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Abstract of “High Order Numerical Methods for Hyperbolic Equations: Bound-
preserving and Riemann Invariant Based System Solvers”, by Ziyao Xu, Ph.D.,
Brown University, May 2023

This dissertation consists of three topics on bound-preserving discontinuous Galerkin

(DG) methods for time-dependent and stationary hyperbolic equations, and efficient

finite difference weighted essentially non-oscillatory (WENO) schemes for hyperbolic

systems.

In Chapter 2, we propose third order bound-preserving DG schemes for scalar

conservation laws and the Euler equations based on the Lax-Wendroff time discretiza-

tion. We first establish the maximum-principle-satisfying DG scheme for scalar con-

servation laws in one dimension. The scheme develops the idea from the direct

discontinuous Galerkin (DDG) method for heat equations to discretize high order

spatial derivatives resulting from the Lax-Wendroff procedure. When it extends

to multi-dimensions, we avoid the appearance of mixed derivatives in the numeri-

cal schemes based on carefully designed expansions of high order derivatives. The

positivity-preserving schemes for the Euler equations are constructed in a similar

manner.

In Chapter 3, we follow the work of Yuan et al. (2016) [90] and Ling et al.

(2018) [46] to investigate the positivity-preserving DG methods for stationary hy-

perbolic equations. High order conservative positivity-preserving DG methods for

variable coefficient and nonlinear stationary hyperbolic equations in one dimension,

and constant coefficient stationary hyperbolic equations in two and three dimensions

are constructed, via suitable quadratures. In Chapter 4, we continue the study in

Chapter 3 and clarify a more appropriate definition of mass conservation, rather than

preserving cell averages, for stationary hyperbolic equations. The genuinely conser-

vative high-order positivity-preserving DG methods based on the new definition are



constructed, which are able to preserve the positivity of more general types of equa-

tions with much simpler implementations and easier proofs for the Lax-Wendroff

theorem. Novel conservative positivity-preserving limiters are designed to accommo-

date for the new definition of conservation.

In Chapter 5, we investigate local characteristic decomposition free WENO schemes

for a special class of hyperbolic systems endowed with a coordinate system of Rie-

mann invariants. We apply the WENO procedure to the coordinate system of Rie-

mann invariants instead of the local characteristic variables to save the expensive

computational cost on local characteristic decomposition but meanwhile, maintain

the essentially non-oscillatory performance. The efficiency and good performance

of our method are demonstrated by extensive numerical tests, which indicate the

coordinate system of Riemann invariants is a good alternative to local characteristic

variables for the WENO procedure with higher efficiency.
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Introduction



2

Hyperbolic conservation/balance laws are fundamental tools to investigate the phe-

nomena of flow and transport. When numerically solving hyperbolic equations, high

order accurate numerical methods are preferred due to their vast advantages in ef-

ficiency and fidelity. However, many high order methods suffer from strong oscil-

lations near discontinuities of solutions, which is the so-called Gibbs phenomenon.

Some important physical quantities may be out of their physical range due to spu-

rious oscillations, e.g. density or pressure of fluid becomes negative if the density or

pressure is low near shocks. Once these happen, not only physically the quantities

are no longer meaningful, but numerically the hyperbolicity of differential equations

is also changed, which often leads to the NaN outputs and simulation failure. To

reduce the spurious oscillations, many remarkable robust algorithms and stabiliz-

ing techniques were developed, e.g. artificial viscosity methods [79], total variation

diminishing (TVD) [31, 32] and total variation bounded (TVB) [69] schemes, essen-

tially non-oscillatory (ENO) [33] and weighted essentially non-oscillatory (WENO)

[48, 35] schemes, and discontinuous Galerkin (DG) [62, 40] methods with various of

limiters, etc.

The discontinuous Galerkin method, first proposed by Reed and Hill in [62] for

the neutron transport equation on triangular meshes, is a class of finite element meth-

ods with discontinuous function space of test and trial functions. It was developed

into the Runge-Kutta discontinuous Galerkin (RKDG) methods by Cockburn et al.

in a series of work [17, 16, 14, 13, 18] to solve nonlinear hyperbolic problems. Since

then, the DG methods have been widely used in numerical simulation for hyperbolic

equations, due to their advantages in high order accuracy, flexibility in complex ge-

ometry, and easiness to be parallelized. Limiters such as the total variation bounded

(TVB) limiter [18] are usually applied after each Runge-Kutta stage to stabilize the

solution.
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Due to the lack of provable bound-preserving property, common DG methods

designed for general purpose are not enough in some extreme cases, e.g. very high

Mach jets in astrophysics, point blast problems, and vacuum near shocks in compress-

ible gas dynamics. The simulation may blow up if no ad hoc positivity correction is

made to avoid possible negative density or pressure. Bound-preserving methods, also

referred to as the maximum-principle preserving methods in some contexts, are nu-

merical methods that are carefully designed to ensure the physical quantities strictly

fall into their physical bounds during the entire simulation. If the upper bound of

a physical quantity is infinity, the methods are called positivity-preserving. In 2010,

the genuinely high order bound-preserving DG methods were constructed by Zhang

and Shu in [93, 94]. The basic idea of the Zhang-Shu framework is to take the test

function in the DG scheme to be 1 in each cell to yield an equation satisfied by the

cell average of the target variable, and prove the desired boundedness of the cell

average under the certain choice of numerical fluxes and suitable CFL conditions.

Then a scaling limiter that does not affect the accuracy and cell average can be used

to modify the variable to obtain physically relevant bounds for the entire solution.

In order to gain high order accuracy, the bound-preserving schemes also need

to combine with temporal discretization whose order is consistent with the order

of spatial discretization. Almost all temporal discretizations in the existing bound-

preserving methods is based on the method of lines, which treats the spatially dis-

cretized equations as ODE systems and uses appropriate time marching approaches

to evolve in time. In particular, the strong stability preserving (SSP) Runge-Kutta

or multi-step methods, which are convex combinations of Euler-forward time dis-

cretization, are primary time marching approaches used in bound-preserving DG

methods for time-dependent hyperbolic problems. In this dissertation, we study the

bound-preserving DG methods based on the Lax-Wendroff time discretization, which
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haven’t been studied adequately before. The Lax-Wendroff discontinuous Galerkin

(LWDG) methods [58, 30] first take the Taylor expansion of the solution in time to

gain high order temporal accuracy. Then, the methods utilize PDE itself to replace

the temporal derivatives in the expansion with spacial derivatives, followed by spatial

discretization by the DG methods. Therefore, the LWDG is a high order single-stage

method, with more compact stencils in each time step. The main challenge of the

bound-preserving technique for LWDG is the appearance of high order derivatives

and mixed derivatives in high dimensions due to the Lax-Wendroff procedure, which

is not commonly encountered when dealing with first order hyperbolic equations or

convection-diffusion equations with the method of lines. To resolve the problem,

the bound-preserving DDG [11] flux will play a key role in the construction of the

numerical schemes.

Besides the LWDG for time-dependent problems, we also study the positivity-

preserving DG for stationary hyperbolic equations in this dissertation. The station-

ary hyperbolic equations could appear in flow and transport problems at steady-state,

the stationary radiative transfer equations (RTE) discretized by the discrete-ordinate

method (DOM), or the implicit time discretization/space-time DG methods for time-

dependent hyperbolic equations. A distinct difference between the DG methods for

the stationary and time-dependent hyperbolic equations is the marching direction of

the computation. For time-dependent problems, the DG methods march in time, so

the cell averages of solution at the current time stage depend on the cell averages in

previous stages, thereby the bounds of cell averages are easier to be ensured, provided

the bounds are satisfied by the solutions at previous times. However, in stationary

problems, the sweeping direction of the computation follows the wind direction of

the flux in space. Therefore, the cell average of the solution on a target cell depends

only on the inflow fluxes and the source term, which gives rise to new challenges to
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the bound-preserving technique. Such a feature makes the proof of the positivity of

cell averages very complicated even for the simple equation ux + γu = s(x), see [46].

As shown in the studies in Chapter 3 and [46], for more complex equations or higher

dimensions, the positivity of cell averages obtained by unmodulated DG methods

generally fails! Some complicated non-conservative positivity-preserving limiters are

proposed in [90, 91] to address such an issue. In this dissertation, we shall propose

new techniques and methodologies to preserve the positivity of the solution without

hurting the conservation property of DG schemes.

Besides DG, the ENO and WENO methods are also prevalent numerical methods

for hyperbolic conservation laws. The ENO methods, first developed by Harten et

al. [33], use an adaptive strategy to choose the smoothest stencil among several can-

didates to reconstruct the solution from its cell averages, hence the methods yield

essentially non-oscillatory approximation near shocks. The original ENO scheme

was based on the framework of finite volume methods with Lax-Wendroff time dis-

cretization. Later on, Shu and Osher proposed the finite difference framework in

[73] by ENO interpolation for nodal values of solutions and high order approxima-

tion for spatial derivatives of fluxes, which saves considerable computational cost in

multi-dimensions. Their subsequent work in [74] developed a simpler finite difference

framework based on the Shu-Osher lemma to approximate the fluxes at cell interfaces

by standard reconstruction procedure for fluxes at cell centers. The WENO methods

[48, 35] were developed upon ENO, with the idea of using a convex combination of

all candidate stencils rather than only one stencil in the original ENO scheme to

gain higher order of accuracy. The WENO procedure can be used in the framework

of finite volume or finite difference methods like the ENO.

The high order ENO/WENO finite volume/difference methods have to be used

in cooperation with the local characteristic decomposition, when solving hyperbolic
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systems of conservation laws, as the reconstruction/interpolation on conservative

variables typically produces much worse numerical fidelity near shocks compared with

the characteristic variables, especially when shocks of different characteristic fields

interact. However, the local characteristic decomposition is computationally costly

since the eigendecomposition is needed on each interface of cells. In this dissertation,

we look for alternative variables for the WENO procedure, such that the expansive

computation of local characteristic decomposition is exempted, meanwhile the non-

oscillatory fashion of the WENO schemes is not affected. An ideal candidate is the

coordinate system of Riemann invariants, which only admits one major discontinuity

in each component when shocks of different characteristic fields appear in Riemann

problems. Due to the nonlinear algebraic relation between the Riemann invariants

and conservative variables, we establish our local characteristic free scheme within

the finite difference framework of [73].

The rest of the dissertation is organized as follows. In Chapter 2, we study the

bound-preserving LWDG methods for scalar conservation laws and the Euler equa-

tions. In Chapter 3, we construct positivity-preserving DG methods for stationary

hyperbolic balance laws with nonnegative source terms and initial conditions, via a

suitable quadrature rule. We further study this topic in Chapter 4, where a more

appropriate notion of mass conservation for stationary hyperbolic equations is clari-

fied and the corresponding conservative limiters are given. In Chapter 5, we propose

an efficient local characteristic decomposition free finite difference WENO method

for a particular class of hyperbolic conservation systems. Finally, we summarize the

dissertation with some conclusions in Chapter 6.

To avoid confusion, we remark that we define and use notations locally in each

chapter. Some notations may have different meanings in different chapters.



Chapter Two

Bound-preserving Lax-Wendroff

discontinuous Galerkin methods

for time-dependent hyperbolic

equations
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2.1 Introduction

Hyperbolic conservation laws are basic tools to characterize the phenomena of flow

and transport, e.g. the Burgers’ equation for traffic flow and the Buckley-Leverett

equation for two phase flow as the scalar cases, and the Euler equations for com-

pressible gas dynamics and shallow water equations for water with shallow depth as

the system cases.

The scalar conservation laws are known to satisfy the maximum-principle, e.g.

for the one dimensional scalar equation

ut + f(u)x = 0, x ∈ R, t > 0, (2.1)

with initial condition

u(x, 0) = u0(x), x ∈ R,

the entropy solution satisfiesm ≤ u(x, t) ≤M,∀x ∈ R, t > 0, wherem = minx∈R u0(x)

and M = maxx∈R u0(x). Same results also hold for periodic boundary conditions,

bounded domain with compactly supported solution, and higher dimensions.

Similarly, the positivity of certain important physical quantities are satisfied by

some hyperbolic systems, e.g. for the Euler equations

ut + f(u)x = 0, x ∈ R, t > 0 (2.2)
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where

u =


ρ

m

E

 , f(u) =


m

ρu2 + p

(E + p)u

 ,

with

m = ρu, E =
1

2
ρu2 + ρe, p = (γ − 1)ρe,

in which ρ is the density of fluid, m is the momentum, u is the velocity, E is the

total energy, p is the pressure, e is the specific internal energy, and γ > 1 is the ratio

of specific heats, it is well-known that the physical solution u ∈ G for all t > 0 if it

holds at t = 0, where G is the admissible set of solutions defined as

G = {u : ρ ≥ 0, p(u) ≥ 0} . (2.3)

Rigorously preserving these physical bounds of solutions is of great importance

for the robustness of numerical algorithms, in that once the quantities were out of

their physical range, the hyperbolicity of equations is lost, which often leads to the

simulation failure. There have been intensive studies on the maximum-principle-

satisfying and positivity-preserving numerical methods for hyperbolic conservation

laws. In 2010, the genuinely maximum-principle satisfying high-order discontinuous

Galerkin (DG) and finite volume methods for scalar conservation laws were proposed

by Zhang and Shu in [93]. The algorithm is composed of two steps under the DG

framework. The first step is to prove desired physical bounds for the cell averages of

numerical solutions are automatically satisfied by the unmodulated high order DG

scheme with appropriate CFL conditions and numerical fluxes. Then a scaling lim-

iter, which does not destroy accuracy and mass conservation, are adopted to modify

the solution such that the physical bounds satisfied by cell averages are extended
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to the entire solution. Based on this simple and general framework, the high or-

der maximum-principle-satisfying and positivity-preserving numerical schemes have

been rapidly developed for different problems ever since, for instance, the Euler

equations [94, 95, 80], the Navier-Stokes equations [92], the shallow water equations

[82, 81, 45], convection diffusion equations [96, 42, 11], and hyperbolic equations

involving δ−singularities [97, 89], etc. For convenience, we call both maximum-

principle-satisfying and positivity-preserving techniques the bound-preserving meth-

ods.

It should be noted that, in order to gain high order accuracy, the bound-preserving

schemes also need to combine with temporal discretization whose order is consistent

with the order of spatial discretization. Almost all time discretizations in the afore-

mentioned bound-preserving methods are based on the method of lines, which treats

the spatially discretized equation as ODE systems and use appropriate time marching

approaches to evolve in time. In particular, the strong stability preserving Runge-

Kutta (SSP-RK) methods or the SSP multi-step methods [25, 27, 70] are preferable

because they are convex combinations of forward Euler time discretization, which

greatly simplifies the proof of the bound-preserving since all analysis only need to be

carried out on a single forward Euler time step. Besides the explicit methods, there

are also studies on backward Euler time discretization [55, 46].

As an alternative to method of lines, the Lax-Wendroff methods are also widely

used in the computation of time-dependent partial differential equations, for instance,

the combination of Lax-Wendroff type time discretization with DG (LWDG) methods

[58, 57, 30] or with the WENO schemes [60, 56], the two-stage fourth-order methods

[53, 43], the arbitrary high order derivative Riemann problem (ADER) approach [77,

23, 22], and its variant based on the Galerkin space-time predictor [20, 7, 21], etc. The

Lax-Wendroff methods utilizes the information of the partial differential equations
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to replace temporal derivatives by spatial derivatives in the Taylor expansion of the

solution in time. Therefore, the Lax-Wendroff methods are one-stage, explicit, high

order methods, and only need the stabilizing scaling limiters once per time step.

Regarding to the situation that there are very limited researches on bound-

preserving techniques for Lax-Wendroff schemes, we study the LWDG to construct

third order maximum-principle-satisfying and positivity-preserving LWDG schemes

for scalar conservation laws and the Euler equations in one and two space dimensions.

Different to the previous works [50, 66] on positivity-preserving Lax-Wendroff type

methods, our algorithm does not rely on the flux limiter that needs to combine low

order positivity-preserving flux and high order flux together, hence the high order

accuracy of our approach is easier to guarantee.

The construction of our numerical schemes is based on the third order Taylor

expansion of solution in time

u(x, tn+1) = u(x, tn) + ∆tut(x, t
n) +

∆t2

2
utt(x, t

n) +
∆t3

6
uttt(x, t

n) +O(∆t4), (2.4)

where ∆t = tn+1 − tn. Due to the Lax-wendroff procedure, there will be many

spatial derivatives to replace the original time derivatives in (2.4), especially for

the system case in high dimensions. In this chapter, we adopt the discontinuous

Galerkin methods for the spatial discretization of the derivatives. In 1973, Reed

and Hill [62] proposed the first discontinuous Galerkin method to solve the steady

linear transport problem. It was developed into Runge-Kutta discontinuous galerkin

methods (RKDG) by Cockburn et al. in a series papers [17, 16, 14, 13, 18] to

solve nonlinear hyperbolic conservation laws. Limiters such as the total variation

bounded (TVB) limiter [18] are usually applied to stabilize the solution near shocks

after each Runge-Kutta stage. Discontinuous Galerkin methods have been widely
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used in computational fluid dynamics due to their advantages in high order accuracy,

flexibility in complex geometry and easiness to be parallelized, and is one of the most

common choices in developing bound-preserving schemes.

In our work, we develop the idea of bound-preserving direct discontinuous Galerkin

(DDG) method from [11] to resolve the difficulty caused by high order spatial

derivatives produced by the Lax-Wendroff procedure. When it extends to multi-

dimensions, we avoid the appearance of mixed derivatives in our numerical schemes

based on carefully designed expansions of high order temporal derivatives in the

Lax-Wendroff procedure, which is the key for the success of bound-preserving in

high dimensions. We only demonstrate the treatments in two dimensions but the

technique can be generalized into three dimensions directly.

It is worth mentioning that, the tedious CFL conditions to be derived for bound-

preserving in the chapter is not explicitly used in the implementation. But rather,

they are used as a theoretical guarantee. In practice, one can use standard CFL

conditions in computation, and rewind the computation back to the beginning of

the step with halved time step-size when the cell averages exceeds their desired

bounds at that step. The theoretical results in the chapter guarantee that one only

needs to halve the step-size finite number of times. Moreover, since the LWDG is

an explicit single stage method, the temporal derivatives of the solution only need

to be computed once per time step, which makes the cost of rewinding computation

very cheap.

The rest of the chapter is organized as follows. In Section 2.2, we first introduce

the notations to be used throughout the chapter, and then construct the maximum-

principle-satisfying LWDG methods for scalar conservation laws in one and two space

dimensions. In Section 2.3, we establish the positivity-preserving LWDG schemes
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for the Euler equations in one and two dimensional spaces. The scaling limiters are

introduced in Section 2.4 to ensure the boundedness and stability of the numerical

solution. In Section 2.5, we give extensive numerical examples to demonstrate the

effectiveness of our algorithm. We end up with some concluding remarks in Section

2.6. The discussion in the above sections are based on uniform meshes. In the

Appendix A.3, we give illustrations on how to extend the algorithms to nonuniform

meshes and take the one dimensional scalar conservation law as an example.

2.2 Maximum-principle-preserving for scalar con-

servation laws

In this section, we study the maximum-principle-satisfying LWDG methods for scalar

conservation laws. Based on the framework of [93], we only need to put our effort on

attaining the maximum-principle for cell averages of the solution, i.e. m ≤ ūn+1 ≤

M , provided m ≤ un ≤M , where the superscripts n and n+ 1 denote the time level

tn and tn+1, respectively. The slope limiters introduced in Section 2.4 will make up

the gap between the maximum-principles of ūn+1 and un+1.

For simplicity, we only discuss the one and two dimensional problems with peri-

odic boundary conditions on uniform meshes, but the results can be directly extended

to three space dimensions and non-periodic cases. However, the extension from uni-

form meshes to nonuniform meshes is not trivial, which will be demonstrated in the

Appendix A.3 with one dimensional space as an example.

We first introduce the notations to be used throughout the chapter, then con-

struct and prove the maximum-principle-satisfying LWDG schemes.
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2.2.1 Notations

In the one dimensional space, we assume the domain Ω = [a, b] is discretized by

a = x 1
2
< x 3

2
< · · ·xN+ 1

2
= b, and denote by Ij = [xj− 1

2
, xj+ 1

2
] the cells on Ω

for j = 1, 2, . . . N . Moreover, we denote the length and center of the cell Ij by

∆xj = xj+ 1
2
− xj− 1

2
and xj = 1

2

(
xj− 1

2
+ xj+ 1

2

)
, respectively, and let uj = u(xj)

Similarly, in the two dimensional space, we assume Ω = [a, b]× [c, d] is discretized

by a = x 1
2
< x 3

2
< · · · < xNx+ 1

2
= b and c = y 1

2
< y 3

2
< · · · < yNy+ 1

2
= d in the x and

y directions, respectively. We denote by Ki,j = Ii × Jj = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]

the cells in Ω for i = 1, . . . , Nx, j = 1, . . . , Ny, and by ∆xi∆yj = (xi+ 1
2
−xi− 1

2
)(yj+ 1

2
−

yj− 1
2
), (xi, yj) = (1

2
(xi− 1

2
+xi+ 1

2
), 1

2
(yj− 1

2
+ yj+ 1

2
)) the area and center of the cell Ki,j,

respectively, and let ui,j = u(xi, yj).

We only consider the uniform meshes in this section and the next section to

simplify the discussion, i.e. ∆xi ≡ ∆x and ∆yj ≡ ∆y, for i = 1, . . . , Nx, j =

1, . . . , Ny. The case of nonuniform meshes will be discussed in the appendices.

The finite element spaces in the DG schemes are taken as V = {v ∈ L2 : v|Ij ∈

P 2(Ij), j = 1, 2, . . . , N} and W = {v ∈ L2 : v|Ki,j ∈ Q2(Ki,j), i = 1, . . . , Nx, j =

1, . . . , Ny} in one and two dimensional spaces, respectively, where P 2(I) is the space

of quadratic polynomials on interval I and Q2(K) is the tensor product space of

quadratic polynomials on rectangle K.

Due to discontinuities, functions in the schemes may have double values on cell in-

terfaces. In one space dimension, we denote by v−
j+ 1

2

and v+
j+ 1

2

the left and right limits

of v at xj+ 1
2
, respectively, i.e. v±

j+ 1
2

= v(xj+ 1
2
± 0). Moreover, we denote the average

and jump of v at xj+ 1
2

by {v}j+ 1
2

= 1
2

(
v−
j+ 1

2

+ v+
j+ 1

2

)
and [v]j+ 1

2
= v+

j+ 1
2

−v−
j+ 1

2

, respec-
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tively. Similarly, in two space dimensions, we denote the left/right and lower/upper

limits of v on vertical and horizontal cell interfaces by v(x±
i+ 1

2

, y) = v(xi+ 1
2
±0, y) and

v(x, y±
j+ 1

2

) = v(x, yj+ 1
2
±0), respectively. The averages and jumps of v on vertical and

horizontal cell interfaces are defined as {v}(xi+ 1
2
, y) = 1

2

(
v(x−

i+ 1
2

, y) + v(x+
i+ 1

2

, y)
)

,

[v](xi+ 1
2
, y) = v(x+

i+ 1
2

, y)− v(x−
i+ 1

2

, y) and {v}(x, yj+ 1
2
) = 1

2

(
v(x, y−

j+ 1
2

) + v(x, y+
j+ 1

2

)
)

,

[v](x, yj+ 1
2
) = v(x, y+

j+ 1
2

)−v(x, y−
j+ 1

2

), respectively. For simplicity, these notations will

be abbreviated as v±, {v} and [v] when the cell interface is clear from the context.

We denote the L2 inner product on cell Ij in one space dimension as

(u, v)Ij =

∫ x
j+ 1

2

x
j− 1

2

u(x)v(x)dx,

and on Ki,j in two space dimensions as

(u, v)Ki,j =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

u(x, y)v(x, y)dxdy,

for u, v ∈ L2(Ω).

We use the Gauss-Lobatto quadrature of 2Nq − 1 points to evaluate integrals

in one dimensional cells, where Nq is taken such that the third order accuracy is

attained in the scheme, e.g. Nq = 3. We denote the quadrature points on Ij as

{x̂γ, γ = 1, . . . , 2Nq − 1}, and let {ω̂γ, γ = 1, . . . , 2Nq − 1} be the corresponding

quadrature weights satisfying
∑2Nq−1

γ=1 ω̂γ = 1. In particular, x̂1 = xj− 1
2
, x̂Nq = xj

and x̂2Nq−1 = xj+ 1
2
. We denote ûγ = u(x̂γ), for γ = 1, . . . , 2Nq − 1. The quadrature

rule adopted in two dimensional cells follows from tensor product and we denote

ûβ,γ = u(x̂β, ŷγ), for β, γ = 1, . . . , 2Nq − 1, on the cell Ki,j.
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2.2.2 Scalar conservation laws in one dimension

Consider the scalar conservation law (2.1). Direct computation gives the expressions

of ut, utt and uttt as follows:

ut = −f(u)x, (2.5)

utt = ((f ′)2ux)x (2.6)

uttt = −
(
3f ′′(f ′)2u2

x + (f ′)3uxx
)
x

(2.7)

Based on the expansions (2.5), (2.6) and (2.7), the third order maximum-principle-

satisfying LWDG scheme of (2.1) at time level tn is to find un+1 ∈ V , s.t. ∀ξ ∈ V ,

the equation

(un+1, ξ)Ij =(u, ξ)Ij + ∆t(f(u), ξx)Ij −
∆t2

2
((f ′)2ux, ξx)Ij

+
∆t3

6
(3f ′′(f ′)2u2

x + (f ′)3uxx, ξx)Ij −∆tF̂j+ 1
2
ξ−
j+ 1

2

+ ∆tF̂j− 1
2
ξ+
j− 1

2

,

(2.8)

holds for j = 1, 2, . . . , N , where the superscript n denoting time level tn on the right

hand side is omitted.

In the scheme (2.8), F̂j+ 1
2

is the numerical flux at xj+ 1
2

defined as

F̂j+ 1
2

=f̂LF
j+ 1

2
− ∆t

2
{f ′2}j+ 1

2
ûx

DDG
j+ 1

2
+

∆t2

6
{3f ′2f ′′u2

x + f ′3uxx}j+ 1
2
, (2.9)

where

f̂LF
j+ 1

2
= {f}j+ 1

2
− α

2
[u]j+ 1

2
, α = max

u
|f ′(u)| (2.10)
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is the Lax-Friedriches flux as used in [93], and

ûx
DDG
j+ 1

2
= β0

[u]j+ 1
2

∆x
+ {ux}j+ 1

2
+ β1∆x[uxx]j+ 1

2
(2.11)

is the bound-preserving direct discontinuous Galerkin (DDG) flux [47, 11], with β0, β1

satisfying

1

8
< β1 <

1

4
, β0 >

3

2
− 4β1 (2.12)

The following lemmas are useful in the proofs of maximum-principle-satisfying

and positivity-preserving in this section and the next section.

Lemma 2.2.1. For u ∈ V , the DDG flux ûx
DDG
j+ 1

2
defined in (2.11) can be expanded

on uniform meshes as

ûx
DDG
j+ 1

2
=

1

∆x

(
(
1

2
− 4β1)u+

j− 1
2

+ (−2 + 8β1)uj + (−β0 +
3

2
− 4β1)u−

j+ 1
2

+ (β0 −
3

2
+ 4β1)u+

j+ 1
2

+ (2− 8β1)uj+1 + (−1

2
+ 4β1)u−

j+ 3
2

) (2.13)

Proof. Since the mesh is uniform and u is piecewise quadratic, it follows from direct

calculations.

Lemma 2.2.2. If u ∈ V and m ≤ u ≤M , then

|du
dx
| ≤ 5(M −m)

∆xj
, ∀x ∈ Ij. (2.14)

Proof. We first consider v ∈ P 2([−1, 1]) with −R
2
≤ v ≤ R

2
. The Lagrange interpo-

lation gives

v(r) = v(−1)L−1(r) + v(0)L0(r) + v(1)L1(r), r ∈ [−1, 1], (2.15)
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where L−1(r) = 1
2
r(r − 1), L0(r) = −(r + 1)(r − 1), L1(r) = 1

2
r(r + 1).

Therefore, |v′(r)| ≤ |v(−1)| · |L′−1(r)|+ |v(0)| · |L′0(r)|+ |v(1)| · |L′1(r)| ≤ R
2
× 3

2
+

R
2
× 2 + R

2
× 3

2
= 5R

2
,∀r ∈ [−1, 1]. Then (2.14) follows from changing of variables and

the chain rule.

We now state our main result for the LWDG scheme (2.8).

Theorem 2.2.3. Given m ≤ un ≤ M , the cell averages ūn+1
j , j = 1, . . . , N of the

solution of scheme (2.8) are bounded between m and M under the CFL condition

(2.16).

λ ≤ min {q1, q2, . . . , q6} , (2.16)

where λ = ∆t
∆x

, q1 = ω̂1

2M1
, q2 =

4β1− 1
2

5(M−m)M2+ 4
3
M1

, q3 = 2−8β1

20(M−m)M2+ 8
3
M1

, q4 =
β0− 3

2
+4β1

15(M−m)M2+ 4
3
M1

,

q5 =
ω̂

1/2
1

M1(β0−1+4β1)1/2 , q6 =
ω̂

1/2
Nq

M1(6−24β1)1/2 , and M1 = maxm≤u≤M |f ′(u)|, M2 = maxm≤u≤M |f ′′(u)|.

