospital data may contain private patient information. There are also several adjustable 

hyper-parameters impacting network performance. 

One type of RNN commonly used to analyze audio data is the Long Short-Term 

Memory (LSTM) RNN. LSTMs can learn long-term dependencies and avoid exploding or 

vanishing gradients by having error backpropogated using linear memory cells (Hochreiter 

and Schmidhuber). With memory blocks and peephole connections, it can identify 

correlations despite temporal distance. Figure 2 from Christopher Olah’s post illustrates 
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the four layers making up an LSTM unit where each layer is denoted as a column in the 

flowchart (Olah). 

In the figure, the memory of the LSTM, c, is modeled by a group of N memory cells, 

N a user parameter, that will be updated as one progresses through the discrete-time 

intervals. The input, x, is made up from vectors of length M that are a function of discrete 

time, and the output is indicated by vectors of length k that are functions of discrete time 

as well. The first layer uses input data 𝑥𝑥𝑡𝑡 and former output data ℎ𝑡𝑡−1 decide what 

information the cell state, 𝑐𝑐𝑡𝑡 , will “forget” where the cell state is indicated at the top 

horizontal row of the figure. This is done by multiplying the state by the output of a sigmoid 

(𝜎𝜎) function whose output is between zero and one. The next sigmoid and tanh update the 

current state with new information by addition. The last sigmoid takes data from the input 

and former output and uses it to modulate truncated state data to produce the next output, 

ℎ𝑡𝑡. 

BiLSTMs are a common variation that utilize both forward and back propagation 

through the LSTM layers for both training and testing. As we expect baby-cry context in 

both directions to be important, the forward-backward algorithms were used here 

throughout our research. 

 
Figure 2: LSTM Architecture (Olah) 
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Long-term dependency capabilities make LSTMs excellent for analyzing speech. 

BiLSTMs have been used in voice conversion where acoustic context is important to 

maintain. For example, effective text-to-speech must consider long-term intonation and 

sentence context. In one case, important speech parameters in the source signal were 

extracted, processed through a BiLSTM, and resynthesized into converted speech. By 

utilizing the BiLSTM, the converted speech maintained quality and continuity (Sun, Kang 

and Li). Deep LSTMs are very effective in end-to-end speech recognition where phoneme 

sequences are context dependent. The Deep BiLSTM RNN broke performance records on 

phoneme recognition for the TIMIT phoneme recognition benchmark spanning 61 labels 

(Hinton, Deng and Yu). 

Convolutional neural networks (CNNs) offer an unsupervised method of image 

feature extraction without domain knowledge. In each layer, a convolutional kernel moves 

over the input mapping to a reduced output, called a “feature map”. These networks send 

data through several convolutional layers filter and reduce the input towards its key features 

(MathWorks). These layers are enhanced by Rectified linear unit (ReLU) and Pooling 

layers that normalize and down-sample the feature map as shown in Figure 3 (MathWorks). 

 
Figure 3: Convolutional kernel tiling over input space (MathWorks) 
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CNNs are becoming increasing popular in audio spectrogram feature extraction for 

classification. One study classified identified audio sources in a noisy environment by 

sending the audio spectrogram through a CNN. The model effectively identified sirens, car 

engines, dog barks, and much more at high accuracy (Piczak). Another study followed a 

similar approach but classified YouTube videos by genre based on the video’s audio 

spectrogram (Heershey, Chaudhuri and Ellis). 

 

1.3. NAS cry identification with Machine Learning 

The three baby cry analysis directions all share a workflow similar to the first three 

stages of the Ashmore Machine Learning deployment workflow: data management, model 

learning, and model verification. Data management involves collecting, preprocessing, 

augmenting and analyzing data to be used for training and validation. Model learning refers 

to selecting, training, and tuning a type of machine learning network. Lastly, verification 

includes tests and other performance analytics (Ashmore, Calinescu and Paterson). 

Two prominent issues machine learning for baby cries encounter are 

parameterization during data management and categorization during model learning. Based 

on an application, different acoustic parameters may be more relevant than others. Several 

baby cry detection systems have used pitch-related parameters such as fundamental 

frequency and vocal-tract related parameters such as formants. Mel-Frequency Cepstral 

Coefficients (MFCCs), the most widely used set of parameters for speech recognition, are 

also frequently used across many applications such as differentiating cries between normal 

and deaf infants (Garcia and Reyes Garcia). The MFCCs are a power spectrum 

representation on the mel scale that are taken to the cepstral domain. The mel scale adjusts 
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for hearing importance of frequency bands typically for adult speech production 

(Saraswathy, Hariharan and Yaacob). Some studies have also brute-forced parameters to 

find ones most effective between cry categories (Tuduce, Cucu and Burileanu). 

Reggiannini et al. puts together a standardized set of parameters for baby cry analysis. With 

vital parameters identified, studies have explored several probabilistic classification 

algorithms, from K-Nearest Neighbors (KNN) to Random Forest (Bano and RaviKumar). 

Machine learning has yet to be thoroughly utilized in baby cry categorization, although 

there are indeed some papers in the literature. 

This thesis proposes a novel approach to neonatal abstinence syndrome diagnosis 

utilizing signal processing and machine learning. It will introduce a more objective and 

non-invasive means for analyzing if a newborn’s cry is symptomatic or healthy. Given the 

data, the thesis will investigate which acoustic parameters effectively correlate between 

these classes to determine if cry is a reliable biomarker for the Finnegan Neonatal 

Abstinence Scoring Tool (FNAST).  
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2. Pre-Processing Procedure and Programs 

2.1. Early and Final Goals for the Proposed Research 

The goal is to create an executable computer program that clinicians may use to gain 

an objective probability that an infant’s cry shows signs of NAS. The program should run 

in near-real time so it can be used conveniently in a hospital. Moreover, it should easily be 

run from a laptop or similar hardware and perform well in a noisy hospital environment, 

objectively measuring the FNAST high-pitched cry category. 

As Artificial Neural Network (ANN) techniques are to be used for the system, a 

major component will necessarily be the gaining of a suitable and sufficiently large and 

diverse set of training data as an essential first milestone for this research. Once the audio 

for the cry dataset has been obtained there is a substantive amount of work that needs to be 

done curating and preprocessing infant cry data. Data management is crucial to ensure the 

ANN model is not finding correlations other than ones tied to NAS. There are several 

methods used to homogenize each sample of data before constructing a data base. It is also 

important that each subject is equally represented in the data base. Another key milestone 

is to discover the right set of processed features to use as input data to the ANN system. 

 

2.2. Step 1: Data Collection 

Healthy and symptomatic infant cry audio data specifically for the purpose of 

investigating the NAS syndrome were collected over the course of nearly 3 years by nurses 

at Rhode Island Women & Infant’s hospital. Single cry episodes were typically induced by 

the nurses or, occurring naturally occasionally, and recorded using a custom-built audio 

recorder sampled at 24,000 Hz, with PCM data at 16 bits per sample. Other cries were 
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captured by the same hardware devices but recording over long periods of time (up to 24 

hours of continuous recording), attempting to capture more cries of the natural type. The 

data was manually labeled as either having the syndrome or not by clinicians using FNAST 

scoring and expert domain knowledge as ground truth. As FNAST is far from a pure-truth 

assessment, clearly this ground truth is not ideal, but it is all we have right now for early 

assessment. 

 

2.3. Step 2: Preprocessing 

Data quality and quantity is highly variant over different recording conditions. Many 

of the captured cries have interfering noise, mostly from the nurses sweetly talking to the 

infant as she made an assessment. Then, the long recordings have to undergo a 

preprocessing sequence to make the data useful for the ANN classifier. 

All raw audio data is processed through the “stripper” program. All instances of 

acoustic activity are written into a new .wav file with two seconds (48,000 samples) of 

silence spaced in between. The output includes everything from cries to noise. The process 

extracts instances automatically using signal processing techniques and required no user 

involvement. As shown in Table 2, file information is stored in the 48,000 zeros 

representing the two seconds of silence at the beginning of each stripped audio episode 

starting at index 1,000. After processing selected files, the “stripper” concatenates all the 

resulting sections and writes the reduced data into a new .wav file, named header_100. The 

output of the “stripper” reduces, for example, a 12-hour recording to about 40 minutes with 

about 40-80 loud passages, each separated for later processing. 

Table 2: Information stored in preceding zero section before each file’s data 
Z(1000) Day of recording (2 digits) 
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Z(1001) Month of recording (2 digits) 
Z(1002) Year of recording (4 digits) 
Z(1003) Hour of recording in military time (2 

digits) 
Z(1004) Minute of recording (2 digits) 
Z(1005) Seconds of recording (2 digits) 
Z(1006) Floor(length of episode/32768) 
Z(1007) Mod(length of episode/32768) 
Z(1008) Infant classification (1 char) 

Note: stored length is just the episode length, does not include length of zeroes section 

The stripped output is then further processed in the “observer” program. It plays each 

sound utterance of a stripped file and allows the user to keep, but mark as corrupted, edit, 

or discard the utterance. Corrupted denotes a recorded cry that also has significant noise. 

Given the data-centric nature of machine learning, it became crucial to meter data quality 

before training (Tuduce, Rusu and Cucu). Corrupted cries are later excluded from the data 

set to eliminate one incontrollable noise variable. The editing feature uses a MATLAB 

GUI, its screenshot shown in Figure 4, that allows the user to trim the utterance between 

two selected boundaries. The output of an observed file are good quality infant cry episodes 

with two seconds of silence spaced in between to be used for training. This typically left 

15-20 minutes of audio with 20-30 saved episodes. This was the most time-consuming and 

important part of the project as poor data in gives poor performance out.  
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Figure 4: Observer Edit GUI 

 

For the dataset that is used in this thesis, the data from the output of the “observer” 

totaled over 15 hours of .wav audio, amounting to about 3 Gb spanning 168 unique infants. 

The 168 infants were classified as 84 healthy controls, 72 symptomatic NAS, and 12 with 

ambiguous classification which were later excluded from analysis. Each infant has one or 

more cry episodes lasting between a few seconds to several minutes each. A cry episode 

primarily consists of a number of “wahs” which we call “long utterances”, and are 

separated briefly by pauses or breaths, which we label as either short utterances, when there 

is energy present, or silence when there is no. 

As there were eventually 2,903 episodes from all the data, clearly, each infant had 

some variable number of episodes in the dataset, each of variable length. Each episode has 

labelling data which follows a strict naming scheme that lists the patient ID, date of 

recording, time of recording, and clinical diagnosis, although the specific patient identity 

is totally hidden from the researchers by hospital privacy rules. 
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3. Analysis for Features 

3.1. Feature Analyzer Iterations 

Observed audio files are then processed by a DSP analyzer. The analyzer calculates 

several acoustic parameters on each audio sample that are outputted as a .csv file. Popular 

speech analysis parameters include mel-frequency cepstral coefficients, short-time energy, 

and formant information but are more tailored to adult speech rather than to infant cries 

(Saraswathy, Hariharan and Yaacob). We use three iterations of analyzers for this research 

guided by signal processing domain knowledge. Initially, the analyzer that has been 

developing at Brown for over 10 years was used to provide the features for the later ANN 

classification system. This has been fully described in Reggiannini et al (Reggiannini, 

Sheinkopf and Silverman). It was seen quite early in the research that the more high-level 

output from Phase 2 from this analyzer were too sparse to be able to train the ANN system. 

Thus, a subset of the denser Phase 1 parameters was used in the early part of this research. 