Proof. Take the test function ξ = 1 on Ij and zero anywhere else in the scheme (2.8)

and denote λ = ∆t
∆x

, we obtain the equation satisfied by cell average of un+1 on cell

Ij,

ūn+1
j = ūnj − λF̂j+ 1

2
+ λF̂j− 1

2
= I + II, (2.17)

where

I =
1

2

(
ūnj − 2λf̂LF

j+ 1
2

+ 2λf̂LF
j− 1

2

)
, (2.18)
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and

II =
1

2

2Nq−1∑
γ=1

ω̂γû
γ

− λ
(
−∆t

4
(f ′2

−
j+ 1

2
+ f ′2

+
j+ 1

2
)ûx

DDG
j+ 1

2
+

∆t2

12
×

(3f ′2
−
j+ 1

2
f ′′
−
j+ 1

2
u2
x
−
j+ 1

2
+ 3f ′2

+
j+ 1

2
f ′′

+
j+ 1

2
u2
x

+

j+ 1
2

+ f ′3
−
j+ 1

2
uxx
−
j+ 1

2

+ f ′3
+
j+ 1

2
uxx

+
j+ 1

2

)
)

+ λ

(
−∆t

4
(f ′2

−
j− 1

2
+ f ′2

+
j− 1

2
)ûx

DDG
j− 1

2
+

∆t2

12
×

(3f ′2
−
j− 1

2
f ′′
−
j− 1

2
u2
x
−
j− 1

2
+ 3f ′2

+
j− 1

2
f ′′

+
j− 1

2
u2
x

+

j− 1
2

+ f ′3
−
j− 1

2
uxx
−
j− 1

2

+ f ′3
+
j− 1

2
uxx

+
j− 1

2

)
)

Note that the cell average ūnj is split equally in I and II just for the ease of written,

rather than to obtain an optimal CFL condition, which is the same case for all other

proofs in this chapter.

Since I has exactly the same form as in [93], we have 1
2
m ≤ I ≤ 1

2
M , under the

condition λ ≤ q1 based on the conclusion therein. One can refer to [93] for more

details.

As for II, it can be expanded as follows:

II =
1

2

Nq−1∑
γ=2

ω̂γû
γ +

1

2

2Nq−2∑
γ=Nq+1

ω̂γû
γ + z1u

+
j− 3

2

+ z2uj−1 + z3u
−
j− 1

2

+ z4u
+
j− 1

2

+ z5uj + z6u
−
j+ 1

2

+ z7u
+
j+ 1

2

+ z8uj+1 + z9u
−
j+ 3

2

,

(2.19)

where

z1 =
λ2

4
f ′2
−
j− 1

2

(
(4β1 −

1

2
) + ∆tf ′′

−
j− 1

2
ux
−
j− 1

2

+
4λ

3
f ′
−
j− 1

2

)
+
λ2

4
f ′2

+
j− 1

2
(4β1 −

1

2
),

z2 =
λ2

4
f ′2
−
j− 1

2

(
(2− 8β1)− 4∆tf ′′

−
j− 1

2
ux
−
j− 1

2

− 8λ

3
f ′
−
j− 1

2

)
+
λ2

4
f ′2

+
j− 1

2
(2− 8β1)
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z3 =
λ2

4
f ′2
−
j− 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

−
j− 1

2
ux
−
j− 1

2

+
4λ

3
f ′
−
j− 1

2

)
+
λ2

4
f ′2

+
j− 1

2
(β0 −

3

2
+ 4β1)

z4 =
1

2
ω̂1 −

λ2

4
f ′2
−
j− 1

2
(β0 −

3

2
+ 4β1)

− λ2

4
f ′2

+
j− 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λ

3
f ′

+
j− 1

2

)
− λ2

4
f ′2
−
j+ 1

2

(
(4β1 −

1

2
) + ∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λ

3
f ′
−
j+ 1

2

)
− λ2

4
f ′2

+
j+ 1

2
(4β1 −

1

2
)

z5 =
1

2
ω̂Nq −

λ2

4
f ′2
−
j− 1

2
(2− 8β1)− λ2

4
f ′2

+
j− 1

2

(
(2− 8β1)− 4∆tf ′′

+
j− 1

2
ux

+
j− 1

2

+
8λ

3
f ′

+
j− 1

2

)
− λ2

4
f ′2
−
j+ 1

2

(
(2− 8β1)− 4∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

− 8λ

3
f ′
−
j+ 1

2

)
− λ2

4
f ′2

+
j+ 1

2
(2− 8β1)

z6 =
1

2
ω̂2Nq−1 −

λ2

4
f ′2
−
j− 1

2
(4β1 −

1

2
)

− λ2

4
f ′2

+
j− 1

2

(
(4β1 −

1

2
) + ∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λ

3
f ′

+
j− 1

2

)
− λ2

4
f ′2
−
j+ 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λ

3
f ′
−
j+ 1

2

)
− λ2

4
f ′2

+
j+ 1

2
(β0 −

3

2
+ 4β1)

z7 =
λ2

4
f ′2
−
j+ 1

2
(β0 −

3

2
+ 4β1) +

λ2

4
f ′2

+
j+ 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

− 4λ

3
f ′

+
j+ 1

2

)
z8 =

λ2

4
f ′2
−
j+ 1

2
(2− 8β1) +

λ2

4
f ′2

+
j+ 1

2

(
(2− 8β1)− 4∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

+
8λ

3
f ′

+
j+ 1

2

)
z9 =

λ2

4
f ′2
−
j+ 1

2
(4β1 −

1

2
) +

λ2

4
f ′2

+
j+ 1

2

(
(4β1 −

1

2
) + ∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

− 4λ

3
f ′

+
j+ 1

2

)
It is not difficult to verify that

1

2

Nq−1∑
γ=2

ω̂γ +
1

2

2Nq−2∑
γ=Nq+1

ω̂γ + z1 + z2 + · · ·+ z9 =
1

2
,

Moreover, we claim that z1, z2, . . . , z9 ≥ 0 under the CFL conditions (2.16). In fact,
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the following estimates can be made under the CFL conditions,

z1 ≥
λ2

4
f ′2
−
j− 1

2

(
(4β1 −

1

2
)− 5λ(M −m)M2 −

4λ

3
M1

)
+
λ2

4
f ′2

+
j− 1

2
(4β1 −

1

2
) ≥ 0,

z2 ≥
λ2

4
f ′2
−
j− 1

2

(
(2− 8β1)− 20λ(M −m)M2 −

8λ

3
M1

)
+
λ2

4
f ′2

+
j− 1

2
(2− 8β1) ≥ 0,

z3 ≥
λ2

4
f ′2
−
j− 1

2

(
(β0 −

3

2
+ 4β1)− 15λ(M −m)M2 −

4λ

3
M1

)
+
λ2

4
f ′2

+
j− 1

2
(β0 −

3

2
+ 4β1) ≥ 0,

z4 ≥
1

2
ω̂1 −

λ2

4
M2

1 (β0 −
3

2
+ 4β1)

− λ2

4
M2

1

(
(β0 −

3

2
+ 4β1) + 15λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1

(
(4β1 −

1

2
) + 5λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1 (4β1 −
1

2
) ≥ 0,

z5 ≥
1

2
ω̂N −

λ2

4
M2

1 (2− 8β1)− λ2

4
M2

1

(
(2− 8β1) + 20λ(M −m)M2 +

8λ

3
M1

)
− λ2

4
M2

1

(
(2− 8β1) + 20λ(M −m)M2 +

8λ

3
M1

)
− λ2

4
M2

1 (2− 8β1) ≥ 0,

z6 ≥
1

2
ω̂2Nq−1 −

λ2

4
M2

1 (4β1 −
1

2
)− λ2

4
M2

1

(
(4β1 −

1

2
) + 5λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1

(
(β0 −

3

2
+ 4β1) + 15λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1 (β0 −
3

2
+ 4β1)

≥0,

z7 ≥
λ2

4
f ′2
−
j+ 1

2
(β0 −

3

2
+ 4β1)

+
λ2

4
f ′2

+
j+ 1

2

(
(β0 −

3

2
+ 4β1)− 15λ(M −m)M2 −

4λ

3
M1

)
≥ 0,

z8 ≥
λ2

4
f ′2
−
j+ 1

2
(2− 8β1) +

λ2

4
f ′2

+
j+ 1

2

(
(2− 8β1)− 20λ(M −m)M2 −

8λ

3
M1

)
≥ 0,

z9 ≥
λ2

4
f ′2
−
j+ 1

2
(4β1 −

1

2
) +

λ2

4
f ′2

+
j+ 1

2

(
(4β1 −

1

2
)− 5λ(M −m)M2 −

4λ

3
M1

)
≥ 0.

Therefore, II is one half of a convex combination of values of un at different quadra-

ture points, which implies 1
2
m ≤ II ≤ 1

2
M since we assume m ≤ un ≤M .

Since ūn+1
j = I + II, we finish the proof by summing up the inequalities of I and
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II .

Remark 2.2.1. The CFL condition in Theorem 2.2.3 is not sharp, because we split

the cell average ūnj equally into I and II for the convenience of the proof. The same

case applies to all later theorems. In order to get a sharp CFL condition, one has to

analyze/estimate ūn+1 or ūn+1 as a whole, which makes the proof extremely tedious.

But even if we did so, the task of finding optimal β0 and β1 to obtain an exact upper

bound of the CFL number would still be very difficult if not impossible, since the CFL

condition also depends on the lower and upper bounds of the solution, the maximum

norms of the first and second derivatives of the flux function, and the quadrature

rule, etc.

However, we can get an intuition about the CFL constraints in the LWDG by

analyzing the equation ut + ux = 0. In this case, the Lax-Friedrichs flux becomes

the upwind flux, and the upper bound on the time step constraints can be computed

exactly. Calculation shows that, using the 5-point Gauss-Lobatto quadrature, the

CFL number of the LWDG is ∆t
∆x

= 0.049917, with the optimal parameters β0 =

0.999978, β1 = 0.133326. In comparison, under the same quadrature rule, the CFL

numbers of the maximum-principle-satisfying DG schemes [93] are ∆t
∆x

= 0.05 and

∆t
∆x

= 0.016666, for the SSP-RK3 method (three stages) and SSP3 multi-step method

(single-stage), respectively.

2.2.3 Scalar conservation laws in two dimensions

Consider the scalar conservation law in two space dimensions

ut + f(u)x + g(u)y = 0. (2.20)
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Direct computation gives the expressions of ut, utt, uttt as follows:

ut = −f(u)x − g(u)y, (2.21)

utt =
(
f ′2ux

)
x

+ (f ′g′uy)x + (f ′g′ux)y +
(
g′2uy

)
y
, (2.22)

uttt =−
(
3f ′2f ′′u2

x + 6f ′g′g′′u2
y + 3g′2f ′′u2

y + f ′3uxx + 3f ′g′2uyy
)
x

−
(
6f ′g′f ′′u2

x + 3f ′2g′′u2
x + 3g′2g′′u2

y + 3f ′2g′uxx + g′3uyy
)
y

(2.23)

Note that there are different ways to expand uttt, among which we choose the

one that avoids the appearance of mixed derivatives in the numerical scheme.

Based on the expansions (2.21), (2.22) and (2.23), the third order maximum-

principle-preserving LWDG scheme of (2.20) at time level tn is to find un+1 ∈ W ,

s.t. ∀ξ ∈ W, the equation

(un+1, ξ)Ki,j =(u, ξ)Ki,j + ∆t(f(u), ξx)Ki,j + ∆t(g(u), ξy)Ki,j

− ∆t2

2
(f ′2ux + f ′g′uy, ξx)Ki,j −

∆t2

2
(f ′g′ux + g′2uy, ξy)Ki,j

+
∆t3

6

(
3f ′2f ′′u2

x + 6f ′g′g′′u2
y + 3g′2f ′′u2

y + f ′3uxx + 3f ′g′2uyy, ξx
)
Ki,j

+
∆t3

6

(
6f ′g′f ′′u2

x + 3f ′2g′′u2
x + 3g′2g′′u2

y + 3f ′2g′uxx + g′3uyy, ξy
)
Ki,j

−∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i+ 1
2
,j ξ(x

−
i+ 1

2

, y)dy + ∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i− 1
2
,j ξ(x

+
i− 1

2

, y)dy

−∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j+ 1
2
ξ(x, y−

j+ 1
2

)dx+ ∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j− 1
2
ξ(x, y+

j− 1
2

)dx

(2.24)

holds for i = 1, . . . , Nx, j = 1, . . . , Ny. In the scheme, F̂i+ 1
2
,j and Ĝi,j+ 1

2
are numerical
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fluxes defined as

F̂i+ 1
2
,j = F̂ 0

i+ 1
2
,j

+ F̂ 1
i+ 1

2
,j
, Ĝi,j+ 1

2
= Ĝ0

i,j+ 1
2

+ Ĝ1
i,j+ 1

2
,

where

F̂ 0
i+ 1

2
,j

= f̂LF
i+ 1

2
,j
− ∆t

2
{f ′2}i+ 1

2
,jûx

DDG
i+ 1

2
,j +

∆t2

6
{3f ′2f ′′u2

x + f ′3uxx}i+ 1
2
,j, (2.25)

F̂ 1
i+ 1

2
,j

=− 1

2
α1
x[u]i+ 1

2
,j −

∆t

2
{f ′g′uy}i+ 1

2
,j

+
∆t2

6
{6f ′g′g′′u2

y + 3g′2f ′′u2
y + 3f ′g′2uyy}i+ 1

2
,j,

(2.26)

Ĝ0
i,j+ 1

2
= ĝLF

i,j+ 1
2
− ∆t

2
{g′2}i,j+ 1

2
ûy

DDG
i,j+ 1

2
+

∆t2

6
{3g′2g′′u2

y + g′3uyy}i,j+ 1
2
, (2.27)

Ĝ1
i,j+ 1

2
=− 1

2
α1
y[u]i,j+ 1

2
− ∆t

2
{f ′g′ux}i,j+ 1

2

+
∆t2

6
{6f ′g′f ′′u2

x + 3f ′2g′′u2
x + 3f ′2g′uxx}i,j+ 1

2
,

(2.28)

in which the Lax-Friedrichs fluxes and DDG fluxes are defined the same way as before,

and α1
x, α

1
y are positive viscosity constants that can be taken as 0.05 maxu |f ′(u)| and

0.05 maxu |g′(u)| for instance. In fact, any constants strictly positive should be

enough for positivity-preserving, which just makes difference on the CFL numbers

and the dissipation effect.

We now state the main result for the LWDG scheme (2.24).

Theorem 2.2.4. Given m ≤ un ≤ M , the cell averages ūn+1
i,j , i = 1, . . . , Nx, j =

1, . . . , Ny of the solution of scheme (2.24) are bounded between m and M under the

CFL condition (2.29):

λx ≤ min{Q1, Q3}, λy ≤ min{Q2, Q4}, (2.29)
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where λx = ∆t
∆x

, λy = ∆t
∆y

, and the definitions of Q1, Q2, Q3, Q4 are given in Appendix

A.1.1.

The proof is very similar to that of the one dimensional case, except that the

expansions are much more tedious, which results in much more complicated CFL

conditions.

Proof. Take the test function ξ = 1 on Ki,j and zero anywhere else in the scheme

(2.24) and denote by λx = ∆t
∆x

, λy = ∆t
∆y

, we obtain

ūn+1
i,j = I + II + III + IV,

where

I =
1

4
ūni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i+ 1

2
,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i− 1

2
,j
dy,

II =
1

4
ūni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i+ 1

2
,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i− 1

2
,j
dy,

III =
1

4
ūni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j− 1

2
dx

IV =
1

4
ūni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j− 1

2
dx

It suffices to shown 1
4
m ≤ I, II ≤ 1

4
M under the CFL condition (2.29), due to the

symmetry in x and y directions.
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It is clear that I can be decomposed in the form of convex combination

I =
1

4

2Nq−1∑
γ=1

ω̂γHγ

where

Hγ =

2Nq−1∑
β=1

ω̂βû
β,γ − 4λxF̂

0
i+ 1

2
,j

(xi+ 1
2
, ŷγ) + 4λxF̂

0
i− 1

2
,j

(xi− 1
2
, ŷγ),

Notice that Hγ has exactly the same structure as (2.17). Therefore, I ∈ [1
4
m, 1

4
M ],

under the CFL condition (2.16) for one dimensional scalar case with λ replaced by

4λx, i.e. λx ≤ Q1.

As for the term II, it can be expanded as follows,

II =
1

4

2Nq−2∑
α=2

2Nq−1∑
β=1

ω̂αω̂βû
α,β +

Nq−1∑
β=2

λx
2
ω̂βα

1
xu(x−

i− 1
2

, ŷβ) +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
xu(x−

i− 1
2

, ŷβ)

+

Nq−1∑
β=2

λx
2
ω̂βα

1
xu(x+

i+ 1
2

, ŷβ) +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
xu(x+

i+ 1
2

, ŷβ)

+ z1u(x−
i− 1

2

, y+
j− 1

2

) + z2u(x−
i− 1

2

, yj) + z3u(x−
i− 1

2

, y−
j+ 1

2

) + z4u(x+
i− 1

2

, y+
j− 1

2

)

+ z5u(x+
i− 1

2

, yj) + z6u(x+
i− 1

2

, y−
j+ 1

2

) + z7u(x−
i+ 1

2

, y+
j− 1

2

) + z8u(x−
i+ 1

2

, yj)

+ z9u(x−
i+ 1

2

, y−
j+ 1

2

) + z10u(x+
i+ 1

2

, y+
j− 1

2

) + z11u(x+
i+ 1

2

, yj) + z12u(x+
i+ 1

2

, y−
j+ 1

2

)

+

Nq−1∑
β=2

ω̂βz13,βu(x−
i+ 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz13,βu(x−
i+ 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz14,βu(x+
i− 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz14,βu(x+
i− 1

2

, ŷβ),

(2.30)

where the expressions of z1, . . . , z14,β are given in Appendix A.1.2.
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It can be verified that the following equality holds,

1

4

2Nq−2∑
α=2

2Nq−1∑
β=1

ω̂αω̂β +

Nq−1∑
β=2

λx
2
ω̂βα

1
x +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
x +

Nq−1∑
β=2

λx
2
ω̂βα

1
x +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
x

+ z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12

+

Nq−1∑
β=2

ω̂βz13,β +

2Nq−2∑
β=Nq+1

ω̂βz13,β +

Nq−1∑
β=2

ω̂βz14,β +

2Nq−2∑
β=Nq+1

ω̂βz14,β =
1

4
,

Moreover, all z’s are nonnegative under the CFL condition (2.29). The detailed

estimates can be found in Appendix A.1.2

To sum up, II can be written as one fourth of a convex combination of point

values of un under the CFL condition (2.29), which implies 1
4
m ≤ II ≤ 1

4
M since

m ≤ un ≤M . The similar arguments apply to III and IV

Since ūn+1
i,j = I + II + III + IV, we finish the proof by summing up the inequalities

of I, II, III and IV.

2.3 Positivity-preserving for the Euler equations

2.3.1 The Euler equations in one dimension

Consider the Euler equations (2.2). Direct computation gives the expressions of

ρt, ρtt and ρttt as follows:

ρt = −(ρu)x, (2.31)

ρtt =
(
(ρu2)x + γ̂(ρe)x

)
x
, (2.32)
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ρttt = −
(
uxx(ρu

2) + 2ux(ρu
2)x + u(ρu2)xx

+γ̂γuxx(ρe) + γ̂(3 + γ)ux(ρe)x + 3γ̂u(ρe)xx)x

(2.33)

where γ̂ = γ − 1. Moreover,

mt = A1
x, mtt = A2

x, mttt = A3
x,

and

Et = B1
x, Ett = B2

x, Ettt = B3
x,

where A1, A2, A3, B1, B2, B3 are shorthand notations introduced for convenience of

later discussion. For the full expressions of mt,mtt,mttt, and Et, Ett, Ettt, see Ap-

pendix A.2.1.

The positivity-preserving LWDG scheme of (2.2) for ρ at time level tn is to find

ρn+1 ∈ V , s.t. ∀ξ ∈ V , the equation

(ρn+1, ξ)Ij =(ρ, ξ)Ij + ∆t(ρu, ξx)Ij −
∆t2

2
((ρu2)x + γ̂(ρe)x, ξx)Ij

+
∆t3

6

(
uxx(ρu

2) + 2ux(ρu
2)x + u(ρu2)xx

+γ̂γuxx(ρe) + γ̂(3 + γ)ux(ρe)x + 3γ̂u(ρe)xx, ξx)Ij

−∆tF̂j+ 1
2
ξ−
j+ 1

2

+ ∆tF̂j− 1
2
ξ+
j− 1

2

,

(2.34)

holds for j = 1, 2, . . . , N . In the scheme, F̂j+ 1
2

is the numerical flux of ρ at xj+ 1
2

defined as

F̂j+ 1
2

=f̂LF
j+ 1

2
− ∆t

2
̂(I(ρu2))x

DDG

j+ 1
2
− ∆t

2
γ̂ ̂(I(ρe))x

DDG

j+ 1
2

+
∆t2

6
{uxx(ρu2) + 2ux

(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx
}j+ 1

2

+
∆t2

6
{γ̂γuxx(ρe) + γ̂(3 + γ)ux (I(ρe))x + 3γ̂u (I(ρe))xx}j+ 1

2

, (2.35)
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where

f̂LF
j+ 1

2
= {ρu}j+ 1

2
− 1

2
α[ρ]j+ 1

2
, α = ||(|u|+ c)||∞, (2.36)

is the Lax-Friedriches flux used in the positivity-preserving for the Euler equations

in [94], c =
√

γp
ρ

is the sound speed, ̂(I(ρu2))x
DDG

j+ 1
2

and ̂(I(ρe))x
DDG

j+ 1
2

are the DDG

fluxes defined in (2.11), with u replaced by I(ρu2) and I(ρe), respectively, where

I is the quadratic interpolation operator with interpolation points at x+
j− 1

2

, xj, and

x−
j+ 1

2

on Ij, in order to get the similar expansions of the DDG flux as in (2.13).

The variables m and E are discretized by the standard discontinuous Galerkin

method with the first order flux terms adopting the Lax-Friedriches flux and high-

order flux terms adopting the average flux, i.e.

(mn+1, ξ)Ij =(m, ξ)Ij −∆t(A1, ξx)Ij

+ ∆t{A1}j+ 1
2

+ ∆tα[m]j+ 1
2

−∆t{A1}j− 1
2
−∆tα[m]j− 1

2

− ∆t2

2
(A2, ξx)Ij +

∆t2

2
{A2}j+ 1

2
ξ−
j+ 1

2

− ∆t2

2
{A2}j− 1

2
ξ+
j− 1

2

− ∆t3

6
(A3, ξx)Ij +

∆t3

6
{A3}j+ 1

2
ξ−
j+ 1

2

− ∆t3

6
{A3}j− 1

2
ξ+
j− 1

2

(2.37)

(En+1, ξ)Ij =(E, ξ)Ij −∆t(B1, ξx)Ij

+ ∆t{B1}j+ 1
2

+ ∆tα[E]j+ 1
2

−∆t{B1}j− 1
2
−∆tα[E]j− 1

2

− ∆t2

2
(B2, ξx)Ij +

∆t2

2
{B2}j+ 1

2
ξ−
j+ 1

2

− ∆t2

2
{B2}j− 1

2
ξ+
j− 1

2

− ∆t3

6
(B3, ξx)Ij +

∆t3

6
{B3}j+ 1

2
ξ−
j+ 1

2

− ∆t3

6
{B3}j− 1

2
ξ+
j− 1

2

(2.38)

We now state the result for the positivity-preserving of ρ̄n+1
j .

Theorem 2.3.1. Given un ∈ G, the cell averages ρ̄n+1
j , j = 1, . . . , N of the solution
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of scheme (2.34) are nonnegative under the CFL condition (2.39):

λ ≤ min{q1, q2, . . . , q11}, (2.39)

where q1 = ω̂1

2||(|u|+c)||∞ , q2 =
6(β0− 3

2
+4β1)

∆x2||uxx||∞+6∆x||ux||∞+4||u||∞ , q3 = 3(2−8β1)
4(∆x||ux||∞+||u||∞)

, q4 =

3(4β1− 1
2

)

∆x||ux||∞+2||u||∞ , q5 = 1
2||u||∞

(
ω1

β0−2+8β1

) 1
2
, q6 = 1

2||u||∞

(
ωNq

2(2−8β1)

) 1
2
, q7 =

6(4β1− 1
2

)

(3+γ)∆x||ux||∞+12||u||∞ ,

q8 = 3(2−8β1)
2(3+γ)∆x||ux||∞+12||u||∞ , q9 =

6(β0− 3
2

+4β1)

γ∆x2||uxx||∞+3(3+γ)∆x||ux||∞+12||u||∞ , q10 =
(

ω̂1

4γ̂(β0−2+8β1)||e||∞

) 1
2
,

q11 =
(

ω̂Nq
8γ̂(2−8β1)||e||∞

) 1
2
.

Proof. Take ξ = 1 on Ij and zero on other cells in the scheme (2.34), we obtain

ρ̄n+1
j = I + II + III, (2.40)

where

I =
1

2

(
ρ̄nj − 2λf̂LF

j+ 1
2

+ 2λf̂LF
j− 1

2

)

II =
1

4
ρ̄n − λ

(
−∆t

2
̂(I(ρu2))x

DDG

j+ 1
2

+
∆t2

6

{
uxx(ρu

2) + 2ux
(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx

}
j+ 1

2

)
+ λ

(
−∆t

2
̂(I(ρu2))x

DDG

j− 1
2

+
∆t2

6

{
uxx(ρu

2) + 2ux
(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx

}
j− 1

2

)
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III =
1

4
ρ̄n − λ

(
−∆t

2
γ̂ ̂(I(ρe))x

DDG

j+ 1
2

+
∆t2

6
{γ̂γuxx(ρe) + γ̂(3 + γ)ux (I(ρe))x + 3γ̂u (I(ρe))xx}j+ 1

2

)
+ λ

(
−∆t

2
γ̂ ̂(I(ρe))x

DDG

j− 1
2

+
∆t2

6
{γ̂γuxx(ρe) + γ̂(3 + γ)ux (I(ρe))x + 3γ̂u (I(ρe))xx}j− 1

2

)

Since I has exactly the same form as in [94], I ≥ 0 is guaranteed under the

condition λ ≤ q1 from the conclusion therein. Now we expand II as follows,

II =
1

4

Nq−1∑
γ=2

ω̂γ ρ̂
γ +

1

4

2Nq−2∑
γ=Nq+1

ω̂γ ρ̂
γ + z1ρ

+
j− 3

2

+ z2ρj−1 + z3ρ
−
j− 1

2

+ z4ρ
+
j− 1

2

+ z5ρj + z6ρ
−
j+ 1

2

+ z7ρ
+
j+ 1

2

+ z8ρj+1 + z9ρ
−
j+ 3

2

,

where

z1 =λ2

(
1

2
(4β1 −

1

2
) +

∆t

6
(ux)

−
j− 1

2
+
λ

3
u−
j− 1

2

)(
u+
j− 3

2

)2

z2 =λ2

(
1

2
(2− 8β1)− 2∆t

3
(ux)

−
j− 1

2
− 2λ

3
u−
j− 1

2

)
(uj−1)2

z3 =λ2

(
1

2
(β0 −

3

2
+ 4β1) +

∆t2

12λ
(uxx)

−
j− 1

2
+

∆t

2
(ux)

−
j− 1

2
+
λ

3

(
u−
j− 1

2

))(
u−
j− 1

2

)2

z4 =
1

4
ω̂1 − λ2

(
1

2
(4β1 −

1

2
) +

∆t

6
(ux)

−
j+ 1

2
+
λ

3
u−
j+ 1

2

+
1

2
(β0 −

3

2
+ 4β1) −∆t2

12λ
(uxx)

+
j− 1

2
+

∆t

2
(ux)

+
j− 1

2
− λ

3

(
u+
j− 1

2

))(
u+
j− 1

2

)2

z5 =
1

4
ω̂Nq − λ2

(
1

2
(2− 8β1)− 2∆t

3
(ux)

−
j+ 1

2
− 2

3
λu−

j+ 1
2

+
1

2
(2− 8β1) −2∆t

3
(ux)

+
j− 1

2
+

2

3
λu+

j− 1
2

)
(uj)

2
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z6 =
1

4
ω̂2Nq−1 − λ2

(
1

2
(β0 −

3

2
+ 4β1) +

1

2
(4β1 −

1

2
) +

∆t2

12λ
(uxx)

−
j+ 1

2

+
∆t

2
(ux)

−
j+ 1

2
+

∆t

6
(ux)

+
j− 1

2
+
λ

3

(
u−
j+ 1

2

)
− λ

3
u+
j− 1

2

)(
u−
j+ 1

2

)2

z7 =λ2

(
1

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
(uxx)

+
j+ 1

2
+

∆t

2
(ux)

+
j+ 1

2
− λ

3

(
u+
j+ 1

2

))(
u+
j+ 1

2

)2

z8 =λ2

(
1

2
(2− 8β1)− 2∆t

3
(ux)

+
j+ 1

2
+

2λ

3
u+
j+ 1

2

)
(uj+1)2

z9 =λ2

(
1

2
(4β1 −

1

2
) +

∆t

6
(ux)

+
j+ 1

2
− λ

3
u+
j+ 1

2

)(
u−
j+ 3

2

)2

We claim that z1, z2, . . . , z9 ≥ 0 under the CFL condition λ ≤ min{q2, q3, . . . , q6}.