Figure 5 highlights the three versions of our Analyzer systems with the common data 

preprocessing utilities in black, Stripper and Observer. Each version progresses towards 

data-centric, away from model-centric, becoming less dependent on the domain expert 

knowledge. The leftmost thread in red involves two phases: Phase 1 based on Reggiannini 

Parameters to detect energy-cased acoustic features of infant cries and Phase 2 analysis on 

an utterance level. Section 3.2 describes this earliest developed version. The middle thread 

in yellow shifts the focus to pitch-based parameters more applicable to NOWS diagnosis, 

which is explained in Section 3.3. The rightmost thread in blue adds CNN to extract 

features from the raw data instead of defining features by the domain experts. Section 3.4 

details its design, exemplifying the success of data-centric machine learning approaches. 
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Figure 5: Analyzer systems 

 

3.2. Reggiannini Parameter Analyzer 

Initially, combinations of Reggiannini et al. Phase 1 infant cry analysis parameters 

were used and are listed in Table 3 below (Reggiannini, Sheinkopf and Silverman). This 

system was started in 2011 as a general analysis tool, accommodating for all kinds of infant 

data and sampling rates. As a result, it became a rather bloated system fitting many features 

and coauthored by over 20 people in the last ten years. Coded in MATLAB, this analyzer 

takes observed data and operates on individual cry episodes. After resampling at 48,000 

Hz at floating point precision, the analyzer conducts calculations over a 25 ms hamming 

window with an advance rate of 600 samples, or 12.5 ms. It uses cepstral analysis (features 
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from the inverse log spectrum) and several other heuristics to account for a wide range and 

variety of infant cries. The output would be more uniform estimates on pitch and pitch-like 

parameters for analysis. This includes measures of amplitude, pitch estimate confidence, 

spectral ranges, and formants. The 26 parameter vector is shown in the table below as 

“phase 1” output. 

Table 3: 26 Phase 1 Parameters 
Fr# Frame number 

Time (ms) (Frame number)*12.5msecqua 
Pitch (Hz) Fundamental frequency of frame 

Pitch En. (dB) Energy (power in dB) for 
pitch identified in frame 

Confidence 
Confidence level, # from 
[0,1] that describes pitch 
identification confidence 

Hyper-Pitch (Hz) [1000,3000Hz] range 

Hyper-Pitch Energy (dB) 
Energy (power in dB) for 
hyper-pitch identified in 

frame 

Hyper-Pitch Confidence 
Confidence level, # from 
[0,1] that describes hyper-

pitch identification 
confidence 

Peak En. (dB) Energy (power in dB) for 
frame 

Tot. En. (dB) Total energy (power in dB) 
for frame 

.5-10kHz Energy (dB) Energy across [0.5-10kHz] 
0-.5kHz Energy (dB) Energy across [0-0.5kHz] 
.5-1kHz Energy (dB) Energy across [0.5-1kHz] 

1-2.5k Hz Energy (dB) Energy across [1-2.5kHz] 
2.5-5k Hz Energy (dB) Energy across [2.5-5kHz] 
5-10k Hz Energy (dB) Energy across [5-10kHz] 

FM1 (Hz) First formant's frequency 
in frame 

Mag (dB?) First formant's energy 
(power in dB) 
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FM2 (Hz) Second formant's 
frequency in frame 

Mag (dB?) Second formant's energy 
(power in dB) 

FM3 (Hz) Third formant's frequency 
in frame 

Mag (dB?) Third formant's energy 
(power in dB) 

Vuv 
Logical vector containing 1 

for voiced and 0 for 
unvoiced frames pitched 

frames 

hvuv 
Logical vector containing 1 

for voiced and 0 for 
unvoiced frames for hyper-

pitched frames  
Spectral Change Change in spectral power 
Cepstral Change Change in cepstral power 

 

Another set of parameters is derived from phase 1 parameters, called “phase 2”. The 

phase 2 parameters are more aligned with current research on infant-cry analysis (Lester). 

Instead of a per-episode basis, each long utterance, short utterance, and silence interval 

produced a feature vector consisting of 75 parameters. These parameters emphasize 

utterance contour and hyper pitch among others. Table 8 in Appendix A lists the 75 phase 

2 parameters. 

This is a significant data reduction from phase 1. For example, a three-second-long 

utterance will produce 240 26-parameter phase 1 vectors but only from 15 75-parameter 

phase 2 vectors. Thus, we will have much less training data available to sufficiently train 

the ANN. Moreover, making early decisions on the data instead of using data itself 

increases the effects of any error, which harms ANN performance. Another analyzer is 

needed to better parameterize NAS classification. 
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3.3. Pitch-Based Analyzer 

In the summer of 2020, another analyzer was coded using a different set of pitch-

based parameters more applicable to NAS diagnosis. In discussion with Prof. Silverman, 

it was agreed that emphasizing pitch, pitch contour, and pitch confidence as much as 

possible is a step in the right direction. It also greatly simplifies the analyzer code and 

produces a “phase 1-like” output of fourteen parameters that did not include spectral bands, 

formants, or hyper pitch. The fourteen consists of amplitude (1), spectral change (1), 

spectral harmonic peaks (4), simplified cepstrum (4), and comb-filter correlation (4). Each 

of the latter three analyses have the following four measures: Highest pitch value, 

amplitude of the highest pitch peak, second best estimator of the pitch, amplitude of the 

second-highest peak. Each measure includes three parameters: actual estimate, first 

harmonic peak, and second peak. Peak measurements are a measure of confidence. These 

are listed in Table 4 below. 

Table 4: Pitch-based Parameters 

Amplitude log-scale power of frame 
in frequency domain 

Spectral Change Difference in spectral 
power from last frame 

Spectral Low Peak Frequency of lowest 
harmonic in spectral space 

Spectral Low Value Height of lowest harmonic 
in spectral space 

Spectral High Peak Frequency of second 
lowest harmonic in 

spectral space 
Spectral High Value Height of second lowest 

harmonic in spectral space 
Cepstral High Peak Frequency of highest 

cepstral peak 
Cepstral High Value Height of highest cepstral 

peak 
Cepstral Second High Peak Frequency of second 

highest cepstral peak 
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Cepstral Second High Value Height of second highest 
cepstral peak 

Comb Filter High Peak Frequency of highest 
comb-filter peak 

Comb Filter High Value Height of highest comb-
filter peak 

Comb Filter Second High Peak Frequency of second 
highest comb-filter peak 

Comb Filter Second High Value Height of second highest 
comb-filter peak 

 

The analyzer is run on all observed .wav files to produce 164 .csv files. A screenshot 

of an analyzer output is shown below in Figure 6. Each column contains the 14 acoustic 

parameters calculated over 12.5 millisecond frames that make up a row. 160 rows of zeros 

separated each episode in the analyzed .csv.  

 
Figure 6: Analyzer Output Example 

 

3.4. CNN Analyzer 

In the summer of 2021, another approach was taken that brought the analysis closer 

to the raw data level. Instead of making parameter decisions, the analyzer is adapted to 

output audio spectrograms of observed .wav data. The spectrograms spanned 0 to 8,000 Hz 

and is computed using a 2,048 sample padded discrete Fourier transform (DFT) to get 683 

frequency samples. This gives an 11.718 Hz frequency resolution. Each spectrogram is 
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stored as a 683xN matrix where N is the number of frames. Like the previous analyzer, 

each frame is 12.5ms. This input minimized user decision making except, perhaps, to 

selecting the frame size and frame advance. 

Key features in the spectrogram are extracted using a convolutional neural network 

(CNN) instead of calculating them through biomedical signal processing domain 

knowledge. Instead of making decisions on what to analyze, we allow the convolutional 

layers to identify correlated trends which may be more prevalent among the audio 

spectrograms. The 683 features are reduced to ~21 key features over the span of N frames 

by the convolutional ANN. The output resembles analyzer outputs from the previous 

analyzer and are then sent through a similarly structured BiLSTM classification network. 

Moving away from decisions requires more data but allows the neural network to learn 

sufficiently and make better decisions than the human experts. 
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4. Neural Network Architectures 

4.1. Data Set Construction and Normalization 

Once all .csv files are collected, the data undergoes preprocessing and formatting for 

BiLSTM training. Another program reformats the .csv data into MATLAB cell arrays. It 

also allows the user to choose which acoustic parameters to include in the data set. Each 

infant has a unique .mat file named by the subject ID. The .mat files are matrices with three 

columns and as many rows as there are cry episodes. The first column has cells containing 

analyzer parameter data for the corresponding episode. The second column has a Boolean 

for the episode’s ground truth diagnosis, “1” if symptomatic or “0” if healthy. The third 

column holds the subject ID as given by the file name. Figure 7 below gives a screenshot 

of the data organization. It shows subject 000586 is symptomatic and has seven episodes. 

Eight parameters are included, and the episodes span from 796 to 1754 samples. 

 
Figure 7: Infant Cell Array Example 

 

The final data set consists of 34 symptomatic and 34 healthy subjects, each 

containing one or more episodes of various lengths. Several steps are taken such that every 

subject is equally represented in the data set during network training. A program 
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normalizes several data qualities and eliminates unintended bias. The number of episodes 

each subject contributes is determined so the BiLSTM would not correlate infants by 

episode quantity. Three episodes were chosen from analyzing the distribution of subjects 

per number of episodes as shown below in Figure 8. This histogram covers all available 

data which includes 94 healthy infants and 34 symptomatic infants. 71% of subjects in the 

data set contain at least three episodes. Subjects with fewer than three episodes have their 

final episode copied to reach three. Given adequate training random selection, repeated 

episodes had negligible effect on training. After several random selections among the entire 

data set, it is also observed the number of repeats in the validation set have little effect on 

training. There is insufficient data to fully avoid repeated episodes while maintaining equal 

infant representation in the data set. 

 
Figure 8: Subjects vs Number of Episodes Contained 

 

The episodes are also normalized by length so the network would not correlate 

infants with significantly short or long episodes. Based on the episode length histogram in 
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Figure 8, lengths are normalized to be between 702 and 1,600 frames (8.78-20 seconds). 

Figure 9 displays the number of episodes with lengths falling in each bin for 94 healthy 

and 34 symptomatic infants. Episodes under 702 frames are replaced with another episode 

in the length threshold if the subject has more than three episodes. Otherwise, the longest 

episode is used as replacement. Episodes over 1,600 frames are cut to the threshold. The 

length threshold also improves data set quality by removing short episodes that hold little 

information. According to expert domain knowledge, the most important acoustic features 

occur at the beginning of utterances for NAS. 

 
Figure 9: Number of Episodes vs Episode Length 

 

Lastly, the number of subjects in each category (healthy or symptomatic) is also 

normalized. The class with more subjects has some removed until both classes have the 

same amount, ensuring both classes were equally represented in the data set. Afterwards, 
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the normalized data set is concatenated into one .mat file for the BiLSTM training code. 

This resulted in training sets with 34 healthy and 34 symptomatic. 

 

4.2. LSTM Architecture 

Given the sequential nature of infant cry data, the BiLSTM is the natural choice for 

classification. MATLAB Deep Learning Toolbox is used to create the machine learning 

network, consisting of a sequence input layer, BiLSTM layer, dropout layer, fully 

connected layer, softmax layer, and classification layer. The sequence input layer defines 

how many features are in the data which is one for this application. The BiLSTM layer 

conducts forward and backward propagation across the LSTM gates for a predefined 

hidden unit size. Hidden unit size determines how much information is retained between 

time steps. Each propagation direction traverses through the input, forget, cell candidate, 

and output gates. A dropout layer is used after the BiLSTM layer to randomly set input 

elements to zero and prevent overfitting. A fully connected layer applies weights and bias 

to the input, using Glorot initializer. The output is sent through a softmax layer normalizing 

values as probabilities between 0 and 1. Finally, the processed episodes are sent through a 

classification layer that outputs the network’s decision on each. Figure 10 illustrates the 

machine learning architecture used. 
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Figure 10: LSTM Network Architecture 

 

Most hyper-parameters referenced MATLAB default values, but several are tuned 

during experimentation. Other architectures, such as two BiLSTM layers with two dropout 

layers, were tested but did not yield as high training/validation accuracy during training. 

Table 5 below summarizes the chosen hyper-parameters. 

Table 5: LSTM Network Hyper-Parameters 
Hidden Units 120 
Dropout Probability 0.4 
MiniBatch Size 10 
Learning Rate 0.0002 
Gradient Threshold 1 
Optimizer adam 
Max Epochs 400 
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Data is randomly split between training and validation for the LSTM. This is done 

on a subject basis rather than episode basis, so each infant (contributing a fixed number of 

episodes) is assigned to the training or validation sets. A program takes in data and a user-

specified number of subjects for validation and outputs two data sets along with a seed 

indicating which subjects are assigned to the validation set. The seed feature makes it 

possible to retrace the random selection and verify how different assignments reflected on 

training behavior. The training and validation data sets are then sent into the BiLSTM. 