In fact, we have the following estimates

z1 ≥λ2

(
1

2
(4β1 −

1

2
)− ∆t

6
||ux||∞ −

λ

3
||u||∞

)(
u+
j− 3

2

)2

≥ 0,

z2 ≥λ2

(
1

2
(2− 8β1)− 2∆t

3
||ux||∞ −

2λ

3
||u||∞

)
(uj−1)2 ≥ 0,

z3 ≥λ2

(
1

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
||uxx||∞ −

∆t

2
||ux||∞ −

λ

3
||u||∞

)(
u−
j− 1

2

)2

≥ 0,

z4 ≥
1

4
ω̂1 − λ2

(
1

2
(β0 − 2 + 8β1) +

∆t2

12λ
||uxx||∞ +

2∆t

3
||ux||∞ +

2λ

3
||u||∞

)
||u||2∞ ≥ 0,

z5 ≥
1

4
ω̂Nq − λ2

(
(2− 8β1) +

4∆t

3
||ux||∞ +

4

3
λ||u||∞

)
||u||2∞ ≥ 0,

z6 ≥
1

4
ω̂2Nq−1 − λ2

(
1

2
(β0 − 2 + 8β1) +

∆t2

12λ
||uxx||∞ +

2∆t

3
||ux||∞ +

2λ

3
||u||∞

)
||u||2∞ ≥ 0,

z7 ≥λ2

(
1

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
||uxx||∞ −

∆t

2
||ux||∞ −

λ

3
||u||∞

)(
u+
j+ 1

2

)2

≥ 0,

z8 ≥λ2

(
1

2
(2− 8β1)− 2∆t

3
||ux||∞ −

2λ

3
||u||∞

)
(uj+1)2 ≥ 0,

z9 ≥λ2

(
1

2
(4β1 −

1

2
)− ∆t

6
||ux||∞ −

λ

3
||u||∞

)(
u−
j+ 3

2

)2

≥ 0,
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Similarly, we can expand III as

III =
1

4

Nq−1∑
γ=2

ω̂γ ρ̂
γ +

1

4

2Nq−2∑
γ=Nq+1

ω̂γ ρ̂
γ + z10ρ

+
j− 3

2

+ z11ρj−1 + z12ρ
−
j− 1

2

+ z13ρ
+
j− 1

2

+ z14ρj + z15ρ
−
j+ 1

2

+ z16ρ
+
j+ 1

2

+ z17ρj+1 + z18ρ
−
j+ 3

2

,

(2.41)

and z10, . . . , z18 ≥ 0 under the condition λ ≤ min{q7, q8, q9, q10, q11}. The expressions

and estimates of z10, . . . , z18 are similar to those of z1, . . . , z9, thus are given in

Appendix A.1.3.

By the same arguments as in the scalar cases, we have II, III ≥ 0, provided the

positivity of ρn. Since ρ̄n+1
j = I+II+III, we finish the proof by collecting the results

for I, II and III.

The remaining task is to preserve the positivity of internal energy of cell averages

of the solution, i.e. e(ūn+1
j ) ≥ 0. We have the results as follows.

Theorem 2.3.2. Given un ∈ G, the specific internal energy of the cell averages

e(ūn+1
j ), j = 1, . . . , N of scheme (2.34), (2.37) and (2.38) are nonnegative under the

CFL condition (2.42):

λ ≤ γ + 1

2α2(γ − 1)
min
j

{
(p−
j+ 1

2

)2

C−
j+ 1

2

,
(p+
j+ 1

2

)2

C+
j+ 1

2

}
, (2.42)
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where

C−
j+ 1

2

=
∆x

α

(
(2E−

j+ 1
2

+ p−
j+ 1

2

)
(
|f̃ 1
j+ 1

2
|+Q1∆x|f̌ 1

j+ 1
2
|
)

+ 2ρ−
j+ 1

2

(
|f̃ 3
j+ 1

2
|+Q1∆x|f̌ 3

j+ 1
2
|
)

+Q1
∆x

α

(
|f̃ 1
j+ 1

2
|+Q1∆x|f̌ 1

j+ 1
2
|
)(
|f̃ 3
j+ 1

2
|+Q1∆x|f̌ 3

j+ 1
2
|
)

+
1

2
Q1

∆x

α

(
|f̃ 2
j+ 1

2
|+Q1∆x|f̌ 2

j+ 1
2
|
)2

+(2|m−
j+ 1

2

|+
p−
j+ 1

2

α
)
(
|f̃ 2
j+ 1

2
|+Q1∆x|f̌ 2

j+ 1
2
|
))

and

C+
j+ 1

2

=
∆x

α

(
(2E+

j+ 1
2

+ p+
j+ 1

2

)
(
|f̃ 1
j+ 1

2
|+Q1∆x|f̌ 1

j+ 1
2
|
)

+ 2ρ+
j+ 1

2

(
|f̃ 3
j+ 1

2
|+Q1∆x|f̌ 3

j+ 1
2
|
)

+Q1
∆x

α

(
|f̃ 1
j+ 1

2
|+Q1∆x|f̌ 1

j+ 1
2
|
)(
|f̃ 3
j+ 1

2
|+Q1∆x|f̌ 3

j+ 1
2
|
)

+
1

2
Q1

∆x

α

(
|f̃ 2
j+ 1

2
|+Q1∆x|f̌ 2

j+ 1
2
|
)2

+(2|m+
j+ 1

2

|+
p+
j+ 1

2

α
)
(
|f̃ 2
j+ 1

2
|+Q1∆x|f̌ 2

j+ 1
2
|
))

Proof. Take ξ = 1 on Ij and zero anywhere else in the scheme (2.34),(2.37) and

(2.38), we can obtain the following vector equation satisfied by the cell average of

un+1 on Ij,

ūn+1
j = ūnj − λ

(
f̂LF
j+ 1

2
+ ∆t̃fj+ 1

2
+ ∆t2f̌j+ 1

2

)
+ λ

(
f̂LF
j− 1

2
+ ∆t̃fj− 1

2
+ ∆t2f̌j− 1

2

)
,

where f̂LF
j+ 1

2

= 1
2

(
f(u−

j+ 1
2

) + f(u+
j+ 1

2

)− α
(
u+
j+ 1

2

− u−
j+ 1

2

))
, α = ||(|u| + c)||∞, is the

standard Lax-Friedriches flux, which is the leading term in the total flux con-

structed in the LWDG scheme (2.34)-(2.38), f̃j+ 1
2

= (f̃ 1
j+ 1

2

, f̃ 2
j+ 1

2

, f̃ 3
j+ 1

2

) and f̌j+ 1
2

=

(f̌ 1
j+ 1

2

, f̌ 2
j+ 1

2

, f̌ 3
j+ 1

2

) are the remaining second and third order terms contained in the

flux of (2.35), (2.37) and (2.38), in which the abbreviated terms can be found in

Appendix A.2.1, respectively.
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Similar to [94], we have the decomposition

ūn+1
j =

2Nq−2∑
γ=2

ω̂γu
γ + ω̂1

(
1− αλ

ω̂1

)
u+
j− 1

2

+ ω̂2Nq−1

(
1− αλ

ω̂2Nq−1

)
u−
j+ 1

2

+
αλ

2

(
u−
j+ 1

2

− 1

α
f(u−

j+ 1
2

)− ∆t

α

(
f̃j+ 1

2
+ ∆ťfj+ 1

2

))
+
αλ

2

(
u+
j+ 1

2

− 1

α
f(u+

j+ 1
2

)− ∆t

α

(
f̃j+ 1

2
+ ∆ťfj+ 1

2

))
+
αλ

2

(
u−
j− 1

2

+
1

α
f(u−

j− 1
2

) +
∆t

α

(
f̃j− 1

2
+ ∆ťfj− 1

2

))
+
αλ

2

(
u+
j− 1

2

+
1

α
f(u+

j− 1
2

) +
∆t

α

(
f̃j− 1

2
+ ∆ťfj− 1

2

))

Since ω̂γ ≥ 0, γ = 1, . . . , 2Nq − 1 and (1 − αλ
ω̂1

), (1 − αλ
ω̂2Nq−1

) ≥ 0 from the CFL

condition (2.39), by convexity of G, it suffices to show

u+
j+ 1

2

± 1

α
f(u+

j+ 1
2

)± ∆t

α

(
f̃j+ 1

2
+ ∆ťfj+ 1

2

)
∈ G,

provided u+
j+ 1

2

∈ G. For simplicity, we omit the superscripts and subscripts in the

following proof.

Using the equality ρ2e = ρE − 1
2
m2, one can calculate that

ρ2e

(
u± 1

α
f(u)± ∆t

α

(
f̃ + ∆ťf

))
=

pρ

α2(γ − 1)

(
(α± u)2 − γ − 1

2γ
c2

)
± ∆t

α
(f̃ 1 + ∆tf̌ 1)

(
(1± u

α
)E ± u

α
p
)

± ∆t

α
(f̃ 3 + ∆tf̌ 3)

(
(1± u

α
)ρ
)

+
∆t2

α2
(f̃ 1 + ∆tf̌ 1)(f̃ 3 + ∆tf̌ 3)− 1

2

∆t2

α2
(f̃ 2 + ∆tf̌ 2)2

∓ ∆t

α
(f̃ 2 + ∆tf̌ 2)

(
(1± u

α
)m± 1

α
p

)
≥ γ + 1

2α2(γ − 1)
p2 − Cλ,
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where

C =
∆x

α

(
(2E + p)

(
|f̃ 1|+Q1∆x|f̌ 1|

)
+ 2ρ

(
|f̃ 3|+Q1∆x|f̌ 3|

)
+Q1

∆x

α

(
|f̃ 1|+Q1∆x|f̌ 1|

)(
|f̃ 3|+Q1∆x|f̌ 3|

)
+

1

2
Q1

∆x

α

(
|f̃ 2|+Q1∆x|f̌ 2|

)2

+(2|m|+ p

α
)
(
|f̃ 2|+Q1∆x|f̌ 2|

))
.

Under the CFL condition (2.42), we can get the positivity of ρ2e, which finishes the

proof.

Collecting the above two theorems, we reach our final result.

Theorem 2.3.3. Given un ∈ G, we have ūn+1
j ∈ G, j = 1, . . . , N for scheme (2.34),

(2.37) and (2.38), under the CFL conditions (2.39) and (2.42).

2.3.2 The Euler equations in two dimensions

Consider the Euler equations in two space dimensions

ut + f(u)x + g(u)y = 0, (2.43)

where

u =



ρ

m

n

E


, f(u) =



ρu

ρu2 + p

ρuv

(E + p)u


, g(u) =



ρv

ρuv

ρv2 + p

(E + p)v


,
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with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 + ρe, p = (γ − 1)ρe,

in which u and v are velocities in x and y directions, respectively, and m and n are

momentums in x and y directions, respectively.

Direct computation gives the expressions of ρt, ρtt and ρttt as follows:

ρt = −(ρu)x − (ρv)y, (2.44)

ρtt =
(
(ρu2)x + γ̂(ρe)x

)
x

+ 2 (ρuv)xy +
(
(ρv2)y + γ̂(ρe)y

)
y
, (2.45)

ρttt =−
(
uxx(ρu

2) + 2ux(ρu
2)x + u(ρu2)xx

+γ̂γuxx(ρe) + (γ̂(3 + γ)ux + γ̂2vy)(ρe)x + 3γ̂u(ρe)xx
)
x

−
(
vyy(ρv

2) + 2vy(ρv
2)y + v(ρv2)yy

+γ̂γvyy(ρe) + (γ̂(3 + γ)vy + γ̂2ux)(ρe)y + 3γ̂v(ρe)yy
)
y

−
((
γγ̂evxx + γ̂(γ + 3)exvx + 6vu2

x + 12uuxvx

+3γ̂vexx + 3u2vxx + 6uvuxx − γ̂2uyex
)
ρ
)
y

−
((

6γ̂vex + γ̂(γ + 3)evx + 6u(uvx + 2vux)− γ̂2uye
)
ρx
)
y

−
(
(3(γ̂e+ u2)v)ρxx

)
y

−
((
γγ̂euyy + γ̂(γ + 3)eyuy + 6uv2

y + 12vuyvy

+3γ̂ueyy + 3v2uyy + 6uvvyy − γ̂2vxey
)
ρ
)
x

−
((

6γ̂uey + γ̂(γ + 3)euy + 6v(vuy + 2uvy)− γ̂2vxe
)
ρy
)
x

−
((

3(γ̂e+ v2)u
)
ρyy
)
x

(2.46)

where γ̂ = γ − 1. Note that there are a lot of ways to expand ρttt, among which

we choose the one that avoids the appearance of mixed derivatives in the LWDG

scheme.
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Moreover,

mt = B1
x +B2

y , mtt = B3
x +B4

y , mttt = B5
x +B6

y ,

nt = C1
x + C2

y , ntt = C3
x + C4

y , nttt = C5
x + C6

y ,

and

Et = D1
x +D2

y, Ett = D3
x +D4

y, Ettt = D5
x +D6

y,

whereB1, B2, B3, B4, B5, B6, C1, C2, C3, C4, C5, C6, D1, D2, D3, D4, D5, D6, are short-

hand notations introduced for convenience of later discussion. For the full expressions

of mt,mtt,mttt, nt, ntt, nttt,and Et, Ett, Ettt, see Appendix A.2.2.

The positivity-preserving LWDG of ρ at time level tn is to find ρn+1 ∈ W , s.t.

∀ξ ∈ W , the equation

(ρn+1, ξ)Ki,j =(ρ, ξ)Ki,j + ∆t(ρu, ξx)Ki,j + ∆t(ρv, ξy)Ki,j

− ∆t2

2
((ρu2)x + γ̂(ρe)x + (ρuv)y, ξx)Ki,j

− ∆t2

2
((ρv2)y + γ̂(ρe)y + (ρuv)x, ξy)Ki,j

−∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i+ 1
2
,j ξ(x

−
i+ 1

2

, y)dy + ∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i− 1
2
,j ξ(x

+
i− 1

2

, y)dy

−∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j+ 1
2
ξ(x, y−

j+ 1
2

)dx+ ∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j− 1
2
ξ(x, y+

j− 1
2

)dx

(2.47)

holds for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. F̂i+ 1
2
,j and Ĝi,j+ 1

2
are numerical fluxes

defined as

F̂i+ 1
2
,j =F̂ 0

i+ 1
2
,j

+ F̂ 1
i+ 1

2
,j
, (2.48)
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and

Ĝi,j+ 1
2

=Ĝ0
i,j+ 1

2
+ Ĝ1

i,j+ 1
2
, (2.49)

where

F̂ 0
i+ 1

2
,j

={ρu}i+ 1
2
,j −

1

2
α0
x[ρ]i+ 1

2
,j −

∆t

2
̂(I(ρu2))x

DDG

i+ 1
2
,j −

∆t

2
γ̂ ̂(I(ρe))x

DDG

i+ 1
2
,j

+
∆t2

6
{uxx(ρu2) + 2ux

(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx
}i+ 1

2
,j

+
∆t2

6
{γ̂γuxx(ρe) +

(
γ̂(3 + γ)ux + γ̂2vy

)
(I(ρe))x + 3γ̂u (I(ρe))xx}i+ 1

2
,j

,

(2.50)

F̂ 1
i+ 1

2
,j

= −1

2
α1
x[ρ]i+ 1

2
,j −

∆t

2
{ρyuv + ρ(uyv + uvy)}+

∆t2

6

{
A1ρ+ A2ρy + A3ρyy

}
Ĝ0
i,j+ 1

2
={ρv}i,j+ 1

2
− 1

2
α0
y[ρ]i,j+ 1

2
− ∆t

2
̂(I(ρv2))y

DDG

i,j+ 1
2

− ∆t

2
γ̂ ̂(I(ρe))y

DDG

i,j+ 1
2

+
∆t2

6
{vyy(ρv2) + 2vy

(
I(ρv2)

)
y

+ v
(
I(ρv2)

)
yy
}i,j+ 1

2

+
∆t2

6
{γ̂γvyy(ρe) +

(
γ̂(3 + γ)vy + γ̂2ux

)
(I(ρe))y + 3γ̂v (I(ρe))yy}i,j+ 1

2

,

(2.51)

Ĝ1
i,j+ 1

2
= −1

2
α1
y[ρ]i,j+ 1

2
− ∆t

2
{ρxuv + ρ(uvx + uxv)}+

∆t2

6

{
A4ρ+ A5ρx + A6ρxx

}
in which α0

x = ||(|u|+ c)||∞, α0
y = ||(|v|+ c)||∞, α1

x, α
1
y > 0, and

A1 =
(
γγ̂euyy + γ̂(γ + 3)eyuy + 6uv2

y + 12vuyvy + 3γ̂ueyy + 3v2uyy + 6uvvyy − γ̂2vxey
)

A2 =
(
6γ̂uey + γ̂(γ + 3)euy + 6v(vuy + 2uvy)− γ̂2vxe

)
A3 =

(
3(γ̂e+ v2)u

)
A4 =

(
γγ̂evxx + γ̂(γ + 3)exvx + 6vu2

x + 12uuxvx + 3γ̂vexx + 3u2vxx + 6uvuxx − γ̂2uyex
)

A5 =
(
6γ̂vex + γ̂(γ + 3)evx + 6u(uvx + 2vux)− γ̂2uye

)
A6 =(3(γ̂e+ u2)v)
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The variables m, n and E are discretized by the standard discontinuous Galerkin

method with the first order flux terms adopting the Lax-Friedriches flux, in which

the viscosity constant αx = α0
x + α1

x for the vertical cell interfaces and αy = α0
y + α1

y

for the horizontal cell interfaces, and high-order flux terms adopting the average flux,

i.e.

(mn+1, ξ)Ki,j =(m, ξ)Ki,j −∆t(B1, ξx)Ki,j −∆t(B2, ξy)Ki,j

− ∆t2

2
(B3, ξx)Ki,j −

∆t2

2
(B4, ξy)Ki,j

− ∆t3

6
(B5, ξx)Ki,j −

∆t3

6
(B6, ξy)Ki,j

+ ∆t

∫ y
j+ 1

2

y
j− 1

2

(
{B1}+ αx[m] +

∆t

2
{B3}+

∆t2

6
{B5}

)
ξ(x−

i+ 1
2

, y)dy

−∆t

∫ y
j+ 1

2

y
j− 1

2

(
{B1}+ αx[m] +

∆t

2
{B3}+

∆t2

6
{B5}

)
ξ(x+

i− 1
2

, y)dy

+ ∆t

∫ x
i+ 1

2

x
i− 1

2

(
{B2}+ αy[m] +

∆t

2
{B4}+

∆t2

6
{B6}

)
ξ(x, y−

j+ 1
2

)dx

−∆t

∫ x
i+ 1

2

x
i− 1

2

(
{B2}+ αy[m] +

∆t

2
{B4}+

∆t2

6
{B6}

)
ξ(x, y+

j− 1
2

)dx

(2.52)
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(nn+1, ξ)Ki,j =(n, ξ)Ki,j −∆t(C1, ξx)Ki,j −∆t(C2, ξy)Ki,j

− ∆t2

2
(C3, ξx)Ki,j −

∆t2

2
(C4, ξy)Ki,j

− ∆t3

6
(C5, ξx)Ki,j −

∆t3

6
(C6, ξy)Ki,j

+ ∆t

∫ y
j+ 1

2

y
j− 1

2

(
{C1}+ αx[n] +

∆t

2
{C3}+

∆t2

6
{C5}

)
ξ(x−

i+ 1
2

, y)dy

−∆t

∫ y
j+ 1

2

y
j− 1

2

(
{C1}+ αx[n] +

∆t

2
{C3}+

∆t2

6
{C5}

)
ξ(x+

i− 1
2

, y)dy

+ ∆t

∫ x
i+ 1

2

x
i− 1

2

(
{C2}+ αy[n] +

∆t

2
{C4}+

∆t2

6
{C6}

)
ξ(x, y−

j+ 1
2

)dx

−∆t

∫ x
i+ 1

2

x
i− 1

2

(
{C2}+ αy[n] +

∆t

2
{C4}+

∆t2

6
{C6}

)
ξ(x, y+

j− 1
2

)dx

(2.53)

and

(En+1, ξ)Ki,j =(E, ξ)Ki,j −∆t(D1, ξx)Ki,j −∆t(D2, ξy)Ki,j

− ∆t2

2
(D3, ξx)Ki,j −

∆t2

2
(D4, ξy)Ki,j

− ∆t3

6
(D5, ξx)Ki,j −

∆t3

6
(D6, ξy)Ki,j

+ ∆t

∫ y
j+ 1

2

y
j− 1

2

(
{D1}+ αx[E] +

∆t

2
{D3}+

∆t2

6
{D5}

)
ξ(x−

i+ 1
2

, y)dy

−∆t

∫ y
j+ 1

2

y
j− 1

2

(
{D1}+ αx[E] +

∆t

2
{D3}+

∆t2

6
{D5}

)
ξ(x+

i− 1
2

, y)dy

+ ∆t

∫ x
i+ 1

2

x
i− 1

2

(
{D2}+ αy[E] +

∆t

2
{D4}+

∆t2

6
{D6}

)
ξ(x, y−

j+ 1
2

)dx

−∆t

∫ x
i+ 1

2

x
i− 1

2

(
{D2}+ αy[E] +

∆t

2
{D4}+

∆t2

6
{D6}

)
ξ(x, y+

j− 1
2

)dx

(2.54)

Similar to the one dimensional Euler equations, we have the results for positivity

of ρ̄n+1 as follows.
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Theorem 2.3.4. Given un ∈ G, the cell averages ρ̄n+1
i,j , i = 1, . . . , Nx, j = 1, . . . , Ny

of the solution of scheme (2.47) are nonnegative under the CFL condition (2.55):

λx ≤ min{Q1, Q3}, λy ≤ min{Q2, Q4} (2.55)

where the definitions of Q1, . . . , Q4 are given in Appendix A.1.4.

Proof. Take ξ = 1 in Ki,j and zero on other cells in (2.47), we obtain

ρ̄n+1
i,j = I + II + III + IV, (2.56)

where

I =
1

4
ρ̄ni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i+ 1

2
,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i− 1

2
,j
dy,

II =
1

4
ρ̄ni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i+ 1

2
,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i− 1

2
,j
dy,

III =
1

4
ρ̄ni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j− 1

2
dx

IV =
1

4
ρ̄ni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j− 1

2
dx

It suffices to show I, II ≥ 0 under the CFL condition (2.55), due to the symmetry

in the x and y directions.

One can observe that I can be decomposed in the form of convex combination

I =
1

4

2Nq−1∑
γ=1

ω̂γHγ,
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where

Hγ =

2Nq−1∑
β=1

ω̂β ρ̂
β,γ − 4λxF̂

0
i+ 1

2
,j

(xi+ 1
2
, ŷγ) + 4λxF̂

0
i− 1

2
,j

(xi− 1
2
, ŷγ),

Notice that Hγ has the same structure as (2.40). Thus I ≥ 0 provided λx ≤ Q1. We

omit the proof since it is almost the same with that of the one dimensional Euler

equations.

As for II, we have the expansion as follows.

II =
1

4

2Nq−2∑
α=2

2Nq−1∑
β=1

ω̂αω̂β ρ̂
α,β

+ z1ρ(x−
i− 1

2

, y+
j− 1

2

) + z2ρ(x−
i− 1

2

, yj) + z3ρ(x−
i− 1

2

, y−
j+ 1

2

)

+ z4ρ(x+
i− 1

2

, y+
j− 1

2

) + z5ρ(x+
i− 1

2

, yj) + z6ρ(x+
i− 1

2

, y−
j+ 1

2

)

+ z7ρ(x−
i+ 1

2

, y+
j− 1

2

) + z8ρ(x−
i+ 1

2

, yj) + z9ρ(x−
i+ 1

2

, y−
j+ 1

2

)

+ z10ρ(x+
i+ 1

2

, y+
j− 1

2

) + z11ρ(x+
i+ 1

2

, yj) + z12ρ(x+
i+ 1

2

, y−
j+ 1

2

)

+

Nq−1∑
β=2

ω̂βz13,βρ(x−
i− 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz13,βρ(x−
i− 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz14,βρ(x+
i+ 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz14,βρ(x+
i+ 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz15,βρ(x−
i+ 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz15,βρ(x−
i+ 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz16,βρ(x+
i− 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz16,βρ(x+
i− 1

2

, ŷβ),

(2.57)

The expressions of z1, . . . , z16,β and their estimates can be found in Appendix

A.1.5. The conclusion is that all coefficients of point values of ρn appearing in (2.57)

are nonnegative under the CFL condition (2.55), which implies the nonnegativity of

II. Similar arguments also apply to III and IV.
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Since ρ̄n+1
i,j = I+II+III+IV, we finish the proof of positivity of ρ̄n+1

i,j by summing

up the inequalities of I, II, III and IV.

It remains to show the positivity of specific internal energy of cell averages.

Similar to Theorem 2.3.2, we have the result as follows.

Theorem 2.3.5. Given un ∈ G, the specific internal energy of the cell averages

e(ūn+1
i,j ), i = 1, 2, . . . Nx, j = 1, 2, . . . , Ny of scheme (2.47),(2.52) ,(2.53) and (2.54)

are nonnegative under the CFL condition (2.58).

λx ≤
γ + 1

4α2
x(γ − 1)

min
i,β

{
p(x−

i+ 1
2

, ŷβ)2

C(x−
i+ 1

2

, ŷβ)
,
p(x+

i+ 1
2

, ŷβ)2

C(x+
i+ 1

2

, ŷβ)

}
,

λy ≤
γ + 1

4α2
y(γ − 1)

min
α,j

{
p(x̂α, y

−
j+ 1

2

)2

D(x̂α, y
−
j+ 1

2

)
,
p(x̂α, y

+
j+ 1

2

)2

D(x̂α, y
+
j+ 1

2

)

}
,

(2.58)

where the definitions of the constants are given in Appendix A.1.6.

Proof. By taking ξ = 1 on Ki,j and zero anywhere else in (2.47), (2.52), (2.53) and

(2.54), we have the decomposition of ūn+1
i,j in x and y directions:

ūn+1
i,j = I + II,

where

I =
1

2
ūni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂i+ 1
2
,jdy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂i− 1
2
,jdy,

II =
1

2
ūni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j+ 1
2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j− 1
2
dx,

where F̂i+ 1
2
,j = f̂LF

i+ 1
2
,j

+ ∆t̃fi+ 1
2
,j + ∆t2f̌i+ 1

2
,j, Ĝi,j+ 1

2
= ĝLF

i,j+ 1
2

+ ∆tg̃i,j+ 1
2

+ ∆t2ǧi,j+ 1
2

are the total fluxes of LWDG defined before, f̂LF
i+ 1

2
,j
, ĝLF

i,j+ 1
2

are Lax-Friedriches fluxes,
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f̃i+ 1
2
,j, g̃i,j+ 1

2
and f̌i+ 1

2
,j, ǧi,j+ 1

2
are the second and third order terms in the total flux.

By symmetry and concaveness of the internal energy ρe, it suffices to show ρe(I) ≥

0. We can decompose the term I as

I =
1

2

2Nq−1∑
α=1

2Nq−1∑
β=1

ω̂αω̂βu
α,β − λx

2Nq−1∑
β=1

ω̂βF̂(xi+ 1
2
, ŷβ) + λx

2Nq−1∑
β=1

ω̂βF̂(xi− 1
2
, ŷβ)

=
1

2

2Nq−1∑
β=1

ω̂βHβ,

where Hβ =
∑2Nq−1

α=1 ω̂αu
α,β−2λx

(
f̂LF
j+ 1

2

+ ∆t̃fj+ 1
2

+ ∆t2f̌j+ 1
2

)
+2λx

(
f̂LF
j− 1

2

+ ∆t̃fj− 1
2

+ ∆t2f̌j− 1
2

)
Following the same lines as the proof of Theorem (2.3.2), we can show ρe(Hβ) ≥

0, which implies ρe(I) ≥ 0

Collecting the above two theorems, we reach our final result.

Theorem 2.3.6. Given un ∈ G, we have ūn+1
i,j ∈ G, i = 1, . . . , Nx, j = 1, . . . , Ny for

the schemes (2.47), (2.52), (2.53) and (2.54), under the CFL conditions (2.55) and

(2.58).

Remark 2.3.1. To this end, we would like to comment on the CFL conditions

obtained in this chapter. These conditions are not optimal for bound-preserving

since the splitting of cell averages in the proofs are just for the ease of writing and

the bounds may not be sharp in some of the estimates. Moreover, the expressions of

the CFL conditions are too tedious to be coded up in practice. Therefore, we actually

take the CFL conditions of the bound-preserving Euler forward DG schemes derived

in [93, 94] as the initial guess in practice, since the Euler forward methods are the

first order approximation of the LWDG in our work. Once the initial step size is not

small enough to obtain boundedness of the cell averages, we rewind the computation
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back to the beginning of the time step with a halved step-size of time. The value of

the theoretical proofs in this chapter is that we can be guaranteed to obtain bound-

preserving cell averages with finitely many halvings of the time step-size.

We also want to note that, for simplicity, we take the viscosity parameter in the

Lax-Friedrichs flux to be global in all proofs. However, the local Lax-Friedrichs flux

can be used in the bound-preserving technique as well. In practice, the global Lax-

Friedrichs flux is more dissipative, thus it may preserve the bounds of target variables

more easily, but may result in a more smeared solution.

2.4 Scaling limiters

In the Sections 2.2 and 2.3, we have constructed the maximum-principle-satisfying

and positivity-preserving LWDG schemes for hyperbolic equations of scalar and sys-

tem cases. The cell averages of the target variables fall into their physical bounds

under appropriate CFL conditions, provided these bounds are satisfied by the entire

solution at the previous time level. To close the cycle of the algorithm, it remains

to use appropriate scaling limiters to achieve the bound-preserving for the entire

solution.

We adopt the following maximum-principle-satisfying limiter for scalar conser-

vation laws. Given u ∈ V with m ≤ ūj ≤ M, j = 1, 2, . . . , N , define the modified

solution ũ ∈ V as follows:

ũj(x) = θj (uj(x)− ūj) + ūj, θj = min

{
1,
M − ūj
Mj − ūj

,
ūj −m
ūj −mj

}
,

Mj = max
x∈Ij

uj(x), mj = min
x∈Ij

uj(x), j = 1, 2, . . . , N.
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It is clear that the modified solution ũj(x) ∈ [m,M ], j = 1, . . . , N and it preserves

the cell average. Moreover, it was proved in [92] that such a limiter does not destroy

the order of convergence, i.e. ||u − ũ||∞ = O(∆xk+1), where k is the order of

polynomial space V , which is 2 in this chapter. In practice, one usually take the

max and min in the definition of Mj and mj only over the quadrature points, i.e.