 

4.3. LSTM Training 

MATLAB displays real-time deep learning training progress once a training program 

starts. Updating each iteration (forward and backward propagation traversal), the plots 

record accuracy and loss for the training and validation data sets. The horizontal axis is 

also subdivided by epoch which is a complete pass through the data set. The training 

accuracy denotes the network’s accuracy on the training data set which is divided into mini-

batches. The validation accuracy is the network’s classification performance on the 

validation set. This is assessed after a specified number of iterations, called the validation 

frequency. The loss curves represent the cross entropy loss for each data set. Cross entropy 

loss maps a classification model prediction probability to a logarithmic scale that better 

represents accuracy. Error distance between predictions and ground truth is exponentially 

penalized. 

 

Because there are two classes, training accuracy is expected to begin at 50%. 50% 

accuracy indicates both classes are equally likely in the binary categorization, so there is 



 

28 

no correlation between the parameters. As training progresses, accuracy should converge 

towards 100% while the loss should decrease to 0. The curves should smoothly resemble 

logarithmic growth and decay functions, reaching a steady state after sufficient epochs. 

The best number of epochs is decided from when training accuracy gain plateaued. 

Limiting training epochs also avoids overfitting, when validation accuracy began to decay 

after plateauing. Moreover, each pair of training and validation curves should closely 

follow each other, indicating the validation data is representative of the training data. 

Figure 11 gives an example of a training plot performing well. The blue data lines represent 

the performance after so many runs through the data for the training set itself. The black 

dots represent the performance of the independent validation set of 15 control and 15 

symptomatic infants. The lower curve shows the error performance for the training set in 

orange and the black dots for the validation set. 

 
Figure 11: Example Training Plot 
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A test was conducted to verify BiLSTM effectiveness for classifying parameterized 

cry data. An artificial data set was constructed from one cry recording. The cry recording 

was copied 68 times and half of them had their pitch attenuated by some percentage to 

simulate a symptomatic category. The categorization network was then run on the artificial 

data set for various percentages and perfectly separated the classes down to a 20% 

attenuation. A plot for 20% is shown in Figure 12. This test demonstrated that the proposed 

MATLAB system is indeed capable of categorizing pitch-based parameters.  

 
Figure 12: Training Curve for Artificial Data Set 

 

Extensive testing is conducted to determine which of the fourteen acoustic 

parameters contributed most to classifying healthy or symptomatic infant cries. Each 

variation is verified at three degrees of randomization: same training/validation split with 

same control subjects, random training/validation split with same control subjects, and 

random training/validation split with random control subjects. Training performance is 
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ideally similar across these three randomizations, indicating data set homogeneity. 

However, some variation is inevitably encountered due to having insufficient data. 

Based on domain knowledge, different sets of acoustic parameters are tested and 

yield varying performance. BiLSTM input weights are inspected to determine which 

parameters have more influence during training than others. These weights do not 

completely indicate correlation so the training curve itself provided valuable information. 

Good performance in training plots and large weight values indicated a parameter is 

contributing largely to training and helping classification. 

Table 6 below highlights which parameters are removed for better performance. Peak 

parameters for spectrum, cepstrum, and comb are excluded because they contributed little 

magnitude in the input layer. Similar parameters are grouped together and ran in individual 

training runs. The groupings are highlighted in different colors below. Amplitude is highly 

correlated and had the greatest order of magnitude in the input weights matrix. Spectral 

parameters (change, low value, and high value) are fairly correlated. Cepstral and comb 

filter parameters are vaguely correlated but on orders of magnitude lower than amplitude 

and spectrum. These eight correlated parameters are used in the final network. 

Table 6: Eight Pitch-Based Features Used 
Amplitude log-scale power of frame 

in frequency domain 
Spectral Change Difference in spectral 

power from last frame 
Spectral Low Value Height of lowest harmonic 

in spectral space 
Spectral High Value Height of second lowest 

harmonic in spectral space 
Cepstral High Value Height of highest cepstral 

peak 
Cepstral Second High Value Height of second highest 

cepstral peak 
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Comb Filter High Value Height of highest comb-
filter peak 

Comb Filter Second High Value Height of second highest 
comb-filter peak 

 

Once parameters are determined, the number of episodes each subject contributed is 

adjusted. Subjects with more than three episodes would have more unique data to offer for 

the data set. However, subjects with three or less episodes will provide more repeats to 

compensate. It is trade-off between having more data to train on and overfitting on repeated 

episodes. Performance for five and seven episodes is compared to three episodes. Training 

with more episodes added an insignificant amount of new data to the data set compared to 

the number of added repeats. It is concluded that three episodes is optimal based on the 

episode per infant distribution in Figure 8. A test is conducted to verify that the number of 

repeated episodes in the validation set did not cause major variation in performance. 

Different episode length thresholds are also tested. Initial training uses episodes 

between 702 to 1,600 samples in length. A stricter length threshold is implemented to check 

whether episode length is a hidden correlation being picked up. Training curves from a 

702-1,600 sample data set are compared to ones of 702-800 samples under same network 

conditions. The plots are very similar, indicating length is not an unintended correlation. 

The 702-1,600 threshold is kept as it provides more data for each episode based on the 

episodes per length bin distribution in Figure 9. 

LSTM network architecture underwent several iterations before reaching the final 

design choices described before. The BiLSTM’s forward and back propagation yield 

consistently higher results than a LSTM layer. Systems with two BiLSTM layers have 

much different behavior compared to one layer as each epoch underwent twice as much 
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propagation. Two BiLSTM layers also yield less consistent training behavior. A dropout 

layer is added to reduce overfitting. This also improves learning consistency over 

randomized training data. 15-85% and 30-70% validation/training data splits are compared 

and yield similar performance. 

 

4.4. Cry Spectrogram CNN-LSTM 

The convolutional neural network (CNN) consists of three layers. These layers will 

apply a number moving filters of specified size onto each spectrogram. Each CNN layer is 

followed by corresponding batch normalization, rectified linear unit (ReLU), and 2D max 

pooling layers. Batch normalization accelerates CNN training and reduces overfitting by 

normalizing mini-batch data. The ReLU layer sets any negative inputs to zero. 2D max 

pooling layers down-sample the filtered and normalized input. The 683xN feature matrix 

is reduced to 171xN after the first, 43xN after the second, and 22xN after the third. 