Mj = max1≤γ≤2Nq−1 uj(x̂γ),mj = min1≤γ≤2Nq−1 uj(x̂γ), as we only need to control

the values at quadrature points. Such a treatment does not affect the accuracy

and cell average of the modified solution, as indicated in [93], and we shall use this

definition in the numerical section.

For the solution u = (ρ,m,E)T ∈ V × V × V of the Euler equations with

ūj ∈ G, j = 1, 2, . . . , N , we adopt the following limiting process which is introduced

in [94] and modified in [80].

First, enforce the positivity of the density function ρ by,

ρ̂j(x) = θρj (ρj(x)− ρ̄j) + ρ̄j, θρj = min

{
1,

ρ̄j
ρ̄j −min1≤γ≤2Nq−1 ρ(x̂γ)

}
,

j = 1, 2, . . . , N.

Then let ûj = (ρ̂j,mj, Ej)
T and define

ũj(x) = θej (ûj(x)− ūj) + ūj, θej = min

{
1,

ρe(ūj)

ρe(ūj)−min1≤γ≤2Nq−1 ρe(ûj(x̂γ))

}
,

j = 1, 2, . . . , N.

It follows from the concaveness of the function ρe(u) that ũj(x̂γ) ∈ G, γ =

1, 2, . . . , 2Nq − 1, and also it does not destroy accuracy of the solution, see the

detailed proof in [94] and [80].
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The above limiters are demonstrated based on one space dimension but can be

directly extended to multi-dimensions. In implementation, to enhance the stability

of algorithms, we can set a threshold ε = 10−10 and let ũj = ūj if M − ūj < ε or

ūj −m < ε for scalar conservation law, and ũj = ūj if ρ̄j < ε or ρe(ūj) < ε for the

Euler equations.

2.5 Numerical tests

In this section, we demonstrate the accuracy and effectiveness of the third order

maximum-principle-satisfying and positivity-preserving LWDG schemes by ample

numerical tests. The tests are presented from scalar to systems and from one space

dimension to two space dimensions with an order of increasing complexity. Most of

them can be found in [93, 94, 92, 80].

We have tried both global Lax-Friedrichs and local Lax-Friedrichs fluxes in sim-

ulations. The plots of their solutions are very close. However, the accuracy and

order of convergence of the global one may be not as good as the local one for some

nonlinear problems when the order of DG polynomial space is even, see [15], which is

our case. We demonstrate this phenomenon in the tests for Burgers’ equation. For

all other tests, we only present the results computed using the local Lax-Friedrichs

flux to save space. In all the tests, we take the parameters β0 = 1, β1 = 1
6

in the

DDG fluxes.

As mentioned in Remark 3.1, we take the initial guess of CFL numbers in our tests

the same as the bound-preserving Euler forward DG schemes [93, 94], and rewind

the computation back to the beginning of the time step with a halved step-size of
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time if the cell average of solutions exceed their bounds. We report the number of

times that the rewinding happens, together with the total number of time steps in

each test. As we will see, the actual CFL conditions of LWDG are almost the same

with that of the bound-preserving Euler forward DG schemes in most cases.

2.5.1 Scalar conservation laws

Example 2.5.1. We solve the linear equation ut+ux = 0 in the domain Ω = [−1, 1]

with periodic boundary conditions.

To test the accuracy, we take the smooth initial condition u0(x) = sin(πx) and

the terminal time T = 1.

To show the effect of maximum-principle-preserving, we adopt the discontinuous

initial condition

u0(x) =


1, −1 ≤ x ≤ 0,

−1, 0 ≤ x ≤ 1,

and take the terminal time T = 100.

The errors and order of convergence of the problem with the smooth initial con-

dition are given in Table 2.1, from which the third order accuracy can be clearly

observed.

The results of the problem with the discontinuous initial condition is shown in

Figure 2.1, where a comparison with the exact solution and the result of the unlimited

LWDG solution are given. The effect of maximum-principle-preserving is obvious by

comparison.
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No rewinding of computation happens in this test.

N L1 error order L∞ error order
20 2.06E-04 – 5.09E-04 –
40 2.48E-05 3.05 6.38E-05 3.00
80 3.08E-06 3.01 7.97E-06 3.00
160 3.85E-07 3.00 9.97E-07 3.00
320 4.81E-08 3.00 1.25E-07 3.00
640 6.01E-09 3.00 1.56E-08 3.00

Table 2.1: Results of Example 2.5.1 with smooth initial condition
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(b) without limiter

Figure 2.1: Results of Example 2.5.1 for discontinuous initial condition. N = 160.
Solid line: exact solution; Squares: numerical solution (cell averages).

Example 2.5.2. We solve the Burgers’ equation ut +
(
u2

2

)
x

= 0 in the domain

Ω = [0, 2π] with initial condition u0(x) = 1
2
+sin(x) and periodic boundary conditions.

The solution is smooth up to t = 1, when shock appears. We list the errors

and order of convergence at T = 0.3 in Table 2.2 for both the local Lax-Friedrichs

flux and global Lax-Friedrichs flux, which shows third order accuracy, and plot the

comparison of the numerical solution based on the local Lax-Friedrichs flux with the

exact solution at T = 2.0 in Figure 2.2.

No rewinding of computation happens in this test.
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Local Lax–Friedrichs Flux Global Lax–Friedrichs Flux
N L1 error order L∞ error order L1 error order L∞ error order
20 9.05E-04 – 1.40E-03 – 1.05E-03 – 1.46E-03 –
40 1.13E-04 3.00 2.35E-04 2.58 1.53E-04 2.77 2.81E-04 2.38
80 1.37E-05 3.05 3.23E-05 2.87 2.24E-05 2.78 4.60E-05 2.61
160 1.66E-06 3.04 4.23E-06 2.93 3.23E-06 2.79 7.20E-06 2.68
320 2.04E-07 3.03 5.38E-07 2.98 4.59E-07 2.82 1.09E-06 2.72
640 2.52E-08 3.02 6.78E-08 2.99 6.43E-08 2.84 1.66E-07 2.72

Table 2.2: Results of Example 2.5.2 at T = 0.3
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Figure 2.2: Results of Example 2.5.2 at T = 2.0. N = 160. Solid line: exact solution;
Squares: numerical solution (cell averages).
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Example 2.5.3. We solve the two dimensional linear equation ut + ux + uy = 0 in

the domain Ω = [−1, 1]× [−1, 1] with periodic boundary conditions.

To show the accuracy, we take the smooth initial condition u0(x, y) = sin(π(x+y))

and the terminal time T = 1.

To test the effect of maximum-principle-preserving, we adopt a discontinuous

initial condition

u0(x) =


1, (x, y) ∈ [−1

2
, 1

2
]2

−1, elsewhere,

and take the terminal time T = 100.

The errors and order of convergence for the smooth initial condition are given in

Table 2.3, from which the third order accuracy can be observed.

The results of the problem with the discontinuous initial condition is shown in

Figure 2.3, where a comparison with the exact solution and the result of the unlimited

LWDG solution are given, from which we can see the maximum-principle-preserving

limiter works effectively.

No rewinding of computation happens in this test.

Nx ×Ny L1 error order L∞ error order
20× 20 7.49E-04 – 1.11E-03 –
40× 40 7.99E-05 3.23 1.29E-04 3.11
80× 80 9.71E-06 3.04 1.61E-05 3.00

160× 160 1.21E-06 3.01 2.01E-06 3.00
320× 320 1.51E-07 3.00 2.51E-07 3.00
640× 640 1.89E-08 3.00 3.14E-08 3.00

Table 2.3: Results of Example 2.5.3 with smooth initial condition

Example 2.5.4. We solve the two dimensional Burgers’ equation ut +
(
u2

2

)
x

+
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Figure 2.3: Results of Example 2.5.3 with discontinuous initial condition cut along
the diagonal (x = y) of Ω. Nx = 160, Ny = 160. Solid line: exact solution; Squares:
numerical solution (cell averages).

(
u2

2

)
y

= 0 in the domain Ω = [0, 2π] × [0, 2π] with the initial condition u0(x, y) =

1
2

+ sin(x+ y) and periodic boundary conditions.

The solution is smooth up to t = 0.5, when shock appears. We list the errors and

order of convergence for both the local Lax-Friedrichs flux and global Lax-Friedrichs

flux, at T = 0.2 under the L1 and L∞ norms in Table 2.4, and plot the comparison of

the numerical solution based on the local Lax-Friedrichs flux with the exact solution

at T = 1.0 along the diagonal of Ω in Figure 2.4.

No rewinding of computation happens in this test.

Local Lax–Friedrichs Flux Global Lax–Friedrichs Flux
Nx ×Ny L1 error order L∞ error order L1 error order L∞ error order
20× 20 1.06E-02 – 5.33E-03 – 1.15E-02 – 5.38E-03 –
40× 40 1.33E-03 2.99 7.67E-04 2.80 1.63E-03 2.82 8.54E-04 2.66
80× 80 1.67E-04 3.00 1.12E-04 2.77 2.43E-04 2.75 1.42E-04 2.59

160× 160 2.09E-05 3.00 1.52E-05 2.89 3.61E-05 2.75 2.30E-05 2.62
320× 320 2.59E-06 3.01 1.95E-06 2.97 5.26E-06 2.78 3.47E-06 2.73
640× 640 3.20E-07 3.01 2.45E-07 2.99 7.46E-07 2.82 4.99E-07 2.80

Table 2.4: Results of Example 2.5.4 at T = 0.2
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Figure 2.4: Results of Example 2.5.4 cut along the diagonal (x = y) of Ω at T = 1.0.
Nx = 160, Ny = 160. Solid line: exact solution; Squares: numerical solution (cell
averages).

2.5.2 The Euler equations

Example 2.5.5. We solve the one dimensional problem in the domain Ω = [0, 2π]

with the initial condition

ρ0(x) = 1 + 0.999 sin(x), u0(x) = 1, p0(x) = 1

and periodic boundary conditions. The ratio of specific heat is γ = 1.4.

The exact solution of the problem is

ρ(x, t) = 1 + 0.999 sin(x− t), u(x, t) = 1, p(x, t) = 1. (2.59)

This is a low density problem with the minimum density 0.001. The positivity of

density is preserved during simulation and the third order convergence of density at

time T = 1 is shown in Table 2.5.
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No rewinding of computation happens in this test.

N L1 error order L∞ error order
20 1.13E-03 – 8.60E-04 –
40 1.40E-04 3.01 1.07E-04 3.01
80 1.72E-05 3.02 1.34E-05 3.00
160 2.14E-06 3.01 1.65E-06 3.02
320 2.67E-07 3.00 2.04E-07 3.01
640 3.33E-08 3.00 2.55E-08 3.01

Table 2.5: Results of Example 2.5.5 at T = 1

Example 2.5.6. We solve the one dimensional problem of blast waves in the domain

Ω = [0, 1] with initial condition

(ρ0, u0, p0) =


(1, 0, 103) 0 ≤ x < 0.1,

(1, 0, 10−2) 0.1 ≤ x < 0.9

(1, 0, 102), 0.9 ≤ x < 1

and reflective boundary condition. The ratio of specific heat is γ = 1.4.

We plot the density of numerical solutions at T = 0.38 for N = 200, N = 400,

and compare them with the reference solution, which is computed by the WENO-5

scheme on a very fine mesh with 16, 000 cells, in Figure 2.5. Since the positivity-

preserving limiter only works when the density or pressure is close to zero and no

other limiters are used to stabilize shocks in this test, we can observe some oscillations

in the figures.

In the test for N = 200, there are 8 times of rewinding of computation, among

a total number of 6, 535 time steps. In the test for N = 400, there are 15 times of

rewinding of computation, among a total number of 13, 061 time steps.
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Figure 2.5: Results of Example 2.5.6 at T = 0.038. Solid line: reference solution;
Squares: numerical solution (cell averages).

Example 2.5.7. We solve two extreme Riemann problems in one space dimension.

The first one is a double rarefaction problem in the domain Ω = [−1, 1] with initial

condition

(ρ0, u0, p0) =


(7,−1, 0.2), x < 0

(7, 1, 0.2), x > 0.

The second one is the Leblanc shock tube problem in the domain Ω = [−10, 10] with

initial condition

(ρ0, u0, p0) =


(2, 0, 109), x < 0

(10−3, 0, 1), x > 0.

We take the ratio of specific heat γ = 1.4 for both cases. In the first test example,

vacuum (zero density) will be generated around the origin in the exact solution. For

both problems, simulation will blow up without the positivity-preserving limiter in the

tests.

We plot the density of numerical solution of the double rarefaction problem at

T = 0.6 on N = 200 and N = 400 meshes, and compare them with the reference

solution, which is obtained from the exact Riemann solver [78], in Figure 2.6. The
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density of the numerical solution of the Leblanc shock tube problem at T = 0.0001

on N = 800 and N = 1, 600 meshes, together with the exact solution from the exact

Riemann solver, are shown in Figure 2.7, where the y-axis uses log scales. From

the figures, we can see that the positivity of density and pressure in both cases are

preserved, and the numerical solutions agree with the exact solution well.

No rewinding of computation happens in this test.

Example 2.5.8. We solve the one dimensional Sedov point-blast wave problem [67]

in the domain Ω = [−2, 2] with the initial condition

ρ0 = 1, u0 = 0, E0 =


3200000

∆x
, |x| ≤ ∆x

2

10−12, otherwise.

The ratio of specific heat is γ = 1.4.

This example simulates the point-blast in air, which produces very low density

after shock. The simulation will blow up without the positivity-preserving limiter

due to the very low density in the exact solution. We plot the simulation results of

density, pressure and velocity on N = 201 and N = 401 meshes at T = 0.001 in

Figure 2.8.

In the test for N = 201, there is only once of rewinding of computation, among

a total number of 7, 377 time steps. In the test for N = 401, there is only once of

rewinding of computation, among a total number of 18, 661 time steps.

Example 2.5.9. We solve the two dimensional problem in the domain [0, 2π]2 with

the initial condition

ρ0(x, y) = 1 + 0.999 sin(x+ y), u0 = v0 = p0 = 1.
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Figure 2.6: Results of Example 2.5.7, the double rarefaction problem, at T = 0.6.
Solid line: reference solution; Squares: numerical solution (cell averages). Left:
N = 200; Right:N = 400.
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Figure 2.7: Results of Example 2.5.7, Leblanc shock tube problem, at T = 0.0001.
Solid line: reference solution; Squares: numerical solution (cell averages). Left:
N = 800; Right: N = 1, 600.
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Figure 2.8: Results of Example 2.5.8 at T = 0.001. Solid line: reference solution;
Squares: numerical solution (cell averages). Left: N = 201; Right: N = 401.
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and periodic boundary conditions. The ratio of specific heat is γ = 1.4.

The exact solution of the problem is

ρ(x, y, t) = 1 + 0.999 sin(x+ y − 2t), u(x, y, t) = v(x, y, t) = p(x, y, t) = 1.

This is a low density problem with the minimum density 0.001. The positivity of

density is preserved during simulation and the third order convergence of density at

time T = 0.1 is shown in Table 2.6.

No rewinding of computation happens in this test.

Nx ×Ny L1 error order L∞ error order
20× 20 8.64E-03 – 1.23E-03 –
40× 40 1.37E-03 2.65 2.12E-04 2.53
80× 80 1.79E-04 2.94 2.71E-05 2.97

160× 160 2.23E-05 3.00 3.33E-06 3.03
320× 320 2.75E-06 3.02 4.12E-07 3.02

Table 2.6: Results of Example 2.5.9 at T = 0.1

Example 2.5.10. We solve the two dimensional Sedov point-blast wave problem [67]

in the domain Ω = [0, 1.1]× [0, 1.1] with the initial condition

ρ0 = 1, u0 = v0 = 0, E0 =


0.244816
∆x∆y

, (x, y) ∈ [0,∆x]× [0,∆y]

10−12, otherwise,

and the left and bottom boundary the reflective boundary, and other boundaries the

outflow boundary. The ratio of specific heat is γ = 1.4.

We plot the density on Ω and its profile cut along the diagonal of Ω at T = 1

on the Nx = 160, Ny = 160 mesh, see Figure 2.9. The simulation blows up if the

positivity-preserving limiter is not used in the test.
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In this test, there are 605 times of rewinding of computation, among a total

number of 344, 226 time steps.

(a) Density in Ω
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(b) Cut of density along diagonal (x = y)
of Ω

Figure 2.9: Results of Example 2.5.10 at T = 1. Solid line: reference solution;
Squares: numerical solution (cell averages).

Example 2.5.11. Consider the two-dimensional double Mach reflection problem

with a Mach 10 shock in the domain Ω = [0, 4]× [0, 1], with the initial condition

(ρ0, u0, v0, p0) =


(8, 33

√
3

8
,−33

8
, 116.5), y >

√
3(x− 1

6
) (post-shock)

(1.4, 0, 0, 1), y <
√

3(x− 1
6
) (pre-shock).

The left boundary is the inflow boundary, the right boundary is the outflow boundary,

{0 ≤ x < 1
6
, y = 0} on the bottom is the boundary with post-shock condition, {1

6
<

x ≤ 4, y = 0} on the bottom is the reflective boundary, and the condition on top

boundary follows the motion of the shock. We show the results at T = 0.2 on the

Nx = 960, Ny = 240 mesh in Figure 2.10. The results are comparable with the results

in [92].

No rewinding of computation happens in this test.

Example 2.5.12. We solve the two dimensional problem of shock passing a backward

facing corner in the domain Ω = [1, 13] × [0, 11] ∪ [0, 1] × [6, 11], with the initial
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Figure 2.10: Results of Example 2.5.11 at T = 0.2 on Nx = 960, Ny = 240 mesh.
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condition

(ρ0, u0, v0, p0) =


(ρ∗, u∗, v∗, p∗), x < 0.5 (post-shock)

(1.4, 0, 0, 1), x > 0.5 (pre-shock)

,

where (ρ∗, u∗, v∗, p∗)= (7.041132906907898, 4.07794695481336, 0, 30.05945) are taken

such that the shock is right-moving with Mach number 5.09. The boundary {x =

0, 6 ≤ y ≤ 11} is the inflow boundary, {0 ≤ x ≤ 1, y = 6} and {x = 1, 0 ≤ y ≤ 6}

are reflexive boundaries, {x = 13, 0 ≤ y ≤ 11} and {1 ≤ x ≤ 13, y = 0} are outflow

boundaries, and the boundary condition on {0 ≤ x ≤ 13, y = 11} follows the motion

of the shock.

The density and pressure at T = 2.3 with ∆x = ∆y = 1
32

are presented in Figure

2.11. The results are comparable with the results in [92, 94]

No rewinding of computation happens in this test.

Example 2.5.13. Consider the two-dimensional astrophysical jets problems with

very high Mach number. We set the domain Ω = [0, 0.5] × [0, 0.25] with initial

condition ρ0(x, y) = 0.5, u0(x, y) = v0(x, y) = 0, p0(x, y) = 0.4127. The boundary

conditions of the right and top are outflow; the bottom boundary is reflexive; the

left boundary is inflow with (ρ, u, v, p) = (5, 800, 0, 0.4127) if 0 ≤ y ≤ 0.05, which

corresponds to a jet flow of Mach number 2000, while (ρ, u, v, p) = (0.5, 0, 0, 0.4127)

otherwise. The ratio of specific heat is γ = 5/3.

A combination of the total variation bounded limiter [18] and the flux limiter

[98] are used before applying the positivity-preserving limiter in each time stage to

reduce the spurious oscillations where the density and pressure are far above zero.

We would like to note that, the positivity of density and pressure are preserved during
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Figure 2.11: Results of Example 2.5.12 at T = 2.3.
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simulation if only the positivity-preserving limiter is used, however, the simulation

blows up very soon without the positivity-preserving limiter. We compute the solution

on Nx×Ny = 320× 160 grid, and show the density and pressure at T = 5× 10−4 in

Figure 2.12.

In this test, there are 1, 968, 558 times of rewinding of computation, resulting in

a total number of 356, 643 time steps. The unusually small CFL number is caused

by the TV B limiter adopted, without which there is no rewinding of computation

and the CFL number is almost 10 times larger, but the result is oscillatory, though

the positivity is preserved. Since the scope of this chapter is on positivity-preserving

algorithms, we do not further study more compatible slope limiters for this example

here.

(a) Density with log scale, lower part
flipped from the upper part

(b) Pressure with log scale, lower part
flipped from the upper part

Figure 2.12: Results of Example 2.5.13 at T = 5× 10−4.

2.6 Concluding remarks

In this chapter, we have proposed the third order maximum-principle-satisfying and

positivity-preserving discontinuous Galerkin methods for scalar conservation laws
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and the Euler equations, respectively, based on the Lax-Wendroff time discretization.

The approach here is specified for DG methods with the use of DDG discretization for

the second temporal derivative terms. The main contribution of the work is to prove

rigorously that, under suitable CFL conditions, the cell average of the unmodulated

LWDG scheme at the next time step is bounded, provided the solution stay in the

desired bounds at the current time step. The scaling limiters, which were proved not

to affect the high order accuracy and mass conservation, can then be used to enforce

the bounds for the whole solution at the next time step, hence closing the loop of

the bound-preserving LWDG algorithm.

Several possible extensions could be made in future works. For instance, it is

of great importance to extend the algorithm to schemes with accuracy higher than

third order. It is also meaningful to extend the algorithm from structured grids to

unstructured meshes for geometry flexibility. The 3D case of the algorithm will also

be studied in the future.



Chapter Three

Positivity-preserving discontinuous

Galerkin methods for stationary

hyperbolic equations
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3.1 Introduction

In this chapter, we are interested in numerical methods for stationary hyperbolic

equations. In the one dimensional space, we consider the variable coefficient and

nonlinear stationary hyperbolic equations

(a(x)u)x + λu = f(x), x ∈ Ω = [0, 1], (3.1)

where a(x) does not change sign and, without loss of generality a(x) > 0, and

(a(u)u)x + λu = f(x), x ∈ Ω = [0, 1], (3.2)

where a(u) does not change sign and, without loss of generality a(u) > 0. Here

λ ≥ 0 is a constant. In two and three dimensional spaces, we consider the constant

coefficient stationary hyperbolic equations

aux + buy + λu = f(x, y), (x, y) ∈ Ω = [0, 1]2, (3.3)

and

aux + buy + cuz + λu = f(x, y, z), (x, y, z) ∈ Ω = [0, 1]3, (3.4)

respectively, where λ ≥ 0 is a constant and, without loss of generality, we assume

a, b, c > 0.

The stationary hyperbolic equations (3.1)-(3.4) have wide applications in steady-

state transport problems. Moreover, the equations form the building block of the

linear radiative transfer equation (RTE), which is an integro-differential equation

that describes the distribution of radiative intensity in a medium, based on the
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discrete-ordinate method (DOM) [24, 37] and iterative procedure on the source terms,

see [90, 46] for more details.

The discontinuous Galerkin (DG) method is one of the most popular numerical

methods to solve hyperbolic equations, for its advantages in obtaining high order

accuracy, flexibility for complex geometry and easiness to be parallelized. In 1973,

Reed and Hill [62] proposed the first DG scheme to solve the linear steady-state

RTE for neutron transport problems. It was later developed into Runge-Kutta dis-

continuous Galerkin (RKDG) methods by Cockburn et al. in a series of papers

[17, 16, 14, 13, 18] to solve time-dependent hyperbolic equations such as the Burgers

equation, Euler equations, and shallow water equations, etc. In this chapter, we will

adopt the classic DG method to solve the stationary hyperbolic equations.

For stationary hyperbolic equations, it is well-known that their physical solutions

satisfy the positivity-preserving property, i.e. the solutions are nonnegative, provided

the corresponding boundary conditions and source terms are nonnegative. When de-

signing numerical methods, one naturally wants to maintain the positivity-preserving

property on the numerical solution, since negative values are not only physically un-

acceptable, but also may cause severe robustness issues in the simulations, especially

when coupled with other physical systems.

There have been intensive studies on positivity-preserving DG methods. In 2010,

the genuinely maximum-principle-satisfying DG method was proposed by Zhang et

al. in [93] for time-dependent scalar hyperbolic equations. The method is called

positivity-preserving when the lower bound in the maximum-principle is zero, which

is the case in our problems. The general framework of the positivity-preserving

method is composed of two parts. The first part is to obtain the solution at the next

time step with nonnegative cell averages from the original, unlimited DG scheme,
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probably under certain step-size conditions. Once the cell averages of solution are

guaranteed nonnegative, the scaling limiter in [93], which maintains the high or-

der accuracy and mass conservation, is applied to modify the solution such that

the entire solution becomes nonnegative. Based on this simple but powerful frame-

work, positivity-preserving and maximum-principle-satisfying DG methods for time-

dependent problems have been rapidly developed later, e.g. for the Euler equations

[94, 95], Navier-Stokes equations [92, 44], shallow water equations[82, 81], convection-

diffusion equations [96, 83], and compressible miscible displacements [29], among

others.

In 2016, Yuan et al. [90] proposed a high order positivity-preserving DG method

for constant coefficient stationary hyperbolic equations. Taking the one dimensional

case as an example, their algorithm is as follows: Firstly, they proved a fundamental

result that the numerical solution u(x) solved from the unmodulated DG method

satisfies max{ūK , uK(xc)} ≥ 0 on every cell K of the mesh, where ūK is the cell

average on K, and xc is the right end point (the downwind point) of K. They then

modify the solution uK(x) on cell K based on the principle that, if ūK ≥ 0, the

conservative scaling limiter [93]

ũK(x) = θ (uK(x)− ūK) + ūK ,where θ = min{ ūK
ūK −minK uK(x)

, 1} (3.5)

is applied, otherwise a non-conservative rotational limiter [90] centered at xc is used.

Their algorithm can maintain positivity without affecting high order accuracy, how-

ever, since the cell average ūK can be changed by the rotation, the algorithm is

not conservative in general, which is also true when the algorithm is extended to

two-dimensional rectangular [90] or triangular [91] meshes. In 2018, Ling et al. [46]

improved the result by rigorously proving that the solution of the unmodulated DG

method in one dimension actually satisfies ūK ≥ 0 for all K. Therefore the scaling
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limiter (3.5) can always be used, which yields a high order conservative positivity-

preserving DG method. In their work, a special test function ξ that recovers cell

averages ūK from the left hand side of the DG scheme was proved to be nonnegative,

which implies ūK ≥ 0 since the source term and boundary terms on the right hand

side of the DG scheme are both nonnegative, see more details in [46]. Unfortunately,

direct extension to two dimensions fails due to the fact that such test function ξ

is no longer nonnegative over the cell in rectangular meshes, even for second order

DG method with P 1 or Q1 spaces. Instead, the authors obtained a second order

positivity-preserving conservative scheme on rectangular meshes by augmenting the

P 1 finite element space, but the extension of this approach to higher space dimensions

or to higher order schemes was not carried out in [46] and is highly nontrivial.

In this chapter, we further investigate high order conservative positivity-preserving

DG method for stationary hyperbolic equations. We put our effort on proving the

positivity of cell averages of the scheme so that the conservative scaling limiter (3.5)

can be applied directly to maintain high order accuracy and positivity. The main

difficulty is that the unmodulated DG method fails in positivity-preserving for cell

averages in all the equations we consider in this chapter, which will be illustrated

by concrete examples in later sections. To resolve this difficulty, we modify the

original DG method by adopting appropriate quadrature rules to replace the exact

integrals in the schemes, which is a common practice in the implementation of DG

schemes, not only because the exact integral is often difficult to obtain, but also for

the purpose of achieving specific properties, e.g. maximum-principle-satisfying [93]

or entropy stability [10]. The quadrature rules adopted in the schemes are easy to

implement and can be directly extended to high dimensions. More importantly, we

will show that the cell averages of the DG schemes with such quadrature rules are

positive, by proving the positivity of the test function that recovers the cell average
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from the left hand side of the schemes.

The rest of the chapter is organized as follows. In Section 3.2, we propose the

conservative positivity-preserving method in the one dimensional space by intro-

ducing the desired quadrature rules in the DG formulation, which do not evaluate

the integrals in the DG scheme exactly. We give an example to explain why such

quadratures are necessary, and rigorously prove the positivity-preserving property of

our method. In Section 3.3, we propose the positivity-preserving DG methods for

two and three space dimensions, based on direct extensions from the 1D algorithm.

We detail the implementation of the positivity-preserving scaling limiter (3.5) and

summarize the complete positivity-preserving algorithm in Section 3.4. The good

performance of the schemes are demonstrated by ample numerical experiments in

Section 3.5. Due to the inaccurate quadrature, the order of convergence is subopti-

mal in two and three space dimensions, but we observe optimal convergence in all

one dimensional tests. Finally, we end in Section 3.6 with concluding remarks.

3.2 Numerical algorithm in one space dimension

In this section, we construct high order conservative positivity-preserving DG meth-

ods for stationary hyperbolic equations (3.1) and (3.2) in the one dimensional space.

The schemes can be arbitrarily high order for the case of (3.1) with λ = 0, but for

the other cases we are only able to prove the positivity-preserving property for P 1

and P 2 (second and third order) DG schemes.
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3.2.1 Notations

We take the partition 0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1 on Ω = [0, 1], and denote

the j-th cell by Ij = [xj− 1
2
, xj+ 1

2
], with the cell size ∆xj = xj+ 1

2
− xj− 1

2
and the cell

center xj = 1
2
(xj− 1

2
+ xj+ 1

2
) for j = 1, 2, . . . , N .

The finite element space of P k-DG scheme is defined as

V k
h = {v ∈ L2([0, 1]) : v|Ij ∈ P k(Ij), j = 1, 2, . . . , N}, (3.6)

where P k(I) is the polynomial space of order no greater than k on I. For v ∈ V k
h ,

we define the cell average v̄j = 1
∆xj

∫ x
j+ 1

2
x
j− 1

2

v(x)dx on Ij. Moreover, we denote by v−
j+ 1

2

and v+
j+ 1

2

the left and right limits of v at xj+ 1
2
, respectively, i.e. v±

j+ 1
2

= v(xj+ 1
2
± 0).

For the purpose of positivity-preserving, we adopt the Gauss-Legendre quadra-

ture rule of k points to evaluate volume integrals in the P k-DG scheme, and denote

this quadrature by ∼
∫
Ij
v(x)dx = ∆xj

∑k
α=1 ω̂αv(x̂α), where {x̂α, α = 1, . . . , k} are the

quadrature points on Ij and {ω̂α, α = 1, . . . , k} are the quadrature weights satisfying∑k
α=1 ω̂α = 1.

3.2.2 Variable coefficient stationary hyperbolic equation in

one space dimension

Consider the variable coefficient stationary hyperbolic equation (3.1) with f(x) ≥ 0

in Ω. As mentioned before, without loss of generality we assume a(x) > 0 and

the corresponding boundary condition u(0) = u0 ≥ 0. The case a(x) < 0 with

the boundary condition u(1) = u0 ≥ 0 can be obtained by the change of variable
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x′ = 1− x.

Firstly, we give an example to show that the original DG scheme with exact inte-

grals may produce negative cell averages, even when the upwind boundary condition

and the source term are both positive. The original P k-DG scheme of the equation

(3.1) is to seek u ∈ V k
h , s.t. ∀w ∈ V k

h ,

−
∫
Ij

(a(x)uwx − λuw)dx+a(xj+ 1
2
)u−

j+ 1
2

w−
j+ 1

2

= a(xj− 1
2
)u−

j− 1
2

w+
j− 1

2

+

∫
Ij

fwdx, (3.7)

for j = 1, 2, . . . , N , where we let u−1
2

= u0. We adopt the P 1-DG scheme and take

a(x) = 1 + x, λ = 0 and u0 > 0. It is easy to check that ξ(x) = 6+5∆x1

6+8∆x1+2∆x2
1
−

3x
∆x1(3+∆x1)

is the unique function in P 1(I1) such that −
∫
I1
a(x)vξxdx+a(x 3

2
)v−3

2

ξ−3
2

=

v̄1 for all v ∈ V 1
h , and ξ(x 3

2
) = − ∆x1

2(3+4∆x1+∆x2
1)
< 0. By taking the test function

w = ξ (where we extend w = 0 outside I1) in the scheme, we can construct f(x) ≥ 0

that takes large values around x 3
2

such that ū1 = a(0)u0ξ(x 1
2
) +

∫
I1
fξdx < 0. One

can check that if we adopt P 2, P 3, P 4, P 5-DG schemes and take a(x) = 1+x2, a(x) =

1 + x3, a(x) = 1 + x4, a(x) = 1 + x5, respectively, negative cell averages may also

appear following the same lines, see the details in Appendix B.2.

However, we are going to show that the positivity-preserving property can be

achieved simply by replacing the exact integrals in the scheme by the Gauss-Legendre

quadratures of k points. The positivity-preserving P k-DG scheme of (3.1) is to seek

u ∈ V k
h , s.t. ∀w ∈ V k

h ,

−∼
∫
Ij

(a(x)uwx − λuw) dx+a(xj+ 1
2
)u−

j+ 1
2

w−
j+ 1

2

= a(xj− 1
2
)u−

j− 1
2

w+
j− 1

2

+∼
∫
Ij

fwdx, (3.8)

for j = 1, 2, . . . , N .

Cockburn et al. have proved in [13] that a sufficient condition for the quadra-
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ture in P k-DG scheme to attain optimal convergence is to have algebraic degree of

accuracy 2k. Though this condition is not satisfied by the quadrature in (3.8), we

observe optimal order of convergence in all one dimensional tests.

Based on the framework of [93], we only need to put our effort on proving the

positivity of cell averages of the scheme (3.8), then the scaling limiter (3.5) can be

used to achieve positivity of the entire solution without losing mass conservation

and accuracy. Same as in [46], it suffices to prove the positivity of the test function

ξ ∈ V k
h that recovers the cell average of the solution from the left hand side of the

scheme (3.8).

We assume that a(x) ∈ Ck(Ij), j = 1, 2, . . . , N, in the P k-DG scheme to make

sense of some norms to be used. We first consider the case λ = 0 and give the main

result as follows.

Lemma 3.2.1. Define ξ(x) = 1
∆xj

∫ x
j+ 1

2
x

L[ 1
a(t)

]dt for x ∈ Ij, where L[·] is the La-

grange interpolation operator at the Gauss-Legendre points {x̂α}kα=1, then ξ is the

unique function in P k(Ij) that satisfies

−∼
∫
Ij

a(x)vξxdx+ a(xj+ 1
2
)v−
j+ 1

2

ξ−
j+ 1

2

= v̄j, ∀v ∈ P k(Ij). (3.9)

Moreover, for k = 1, ξ ≥ 0 on Ij; for k ≥ 2, ξ ≥ 0 on Ij if the mesh size satisfies

∆xj ≤

 (2k)!

k!||a(x)||L∞(Ij)|| d
k

dxk

(
1

a(x)

)
||L∞(Ij)

 1
k

. (3.10)

Proof. By definition, ξ ∈ P k(Ij), ξx(x) = − 1
∆xj
L[ 1

a(t)
](x), and ξ−

j+ 1
2

= 0. Therefore,
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it follows from direct computation that, ∀v ∈ P k(Ij),

−∼
∫
Ij

a(x)vξxdx+ a(xj+ 1
2
)v−
j+ 1

2

ξ−
j+ 1

2

=
k∑

α=1

ω̂αa(x̂α)v(x̂α)L[
1

a(t)
](x̂α) + 0

=
k∑

α=1

ω̂αv(x̂α) = v̄j,

where the last equality holds because the k-point Gauss-Legendre quadrature is exact

for integrals of polynomials of order at most k.

As for the uniqueness, we consider the corresponding homogeneous linear prob-

lem: Find η ∈ P k(Ij), s.t.

−∼
∫
Ij

a(x)vηxdx+ a(xj+ 1
2
)v−
j+ 1

2

η−
j+ 1

2

= 0, ∀v ∈ P k(Ij).

If we take v as the k + 1 Lagrange basis at x̂1, x̂2, . . . , x̂k, xj+ 1
2
, the above linear

problem is converted to the system of linear equations


ηx(x̂α) = 0, α = 1, 2, . . . , k

η(xj+ 1
2
) = 0.

Since ηx ∈ P k−1(Ij), we have ηx ≡ 0 from the uniqueness of Lagrange interpolation,

which implies η ≡ 0 since η(xj+ 1
2
) = 0. Therefore, the function satisfying (3.9) is

unique in P k(Ij).

To show the positivity of ξ, it suffices to prove its integrand L[ 1
a(x)

] ≥ 0 on Ij.

When k = 1, this is clear because the Lagrange interpolant L[ 1
a(x)

] = 1
a(x̂1)

is a

constant. When k ≥ 2, we need the error formula[6] of the Lagrange polynomial for
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g(x) ∈ Ck(Ij) interpolating at x̂1, . . . , x̂k,

g(x)− L[g](x) =
g(k)(ζ(x))

k!
(x− x̂1)(x− x̂2) · · · (x− x̂k),

where ζ(x) ∈ Ij is generally unknown. Moreover, let us recall that the standard k-th

order Legendre polynomial satisfies |Pk(r)| ≤ 1 for r ∈ [−1, 1], and has the explicit

formula

Pk(r) =
(2k)!

2k(k!)2
(r − r̂1)(r − r̂2) · · · (r − r̂k),

where r̂1, r̂2, . . . , r̂k are the roots of the k-th order Legendre polynomial. The prop-

erties of the Legendre polynomials imply | 1
k!

(x − x̂1)(x − x̂2) · · · (x − x̂k)| = (∆xj)
kk!

(2k)!∣∣∣∣Pk (x− 1
2

(x
j− 1

2
+x

j+ 1
2

)

∆xj/2

)∣∣∣∣ ≤ (∆xj)
kk!

(2k)!
. Therefore, we have the lower bound estimates for

L[ 1
a(x)

] on Ij as follows,

L[
1

a(t)
](x) =

1

a(x)
− dk

dxk

(
1

a(x)

)∣∣∣∣
x=ζ

· 1

k!
(x− x̂1)(x− x̂2) · · · (x− x̂k)

≥ 1

||a(x)||L∞(Ij)

− (∆xj)
kk!

(2k)!
|| d

k

dxk

(
1

a(x)

)
||L∞(Ij)

≥ 0, ∀x ∈ Ij,

under the condition ∆xj ≤
(

(2k)!

k!||a(x)||L∞(Ij)|| d
k

dxk
( 1
a(x))||L∞(Ij)

) 1
k

on the mesh size.

Remark 3.2.1. The condition (3.10) is drawn from the requirement that the La-

grange interpolation L[ 1
a(x)

] being nonnegative on Ij. Since we have assumed the

smoothness of a(x), which implies 1
a(x)

is smooth and lower bounded away from zero,

the mesh size condition should not be severe. Indeed, since we merely need the in-

tegration
∫ x

j+ 1
2

x
L[ 1

a(t)
]dt ≥ 0, x ∈ Ij, to guarantee the positivity of ξ, the actual

condition needed on the mesh size may be even more relaxed.

Based on the lemma above, if we assume the inflow condition u−
j− 1

2

≥ 0, we can
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immediately obtain the positivity of ūj by taking the test function w = ξ (extend

ξ = 0 outside Ij) in the scheme (3.8) and using the fact that the source term f and

coefficient a(x) are positive. We can therefore obtain the result for the positivity-

preserving property of the scheme (3.8) with λ = 0 as follows.

Theorem 3.2.2. For the variable coefficient stationary hyperbolic equation (3.1)

with λ = 0, if the source term and inflow conditions from upstream cells (including

the inflow condition on the first cell) are positive, then the cell averages of the scheme

(3.8) are positive, under the mesh size condition in Lemma 3.2.1.

We then consider the case λ > 0 and give the main result as follows.

Lemma 3.2.3. Define the functions

ξ1(x) =
2(xj+ 1

2
− x)

∆xj(2a(x̂1) + λ∆xj)
, x ∈ Ij,

and

ξ2(x) =
6(xj+ 1

2
− x)

(
λ̃(x− xj− 1

2
) + a(x̂1) + a(x̂2)

)
∆xj

(
12a(x̂1)a(x̂2) + 3∆xjλ(a(x̂1) + a(x̂2)) + ∆x2

jλ
2
) , x ∈ Ij,

where λ̃ = λ +
√

3(a(x̂1)−a(x̂2))
∆xj

, for P 1-DG and P 2-DG schemes, respectively, then ξ1

and ξ2 are the unique functions in P k(Ij) that satisfies

−∼
∫
Ij

(a(x)vξx − λvξ) dx+ a(xj+ 1
2
)v−
j+ 1

2

ξ−
j+ 1

2

= v̄j, ∀v ∈ P k(Ij), (3.11)

for k = 1 and k = 2, respectively.

Moreover, ξ1 ≥ 0 on Ij; ξ2 ≥ 0 on Ij if λ ≥ pj(a), or otherwise ∆xj ≤
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2 minx∈Ij a(x)

pj(a)−λ , where pj(·) is the one-sided Lipschitz seminorm [5] defined as

pj(v) = sup
x,y∈Ij ,x 6=y

(
v(x)− v(y)

x− y

)
+

,where z+ = max(0, z).

Proof. It is easy to check by solving the linear equation/system that ξ1(x) and ξ2(x)

are the unique solutions of the linear problem (3.11) for k = 1 and k = 2, respectively.

It is also clear that ξ1(x) ≥ 0 on Ij, since a(x), λ > 0 by assumption.

As for k = 2, the positivity of ξ2(x) is always the same to its factor λ̃(x−xj− 1
2
)+

a(x̂1) + a(x̂2). Note that λ̃ = λ − a(x̂1)−a(x̂2)
x̂1−x̂2

≥ λ − pj(a), thereby λ̃(x − xj− 1
2
) +

a(x̂1) + a(x̂2) ≥ a(x̂1) + a(x̂2) ≥ 0 if λ ≥ pj(a), or λ̃(x − xj− 1
2
) + a(x̂1) + a(x̂2) ≥

a(x̂1) + a(x̂2)− (pj(a)− λ)∆xj ≥ 0 if λ < pj(a). Both cases indicate that ξ2(x) ≥ 0

on Ij.

Following the same arguments as before, we can immediately get the positivity

of ūj if we assume the positivity of the inflow condition and the source term. We

can therefore obtain the result for the positivity-preserving property of the scheme

(3.8) with λ > 0 (in fact it also applies to the case of λ = 0) as follows.

Theorem 3.2.4. For the variable coefficient stationary hyperbolic equation (3.1)

with λ > 0, if the source term and the inflow conditions from upstream cells (includ-

ing the inflow condition on the first cell) are positive, then the cell averages of the

scheme (3.8) are positive, under the conditions in Lemma 3.2.3.

Remark 3.2.2. We are only able to prove the positivity-preserving property for P k-

DG methods with k = 1 and k = 2 here. For the cases k ≥ 3, the positivity of test

function ξ satisfying (3.11) is too complicated to be analyzed generally. However,
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we have investigated these cases for some special a(x) and the results are promising,

which are shown in Appendix B.2.

3.2.3 Nonlinear stationary hyperbolic equation in one space

dimension

Consider the nonlinear stationary hyperbolic equation (3.2) with f ≥ 0 in Ω. We

assume a(u) ≥ c > 0, d(a(u)u)
du

> 0 for all u, and the boundary condition u(0) ≥ 0.

Formally, we still have the same positivity-preserving results as in the variable

coefficient case if we adopt the scheme: seek u ∈ V k
h , s.t. ∀w ∈ V k

h ,

−∼
∫
Ij

(a(u)uwx − λuw) dx+a(u−
j+ 1

2

)u−
j+ 1

2

w−
j+ 1

2

= a(u−
j− 1

2

)u−
j− 1

2

w+
j− 1

2

+∼
∫
Ij

fwdx, (3.12)

for j = 1, 2, . . . , N , since a(u) in the scheme can be regarded as a(u(x)) in the

variable coefficient case. However, because u(x) is unknown, the mesh size conditions

established before for positivity-preserving is unavailable for k ≥ 2. To resolve this

difficulty, we give a P 2-DG scheme which is positivity-preserving on arbitrary meshes:

seek u ∈ V 2
h , s.t. ∀w ∈ V 2

h ,

−∼
∫
Ij

(a(u)uwx − λuw) dx+ a(u−
j+ 1

2

)u−
j+ 1

2

w−
j+ 1

2

= a(u−
j− 1

2

)u−
j− 1

2

w+
j− 1

2

+−
∫
Ij

fwdx,

(3.13)

for j = 1, 2, . . . , N , where −
∫
Ij

denotes the Simpson’s quadrature rule.

We give the main result for the P 2-DG scheme (3.13) as follows.
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Lemma 3.2.5. Let u(x) be the solution of the scheme (3.13) and define the function

ξ(x) =
6(xj+ 1

2
− x)

(
λ̃(x− xj− 1

2
) + a(u(x̂1)) + a(u(x̂2))

)
∆xj

(
12a(u(x̂1))a(u(x̂2)) + 3∆xjλ(a(u(x̂1)) + a(u(x̂2))) + ∆x2

jλ
2
) , x ∈ Ij,

(3.14)

where λ̃ = λ+
√

3(a(u(x̂1))−a(u(x̂2)))
∆xj

, then ξ ∈ P 2(Ij) satisfies

−∼
∫
Ij

(a(u)vξx − λvξ) dx+ a(u−
j+ 1

2

)v−
j+ 1

2

ξ−
j+ 1

2

= v̄j, ∀v ∈ P 2(Ij). (3.15)

Moreover, ξ ≥ 0 at the points {xj− 1
2
, xj, xj+ 1

2
}.

Proof. It can be verified by direct computations similar to the proofs before.

Following the same arguments as in the variable coefficient case, we immediately

get the positivity of ūj, if we assume the positivity of inflow condition and source

term. Though the expression of ξ in (3.14) contains the unknown solution u, it is

not a problem since we actually do not use ξ in the implementation of the positivity-

preserving algorithm. We can therefore obtain the result for the positivity-preserving

property of the schemes (3.12) for k = 1 and (3.13) for k = 2 as follows.

Theorem 3.2.6. For the nonlinear stationary hyperbolic equation (3.2), if the source

term and inflow conditions from upstream cells (including the inflow condition on

the first cell) are positive, then the cell averages of the schemes (3.12) for k = 1 and

(3.13) for k = 2 are positive on arbitrary meshes.
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3.3 Numerical algorithm in two and three space

dimensions

In this section, we construct high order conservative positivity-preserving DG schemes

for constant coefficient stationary hyperbolic equations (3.3) and (3.4) in two and

three dimensions, respectively. The schemes are direct extensions from the algo-

rithm in one space dimension. We are only able to give rigorous proofs of positivity-

preserving for limited cases but numerical computation shows strong evidence that

the schemes are positivity-preserving for Qk-DG for arbitrary k in two dimensions,

and for odd k = 1, 3, 5, 7, . . . in three dimensions.

3.3.1 Notations

We take the partition 0 = x 1
2
< x 3

2
< · · · < xNx+ 1

2
= 1, 0 = y 1

2
< y 3

2
< · · · <

yNy+ 1
2

= 1, and 0 = z 1
2
< z 3

2
< · · · < zNz+ 1

2
= 1 in the x, y and z directions,

respectively, and define the mesh sizes ∆xi = xi+ 1
2
− xi− 1

2
, i = 1, . . . , Nx, ∆yj =

yj+ 1
2
−yj− 1

2
, j = 1, . . . , Ny, and ∆zl = zl+ 1

2
−zl− 1

2
, l = 1, . . . , Nz, with cell centers xi =

1
2
(xi− 1

2
+ xi+ 1

2
), i = 1, . . . , Nx, yj = 1

2
(yj− 1

2
+ yj+ 1

2
), j = 1, . . . , Ny, and zl = 1

2
(zl− 1

2
+

zl+ 1
2
), l = 1, . . . , Nz. Moreover, we denote by Ki,j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
], i =

1, . . . , Nx, j = 1, . . . , Ny the cells in the two dimensional domain Ω = [0, 1]2, and

Ki,j,l = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] × [zl− 1

2
, zl+ 1

2
], i = 1, . . . , Nx, j = 1, . . . , Ny, l =

1, . . . , Nz the cells in the three dimensional domain Ω = [0, 1]3.
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The finite element spaces of the Qk-DG scheme are defined as

V k
h = {v ∈ L2([0, 1]2) : v|Ki,j ∈ Qk(Ki,j), i = 1, . . . , Nx, j = 1, . . . , Ny}, (3.16)

and

V k
h = {v ∈ L2([0, 1]3) : v|Ki,j,l ∈ Qk(Ki,j,l), i = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz},

(3.17)

in two and three dimensional domains, respectively, where Qk(K) is the tensor prod-

uct polynomial space of order no greater than k on the cell K. For v ∈ V k
h , we

denote the cell average by v̄i,j on Ki,j, and v̄i,j,l on Ki,j,l. In two space dimensions,

we define the left/right and lower/upper limits of v on the vertical and horizontal cell

interfaces by v(x±
i+ 1

2

, y) = v(xi+ 1
2
±0, y) and v(x, y±

j+ 1
2

) = v(x, yj+ 1
2
±0), respectively.

In three space dimensions, the limits on cell interfaces are defined similarly.

We let {r̂α, ω̂α}kα=1 and {r̃α, ω̃α}k+1
α=1 be the Gauss-Legendre quadrature rules with

k and k + 1 quadrature points on [−1, 1], respectively. As in the previous section,

we use the notation ∼
∫

to denote the approximate integration via the k-point Gauss-

Legendre quadrature. If not otherwise stated, the usual integral notation
∫

stands

for the exact integral, which can be evaluated by the k + 1 point Gauss-Legendre

quadrature in the Qk-DG scheme for the constant coefficient problems. Finally, we

denote by {`i(x), i = 1, . . . , k} the Lagrange interpolation basis at {r̂α}kα=1 with

`i(r̂α) = δi,α, and by `′i(x) the derivative of `i(x).
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3.3.2 Constant coefficient stationary hyperbolic equation in

two space dimensions

Consider the constant coefficients stationary hyperbolic equation (3.3) with f(x, y) ≥

0 in Ω. As mentioned before, without loss of generality, we may assume a, b > 0,

because the other cases can be obtained by the change of variables x′ = 1 − x

and/or y′ = 1 − y. The corresponding boundary conditions are given by u(0, y) =

g1(y), u(x, 0) = g2(x), where g1, g2 ≥ 0.

Firstly, we would like to remark that the original DG methods are not positivity-

preserving for the cell averages in general, even for the P 1-DG or Q1-DG schemes.

One can refer to the counterexamples constructed in [46].

The positivity-preserving Qk-DG scheme of (3.3) is to seek u ∈ V k
h s.t. ∀w ∈ V k

h ,

−∼
∫ x

i+ 1
2

x
i− 1

2

∼
∫ y

j+ 1
2

y
j− 1

2

(auwx + buwy − λuw) dxdy

+

∫ y
j+ 1

2

y
j− 1

2

au(x−
i+ 1

2

, y)w(x−
i+ 1

2

, y)dy +

∫ x
i+ 1

2

x
i− 1

2

bu(x, y−
j+ 1

2

)w(x, y−
j+ 1

2

)dx

=

∫ y
j+ 1

2

y
j− 1

2

au(x−
i− 1

2

, y)w(x+
i− 1

2

, y)dy +

∫ x
i+ 1

2

x
i− 1

2

bu(x, y−
j− 1

2

)w(x, y+
j− 1

2

)dx

+∼
∫ x

i+ 1
2

x
i− 1

2

∼
∫ y

j+ 1
2

y
j− 1

2

fwdxdy,

(3.18)

for i = 1, . . . , Nx, j = 1, . . . , Ny. If xi− 1
2

= 0, we let u(x−
i− 1

2

, y) = g1(y), similarly

if yj− 1
2

= 0, we let u(x, y−
j− 1

2

) = g2(x). The quadrature adopted in (3.18) does not

satisfy the condition for optimal convergence established in [13], which results in

sub-optimal convergence as we will show in the numerical tests.

Without loss of generality, we only consider scheme (3.18) on the reference cell
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K = [−1, 1]× [−1, 1], as any cell Ki,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] can be transferred

to K by changing of coordinates which only rescales a, b, λ, f without altering their

signs. We give the main result as follows.

Lemma 3.3.1. Define ξ(x, y; a, b, λ) = (1 − x)(1 − y)η(x, y; a, b, λ) for (x, y) ∈

[−1, 1]2, where η(x, y; a, b, λ) =
∑k

i,j=1 ηij(a, b, λ)`i(x)`j(y), and {ηij(a, b, λ)}ki,j=1 is

the solution of the linear system

k∑
i,j=1

(a ((1− r̂α)(1− r̂β)`′i(r̂α)δβ,j − (1− r̂β)δα,iδβ,j)

+ b
(
(1− r̂α)(1− r̂β)`′j(r̂β)δα,i − (1− r̂α)δα,iδβ,j

)
−λ(1− r̂α)(1− r̂β)δα,iδβ,j) ηij = −1

4
, α, β = 1, 2, . . . , k,

(3.19)

then ξ(x, y; a, b, λ) ∈ Qk([−1, 1]2) satisfies

−∼
∫ 1

−1

∼
∫ 1

−1

(avξx + bvξy − λvξ) dxdy +

∫ 1

−1

av(1, y)ξ(1, y)dy +

∫ 1

−1

bv(x, 1)ξ(x, 1)dx

=
1

4

∫ 1

−1

∫ 1

−1

vdxdy,

(3.20)

for any v ∈ Qk([−1, 1]2).

Moreover, for k = 1, 2, we have ξ(x, y; a, b, λ) ≥ 0 on [−1, 1]2; for k = 3, we can

show ξ(r̂α, r̂β; a, b, 0) ≥ 0, α, β = 1, 2, 3 and ξ(−1, r̃α; a, b, 0), ξ(r̃α,−1; a, b, 0) ≥ 0,

α = 1, 2, 3, 4.

Proof. By definition of ξ(x, y), we can compute that ξx(x, y) = (1−x)(1−y)
∑k

i,j=1 ηij

`′i(x)`j(y)−(1−y)
∑k

i,j=1 ηij`i(x)`j(y) and ξy(x, y) = (1−x)(1−y)
∑k

i,j=1 ηij`i(x)`′j(y)−

(1 − x)
∑k

i,j=1 ηij`i(x)`j(y), thereby it can be checked that {ηij}ki,j=1 is the solution
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of the linear system (3.19) if and only if ξ satisfies

aξx(r̂α, r̂β) + bξy(r̂α, r̂β)− λξ(r̂α, r̂β) = −1

4
, α, β = 1, 2, . . . , k.

Moreover, we have ξ(1, y) = ξ(x, 1) = 0 from the definition. Therefore, it follows

from direct computation that

−∼
∫ 1

−1

∼
∫ 1

−1

(avξx + bvξy − λvξ) dxdy +

∫ 1

−1

av(1, y)ξ(1, y)dy +

∫ 1

−1

bv(x, 1)ξ(x, 1)dx

=− 4
k∑

α,β=1

ω̂αω̂βv(r̂α, r̂β) (aξx(r̂α, r̂β) + bξy(r̂α, r̂β)− λξ(r̂α, r̂β)) + 0 + 0

=
k∑

α,β=1

ω̂αω̂βv(r̂α, r̂β) =
1

4

∫ 1

−1

∫ 1

−1

vdxdy, ∀v ∈ Qk([−1, 1]2),

where the last equality follows from the fact that the tensor product of k-point

Gauss-Legendre quadrature is accurate for v ∈ Qk([−1, 1]2).

It remains to show the positivity of ξ, or equivalently η.

When k = 1, by solving the linear equation (3.19), we have η(x, y; a, b, λ) =

1
4(a+b+λ)

> 0.

When k = 2, by solving the linear system (3.19), we have η(x, y; a, b, λ) =

C−1(6a3 + 15a2b+ 15ab2 + 6b3 + 9a2λ+ 17abλ+ 9b2λ+ 5aλ2 + 5bλ2 + λ3 + 3a2bx+

9ab2x + 6b3x + 3a2λx + 9abλx + 9b2λx + 3aλ2x + 5bλ2x + λ3x + 6a3y + 9a2by +

3ab2y+ 9a2λy+ 9abλy+ 3b2λy+ 5aλ2y+ 3bλ2y+ λ3y+ 9a2bxy+ 9ab2xy+ 3a2λxy+

9abλxy+ 3b2λxy+ 3aλ2xy+ 3bλ2xy+ λ3xy), where C = 16
9

(3a2 + 3ab+ 3b2 + 3aλ+

3bλ + λ2)(3a2 + 6ab + 3b2 + 3aλ + 3bλ + λ2) > 0. Since η ∈ Q1([−1, 1]2) and

η(−1,−1) = C−1(12a2b+ 12ab2 + 8abλ) > 0, η(−1, 1) = C−1(12a3 + 12a2b+ 12a2λ+

8abλ+ 4aλ2) > 0, η(1,−1) = C−1(12ab2 + 12b3 + 8abλ+ 12b2λ+ 4bλ2) > 0, η(1, 1) =
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C−1(12a3 + 36a2b+ 36ab2 + 12b3 + 24a2λ+ 44abλ+ 24b2λ+ 16aλ2 + 16bλ2 + 4λ3) > 0,

we have η(x, y; a, b, λ) > 0 for (x, y) ∈ [−1, 1]2.

Now we consider the case k = 3 with λ = 0. Firstly, we note that from the defini-

tion, ξ(x, y; a, b, λ) = Cξ(x, y;Ca,Cb, Cλ) and η(x, y; a, b, λ) = Cη(x, y;Ca,Cb, Cλ),

∀C > 0. Therefore it suffices to investigate the case a = 1, b > 0 since ξ(x, y; a, b, 0) =

1
a
ξ(x, y; 1, b

a
, 0). By solving the linear system (3.19), we get ηij(1, b, 0) =

Pij(b)

Q(b)
, i, j =

1, 2, 3, where Pij(b) and Q(b) are polynomials defined as:

P11(b) =2(5(5−
√

15) + 5(17− 4
√

15)b+ (195− 31
√

15)b2 + (240− 38
√

15)b3

+ (195− 31
√

15)b4 + 5(17− 4
√

15)b5 + 5(−5 +
√

15)b6)

P12(b) =20 + (95 + 3
√

15)b+ 180b2 + 14(15−
√

15)b3 + (195− 29
√

15)b4

+ 25(5−
√

15)b5 + 10(5−
√

15)b6

P13(b) =2(5(5 +
√

15) + 5(8 +
√

15)b+ (45 +
√

15)b2 + 30b3 + (45−
√

15)b4

+ 5(8−
√

15)b5 + 5(5−
√

15)b6)

P21(b) =10(5−
√

15) + 25(5−
√

15)b+ (195− 29
√

15)b2 + 14(15−
√

15)b3

+ 180b4 + (95 + 3
√

15)b5 + 20b6

P22(b) =20 + 95b+ 198b2 + 249b3 + 198b4 + 95b5 + 20b6

P23(b) =10(5 +
√

15) + 25(5 +
√

15)b+ (195 + 29
√

15)b2 + 14(15 +
√

15)b3

+ 180b4 + (95− 3
√

15)b5 + 20b6

P31(b) =2(5(5−
√

15) + 5(8−
√

15)b+ (45−
√

15)b2 + 30b3 + (45 +
√

15)b4

+ 5(8 +
√

15)b5 + 5(5 +
√

15)b6)

P32(b) =20 + (95− 3
√

15)b+ 180b2 + 14(15 +
√

15)b3 + (195 + 29
√

15)b4

+ 25(5 +
√

15)b5 + 10(5 +
√

15)b6

P33(b) =2(5(5 +
√

15) + 5(17 + 4
√

15)b+ (195 + 31
√

15)b2 + (240 + 38
√

15)b3

+ (195 + 31
√

15)b4 + 5(17 + 4
√

15)b5 + 5(5 +
√

15)b6)
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Q(b) = 16(1 + b)(5 + 15b+ 27b2 + 31b3 + 27b4 + 15b5 + 5b6)

One can observe that all coefficients in the above polynomials are positive. Therefore,

we have η(r̂α, r̂β; a, b, 0) = 1
a
η(r̂α, r̂β; 1, b

a
, 0) = 1

a

Pα,β(b/a)

Q(b/a)
> 0, for α, β = 1, 2, 3.