 
Figure 13: Convolutional Neural Layers for Spectrogram Analyzer 
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The reduced output is sent to the BiLSTM system, consisting of the same layers 

discussed before. The CNN and BiLSTM are joined by sequence folding/unfolding and 

flattening layer. These layers bridged the 2D CNN output with the sequential BiLSTM 

input. A table of the LSTM component of the system is shown below. 

Table 7: CNN-LSTM Network Hyper-Parameters 
BiLSTM Hidden Units 200 
Dropout Probability 0.4 
MiniBatch Size 15 
Learning Rate 0.001 
Gradient Threshold 1 
Optimizer adam 
Max Epochs 200 

 

Data set construction is adapted to function with the new architecture while 

preserving validity. The most challenging task was implementing a cry episode length 

restriction for CNN compatibility. The CNN layers require data matrices to have a fixed 

dimension despite cry episodes varying in length. Resizing was considered but not used to 

preserve important temporal components in the data. 

A tradeoff formed between decreasing the episode length threshold to include more 

unique episodes but losing the amount of information each episode contributed. Infants 

may lose representation in the data set if all its episodes are shorter. Increasing the length 

threshold discards episodes below that length but increases the information each episode 

contains. Moreover, the length threshold should be representative of the average infant cry 

length to not contribute unintended bias. Inevitably, data is lost from discarding short 

episodes and trimming long episodes. 
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A 1,000-frame cutoff is tested and left 77 symptomatic and 109 control episodes in 

the data set. This is further lowered to 650 frames resulting in 127 symptomatic and 217 

controls. Based off the episode length distribution, an episode length threshold of 572 

frames (7.15 seconds) is selected to preserve as many symptomatic infant episodes within 

realistic cry length. The final data set consists of 23 symptomatic infants and 23 controls 

after balancing the classes. Each infant contributes 3 episodes to result in 138 episodes total 

compared to the 204-episode data set used in the BiLSTM-only network. Though it is hard 

to compare data size between systems, it is possible to compare infant representation in 

each. 
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5. Results 

5.1. Reggiannini LSTM Performance 

The Reggiannini analyzer output did not consistently perform well using the 

BiLSTM system. Training and validation accuracies consistently ranges between 50% and 

80%. This data set is made up of 68 infants, half control and half symptomatic. Each infant 

contributes three episodes between 702 and 1,600 frames in length. These episodes contain 

14 parameters highlighted in Table 3. It is concluded that the Reggiannini parameters may 

not be indicative of symptoms of NAS. Though these parameters offer a large batch of 

metrics, the RNN training performance did not adequately indicate that a difference could 

be found with them.  

Figure 14 below displays a MATLAB training curve for the BiLSTM system on the 

Reggiannini output data set. The light blue line shows model accuracy on the training set. 

The dark blue line is a smoothed version of the training accuracy. This line better highlights 

long-term learning trends. The black dotted line shows the network’s accuracy on the 

validation set, measured after every 15 epochs. It is an important measure on how resilient 

the network is to new data. In the plot below, the network quickly plateaus within the 500th 

iteration and hovers between 70% and 80%. The results are insufficient to justify a 

correlation between the two classes from the incorporated parameters. 
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Figure 14: Reggiannini Parameter Training Curve 

 

The classification network is applied in a testing program allowing the user to pass 

in episode data and get a % confidence diagnosis on subjects. A receiver operating 

characteristic (ROC) curve illustrates binary classification accuracy between true and false 

positive rates. ROC curves are generated for a randomly partitioned validation set of 20 

infants, as shown in Figure 15. It is observed that most of the curves have ROC’s ranging 

from 0.7 and 0.8. 
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Figure 15: Reggiannini Parameter ROC Curves 

 

5.2. Pitch-Based LSTM Performance 

After iterative training and improvement, the pitch-based analyzer yielded good 

classification accuracy using the BiLSTM system. Like the previous data set, 68 infants 

(half control and half symptomatic) providing three episodes each between 702 and 1,600 

frames are used. These episodes contain 8 parameters listed in Table 6. These parameters 

were selected from Table 4 after repeatedly running the training program on each 

individually. Parameters like spectral energy values performed well as shown in Figure 16 

below. These parameters held significantly classifiable power in the data set. 
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Figure 16: Training Curve of Spectral Low Value Parameter 

 

On the other hand, Figure 17 shows training performance on Cepstral Second High 

Peak which was not a very correlated parameter in the data set. 

 
Figure 17: Training Curve of Cepstral Second High Peak Parameter 

 

Given the available data and computation capabilities, there may be a significant 

correlation between healthy and symptomatic infant cries based on pitch parameters. This 

system performs well under three levels of randomization: fixed training and validation 
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data, randomized training and validation data, and randomized training and validation data 

with randomized control infants. A training plot for the randomized data split and control 

infants is shown in Figure 18. In each of the trials, accuracy consistently ranges between 

80% and 100%. Loss continuously decreases towards 0.2. Unlike the prior training curve, 

the dark blue quickly rises after the 1000th iteration and continues to gradually rise with the 

validation curve until the last iteration. Training is halted after the validation accuracy 

exceeded the training accuracy to avoid overfitting. 

Unsurprisingly, there is some difference in training and validation curves due to lack 

of data. Insufficient data causes the model to marginally overfit to the training set and 

perform slightly worse on the validation set. With more data, I expect my model to be more 

generalized with smoother accuracy/loss curves. The training and validation curves will be 

much closer as from generalization. 

 
Figure 18: Pitch-Based Training Curve 
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The network is run in a testing program allowing the user to pass in episode data and 

get a % confidence diagnosis on subjects. A ROC curve is generated for a randomly 

partitioned validation set of 20 infants. The curves highlight the improved network 

accuracy from the more generalized parameter set. However, the curve is made up of less 

points as each infant contributes three episodes instead of five. 

    
 

    
Figure 19: Pitch-Based ROC Curves 

 

5.3. CNN-LSTM Performance 

With the available spectrogram data, it is concluded that the audio spectrogram of 

cry episodes may significantly correlate between healthy and symptomatic infants. The 

network operates on the data set with 68 infants, half healthy and half symptomatic. 