Further more, since η(x, y; 1, b, 0) =
∑3

i,j=1 ηij(1, b, 0)`i(x)`j(y) =
∑3
i,j=1 Pij(b)`i(x)`j(y)

Q(b)
,

the values of η at the quadrature points {(−1, r̃α), α = 1, 2, 3, 4} and {(r̃α,−1), α =

1, 2, 3, 4} are also rational functions of b. By direct computation, one can check

that the coefficients of these rational functions are all positive, which implies the

positivity of η(x, y; a, b, 0) at these points. We omit the details of computation since

it is straightforward but lengthy.

Remark 3.3.1. By the Cramer’s rule, we always have ηij(1, b, 0) =
Pij(b)

Q(b)
, where

Pij(b) and Q(b) are polynomials, i, j = 1, 2, . . . , k, for general k. However, Mathe-

matica is unable to afford the symbolic calculation for k > 3. We sample some values

of b and solve the corresponding values of Pi,j(b) and Q(b) numerically. By interpo-

lation, we recover the expressions of Pi,j(b) and Q(b), and find that all coefficients

of them are nonnegative for k = 4. Unfortunately, even numerical computation are

difficult for the case k ≥ 5.

Based on the lemma above, if we assume the positivity of the inflow conditions

u(x−
i− 1

2

, y) and u(x, y−
j− 1

2

), we can prove the positivity of ūi,j by taking the test func-

tion w = ξ (extend ξ = 0 outside Ki,j) in the scheme (3.18) and using the fact that

the source term f and coefficients a, b are positive. We can therefore obtain the

result for the positivity-preserving property of the scheme (3.18) as follows.

Theorem 3.3.2. For the constant coefficient stationary hyperbolic equation (3.3),

if the source term and inflow conditions from upstream cells (including the inflow

conditions on inflow boundary cells) are positive, then the cell averages of the scheme

(3.18) are positive for the Q1, Q2-DG schemes with λ ≥ 0, and Q3-DG scheme with
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λ = 0.

Though we are not able to give rigorous proofs for the positivity-preserving prop-

erty of the scheme (3.18) with k = 3, λ > 0 or k > 3, λ ≥ 0 due to the difficulty

of symbolically solving the large linear system (3.19), we can still investigate these

cases numerically.

For any given values of a, b, λ, we can always solve for {ηij}ki,j=1 numerically

from the linear system (3.19) to obtain the values of η at the quadrature points

{(r̂α, r̂β)}kα,β=1, {(−1, r̃α)}k+1
α=1 and {(r̃α,−1)}k+1

α=1 used on the right hand side of (3.18).

The scheme is positivity-preserving if η is positive at all these quadrature points.

Moreover, we can take advantage of the relationship η(x, y; a, b, λ) = Cη(x, y;Ca,Cb, Cλ),

∀C > 0, to reduce the computation. If λ ≥ max{a, b}, we use η(x, y; a, b, λ) =

1
λ
η(x, y; a

λ
, b
λ
, 1); otherwise we assume a ≥ max{b, λ} without loss of generality and

use η(x, y; a, b, λ) = 1
a
η(x, y; 1, b

a
, λ
a
). Therefore, we only need to numerically investi-

gate the positivity of η in the two cases 0 ≤ a, b ≤ 1, λ = 1 and a = 1, 0 ≤ b, λ ≤ 1.

We define

η1(k) = min
0≤a,b≤1

min
1≤α≤k+1

{η(−1, r̃α; a, b, 1), η(r̃α,−1; a, b, 1)},

η2(k) = min
0≤b,λ≤1

min
1≤α≤k+1

{η(−1, r̃α; 1, b, λ), η(r̃α,−1; 1, b, λ)},

η3(k) = min
0≤a,b≤1

min
1≤α,β≤k

η(r̂α, r̂β; a, b, 1),

η4(k) = min
0≤b,λ≤1

min
1≤α,β≤k

η(r̂α, r̂β; 1, b, λ),

and equally space 1000 × 1000 points of (a, b) or (b, λ) on [0, 1] × [0, 1] to ap-

proximate min0≤a,b≤1 and min0≤b,λ≤1, and give the approximate values η̃i(k), i =

1, 2, 3, 4 in Table 3.1 and Table 3.2 for odd and even k, respectively. From the

tables, we can observe that the minimum value of η at the quadrature points is
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zero (machine epsilon) on boundaries when k is even, and strictly positive in all

other cases. Moreover, we visualize a particular case λ = 0, and plot hk1(b) =

min1≤α≤k+1{η(−1, r̃α; 1, b, 0), η(r̃α,−1; 1, b, 0)}, hk2(b) = min1≤α,β≤k η(r̂α, r̂β; 1, b, 0) for

b ∈ [0, 1] in the Figure 3.1, from which we can observe the same pattern as shown in

the tables.

k 3 5 7 9 11 13
η̃1 4.75E-02 4.59E-02 4.65E-02 4.73E-02 4.80E-02 4.86E-02
η̃2 4.75E-02 4.59E-02 4.65E-02 4.73E-02 4.80E-02 4.86E-02
η̃3 5.67E-02 5.17E-02 5.01E-02 4.93E-02 4.90E-02 4.88E-02
η̃4 5.67E-02 5.17E-02 5.01E-02 4.93E-02 4.90E-02 4.88E-02
k 15 17 19 - - -
η̃1 4.91E-02 4.93E-02 4.92E-02 - - -
η̃2 4.91E-02 4.93E-02 4.92E-02 - - -
η̃3 4.86E-02 4.85E-02 4.85E-02 - - -
η̃4 4.86E-02 4.85E-02 4.85E-02 - - -

Table 3.1: η̃i(k), i = 1, 2, 3, 4 with odd k

k 4 6 8 10 12 14
η̃1 -1.11E-15 -1.78E-15 -2.66E-15 -4.44E-15 -5.33E-15 -3.02E-14
η̃2 -2.22E-16 -2.78E-16 -3.89E-16 -2.36E-16 -4.72E-16 -1.05E-15
η̃3 5.98E-02 5.64E-02 5.51E-02 5.44E-02 5.40E-02 5.37E-02
η̃4 5.98E-02 5.64E-02 5.51E-02 5.44E-02 5.40E-02 5.37E-02
k 16 18 20 - - -
η̃1 -2.84E-14 -5.68E-14 -3.20E-14 - - -
η̃2 -7.77E-16 -1.16E-15 -7.22E-16 - - -
η̃3 5.33E-02 5.29E-02 5.27E-02 - - -
η̃4 5.33E-02 5.29E-02 5.27E-02 - - -

Table 3.2: η̃i(k), i = 1, 2, 3, 4 with even k
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Figure 3.1: hk1(b) and hk2(b) for different k, 1000 points equally spaced on [0, 1]
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3.3.3 Constant coefficient stationary hyperbolic equation in

three space dimensions

Consider the constant coefficient stationary hyperbolic equation (3.4) with f(x, y, z) ≥

0 in Ω. Without loss of generality, we assume a, b, c > 0. The corresponding

boundary conditions are given by u(0, y, z) = g1(y, z), u(x, 0, z) = g2(x, z) and

u(x, y, 0) = g3(x, y), where g1, g2, g3 ≥ 0.

The positivity-preserving Qk-DG scheme of (3.4) is to seek u ∈ V k
h , where k is

odd, s.t. ∀w ∈ V k
h

−∼
∫ x

i+ 1
2

x
i− 1

2

∼
∫ y

j+ 1
2

y
j− 1

2

∼
∫ z

l+ 1
2

z
l− 1

2

(auwx + buwy + cuwz − λuw) dxdydz

+

∫ y
j+ 1

2

y
j− 1

2

∫ z
l+ 1

2

z
l− 1

2

au(x−
i+ 1

2

, y, z)w(x−
i+ 1

2

, y, z)dydz

+

∫ x
i+ 1

2

x
i− 1

2

∫ z
l+ 1

2

z
l− 1

2

bu(x, y−
j+ 1

2

, z)w(x, y−
j+ 1

2

, z)dxdz

+

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

cu(x, y, z−
l+ 1

2

)w(x, y, z−
l+ 1

2

)dxdy

=

∫ y
j+ 1

2

y
j− 1

2

∫ z
l+ 1

2

z
l− 1

2

au(x−
i− 1

2

, y, z)w(x+
i− 1

2

, y, z)dydz

+

∫ x
i+ 1

2

x
i− 1

2

∫ z
l+ 1

2

z
l− 1

2

bu(x, y−
j− 1

2

, z)w(x, y+
j− 1

2

, z)dxdz

+

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

cu(x, y, z−
l− 1

2

)w(x, y, z+
l− 1

2

)dxdy

+∼
∫ x

i+ 1
2

x
i− 1

2

∼
∫ y

j+ 1
2

y
j− 1

2

∼
∫ z

l+ 1
2

z
l− 1

2

fwdxdydz,

(3.21)

for i = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz. If xi− 1
2

= 0, we let u(x−
i− 1

2

, y, z) =

g1(y, z), similarly, if yj− 1
2

= 0 or zl− 1
2

= 0, we let u(x, y−
j− 1

2

, z) = g2(x, z) or

u(x, y, z−
l− 1

2

) = g3(x, y), respectively. The sub-optimal convergence is observed in
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numerical experiments due to the inaccurate quadrature rule adopted in the scheme.

Without loss of generality, we only consider the scheme (3.21) on the reference

cell K = [−1, 1]3, as any cell Ki,j,l can be transferred to K by changing of coordinates

with only rescales a, b, c, λ, f without altering their signs. We give the main results

as follows.

Lemma 3.3.3. Define ξ(x, y, z; a, b, c, λ) = (1 − x)(1 − y)(1 − z)η(x, y, z; a, b, c, λ),

where η(x, y, z; a, b, c, λ) =
∑k

i,j,l=1 ηijl(a, b, c, λ)`i(x)`j(y)`l(z), and {ηijl(a, b, c, λ)}ki,j,l=1

is the solution of the linear system

k∑
i,j,l=1

(a ((1− r̂α)(1− r̂β)(1− r̂γ)`′i(xα)δβ,jδγ,l − (1− r̂β)(1− r̂γ)δα,iδβ,jδγ,l)

+ b
(
(1− r̂α)(1− r̂β)(1− r̂γ)`′j(xβ)δα,iδγ,l − (1− r̂α)(1− r̂γ)δα,iδβ,jδγ,l

)
+ c ((1− r̂α)(1− r̂β)(1− r̂γ)`′l(xγ)δα,iδβ,j − (1− r̂α)(1− r̂β)δα,iδβ,jδγ,l)

−λ(1− r̂α)(1− r̂β)(1− r̂γ)δα,iδβ,jδγ,l) ηijl

= −1

8
, α, β, γ = 1, 2, . . . , k,

(3.22)

then ξ(x, y, z; a, b, c, λ) ∈ Qk([−1, 1]3) satisfies

−∼
∫ 1

−1

∼
∫ 1

−1

∼
∫ 1

−1

(avξx + bvξy + cvξz − λvξ) dxdydz

+

∫ 1

−1

∫ 1

−1

av(1, y, z)ξ(1, y, z)dydz +

∫ 1

−1

∫ 1

−1

bv(x, 1, z)ξ(x, 1, z)dxdz

+

∫ 1

−1

∫ 1

−1

cv(x, y, 1)ξ(x, y, 1)dxdy =
1

8

∫ 1

−1

∫ 1

−1

∫ 1

−1

vdxdy,

(3.23)

for any v ∈ Qk([−1, 1]3).

Moreover, for k = 1, we have ξ(x, y, z; a, b, c, λ) ≥ 0 for (x, y) ∈ [−1, 1]3.

Proof. By definition of ξ(x, y, z), we can compute that ξx(x, y, z) = (1−x)(1−y)(1−
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z)
∑k

i,j,l=1 ηijl`
′
i(x)`j(y)`l(z) − (1 − y)(1 − z)

∑k
i,j,l=1 ηijl`i(x)`j(y)`l(z), ξy(x, y, z) =

(1−x)(1−y)(1−z)
∑k

i,j,l=1 ηijl`i(x)`′j(y)`l(z)−(1−x)(1−z)
∑k

i,j,l=1 ηijl`i(x)`j(y)`l(z),

and ξz(x, y, z) = (1 − x)(1 − y)(1 − z)
∑k

i,j,l=1 ηijl `i(x)`j(y)`′l(z) − (1 − x)(1 −

y)
∑k

i,j,l=1 ηijl`i(x)`j(y)`l(z), thereby it is easy to check that {ηijl}ki,j,l=1 is the so-

lution of the linear system (3.22) if and only if ξ satisfies

aξx(r̂α, r̂β, r̂γ)+bξy(r̂α, r̂β, r̂γ)+cξz(r̂α, r̂β, r̂γ)−λξ(r̂α, r̂β, r̂γ) = −1

8
, α, β, γ = 1, 2, . . . , k.

Moreover, ξ(1, y, z) = ξ(x, 1, z) = ξ(x, y, 1) = 0 from the definition. Therefore, it

follows from direct computation that (3.23) holds. When k = 1, we can solve ξ from

(3.22) to obtain ξ(x, y, z) = 1
8(a+b+c+λ)

(1− x)(1− y)(1− z) ≥ 0 in [−1, 1]3.

Based on the above lemma, we can obtain the result for the positivity-preserving

property of the scheme (3.21) as follows.

Theorem 3.3.4. For the constant coefficient stationary hyperbolic equation (3.4),

if the source term and inflow conditions from upstream cells (including the inflow

conditions on inflow boundary cells) are positive, then the cell averages of the scheme

(3.21) are positive for the Q1-DG scheme.

We are of course not satisfied with only Q1-DG positivity-preserving scheme,

which has first order convergence rate by numerical experiments. Similar to the

two dimensional case, we numerically investigate the positivity of η(x, y, z) at the

quadrature points used on the right hand side of (3.21) for larger k. It suffices to

consider two cases: 0 ≤ a, b, c ≤ 1, λ = 1 and a = 1, 0 ≤ b, c, λ ≤ 1 because of the

property ξ(x, y, z; a, b, c, λ) = Cξ(x, y, z;Ca,Cb, Cc, Cλ),∀C > 0 and the symmetry

in x, y, z directions.
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We define

η1(k) = min
0≤a,b,c≤1

min
1≤α,β≤k+1

{η(−1, r̂α, r̂β; a, b, c, 1), η(r̂α,−1, r̂β; a, b, c, 1),

η(r̂α, r̂β,−1; a, b, c, 1)},

η2(k) = min
0≤b,c,λ≤1

min
1≤α,β≤k+1

{η(−1, r̂α, r̂β; 1, b, c, λ), η(r̂α,−1, r̂β; 1, b, c, λ),

η(r̂α, r̂β,−1; 1, b, c, λ)},

η3(k) = min
0≤a,b,c≤1

min
1≤α,β,γ≤k

η(r̂α, r̂β, r̂γ; a, b, c, 1),

η4(k) = min
0≤b,c,λ≤1

min
1≤α,β,γ≤k

η(r̂α, r̂β, r̂γ; 1, b, c, λ)

and equally space 100 × 100 × 100 points for k = 2, 3, 4, 30 × 30 × 30 points for

k = 5, 6, . . . , 10, of (a, b, c) or (b, c, λ) on [0, 1]3 to approximate min0≤a,b,c≤1 and

min0≤b,c,λ≤1. We give the approximate values η̃i(k), i = 1, 2, 3, 4 in Table 3.3. From

the table, we can observe that the minimum value of η at quadrature points is

negative on boundaries when k is even, and strictly positive in all other cases, which

suggest that we should use odd k for the purpose of positivity-preserving.

k 2 3 4 5 6 7
η̃1 -4.44E-16 1.04E-02 -4.00E-15 9.75E-03 -1.60E-14 1.00E-02
η̃2 -3.97E-06 1.04E-02 -1.63E-03 9.75E-03 -6.15E-03 1.00E-02
η̃3 2.61E-02 1.39E-02 1.61E-02 1.20E-02 1.43E-02 1.14E-02
η̃4 2.61E-02 1.39E-02 1.61E-02 1.20E-02 1.43E-02 1.14E-02
k 8 9 10 - - -
η̃1 -1.70E-03 1.04E-02 -6.05E-03 - - -
η̃2 -1.25E-02 1.04E-02 -2.01E-02 - - -
η̃3 1.38E-02 1.18E-02 1.36E-02 - - -
η̃4 1.38E-02 1.18E-02 1.36E-02 - - -

Table 3.3: η̃i(k), i = 1, 2, 3, 4
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3.4 Implementation of the algorithms

In this section, we summarize the results obtained in the previous sections and

illustrate the implementation of the positivity-preserving algorithms.

Firstly, we introduce a robust version of the positivity-preserving limiter (3.5)

used in practice. We set a small threshold ε > 0, e.g. ε = 10−14, and denote by S the

set of points where we want to preserve the positivity of function values. The set S

must include the quadrature points used on the inflow boundaries in the schemes for

the purpose of positivity-preserving. To be more precise, S must include the point

xi+ 1
2

on Ii in one space dimension, the points {(xi+ 1
2
, ỹα)}k+1

α=1, {(x̃α, yj+ 1
2
)}k+1
α=1 on Ki,j

in two space dimensions, and the points {(xi+ 1
2
, ỹα, z̃β)}k+1

α,β=1, {(x̃α, yj+ 1
2
, z̃β)}k+1

α,β=1,

{(x̃α, ỹβ, zl+ 1
2
)}k+1
α,β=1 on Ki,j,l in three space dimensions, where x̃α = xi + 1

2
∆xir̃α,

ỹα = yj + 1
2
∆yj r̃α, z̃α = zl +

1
2
∆zlr̃α, α = 1, 2, . . . , k+ 1 are the (k+ 1)-point Gauss-

Legendre quadrature points in different directions. On a cell K with the cell average

ūK ≥ 0, if ūK ≤ ε, we take the modified solution ũK(x) ≡ ūK , otherwise, we take

the modified solution as

ũK(x) = θ (uK(x)− ūK) + ūK ,where θ = min{ ūK − ε
ūK −minx∈S uK(x)

, 1}, (3.24)

where x denotes the coordinates in one, two or three space dimensions.

In one dimensional space, we compute the solution ui on cell Ii based on the

solution ũi−1 with ũi−1(x) ≥ 0, x ∈ S. Once ui is obtained from the scheme with

ūi ≥ 0, we apply the above limiter to obtain a modified solution ũi, which will be

used in the computation on the next cell.
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Similarly, in two dimensional space, we compute the solution ui,j on cell Ki,j

based on the solution ũi−1,j, ũi,j−1 with ũi−1,j(x, y), ũi,j−1(x, y) ≥ 0, (x, y) ∈ S. Once

ui,j is obtained, we apply the above limiter to obtain the modified solution ũi,j,

which will be used in later computations. In three dimensional space, we com-

pute the solution ui,j,l on cell Ki,j,l based on the solution ũi−1,j,l, ũi,j−1,l, ũi,j,l−1 with

ũi−1,j,l(x, y, z), ũi,j−1,l(x, y, z), ũi,j,l−1(x, y, z) ≥ 0, (x, y, z) ∈ S. Once ui,j,l is obtained,

we apply the above limiter to obtain the modified solution ũi,j,l and use it in the later

computations.

We would like to remark that, under certain mesh size conditions, the positivity

of the solution at the interfaces x−
j+ 1

2

, j = 1, 2, . . . , N in one dimensional space is

automatically maintained even without the positivity-preserving limiter, i.e. u−
j+ 1

2

≥

0, j = 1, 2, . . . , N provided f, u0 ≥ 0. This fact allows us to apply the positivity-

preserving limiter simultaneously for all cells after the DG solution has been obtained

for all cells. The detailed theorem and its proof are given in Appendix B.1.

3.5 Numerical tests

In this section, we perform numerical experiments to show the good performance of

the positivity-preserving methods established in the previous sections. Many of the

examples are taken from [90, 46, 91]. We take the set S in the positivity-preserving

limiter of the Section 3.4 as the union of the necessary points introduced therein

and 100 equally spaced points on 1D cells, or 50 × 50 equally spaced points on 2D

cells, or 20× 20× 20 equally spaced points on 3D cells. If not otherwise stated, we

use uniform meshes with mesh sizes satisfying the conditions of positivity-preserving

established in the previous sections.
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Example 3.5.1. We solve the equation (3.1) with a(x) = 1
2+sin(4πx)

, λ = 0 and

f(x) = x2 on the domain Ω = [0, 1]. The boundary condition is given by u(0) = 0

and the exact solution is u(x) = 2
3
x3 + 1

3
sin(4πx)x3. We compute the solution based

on the positivity-preserving scheme (3.8) and give the errors, order of convergence,

and data about positivity in Tables 3.4 and 3.5 for the cases without and with the

limiter, respectively. From the tables, we can see that the orders of convergence are

optimal, and the negative values of the solution of the scheme without limiter are

eliminated by the positivity-preserving limiter.

k N L1 error order L∞ error order minuh
1 20 1.78E-03 - 2.89E-02 - -8.71E-06

40 4.41E-04 2.01 7.27E-03 1.99 -5.96E-07
80 1.10E-04 2.00 1.83E-03 1.99 -3.81E-08
160 2.75E-05 2.00 4.57E-04 2.00 -2.39E-09
320 6.88E-06 2.00 1.14E-04 2.00 -1.50E-10

2 20 8.34E-05 - 1.53E-03 - -3.46E-06
40 1.06E-05 2.98 2.10E-04 2.86 -4.17E-07
80 1.32E-06 3.01 2.91E-05 2.85 -5.24E-08
160 1.64E-07 3.00 3.81E-06 2.93 -6.63E-09
320 2.05E-08 3.00 4.86E-07 2.97 -8.38E-10

3 20 4.42E-06 - 1.15E-04 - -9.64E-07
40 2.76E-07 4.00 7.31E-06 3.98 -7.63E-08
80 1.72E-08 4.01 4.57E-07 4.00 -5.03E-09
160 1.07E-09 4.00 2.86E-08 4.00 -3.18E-10
320 6.70E-11 4.00 1.79E-09 4.00 -2.00E-11

4 20 1.36E-07 - 3.41E-06 - -6.96E-08
40 4.23E-09 5.01 1.09E-07 4.97 -1.14E-09
80 1.34E-10 4.98 3.39E-09 5.00 -1.80E-11
160 4.17E-12 5.00 1.06E-10 5.00 -2.81E-13
320 1.30E-13 5.00 3.32E-12 5.00 -4.40E-15

Table 3.4: Results of Example 3.5.1 without limiter

Example 3.5.2. We solve the equation (3.1) with a(x) = 1, λ = 6000 and f(x) =

λ
(

1
9

cos4(x) + ε
)
− 4

9
cos3(x) sin(x) on the domain Ω = [0, π]. We take ε = 10−14 such

that the source term is nonnegative. The boundary condition is given by u(0) = 1
9

+ ε

and the exact solution is u(x) = 1
9

cos4(x) + ε. This example has been tested in



100

k N L1 error order L∞ error order Limited cells (%)
1 20 1.78E-03 - 2.89E-02 - 5.00

40 4.41E-04 2.01 7.27E-03 1.99 2.50
80 1.10E-04 2.00 1.83E-03 1.99 1.25
160 2.75E-05 2.00 4.57E-04 2.00 0.63
320 6.88E-06 2.00 1.14E-04 2.00 0.31

2 20 8.41E-05 - 1.52E-03 - 5.00
40 1.07E-05 2.97 2.10E-04 2.85 2.50
80 1.34E-06 3.00 2.92E-05 2.85 1.25
160 1.67E-07 3.00 3.82E-06 2.93 0.63
320 2.09E-08 3.00 4.88E-07 2.97 0.31

3 20 5.45E-06 - 1.13E-04 - 5.00
40 3.84E-07 3.83 7.17E-06 3.98 2.50
80 2.52E-08 3.93 4.46E-07 4.01 1.25
160 1.61E-09 3.97 2.79E-08 4.00 0.63
320 1.02E-10 3.99 1.74E-09 4.00 0.31

4 20 2.35E-07 - 3.50E-06 - 5.00
40 5.81E-09 5.33 1.10E-07 4.99 2.50
80 1.54E-10 5.23 3.42E-09 5.01 1.25
160 4.44E-12 5.12 1.07E-10 5.00 0.63
320 1.47E-13 4.92 3.34E-12 5.00 0.31

Table 3.5: Results of Example 3.5.1 with limiter
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[46] with a rigorously proved high order conservative positivity-preserving method.

However, since the inaccurate integral is adopted in our scheme, the results of our

algorithm will be different. We collect the numerical errors, orders of convergence,

and data about positivity in Tables 3.6 and 3.7 for the schemes (3.8) without and

with the limiter, respectively, from which we can observe the optimal convergence,

and the negative values of the solution being eliminated by the positivity-preserving

limiter.

k N L1 error order L∞ error order minuh
1 20 2.14E-03 - 2.64E-03 - -1.33E-03

40 4.66E-04 2.20 6.76E-04 1.96 -2.90E-04
80 7.94E-05 2.55 1.70E-04 2.00 -4.34E-05
160 1.15E-05 2.78 4.21E-05 2.01 -1.41E-06
320 2.41E-06 2.26 1.04E-05 2.02 -1.20E-10
640 5.94E-07 2.02 2.51E-06 2.05 -1.66E-11

2 20 3.40E-04 - 4.59E-04 - -2.68E-04
40 6.79E-05 2.32 1.04E-04 2.15 -4.43E-05
80 1.00E-05 2.76 1.86E-05 2.48 -8.12E-08
160 1.25E-06 3.00 2.12E-06 3.13 -3.03E-07
320 9.42E-08 3.72 1.55E-07 3.78 -8.65E-09
640 6.07E-09 3.96 9.80E-09 3.98 -1.52E-10

Table 3.6: Results of Example 3.5.2 without limiter

k N L1 error order L∞ error order Limited cells (%)
1 20 1.20E-03 - 2.64E-03 - 10.00

40 2.97E-04 2.02 6.76E-04 1.96 5.00
80 6.59E-05 2.17 1.70E-04 2.00 2.50
160 1.14E-05 2.53 4.21E-05 2.01 1.25
320 2.41E-06 2.24 1.04E-05 2.02 0.31
640 5.94E-07 2.02 2.51E-06 2.05 0.16

2 20 2.41E-04 - 4.59E-04 - 15.00
40 5.56E-05 2.11 1.04E-04 2.15 7.50
80 9.98E-06 2.48 1.86E-05 2.48 2.50
160 1.24E-06 3.01 2.12E-06 3.13 1.88
320 9.41E-08 3.72 1.55E-07 3.78 0.94
640 6.07E-09 3.95 9.80E-09 3.98 0.31

Table 3.7: Results of Example 3.5.2 with limiter
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Example 3.5.3. We solve the equation (3.1) with a(x) = 1 + x, λ = 10000 and

f(x) = (λ+ 1)
(

1
9

cos4(x) + ε
)
− (1 + x)

(
4
9

cos3(x) sin(x)
)

on the domain Ω = [0, 2π].

We take ε = 2 × 10−14 such that the source term is nonnegative. The boundary

condition is given by u(0) = 1
9

+ ε and the exact solution is u(x) = 1
9

cos4(x) + ε. We

compute the solution using the scheme (3.8) and give the numerical errors, orders

of convergence, and data about positivity in Tables 3.8 and 3.9 for the case without

and with the limiter, respectively. From the tables, we can see that the orders of

convergence are optimal, and that negative values appear without limiter and the

positivity is maintained under the modification of the limiter.

k N L1 error order L∞ error order minuh
1 20 8.35E-03 - 1.07E-02 - -3.03E-03

40 1.76E-03 2.25 2.83E-03 1.93 -5.01E-04
80 4.10E-04 2.10 7.02E-04 2.01 -1.10E-04
160 9.38E-05 2.13 1.73E-04 2.02 -1.60E-05
320 2.15E-05 2.13 4.28E-05 2.02 -4.49E-07
640 5.19E-06 2.05 1.05E-05 2.02 -3.21E-10

2 20 1.62E-03 - 1.26E-03 - -4.51E-04
40 3.73E-04 2.11 2.89E-04 2.12 -1.03E-04
80 7.96E-05 2.23 7.02E-05 2.04 -1.62E-05
160 1.29E-05 2.62 1.32E-05 2.41 -1.19E-06
320 1.35E-06 3.26 1.85E-06 2.83 -1.45E-07
640 1.03E-07 3.71 1.66E-07 3.48 -3.78E-09

Table 3.8: Results of Example 3.5.3 without limiter

Example 3.5.4. We solve the equation (3.2) with a(u) = u2+0.01, λ = 5 and f(x) =

−8 sin(x) cos7(x) (3(cos8(x) + ε)2 + 0.01) + λ (cos8(x) + ε) on the domain Ω = [0, π].

We take ε = 10−14 such that the source term is nonnegative. The boundary condition

is given by u(0) = 1 + ε and the exact solution is u(x) = cos8(x) + ε. We give the

errors, orders of convergence, and data about positivity in Tables 3.10 and 3.11 for

the scheme (3.12) with k = 1 and scheme (3.13) with k = 2 in the case without and

with the limiter, respectively, with the same conclusion about accuracy and positivity-

preserving as before.
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k N L1 error order L∞ error order Limited cells (%)
1 20 6.44E-03 - 1.07E-02 - 10.00

40 1.53E-03 2.08 2.83E-03 1.93 5.00
80 3.75E-04 2.03 7.02E-04 2.01 3.75
160 9.12E-05 2.04 1.73E-04 2.02 1.88
320 2.15E-05 2.09 4.28E-05 2.02 0.94
640 5.19E-06 2.05 1.05E-05 2.02 0.31

2 20 1.44E-03 - 1.37E-03 - 20.00
40 3.36E-04 2.10 3.25E-04 2.07 10.00
80 7.62E-05 2.14 7.37E-05 2.14 6.25
160 1.29E-05 2.56 1.32E-05 2.49 3.13
320 1.35E-06 3.26 1.85E-06 2.83 1.56
640 1.03E-07 3.71 1.66E-07 3.48 0.78

Table 3.9: Results of Example 3.5.3 with limiter

k N L1 error order L∞ error order minuh
1 20 1.20E-01 - 1.28E-01 - -1.17E-01

40 8.11E-03 3.89 1.86E-02 2.78 -2.97E-03
80 1.55E-03 2.39 4.39E-03 2.08 -2.03E-07
160 3.87E-04 2.01 1.09E-03 2.02 -1.04E-13
320 9.66E-05 2.00 2.71E-04 2.00 8.96E-15
640 2.41E-05 2.00 6.76E-05 2.00 9.86E-15

2 20 8.56E-02 - 1.76E-01 - -7.20E-02
40 1.16E-02 2.88 4.47E-02 1.98 -1.44E-02
80 9.28E-04 3.65 4.78E-03 3.22 -9.60E-05
160 8.20E-05 3.50 4.31E-04 3.47 -4.44E-09
320 8.27E-06 3.31 4.41E-05 3.29 -7.82E-14
640 9.25E-07 3.16 4.89E-06 3.17 9.98E-15

Table 3.10: Results of Example 3.5.4 without limiter
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k N L1 error order L∞ error order Limited cells (%)
1 20 3.85E-02 - 1.28E-01 - 15.00

40 7.02E-03 2.46 1.86E-02 2.78 12.50
80 1.55E-03 2.18 4.39E-03 2.08 3.75
160 3.87E-04 2.01 1.09E-03 2.02 1.25
320 9.66E-05 2.00 2.71E-04 2.00 0.00
640 2.41E-05 2.00 6.76E-05 2.00 0.00

2 20 1.89E-02 - 7.65E-02 - 50.00
40 6.35E-03 1.58 4.26E-02 0.85 37.50
80 9.15E-04 2.80 4.78E-03 3.15 18.75
160 8.20E-05 3.48 4.31E-04 3.47 6.25
320 8.27E-06 3.31 4.41E-05 3.29 1.25
640 9.25E-07 3.16 4.89E-06 3.17 0.00

Table 3.11: Results of Example 3.5.4 with limiter

Example 3.5.5. We solve the equation (3.3) with a = 0.7, b = 0.3, λ = 1.0 and

f = 0 on the domain Ω = [0, 1] × [0, 1]. The boundary conditions are given by

u(x, 0) = 0 for 0 ≤ x ≤ 1 and u(0, y) = sin6(πy) for 0 ≤ y ≤ 1. It is easy to check

that the exact solution of the problem is

u(x, y) =


0, y < b

a
x

sin6(π(y − b
a
x))e−

λ
a
x y ≥ b

a
x

We compute the solution based on the scheme (3.18) with k = 1, 2, 3, 4, 5. The errors,

orders of convergence and data about positivity are given in Tables 3.12 and 3.13 for

the cases without and with positivity-preserving limiter, respectively, from which the

sub-optimal convergence can be observed. Moreover, we plot the results of the scheme

with the limiter for k = 1, 2, 3, 4 on the 40× 40 mesh in Figure 3.2, in which we put

white dots on those cells where negative values appear before the limiting process.

Example 3.5.6. We solve the equation (3.3) with a = 0.6, b = 0.4, λ = 0 and

f = 0 on the domain Ω = [0, 1]2. The boundary condition is given by u(x, 0) = 1 for
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k Nx ×Ny L1 error order L∞ error order minuh
1 10× 10 1.87E-02 - 2.96E-01 - -1.01E-01

20× 20 6.04E-03 1.63 1.08E-01 1.46 -6.43E-03
40× 40 2.45E-03 1.30 4.80E-02 1.16 -2.42E-04
80× 80 1.14E-03 1.11 2.36E-02 1.02 -4.50E-06

160× 160 5.56E-04 1.03 1.18E-02 1.00 -7.34E-08
320× 320 2.77E-04 1.01 5.89E-03 0.99 -1.16E-09

2 10× 10 1.70E-03 - 3.97E-02 - -8.78E-03
20× 20 3.77E-04 2.17 1.27E-02 1.65 -2.37E-03
40× 40 9.11E-05 2.05 3.48E-03 1.86 -1.70E-04
80× 80 2.27E-05 2.01 9.17E-04 1.93 -2.53E-06

160× 160 5.68E-06 2.00 2.35E-04 1.97 -1.14E-07
320× 320 1.42E-06 2.00 5.95E-05 1.98 -2.89E-09

3 10× 10 1.45E-04 - 4.56E-03 - -6.59E-04
20× 20 1.49E-05 3.29 4.76E-04 3.26 -4.35E-05
40× 40 1.70E-06 3.13 6.13E-05 2.96 -7.75E-07
80× 80 2.06E-07 3.04 7.78E-06 2.98 -1.22E-08

160× 160 2.56E-08 3.01 9.80E-07 2.99 -1.92E-10
320× 320 3.19E-09 3.00 1.23E-07 2.99 -3.01E-12

4 10× 10 1.23E-05 - 4.28E-04 - -7.15E-05
20× 20 6.95E-07 4.14 3.63E-05 3.56 -2.49E-06
40× 40 4.13E-08 4.07 2.55E-06 3.83 -4.55E-08
80× 80 2.53E-09 4.03 1.68E-07 3.93 -7.49E-10

160× 160 1.57E-10 4.01 1.07E-08 3.97 -1.19E-11
320× 320 9.77E-12 4.00 6.77E-10 3.99 -1.87E-13

Table 3.12: Results of Example 3.5.5 without limiter
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k Nx ×Ny L1 error order L∞ error order Limited cells (%)
1 10× 10 1.98E-02 - 3.17E-01 - 36.00

20× 20 6.13E-03 1.69 1.08E-01 1.56 21.25
40× 40 2.45E-03 1.32 4.80E-02 1.16 14.69
80× 80 1.14E-03 1.11 2.36E-02 1.02 5.27

160× 160 5.56E-04 1.03 1.18E-02 1.00 1.21
320× 320 2.77E-04 1.01 5.89E-03 0.99 0.23

2 10× 10 2.34E-03 - 3.92E-02 - 49.00
20× 20 3.91E-04 2.58 1.27E-02 1.63 37.25
40× 40 9.12E-05 2.10 3.48E-03 1.86 25.50
80× 80 2.27E-05 2.01 9.17E-04 1.93 13.34

160× 160 5.68E-06 2.00 2.35E-04 1.97 6.25
320× 320 1.42E-06 2.00 5.95E-05 1.98 3.43

3 10× 10 2.69E-04 - 5.18E-03 - 27.00
20× 20 1.80E-05 3.90 5.01E-04 3.37 13.25
40× 40 1.72E-06 3.39 6.13E-05 3.03 5.81
80× 80 2.06E-07 3.06 7.78E-06 2.98 3.97

160× 160 2.56E-08 3.01 9.80E-07 2.99 2.95
320× 320 3.19E-09 3.00 1.23E-07 2.99 2.45

4 10× 10 3.29E-05 - 8.94E-04 - 29.00
20× 20 1.01E-06 5.03 3.81E-05 4.55 14.00
40× 40 4.37E-08 4.53 2.55E-06 3.90 9.31
80× 80 2.55E-09 4.10 1.68E-07 3.93 4.20

160× 160 1.57E-10 4.02 1.07E-08 3.97 2.28
320× 320 9.77E-12 4.01 6.77E-10 3.99 1.67

Table 3.13: Results of Example 3.5.5 with limiter



107

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 3.2: Solutions of Example 3.5.5 with limiter
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0 < x ≤ 1 and u(0, y) = 0 for 0 ≤ y ≤ 1. The exact solution of the problem is

u(x, y) =


1, y < b

a
x

0, y ≥ b
a
x

This problem can be interpreted as a two-dimensional radiative transfer model in

transparent medium, see [46]. We plot the contours of the numerical solution solved

from the scheme (3.18) with positivity-preserving limiter for k = 1, 2, 3, 4 on 40× 40

rectangular mesh in Figure 3.3, where white dots are drawn on the cells with negative

values appearing before the limiting process. Moreover, we cut the profile of the

solutions along the line x = 0.5, and compare them with the exact solution and the

numerical solution solved without limiter in Figure 3.4, from which we can clearly

see that the scheme without limiter produces negative values while the positivity of

the solution is maintained with the limiter.

Example 3.5.7. We solve the equation (3.3) with a = 0.6, b = 0.4, λ = 1 and

f = 0 on the domain Ω = [0, 1]2. The boundary condition is given by u(x, 0) = 1 for

0 < x ≤ 1 and u(0, y) = 0 for 0 ≤ y ≤ 1. The exact solution of the problem is

u(x, y) =


e−

λ
b
y, y < b

a
x

0, y ≥ b
a
x

The problem can be viewed as a two-dimensional radiative transfer model in purely

absorbing medium, see [46]. We plot the contour of the numerical solution solved

from the scheme (3.18) with positivity-preserving limiter for k = 1, 2, 3, 4 on 40× 40

rectangular mesh in Figure 3.5, where white dots are drawn on the cells with negative

values appearing before the limiting process. Moreover, we cut the profile of the

solution along the line x = 0.5, and compare them with the exact solutions and the

numerical solutions solved without limiter in Figure 3.6, from which we can see the
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 3.3: Solutions of Example 3.5.6 with limiter
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Figure 3.4: Solutions of Example 3.5.6 cut along x = 0.5
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positivity of solution is attained under the positivity-preserving limiter.

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 3.5: Solutions of Example 3.5.7 with limiter

Example 3.5.8. We consider the time-dependent linear problem ut + ux = 0 on

the domain Ω = [0, 2] with boundary condition u(0) = 0 and discontinuous initial

condition

u0(x) =


1, x ∈ [1

4
, 3

4
]

0, otherwise.

The solution of the problem is u(x, t) = u0(x − t). We use the space-time DG

approach that treats the time as an extra dimension, and solve the problem based

on the scheme (3.3). The mesh is 80 × 40 on the space-time domain Ω × [0, T ].

We plot the numerical solutions at t = 1 and compare it with the exact solution

and the solution solved without limiter in Figure 3.7. From the figures, we can see
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Figure 3.6: Solutions of Example 3.5.7 cut along x = 0.5
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the solutions have negative values without the positivity-preserving limiter, while the

positivity is maintained after the limiting process.
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Figure 3.7: Solutions of Example 3.5.8 at T = 1

Example 3.5.9. We consider the time-dependent linear problem ut+aux+buy+λu =

f with a = 0.7, b = 0.3, λ = 0.5 on the domain Ω = [0, 1]2. The initial condition is

u0(x, y) =


0, y < b

a
x,

sin6(π(y − b
a
x))e−2λx, y ≥ b

a
x.

The exact solution of the problem is u(x, y, t) = u0(x− at, y− bt)e−λt. The boundary

conditions are given according to the exact solution on the inflow boundaries. We

use the space-time DG approach that treats the time as an extra dimension, and

solve the problem based on the scheme (3.4) on the space-time domain Ω × T with
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T = 0.5. The errors, orders of convergence and data about positivity on the whole

space-time domain Ω× [0, T ] are given in Tables 3.14 and 3.15 for the cases without

and with limiter, respectively, from which we can observe sub-optimal convergence

and the positivity of solution being maintained by the positivity-preserving limiter.

k Nx ×Ny ×Nt L1 error order L∞ error order minuh
1 10× 10× 5 1.17E-02 - 8.74E-01 - -4.52E-01

20× 20× 10 4.80E-03 1.29 3.61E-01 1.27 -8.95E-02
40× 40× 20 2.27E-03 1.08 1.87E-01 0.95 -7.47E-03
80× 80× 40 1.12E-03 1.02 9.51E-02 0.98 -2.51E-04

160× 160× 80 5.55E-04 1.01 4.80E-02 0.99 -2.10E-05
320× 320× 160 2.77E-04 1.00 2.41E-02 0.99 -3.49E-06

3 10× 10× 5 1.19E-04 - 1.55E-02 - -2.63E-03
20× 20× 10 1.29E-05 3.20 1.82E-03 3.09 -1.40E-04
40× 40× 20 1.52E-06 3.09 2.27E-04 3.00 -2.63E-06
80× 80× 40 1.86E-07 3.03 2.89E-05 2.98 -4.65E-08

160× 160× 80 2.31E-08 3.01 3.66E-06 2.98 -7.58E-10
320× 320× 160 2.89E-09 3.00 4.61E-07 2.99 -3.68E-11

5 10× 10× 5 8.73E-07 - 1.43E-04 - -5.46E-05
20× 20× 10 2.47E-08 5.14 3.71E-06 5.27 -5.46E-07
40× 40× 20 7.35E-10 5.07 1.14E-07 5.02 -1.11E-08
80× 80× 40 2.25E-11 5.03 3.63E-09 4.98 -2.02E-10

160× 160× 80 7.01E-13 5.01 1.15E-10 4.98 -3.37E-12
320× 320× 160 2.20E-14 4.99 3.62E-12 4.99 -5.44E-14

Table 3.14: Results of Example 3.5.9 without limiter

3.6 Concluding remarks

In this chapter, we have constructed the high order conservative positivity-preserving

DG method for stationary hyperbolic equations, via suitable quadrature rules in the

DG framework.

In one space dimension, we propose the conservative positivity-preserving scheme

with arbitrary high order for the variable coefficient equation (3.1) with λ = 0, and
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k Nx ×Ny L1 error order L∞ error order Limited cells (%)
1 10× 10× 5 1.28E-02 - 7.43E-01 - 78.20

20× 20× 10 5.11E-03 1.33 4.81E-01 0.63 58.20
40× 40× 20 2.29E-03 1.16 1.87E-01 1.36 40.61
80× 80× 40 1.12E-03 1.03 9.51E-02 0.98 29.66

160× 160× 80 5.55E-04 1.01 4.80E-02 0.99 21.89
320× 320× 160 2.77E-04 1.00 2.41E-02 0.99 17.11

3 10× 10× 5 8.84E-04 - 1.02E-01 - 48.40
20× 20× 10 5.36E-05 4.04 1.85E-02 2.46 34.55
40× 40× 20 2.18E-06 4.62 8.90E-04 4.38 25.93
80× 80× 40 1.92E-07 3.51 2.89E-05 4.94 22.40

160× 160× 80 2.32E-08 3.05 3.66E-06 2.98 19.09
320× 320× 160 2.89E-09 3.01 4.61E-07 2.99 16.19

5 10× 10× 5 3.35E-04 - 9.43E-02 - 42.40
20× 20× 10 3.02E-05 3.47 3.03E-02 1.64 33.68
40× 40× 20 1.01E-06 4.90 1.55E-03 4.29 27.34
80× 80× 40 1.28E-08 6.30 3.83E-05 5.34 22.33

160× 160× 80 1.24E-10 6.69 6.96E-07 5.78 18.93
320× 320× 160 1.40E-12 6.47 1.15E-08 5.92 16.36

Table 3.15: Results of Example 3.5.9 with limiter

second and third orders for the variable coefficient equation (3.1) with λ > 0 and

nonlinear equation (3.2) with λ ≥ 0, which is a vast extension of the previous works

in [46, 90] since only constant coefficient equations were addressed therein.

We also propose the conservative positivity-preserving scheme for constant coef-

ficient equations with arbitrary high order in two space dimensions, and arbitrary

odd order in three space dimensions, which improves the existing results in [46, 90]

that are either non-conservative with high order accuracy or conservative with sec-

ond order accuracy. We only give rigorous proofs for limited cases but the results of

numerical experiments in Section 3.3 for general cases are very promising.

Finally, we would like to mention that, even though we have not discussed it

in this chapter, one important application of the positivity-preserving schemes for

stationary hyperbolic equations is to radiative transfer equations. One can refer to
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[46, 90, 91] for details.



Chapter Four

On the conservation property of

positivity-preserving discontinuous

Galerkin methods for stationary

hyperbolic equations
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4.1 Introduction

The hyperbolic balance laws are important tools to investigate the phenomenon of

flow and transport. In one space dimension, the scalar hyperbolic balance law is

typically written in the form of

ut + f(u)x = s, (4.1)

where u is the balanced quantity, f is the flux function, and s is the source term.

In particular, if s = 0, the equation is called a hyperbolic conservation law and u is

the conserved quantity.

Integrated over the spatial interval [x1, x2], the hyperbolic equation (4.1) is trans-

formed to the conservative formulation satisfied by the average of u on [x1, x2]

dū

dt
+

1

∆x
(f(x2)− f(x1)) = s̄, (4.2)

where ∆x = x2 − x1, ū(t) = 1
∆x

∫ x2

x1
u(x, t)dx, f(xi) = f(u(xi, t)), i = 1, 2, and

s̄ = 1
∆x

∫ x2

x1
s(x, t)dx.

Drawn from the formulation (4.2), numerous numerical schemes have been de-

signed for the hyperbolic equation (4.1) in the conservative form

dūj
dt

+
1

∆xj

(
f̂j+ 1

2
− f̂j− 1

2

)
= s̄j, (4.3)

under the partition Ij = [xj− 1
2
, xj+ 1

2
], j = 0,±1,±2, . . . , for space, where ∆xj =

xj+ 1
2
− xj− 1

2
, f̂j± 1

2
are numerical fluxes at xj± 1

2
, ūj and s̄j are cell averages of the

numerical solution and the source term on Ij, respectively.
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Conservation is of great importance for numerical methods for hyperbolic equa-

tions, as it is not only a numerical analogy of the theoretical property of hyperbolic

balance laws, but more importantly also the Lax-Wendroff theorem [39], which can

be briefly stated as follows,

Theorem 4.1.1. Consider a sequence of grids with grid sizes ∆xl,∆tl converging to

zero as l →∞, and a sequence of numerical solutions Ul(x, t), l = 1, 2, . . . computed

from a consistent and conservative scheme for a hyperbolic equation on these grids.

If Ul converges boundedly a.e. to a function u as l → ∞, then u is a weak solution

of the hyperbolic equation.

Roughly speaking, conservative schemes guarantee correct shock speed deter-

mined by the Rankine-Hugoniot jump condition thanks to the mass conservation.

To make it clear, we sum the equation (4.3) over the cells Ij, Ij+1, . . . , Ij+r to obtain

the equation

d

dt

∫ x
j+r+ 1

2

x
j− 1

2

udx+
(
f̂j+r+ 1

2
− f̂j− 1

2

)
=

∫ x
j+r+ 1

2

x
j− 1

2

sdx, (4.4)

which enforces the correct speed of the shock (if there is a shock in the interval

[xj− 1
2
, xj+r+ 1

2
]) since the total mass

∫ x
j+r+ 1

2
x
j− 1

2

udx depends on the shock location. On

the other hand, non-conservative schemes could produce shocks with totally wrong

speed and converge to a spurious solution. A well-known example [41] is the Burgers’

equation in the non-conservative form ut+uux = 0 discretized by a natural upwinding

finite difference scheme un+1
j = unj − ∆t

∆x
unj
(
unj − unj−1

)
with the initial condition u0

j =

1(j < 0), where 1(·) is the indicator function. It’s easy to check that unj ≡ u0
j ,∀n for

the scheme, which is wrong as the physical solution u(x, t) with the initial condition

u0(x) = 1(x < 0) is u(x, t) = u0(x− 1
2
t). For deeper discussions about conservative

schemes and their significance for time-dependent hyperbolic equations, one can refer
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to Chapter 12 in the monograph [41].

The discontinuous Galerkin (DG) method is one of the most popular numerical

methods solving hyperbolic equations for its advantages in geometric flexibility, local

mass conservation, easiness of parallelization and high order accuracy. The DG

method was first proposed in 1973 by Reed et al. [62] to compute the stationary

linear transport equation, and first analyzed by Lesaint et al. [40] in 1974. It was

later developed into the Runge-Kutta discontinuous Galerkin (RKDG) method in a

series of papers by Cockburn et al. [17, 16, 14, 13, 18] for time-dependent nonlinear

hyperbolic problems. The classic DG scheme for the hyperbolic equation (4.1) is to

find u ∈ V , such that

∫ x
j+ 1

2

x
j− 1

2

utvdx−
∫ x

j+ 1
2

x
j− 1

2

f(u)vxdx+ f̂j+ 1
2
v−
j+ 1

2

− f̂j− 1
2
v+
j− 1

2

=

∫ x
j+ 1

2

x
j− 1

2

svdx, ∀v ∈ V,

(4.5)

for all j, where V is a piecewise polynomial space and v±
j+ 1

2

= limε→0+ v(xj+ 1
2
± ε)

denote the right and left limits of v at xj+ 1
2
. Taking v = 1 on Ij and zero anywhere

else in (4.5), we recover the conservative formulation (4.3) satisfied by cell averages.

Therefore, the unmodulated DG scheme is conservative for hyperbolic equations.

However, conservation is not the only issue we need to consider for numerical

schemes. It is well-known that the scalar hyperbolic conservation laws satisfy the

maximum-principle, e.g. its physical solution satisfies m ≤ u(x, t) ≤M, ∀x ∈ R, t >

0, where m = minx∈R u(x, 0) and M = maxx∈R u(x, 0). These results hold also for

periodic boundary condition and for compactly supported solutions, as well as in

higher dimensions. If m = 0, the property is also called positivity-preserving. For

the hyperbolic balance law (4.1) with s ≥ 0, the solution is positivity-preserving,

provided the initial condition and inflow boundary conditions are nonnegative. It is

important to keep the positivity/maximum-principle, besides mass conservation, in
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numerical schemes, otherwise the numerical solution is not only physically unaccept-

able, but also may cause severe robustness issues due to the change of hyperbolicity,

or when coupled with other physical systems.

There have been intensive studies on positivity-preserving and maximum-principle-

satisfying methods. The genuinely high order maximum-principle-satisfying DG

method was proposed in 2010 by Zhang et al. [93] for scalar hyperbolic equations,

and is rapidly developed for different problems ever since, e.g. for the Euler equa-

tions [94, 95], Navier-Stokes equations [92], shallow water equations [82], convection-

diffusion equations [96, 11], and fluid flow in porous media [29, 12, 88, 28], among

others.

The framework of the positivity-preserving DG methods is composed of two parts.

The first part is problem-dependent, which is to obtain the solution with provable

nonnegative cell averages, probably under certain mesh-size conditions, from the un-

modulated DG scheme. Once the cell averages are guaranteed nonnegative, a scaling

limiter, which preserves cell averages and does not destroy the original accuracy of

the solution [93], [92], is employed such that the entire solution is modified into non-

negative. It is of great importance for the scaling limiter to preserve cell averages

for time-dependent problems. We explain the significance of this principle by an ex-

ample of the positivity-preserving DG method for (4.1) based on the forward Euler

or backward Euler time discretization. The equation satisfied by the cell average of

the solution on Ij is given as follows

ūn+1
j − ūnj

∆t
+

1

∆xj

(
f̂m
j+ 1

2
− f̂m

j− 1
2

)
= s̄mj , (4.6)

where n denotes the time level tn and m is taken as n or n+1 in the forward-Euler or

backward-Euler time discretization, respectively. We denote the modified solution by
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ũ to distinguish it from the unmodulated solution u. Since ¯̃unj = ūnj and ¯̃un+1
j = ūn+1

j

from the property of the limiter, we have the same equation satisfied by the modified

solution:
¯̃un+1
j − ¯̃unj

∆t
+

1

∆xj

(
f̂m
j+ 1

2
− f̂m

j− 1
2

)
= s̄mj . (4.7)

Thus the Lax-Wendroff theorem and a discrete analogy of (4.4) are satisfied by the

modified solution ũ as well, which guarantees the numerical solution (if it converges)

converging to a weak solution with the correct shock speed. This is why preserving

cell averages is desired in positivity-preserving/maximum-principle satisfying limiters

for time-dependent hyperbolic equations.

Besides time-dependent problems, the stationary hyperbolic equations have also

attracted the attention of many researchers. The stationary hyperbolic equations

have wide applications in steady-state flow and transport problems. Moreover, they

are building blocks of the discrete-ordinate method (DOM) for radiative trans-

fer equations (RTE), see [24, 37]. They are also encountered in implicit time-

discretization for time-dependent hyperbolic problems. Similar to the time-dependent

problems, the physical solutions of stationary hyperbolic equations are also positivity-

preserving, provided the inflow boundary conditions and source terms are nonnega-

tive. There is a series of works on the positivity-preserving DG methods for station-

ary hyperbolic equations to enhance the stability of numerical algorithms. In 2016,

Yuan et al. [90] proposed a rotational limiter based non-conservative positivity-

preserving algorithm for constant coefficients stationary hyperbolic equations in one

and two space dimensions on structured meshes. Later on, the algorithm is extended

to triangular meshes in two space dimensions by Zhang et al. [91] based on a rota-

tional limiter defined on triangles, which is still non-conservative. In 2018, Ling et

al. [46] improved the results in [90] in one dimensional space by proving the posi-

tivity of cell averages of the unmodulated DG scheme, which results in a high order
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conservative positivity-preserving DG method by adopting the scaling limiter [93]

from time-dependent problems. However, the unmodulated scheme fails to preserve

the positivity of cell averages in two space dimensions [46], thus only a second order

conservative positivity-preserving scheme was proposed therein by an augmentation

of the DG function space. The above works only focus on equations with constant

coefficients, and higher than second order conservative methods are unavailable in

two and three space dimensions. In Chapter 3, we developed high order conservative

positivity-preserving algorithms for linear variable coefficient and nonlinear station-

ary hyperbolic equations in one dimension, and constant coefficients equations in

two and three dimensions in [86].

Here, we would like to note that, the notion of conservation in the aforementioned

works for stationary hyperbolic equations are different from the notion to be clarified

in this chapter. The previous notion of conservation in positivity-preserving limiters,

coming directly from time-dependent problems to preserve the cell average, is not

very suitable for stationary problems.

To show this, we consider the stationary equation

f(u)x + λu = s(x), (4.8)

where f(u) is a smooth flux function with unchanged wind direction: f ′(u) > 0,∀u,

and λ, s(x) ≥ 0 are nonnegative coefficient and source, respectively. The equation

(4.8) could come from the backward Euler discretization of the time-dependent prob-

lem (4.1), with the correspondence u = un, λ = 1
∆t

and s(x) = 1
∆t
un−1(x) + s(x, tn).

The linear stationary hyperbolic equations, with the main applications in RTE

[90, 46, 91], will also be discussed in later sections. Throughout the chapter, we

always assume the wind direction of flux in hyperbolic equations does not change,
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for both nonlinear equations and linear ones, and always use the upwind flux in the

DG schemes.

The unmodulated DG scheme with the upwind flux for the equation (4.8) is to

find u ∈ V , such that

∫ x
j+ 1

2

x
j− 1

2

λuvdx−
∫ x

j+ 1
2

x
j− 1

2

f(u)vxdx+f(u−
j+ 1

2

)v−
j+ 1

2

−f(u−
j− 1

2

)v+
j− 1

2

=

∫ x
j+ 1

2

x
j− 1

2

svdx, ∀v ∈ V.

(4.9)

In the implementation, because of the upwind mechanism of the equation and

scheme, we sweep the computation from the left to the right cells, i.e. we obtain the

solution uj−1 on Ij−1 before computing uj on Ij, and then solve uj+1 on Ij+1, and so

forth. Same as the time-dependent cases, by taking v = 1 on Ij and zeros on other

cells, we obtain the conservation equation satisfied by the cell averages as follows

λ∆xjūj + f(u−
j+ 1

2

) = f(u−
j− 1

2

) + ∆xj s̄j,

where the right hand side is known when solving uj. In the positivity-preserving

algorithms, the limiter has been used for uj−1 on the upstream cell Ij−1 when com-

puting uj, to provide a physically relevant inflow flux, thus the actual conservation

equation satisfied by the cell average on Ij is

λ∆xjūj + f(u−
j+ 1

2

) = f(ũ−
j− 1

2

) + ∆xj s̄j, (4.10)

where ũ−
j− 1

2

= ũj−1(xj− 1
2
) denotes the value of the modified solution on Ij−1 evaluated

at xj− 1
2
.

If the limiter is “conservative” in the sense of preserving cell averages, i.e. ¯̃uj = ūj,
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then from (4.10) we have the following equation satisfied by the cell average

λ∆xj ¯̃uj + f(ũ−
j+ 1

2

) = f(ũ−
j− 1

2

) + ∆xj s̄j +
(
f(ũ−

j+ 1
2

)− f(u−
j+ 1

2

)
)
, (4.11)

Summing the above equations over cells Ij, Ij+1, . . . , Ij+r yields

λ

∫ x
j+r+ 1

2

x
j− 1

2

ũdx+ f(ũ−
j+r+ 1

2

) = f(ũ−
j− 1

2

) +

∫ x
j+r+ 1

2

x
j− 1

2

sdx+

j+r∑
i=j

(
f(ũ−

i+ 1
2

)− f(u−
i+ 1

2

)
)

6= f(ũ−
j− 1

2

) +

∫ x
j+r+ 1

2

x
j− 1

2

sdx.

(4.12)

We shall give concrete examples in the numerical section to show that the limiter

preserving cell averages for stationary hyperbolic equations could produce solutions

with wrong total mass/ shock location, even for the simplest hyperbolic equation

ut + ux = 0 discretized implicitly in time.