Similarly, each infant contributes three episodes but each 572 frames in length. 
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This system also is tested under three levels of randomization. A training plot for the 

randomized data split and control infants is shown in Figure 20. The accuracy is 

consistently highly, between 80% and 100%. Loss continuously decreases towards 0. There 

is also difference in training and validation curves from insufficient data. The model is 

slightly overfit to the training set which is why the validation accuracy is slightly below 

the training accuracy. Increasing available data will expand model generalization and bring 

the training and validation curves closer. 

Unlike the past two systems, the CNN-LSTM is quick to converge and plateaus 

around the 300th iteration. Moreover, the overall accuracy is far higher and more consistent 

than previous cases. From the consistently high accuracy and rapid convergence, it appears 

moving towards the raw data level resulted in a more resilient and accurate model. 

However, more data would be required to further validate these trends, especially given 

that the parameters were CNN-generated. 

 
Figure 20: CNN-LSTM Training Curve 
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A ROC curve is generated for the validation set used in the prior curve. For a 

randomly partitioned validation set of 20 infants, it is less accurate than the pitch-based 

analyzer but more accurate than the Reggiannini analyzer. This is unsurprising as the CNN-

LSTM needs more raw data to avoid overfitting.  

    
 

    
Figure 21: CNN-LSTM ROC Curves 

 

5.4. Discussion 

From these experiments, pitch-based parameters and audio spectrograms appear to 

be strongly correlated with NAS diagnosis given the data set. The Reggiannini parameters 

are too generalized for the LSTM to find a sufficient correlation, but the pitch-based 

parameters result in good classification. Taking steps towards the raw data level 

dramatically improved network performance as the CNN-LSTM system highlighted, 
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which confirms the current trend of deep learning for data-centric instead of model-centric. 

The parameters identified are pitch-based. These findings align with Finnegan test domain 

knowledge concerning high pitched cries as a symptom of NAS. A “shriller” pitch may be 

reflected in higher harmonic peaks captured by the spectral, cepstral, or comb estimates. 

This may also be attributed to greater energy in the higher bands of the audio spectrum. 

However, these conclusions are limited to the scope of the data set. A larger quantity 

of data will solidify conclusions drawn from deep learning trends. The most limiting 

quantity in this study is the number of symptomatic infant cry samples which restrict how 

many healthy cries could be incorporated. A considerable amount of raw data is discarded 

during preprocessing to eliminate unintended bias. The lack of data is clear given 

inconsistent behavior between training runs among signs of overfitting. Outlier effects are 

more influential in a smaller sample size. These limitations are compensated with extensive 

randomization and repetition. As more decisions are made by the neural network, more 

data is required for valid conclusions. 
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6. Conclusion and Future Work 

6.1. Conclusion 

Neonatal abstinence syndrome is a growing health crisis among infants that calls for 

extensive and careful treatments. Otherwise, newborns may suffer from a wide range of 

harmful symptoms The Finnegan test, the current NAS metric, holds significant potential 

for further objectivity in its scoring mechanism. The assessment’s subjectivity greatly risks 

mistreatment that will attribute crucial health and financial concerns among others. One 

highly subjective assessment in the Finnegan test is “high pitched crying” that varies 

depending on the environment and human assessor. Cry diagnostics is a growing field in 

infant cry analysis that may offer solutions to the Finnegan test’s subjectivity issues. Signal 

processing for machine learning to classify infant cries offers a more objective assessment 

that will improve treatment effectiveness for infants suffering from NAS. 

The conclusions from this study are limited by the available data for training and 

validation. The initial raw data is greatly curated to focus on this study’s application. 

Experimental consistency over randomization and repetition further validates this paper’s 

conclusions over a general scope. With the available data, we can achieve nearly 90% 

classification accuracy on the LSTM and CNN-LSTM systems. This thesis presents a novel 

application of signal processing for machine learning in biomedical diagnosis. 

Furthermore, it offers a more objective solution to the Finnegan test using infant cry that 

can be widely deployed. It also highlights powerful data-centric machine learning 

capabilities to solve classification tasks in noisy conditions. 
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6.2. Future Work 

This study has large potential for improvement from expanding the functioning data 

set. Due to the on-going COVID 19 pandemic, infant cry collection was particularly limited 

at the time of this study. A large quantity of available data was excluded during 

preprocessing due to patient privacy and quality control. In the future, increasing the 

amount of usable data will vastly improve this paper’s goals. An alternative way to resolve 

data shortage is for signal reconstruction by a generative model, successfully used in image 

recovery (Xu, Zeng and Romberg). However, the data-centric movement leads machine 

learning to an opposite direction: “Small Is the New Big” says AI pioneer Andrew Ng 

(Strickland). By systematically engineering the good data, although small, big issues in 

machine learning such as model accuracy can be solved. 

The next step in the deployment of this paper is testing in a simulated environment. 

The classification system can be compiled to a readily usable executable program that will 

be run on a laptop. The program will be able to record in real time and produce a probability 

that the sampled infant cry displays symptoms of NAS. Cries may be replicated through 

playing recordings with a high-definition speaker. The speaker must emulate an infant cry 

without discarding essential audio qualities. Noise may also be injected to measure the 

classification system’s resilience. 

After verifying performance in a simulated environment, the system will be deployed 

in a real hospital environment with infants. Tests will compare the systems performance to 

the simulated environment. It is an important measure if the system is feasible for its 

intended application for nurses in real time diagnosis. Other considerations include 

distribution shifts when the distribution of training data differs from that of testing data, 
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which degrade the model’s accuracy in deployment (Koh, Sagawa and Marklund). 

Therefore, the machine learning lifecycle extends with a deployment plan to track 

distribution shifts and retrain the model incrementally. These steps progressively bring the 

study closer to its real deployment. 
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Appendix A: Long Tables 

Table 8: 75 Parameter Phase 2 Output 

Cry Analyzer Output Parameter Descriptions (in order) (For each utterance) 

Five Various Sound Segment Classifier outputs [1-5] 
1 Start Fr# Start frame of sound segment 
2 End Fr# End frame for sound segment 
3 Length (frames) Length of sound segment in terms of # of frames 
4 Length (ms) Length of sound segment in terms of ms 
5 Sound Segment Class 0 is silence, 1 is short utterance, 2 is long utterance 
Eight Timing Parameters [6-13] 

6 Inter-Utterance(ms) Spacing between current long utterance and previous 
long utterance  (0 for silence and short utterance) 

7 # of Short Utterances  # of short utterances from last long utterance 

8 # of Low-confidence 
(unvoiced) frames # of low voicing confidence frames in sound segment 

9 # Fricative Voiced Sub-
Segments 

# of fricative voiced sub-segments identified in sound 
segment (silence, short utt, or long utt) 

10 Percentage of Voiced 
Fricative frames 

% of sound segment (silence, short utt, or long utt) that 
has voiced frication present 

11 Voiced Fricative Dominant 
Decision 

assigned label "1" if percentage of voiced fricatives 
frames > 60% 

12 Longest Voiced Fricative 
Sub-Segment Start 

longest voiced fricative sub-segment start conveyed as 
fraction of sound segment (silence, short utt, or long utt) 

13 Longest Voiced Fricative 
Sub-Segment End 

longest voiced fricative sub-segment end conveyed as 
fraction of sound segment (silence, short utt, or long utt) 

Seven Pitch Parameters [14-20] (short and long utterances) 

14 # Voiced frames Number of voiced frames in sound segment that are 
subject to having a meaningful pitch value 

15 Pitch Avg (Hz) Avg pitch for sound segment 
16 Pitch Max (Hz) Max pitch for sound segment 
17 Pitch Min (Hz) Min pitch for sound segment 
18 Pitch STD (Hz) pitch STD for sound segment 
19 Avg Pitch Confidence Average pitch confidence  
20 Pitch Avg-Energy (dB) may not be computing dB correctly from power 
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Seven Hyper-Pitch parameters [21-27] 
21 # Hyper Frames Number of hyper-pitched frames 
22 Hyper Avg (Hz) Avg hyper-pitch for sound segment 
23 Hyper Max  (Hz) Max hyper-pitch for sound segment 
24 Hyper Min  (Hz) Min hyper-pitch for sound segment 
25 Hyper STD (Hz) hyper-pitch STD for sound segment 
26 Avg Pitch Confidence Average pitch confidence  
27 Hyper Avg-amp (dB) may not be computing dB correctly from power 
12 Formant Parameters [28-39] 
28 FM1 Avg (Hz) First formant's average frequency for sound segment 
29 FM1 Max (Hz) First formant's max frequency for sound segment 
30 FM1 Min (Hz) First formant's min frequency for sound segment 
31 FM1 STD (Hz) First formant's STD for sound segment 
32 FM2 Avg  (Hz) Second formant's average frequency for sound segment 
33 FM2 Max (Hz) Second formant's max frequency for sound segment 
34 FM2 Min (Hz) Second formant's min frequency for sound segment 
35 FM2 STD (Hz) Second formant's STD for sound segment 
36 FM3 Avg (Hz) Third formant's average frequency for sound segment 
37 FM3 Max (Hz) Third formant's max frequency for sound segment 
38 FM3 Min (Hz) Third formant's min frequency for sound segment 

39 FM3 STD (Hz) Third formant's STD for sound segment. **Negative 1 
when non-existent ? 

28 Frequency-Band Amplitude Parameters [40-] 
40 Energy Avg (dB) Energy Avg across all frequencies present  
41 Energy Max (dB) Energy Max across all frequencies present  
42 Energy Min (dB) Energy Min across all frequencies present  
43 Energy STD (dB) Energy STD across all frequencies present  
44 0.5-10kHz Energy Avg (dB) Energy Avg across  [0.5-10kHz] 
45 0.5-10kHz Energy Max (dB) Energy Max across  [0.5-10kHz] 
46 0.5-10kHz Energy Min (dB) Energy Min across  [0.5-10kHz] 
47 0.5-10kHz Energy STD (dB) Energy STD across  [0.5-10kHz] 
48 0-0.5kHz Energy Avg (dB) Energy Avg across  [0-0.5kHz] 
49 0-0.5 kHz Energy Max (dB) Energy Max across  [0-0.5kHz] 
50 0-0.5kHz Energy Min (dB) Energy Min across  [0-0.5kHz] 
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51 0-0.5kHz Energy STD (dB) Energy STD across  [0-0.5kHz] 
52 0.5-1kHz Energy Avg (dB) Energy Avg across  [0.5-1kHz] 
53 0.5-1kHz Energy Max (dB) Energy Max across  [0.5-1kHz] 
54 0.5-1kHz Energy Min (dB) Energy Min across  [0.5-1kHz] 
55 0.5-1kHz Energy STD (dB) Energy STD across  [0.5-1kHz] 
56 1-2.5kHz Energy Avg (dB) Energy Avg across  [1-2.5kHz] 
57 1-2.5 kHz Energy Max (dB) Energy Max across  [1-2.5kHz] 
58 1-2.5kHz Energy Min (dB) Energy Min across  [1-2.5kHz] 
59 1-2.5kHz Energy STD (dB) Energy STD across  [1-2.5kHz] 
60 2.5-5kHz Energy Avg (dB) Energy Avg across  [2.5-5kHz] 
61 2.5-5kHz Energy Max (dB) Energy Max across  [2.5-5kHz] 
62 2.5-5kHz Energy Min (dB) Energy Min across  [2.5-5kHz] 
63 2.5-5kHz Energy STD (dB) Energy STD across  [2.5-5kHz] 
64 5-10kHz Energy Avg (dB) Energy Avg across  [5-10kHz] 
65 5-10 kHz Energy Max (dB) Energy Max across  [5-10kHz] 
66 5-10kHz Energy Min (dB) Energy Min across  [5-10kHz] 
67 5-10kHz Energy STD (dB) Energy STD across  [5-10kHz] 
15 Linear Fit/Approximation Data 
68 Slope 1  Slope of the leftmost line. 
69 Slope 2 Slope of the middle line 
70 Slope 3 Slope of the rightmost line 

71 Frame Start 1 (Middle Line) Starting frame number within the long utterance for the 
middle line 

72 Frame Start 2 (Right Line) Starting frame number within the long utterance for the 
right line 

73 Y-Intercept 1  Y-intercept used for the leftmost line (Pitch of Frame 1) 

74 Y-Intercept 2  Y-intercept used for the middle line (Pitch of Frame Start 
1) 

75 Y-Intercept 3  Y-intercept used for the middle line (Pitch of Frame Start 
2) 
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