On the other hand, if we define the local mass in stationary hyperbolic equations

as the sum of the cell average and the outflow flux, and develop limiters such that

the modified solution ũ preserves the local mass on Ij in the sense that

λ∆xj ¯̃uj + f(ũ−
j+ 1

2

) = λ∆xjūj + f(u−
j+ 1

2

), (4.13)

then we have the local conservation formulation

λ∆xj ¯̃uj + f(ũ−
j+ 1

2

) = f(ũ−
j− 1

2

) + ∆xj s̄j, (4.14)

and the global conservation formulation

λ

∫ x
j+r+ 1

2

x
j− 1

2

ũdx+ f(ũ−
j+r+ 1

2

) = f(ũ−
j− 1

2

) +

∫ x
j+r+ 1

2

x
j− 1

2

sdx, (4.15)
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satisfied by the modified solution ũ.

Moreover, we can easily prove the Lax-Wendroff theorem for the modified solution

ũ. Indeed, ∀φ ∈ C∞c (R), we can multiply φ(xj) on both sides of the equation (4.14),

sum the resulting equations over all cells, and use the summation by parts, to obtain

λ
∑
j

∆xj ¯̃ujφ(xj) +
∑
j

f(ũ−
j− 1

2

) (φ(xj−1)− φ(xj)) =
∑
j

∆xj s̄jφ(xj). (4.16)

We can rewrite the equation in the integration form as

λ

∫ ∞
−∞

∑
j

¯̃ujφ(xj)1(xj− 1
2
≤ x ≤ xj+ 1

2
)dx−

∫ ∞
−∞

∑
j

f(ũ−
j− 1

2

)φx(xj− 1
2
)1(xj−1 ≤ x ≤ xj)dx

−∆x

∫ ∞
−∞

r(x)dx =

∫ ∞
−∞

∑
j

s̄jφ(xj)1(xj− 1
2
≤ x ≤ xj+ 1

2
)dx,

(4.17)

by the Taylor expansion of φ(x), where xj = 1
2
(xj− 1

2
+ xj+ 1

2
), ∆x = maxj ∆xj,

and r(x) is the remainder of the Taylor expansion, which is uniformly bounded and

compactly supported for any partition with ∆x ≤ 1. If the modified solution ũ

converges to a function u almost everywhere with uniformly bounded total variation

as the mesh size refines to zero, then applying the dominated convergence theorem

(DCT) for (4.17), we yield

−
∫ ∞
−∞

f(u)φxdx+ λ

∫ ∞
−∞

uφdx =

∫ ∞
−∞

sφdx, (4.18)

which is the definition of the weak solution of (4.8).

To this end, we would like to give a remark on the definition (4.13) for conservative

limiters. Indeed, it is quite reasonable to preserve the sum of the cell average and

outflow fluxes in limiters, as any decrease in cell average caused by limiters should
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be remedied to the mass on the downstream cells via increasing the outflow fluxes

in the current cell, and vise versa.

As we will see in later sections, based on this novel definition of conservation, the

positivity-preserving DG methods for stationary hyperbolic equations are straight-

forward and their implementations are simple. We only discuss the linear stationary

hyperbolic equations in one and two space dimensions, and nonlinear stationary

equations in one dimension to save space, but the method can be directly extended

to higher dimensions with various meshes and a class of nonlinear hyperbolic systems

with eigenvalues being of the same sign. As important applications, the algorithms

developed in this chapter can be used in the positivity-preserving algorithm for radia-

tive transfer equations and implicit time discretization for time-dependent hyperbolic

problems, see the numerical section and refer to [46] for more details.

The rest of the chapter is organized as follows. In Section 4.2, we establish the

positivity-preserving discontinuous Galerkin method for stationary linear hyperbolic

equations in one space dimension and construct the conservative limiters with rig-

orous proofs for the accuracy. We extend the method and limiters to rectangular

meshes and triangular meshes in two dimensions in Section 4.3 and Section 4.4, re-

spectively. The positivity-preserving technique for stationary nonlinear hyperbolic

equations is studied in Section 4.5, which is focused on one dimension to save space

but the method can be extended to higher dimensions directly as in the linear case.

In Section 4.6, we give ample numerical tests to demonstrate the accuracy and effec-

tiveness of our positivity-preserving methods for stationary equations as well as the

applications in implicit time discretization for time-dependent problems. Finally, we

end up with some concluding remarks in Section 4.7.
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4.2 Linear stationary hyperbolic equations in one

dimension

In this section, we study the high order conservative positivity-preserving discontin-

uous Galerkin method for the linear stationary hyperbolic equation

(a(x)u)x + λu = s(x), x ∈ Ω = (0, 1), (4.19)

with 0 < a∗ ≤ a(x) ≤ a∗ for some positive constants a∗, a
∗, and λ, s(x) ≥ 0. We

assign the inflow boundary condition u(0) = u0 ≥ 0 for the equation. The other case

a(x) < 0 with boundary condition u(1) = u0 ≥ 0 can be transformed to this case by

the change of variable x′ = 1− x in (4.19), thus we omit the discussion. We assume

λ is constant for simplicity, as we are mainly concerned with the applications of the

model in the discrete-ordinate method (DOM) for radiative transfer equations (RTE)

and implicit time-discretization for time-dependent hyperbolic problems, where λ is

constant for both cases. However, there is not essential difficulty to extend the

positivity-preserving technique to the variable case λ(x) ≥ 0.

We adopt the partition 0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1 for Ω and denote the

j-th cell by Ij = [xj− 1
2
, xj+ 1

2
] with the length ∆xj = xj+ 1

2
−xj− 1

2
, for j = 1, 2, . . . , N .

The function space V of the P k-DG scheme is defined as

V =
{
v ∈ L2(Ω) : v|Ij ∈ P k(Ij), j = 1, 2, . . . , N

}
,

where P k(Ij) denotes the space of polynomials of order no greater than k on the cell

Ij. We define the cell average of v ∈ V on Ij as v̄j = 1
∆xj

∫ x
j+ 1

2
x
j− 1

2

v(x)dx, and its left

and right limits at the interface xj+ 1
2

as v±
j+ 1

2

= v(xj+ 1
2
± 0). Moreover, we denote
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by vj = v|Ij for v ∈ V , j = 1, 2, . . . , N , for convenience.

The positivity-preserving P k-DG scheme of the equation (4.19) is to find u ∈ V ,

such that

−
∫ x

j+ 1
2

x
j− 1

2

a(x)uvxdx+ a(xj+ 1
2
)u−

j+ 1
2

v−
j+ 1

2

+

∫ x
j+ 1

2

x
j− 1

2

λuvdx

= a(xj− 1
2
)ũ−

j− 1
2

v+
j− 1

2

+

∫ x
j+ 1

2

x
j− 1

2

svdx, ∀v ∈ P k(Ij)

(4.20)

for j = 1, 2, . . . , N , where we define u−1
2

= u0. We would like to emphasize that, the

calculation of uj is based on the modified solution on the upstream cells, thus we

use ũj−1 on the right hand side of the scheme (4.20). Once uj is solved from the

scheme, we employ the positivity-preserving limiter to be introduced later to obtain

the modified solution ũj, and use it in the calculation of uj+1, and so forth.

Assume the quadrature rules adopted in the scheme (4.20) is accurate for integrals

of k-th order polynomials. Taking the test function v = 1 on Ij in the scheme (4.20),

we obtain the following equation satisfied by the local mass

λ∆xjūj + a(xj+ 1
2
)u−

j+ 1
2

= a(xj− 1
2
)ũ−

j− 1
2

+ ∆xj s̄j, (4.21)

For convenience, we define LHS(wj) = λ∆xjw̄j + a(xj+ 1
2
)w−

j+ 1
2

, for wj ∈ P k(Ij),

to be the amount of local mass of wj on Ij. Since ũ−
j− 1

2

≥ 0 on the right hand

side of (4.21), we have LHS(uj) ≥ 0. The conservative limiter should satisfy

LHS(ũj) = LHS(uj), where uj and ũj are the unmodulated and modified solu-

tions on Ij, respectively.

There are two types of limiters to be developed throughout the chapter, where
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the type-1 limiter requires the DG scheme to use the Gauss-Radau quadrature

rule of k + 1 points for numerical integration and only guarantees the positivity of

modified solution at the Gauss-Radau points (in other parts, it can be negative),

while the type-2 limiter does not. We denote the Gauss-Radau points on Ij by

x̂α, α = 1, 2, . . . , k + 1 with x̂k+1 = xj+ 1
2
, and the corresponding weights by ω̂α, α =

1, 2, . . . , k + 1 with
∑k+1

α=1 ω̂α = 1.

The type-1 limiter for uj is defined as follows:

ũj(x) = θjûj(x), ûj(x) =
k+1∑
α=1

u+
j (x̂α)`α(x), (4.22)

where z+ = max{z, 0} is the positive part of a real number z, `α(x) is the Lagrange

basis at the Gauss-Radau points {x̂β}k+1
β=1 with `α(x̂β) = δα,β, and θj =

LHS(uj)

LHS(ûj)
∈

[0, 1]. Note that the integral in LHS(·) is evaluated by the Gauss-Radau quadrature,

thus 0 ≤ LHS(uj) ≤ LHS(ûj). In the case LHS(uj) = LHS(ûj) = 0, we take

θj = 1. In practice, this case can be avoided by taking θj =
LHS(uj)+ε

LHS(ûj)+ε
, where ε is a

very small positive number, e.g. ε = 10−16.

It is clear that the limiter (4.22) is conservative in the sense that LHS(ũj) =

LHS(uj), and ũj ≥ 0 at the Gauss-Radau points {x̂α}k+1
α=1. More importantly, we

have the result of accuracy for the limiter as follows:

Lemma 4.2.1. Consider the solution uj of the scheme (4.20) with accuracy O(∆xk+1
j ).

If λ = 0, the error introduced by the limiter (4.22) is ||ũj − uj||L∞(Ij) = O(∆xk+1
j ).

If λ > 0, the error introduced by the limiter (4.22) is ||ũj − uj||L∞(Ij) = O(∆xkj ), but

the error is optimal at the downstream point, i.e. |ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).
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Proof. We can decompose the error as

e = uj − ũj = (uj − ûj) + (ûj − ũj) = e1 + e2. (4.23)

For e1 = uj − ûj, we have the estimate

|e1(x)| = |ûj(x)− uj(x)|

=

∣∣∣∣∣
k+1∑
α=1

u+
j (x̂α)`α(x)−

k+1∑
α=1

uj(x̂α)`α(x)

∣∣∣∣∣
=

∣∣∣∣∣
k+1∑
α=1

u−j (x̂α)`α(x)

∣∣∣∣∣
≤

k+1∑
α=1

|`α(x)| · max
1≤α≤k+1

u−j (x̂α)

≤ Λk ·O(∆xk+1
j ) = O(∆xk+1

j ), ∀x ∈ Ij,

(4.24)

where z− = −min{z, 0} denotes the negative part of a real number z and Λk =

maxx∈Ij
∑k+1

α=1 |`α(x)| is the Lebesgue constant. Note that u−j (x̂α) = O(∆xk+1
j ), α =

1, . . . , k+1, since the exact solution is nonnegative. Therefore ||e1||L∞(Ij) = O(∆xk+1
j ).

For e2, we have e2 = ûj − ũj = (1− θj)ûj. If λ = 0, we have e2 ≡ 0 since θj = 1,

which follows from the observation that u−
j+ 1

2

= û−
j+ 1

2

≥ 0 due to (4.20), (4.21). If

λ > 0, we have the estimate for e2(x) as follows,

|e2(x)| = (1− θj) |ûj(x)| =
(

1− LHS(uj)

LHS(ûj)

)
|ûj(x)| = LHS(ûj − uj)

LHS(ûj)
|ûj(x)|

=
λ∆xj

(
¯̂uj − ūj

)
+ a(xj+ 1

2
)
(
û−
j+ 1

2

− u−
j+ 1

2

)
λ∆xj ¯̂uj + a(xj+ 1

2
)û−

j+ 1
2

|ûj(x)|

≤
λ∆xj||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj ¯̂uj + a(xj+ 1
2
)û−

j+ 1
2

|ûj(x)|

.

(4.25)
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In particular, at the Gauss-Radau points, we have the following estimates from

(4.25),

|e2(x̂β)| ≤
λ∆xj||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj ¯̂uj
ûj(x̂β)

=
λ∆xj||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj
∑k+1

α=1 ω̂αûj(x̂α)
ûj(x̂β)

≤
λ∆xj||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xjω̂βûj(x̂β)
ûj(x̂β)

≤
(
ω̂−1
β +

a∗

λω̂β∆xj

)
||e1||L∞(Ij)

= O(∆xkj ), for β = 1, 2, . . . , k + 1,

(4.26)

thus,

|e2(x)| =|
k+1∑
α=1

e2(x̂α)`α(x)| ≤
k+1∑
α=1

|`α(x)| · max
1≤α≤k+1

|e2(x̂α)|

≤ Λk ·O(∆xkj ) = O(∆xkj ), ∀x ∈ Ij,

(4.27)

i.e. ||e2||L∞(Ij) = O(∆xkj ).

In particular, at the downstream point xj+ 1
2
, it follows from (4.25) that

|e2(xj+ 1
2
)| ≤

λ∆xj||e1||L∞(Ij) + a(xj+ 1
2
)||e1||L∞(Ij)

λ∆xj
∑k+1

α=1 ω̂αûj(x̂α) + a(xj+ 1
2
)û−

j+ 1
2

û−
j+ 1

2

=
λ∆xj||e1||L∞(Ij)

λ∆xj
∑k+1

α=1 ω̂αûj(x̂α) + a(xj+ 1
2
)û−

j+ 1
2

û−
j+ 1

2

+
a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj
∑k+1

α=1 ω̂αûj(x̂α) + a(xj+ 1
2
)û−

j+ 1
2

û−
j+ 1

2

≤
∆xj||e1||L∞(Ij)

∆xjω̂k+1û
−
j+ 1

2

û−
j+ 1

2

+
a(xj+ 1

2
)||e1||L∞(Ij)

a(xj+ 1
2
)û−

j+ 1
2

û−
j+ 1

2

≤
(
1 + ω̂−1

k+1

)
||e1||L∞(Ij) = O(∆xk+1

j ).

(4.28)
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Gathering all results above and using the triangle inequalities, we finish the proof of

Lemma 4.2.1.

We would like to note that, the error estimates in Lemma 4.2.1 is sharp and the

result cannot be improved by any conservative limiters, which can be illustrated by

a concrete example given as follows.

Example 4.2.1. We assume λ > 0. Consider the numerical approximation uj(x) =

xj+ 1
2
− x − ∆xk+1

j of the exact solution uexactj (x) = xj+ 1
2
− x on the cell Ij =

[xj− 1
2
, xj+ 1

2
]. The modified solution ũj of any conservative limiters should satisfy

λ∆xj ¯̃uj + a(xj+ 1
2
)ũ−

j+ 1
2

= λ∆xjūj + a(xj+ 1
2
)u−

j+ 1
2

. Since u−
j+ 1

2

= −∆xk+1
j and ũ−

j+ 1
2

≥

0, we have ūj−¯̃uj =
a(x

j+ 1
2

)

λ∆xj

(
ũ−
j+ 1

2

− u−
j+ 1

2

)
≥

a(x
j+ 1

2
)

λ∆xj

(
0− (−∆xk+1

j )
)

= a(xj+ 1
2
)λ−1∆xkj ,

which implies that ũj is at most k-th order accurate.

The type-1 limiter only preserves the positivity of modified solutions at the Gauss-

Radau points and we must use the Gauss-Radau quadrature to evaluate integrals

in the scheme (4.20), which may not be satisfactory in some applications. We now

introduce the type-2 limiter, which is positivity-preserving on the whole cell or at

any desired points, and exempts the requirement on quadrature rules.

The type-2 limiter is defined as follows,

ũj(x) = θjûj(x), ûj(x) = uj(x) + εj, (4.29)

where εj = −min{minx∈S uj(x), 0}, S ⊂ Ij is the set of points where we want to

preserve the positivity of the solution, and θj =
LHS(uj)

LHS(ûj)
∈ [0, 1].

It is clear that the limiter (4.29) is conservative in the sense that LHS(ũj) =

LHS(uj) and ũj ≥ 0 on S. More importantly, we have the accuracy result for the
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limiter as follows:

Lemma 4.2.2. Consider the solution uj of the scheme (4.20) with accuracy O(∆xk+1
j ).

If λ = 0, the error introduced by the limiter (4.29) is ||ũj − uj||L∞(Ij) = O(∆xj).

If λ > 0, the error introduced by the limiter (4.29) is ||ũj − uj||L∞(Ij) = O(∆xkj ).

Nevertheless, at the downstream point, the errors in both cases are optimal, i.e.

|ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).

Proof. For simplicity, we assume S = Ij. We have the same decomposition e =

uj − ũj = (uj − ûj) + (ûj − ũj) = e1 + e2 for the error as (4.23).

It is clear that ||e1||L∞(Ij) = ||uj − ûj||L∞(Ij) = εj = O(∆xk+1
j ) by the definitions.

For e2, we have e2 = ûj − ũj = (1 − θj)ûj. If λ = 0, we have ||e2||L∞(Ij) = (1 −

θj)||ûj||L∞(Ij) = O(∆xj), since ||ûj||L∞(Ij) = O(∆xj) if θj < 1. If λ > 0, we have

the estimates for e2 exactly the same as (4.25), (4.26), (4.27), and end up with the

result ||e2||L∞(Ij) = O(∆xkj ).

At the downstream point xj+ 1
2
, the estimate for e2 is exactly the same as (4.28),

thereby |e2(xj+ 1
2
)| = O(∆xk+1

j ).

Gathering all results above and using the triangle inequalities, we finish the proof

of Lemma 4.2.2.

The estimates in Lemma (4.2.2) is sharp, i.e. it could happen that ||ũj −

uj||L∞(Ij) = O(∆xj) if λ = 0, which can be illustrated by the following example.

Example 4.2.2. We assume λ = 0. Consider the exact solution uexactj on Ij with

uexactj (x̂α) = ∆xj for 1 ≤ α ≤ k − 1 and uexactj (x̂α) = 0 for α = k, k + 1, and its

numerical approximation uj =
∑k+1

α=1 u
exact
j (x̂α)`α(x) − ∆xk+1

j `k(x). It is clear that
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uj is flattened to ũj ≡ 0 by the limiter (4.29), which is only of the accuracy O(∆x).

Remark 4.2.1. The above discussions are based on the assumption that λ is a con-

stant. However, in the backward Euler discretization for time-dependent problems, λ

is of the order 1
∆t

, as demonstrated in the introduction. If we take the common CFL

condition ∆t ∝ ∆x in this case, the accuracy of both the type-1 and type-2 limiters is

optimal, which is clear from the estimates in the proofs. The same conclusion applies

to later sections.

Since the accuracy of both type-1 and type-2 limiters is optimal at the down-

stream points of cells, the possible non-optimal errors introduced by the limiters do

not propagate to downstream cells, which makes the limited positivity-preserving

DG solution having the optimal order of accuracy in the sense of downstream points

of cells.

Collecting the Lemma 4.2.1 and 4.2.2, we attain the following theorem for the

positivity-preserving DG method of the equation (4.19).

Theorem 4.2.3. For the linear stationary hyperbolic equation (4.19), if the source

term and inflow boundary condition are nonnegative, then the solution of the scheme

(4.20) modified by the limiter (4.22) or (4.29) is nonnegative, with the local accuracy

established in Lemma 4.2.1 and 4.2.2, respectively.
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4.3 Linear stationary hyperbolic equations in two

dimensions on rectangular meshes

In this section, we study the high order conservative positivity-preserving discontin-

uous Galerkin method in two space dimensions on rectangular meshes for the linear

stationary hyperbolic equation

(a(x, y)u)x + (b(x, y)u)y + λu = s(x, y), (x, y) ∈ Ω = (0, 1)2, (4.30)

with 0 < a∗ ≤ a(x, y) ≤ a∗ and 0 < b∗ ≤ b(x, y) ≤ b∗ for some positive constants

a∗, a
∗, b∗, b

∗, and λ, s(x, y) ≥ 0. We assign the inflow boundary conditions u(x, 0) =

g1(x) ≥ 0 and u(0, y) = g2(y) ≥ 0 for the equation. The cases a(x, y) < 0 and/or

b(x, y) < 0 can be transformed to this case by the change of variables x′ = 1 − x

and/or y′ = 1− y, thus we omit the discussion.

We partition the domain Ω by 0 ≤ x 1
2
< x 3

2
< . . . < xNx+ 1

2
= 1 and 0 ≤

y 1
2
< y 3

2
< . . . < yNy+ 1

2
= 1 in x and y directions, respectively, and denote by

Ki,j = Ii×Jj = [xi− 1
2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
] the cells in Ω with the area |Ki,j| = ∆xi∆yj,

where ∆xi = xi+ 1
2
−xi− 1

2
,∆yj = yj+ 1

2
− yj− 1

2
, i = 1, 2, . . . Nx, j = 1, 2, . . . , Ny. More-

over, we assume the meshes are regular in the refinement, i.e. maxi,j{∆xi,∆yj} ≤

ρmini,j{∆xi,∆yj} for some constant ρ that is independent of mesh sizes, and denote

by h = mini,j{∆xi,∆yj}. The function space V of the Qk-DG scheme is defined as

V =
{
v ∈ L2(Ω) : v|Ki,j ∈ Qk(Ki,j), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny

}
,

where Qk(K) denotes the space of tensor products of polynomials of order no greater

than k on the cell K.
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Similar to the one space dimension, we define the cell average of v ∈ V on Ki,j

as v̄i,j = 1
∆xi∆yj

∫ x
i+ 1

2
x
i− 1

2

∫ y
j+ 1

2
y
j− 1

2

v(x, y)dxdy, and its left/right and lower/upper limits on

the vertical and horizontal cell interfaces by v(x±
i+ 1

2

, y) = limε→0+ v(xi+ 1
2
± ε, y) and

v(x, y±
j+ 1

2

) = limε→0+ v(x, yj+ 1
2
± ε), respectively. Moreover, we denote by vi,j = v|Ki,j

for v ∈ V, i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny.

The positivity-preserving Qk-DG scheme of the equation (4.30) on rectangular

meshes is to find u ∈ V , such that

−
∫ x

i+ 1
2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

(auvx + buvy − λuv) dxdy

+

∫ y
j+ 1

2

y
j− 1

2

au(x−
i+ 1

2

, y)v(x−
i+ 1

2

, y)dy +

∫ x
i+ 1

2

x
i− 1

2

bu(x, y−
j+ 1

2

)v(x, y−
j+ 1

2

)dx

=

∫ y
j+ 1

2

y
j− 1

2

aũ(x−
i− 1

2

, y)v(x+
i− 1

2

, y)dy +

∫ x
i+ 1

2

x
i− 1

2

bũ(x, y−
j− 1

2

)v(x, y+
j− 1

2

)dx

+

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

svdxdy, ∀v ∈ Qk(Ki,j),

(4.31)

for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, where we define u(x, y−1
2

) = I (g1) (x) and

u(x−1
2

, y) = I (g2) (y) on the inflow boundaries, with I denoting the polynomial in-

terpolation at the quadrature points on cell interfaces. In the computation, we solve

ui,j on cell Ki,j based on the modified solutions ũi−1,j and ũi,j−1 on upstream cells.

Once ui,j is obtained, we employ the positivity-preserving limiters to get the modified

solution ũi,j and use it in the computations on the downstream cells.

Taking the test function v = 1 on Ki,j in the scheme (4.31), we obtain the
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following equation satisfied by the local mass

λ∆xi∆yjūi,j +

∫ y
j+ 1

2

y
j− 1

2

au(x−
i+ 1

2

, y)dy +

∫ x
i+ 1

2

x
i− 1

2

bu(x, y−
j+ 1

2

)dx

=

∫ y
j+ 1

2

y
j− 1

2

aũ(x−
i− 1

2

, y)dy +

∫ x
i+ 1

2

x
i− 1

2

bũ(x, y−
j− 1

2

)dx+ ∆xi∆yj s̄i,j.

(4.32)

We define LHS(wi,j) = λ∆xi∆yjw̄i,j +
∫ y

j+ 1
2

y
j− 1

2

aw(x−
i+ 1

2

, y)dy +
∫ x

i+ 1
2

x
i− 1

2

bw(x, y−
j+ 1

2

)dx,

for wi,j ∈ Qk(Ki,j), to be the amount of local mass of wi,j on Ki,j. Moreover, we

define LHSb(wi,j) =
∫ y

j+ 1
2

y
j− 1

2

aw(x−
i+ 1

2

, y)dy+
∫ x

i+ 1
2

x
i− 1

2

bw(x, y−
j+ 1

2

)dx for the total outflow

flux. Since ũi−1,j, ũi,j−1 ≥ 0 on the right hand side of (4.32), we have LHS(ui,j) ≥ 0.

In particular, if λ = 0, then LHSb(ui,j) = LHS(ui,j) ≥ 0.

Similar to the one dimensional case, there are two types of limiters, in which the

type-1 limiter depends on the Gauss-Radau quadrature while the type-2 limiter does

not.

The type-1 limiter for ui,j is defined as follows:

ũi,j(x, y) = θ2
i,jûi,j(x, y), ûi,j(x, y) = ûoi,j(x, y) + θ1

i,jû
b
i,j(x, y),

ûoi,j(x, y) =
k∑

α=1

k∑
β=1

u+
i,j(x̂α, ŷβ)`α(x)`β(y),

ûbi,j(x, y) =
k∑

α=1

u+
i,j(x̂α, y

−
j+ 1

2

)`α(x)`k+1(y) +
k+1∑
β=1

u+
i,j(x

−
i+ 1

2

, ŷβ)`k+1(x)`β(y),

(4.33)

where {x̂α}k+1
α=1 and {ŷβ}k+1

β=1 are the Gauss-Radau points on the intervals [xi− 1
2
, xi+ 1

2
]

and [yj− 1
2
, yj+ 1

2
], respectively, with x̂k+1 = xi+ 1

2
and ŷk+1 = yj+ 1

2
, we abuse no-

tations to denote by `α(x) and `β(y) the Lagrange basis at {x̂α}k+1
α=1 and {ŷβ}k+1

β=1,

respectively, θ1
i,j = max{LHS

b(ubi,j)

LHSb(ûbi,j)
, 0} ∈ [0, 1], θ2

i,j =
LHS(ui,j)

LHS(ûi,j)
∈ [0, 1], ubi,j(x, y) =∑k

α=1 ui,j(x̂α, y
−
j+ 1

2

)`α(x)`k+1(y) +
∑k+1

β=1 ui,j(x
−
i+ 1

2

, ŷβ) `k+1(x)`β(y). In particular, if
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λ = 0, we have θ1
i,j =

LHSb(ubi,j)

LHSb(ûbi,j)
and θ2

i,j = 1. We denote uoi,j(x, y) =
∑k

α=1

∑k
β=1 ui,j(x̂α, ŷβ)

`α(x)`β(y) for the convenience of later discussion.

We have the accuracy results for the conservative positivity-preserving limiter

(4.33) as follows:

Lemma 4.3.1. Consider the solution ui,j of the scheme (4.31) with accuracy O(hk+1).

If λ = 0, the error introduced by the limiter (4.33) is ||ũi,j − ui,j||L∞(Ki,j) = O(hk+1).

If λ > 0, the error introduced by the limiter (4.33) is ||ũi,j − ui,j||L∞(Ki,j) = O(hk),

but the error is optimal on the downstream edges, i.e. ||ũi,j − ui,j||L∞(I
i+ 1

2
∪J

j+ 1
2

) =

O(hk+1), where Ii+ 1
2

and Jj+ 1
2

denote the right and upper edges of Ki,j, respectively.

Proof. We decompose the error as

e = ui,j − ũi,j = (ui,j − ûi,j) + (ûi,j − ũi,j) = e1 + e2, (4.34)

and

e1 = ui,j−ûi,j =
(
uoi,j − ûoi,j

)
+
(
ubi,j − ûbi,j

)
+
(
ûbi,j − θ1

i,jû
b
i,j

)
= e1,1+e1,2+e1,3. (4.35)

Using similar arguments as in (4.24), it is easy to prove that ||e1,1||L∞(Ki,j) = O(hk+1)

and ||e1,2||L∞(Ki,j) = O(hk+1). As for e1,3 =
(
1− θ1

i,j

)
ûbi,j, we consider two cases.

Case I: θ1
i,j = 0. We have LHSb(ubi,j) ≤ 0, i.e.

∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)ui,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)ui,j(x̂α, y

−
j+ 1

2

) ≤ 0,
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thus

∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)u+

i,j(x
−
i+ 1

2

, ŷβ) + ∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)u+

i,j(x̂α, y
−
j+ 1

2

) ≤

∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)u−i,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)u−i,j(x̂α, y

−
j+ 1

2

),

which implies

k+1∑
β=1

ω̂βu
+
i,j(x

−
i+ 1

2

, ŷβ) +
k+1∑
α=1

ω̂αu
+
i,j(x̂α, y

−
j+ 1

2

)

≤ρmax{a∗, b∗}
min{a∗, b∗}

(
k+1∑
β=1

ω̂βu
−
i,j(x

−
i+ 1

2

, ŷβ) +
k+1∑
α=1

ω̂αu
−
i,j(x̂α, y

−
j+ 1

2

)

)
= O(hk+1).

By the definition of ûbi,j, we have ||ûbi,j||L∞(Ki,j) = O(hk+1), therefore ||e1,3||L∞(Ki,j) =

O(hk+1).
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Case II: θ1
i,j > 0. We have LHSb(ubi,j) > 0 and θ1

i,j =
LHSb(ubi,j)

LHSb(ûbi,j)
. Therefore,

|e1,3|

=(1− θ1
i,j)|ûbi,j|

=
LHSb(ûbi,j − ubi,j)

LHSb(ûbi,j)
|ûbi,j|

=

(
∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)ûbi,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)ûbi,j(x̂α, y

−
j+ 1

2

)

)−1

×(
∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)

(
ûbi,j(x

−
i+ 1

2

, ŷβ)− ubi,j(x−i+ 1
2

, ŷβ)
)

+∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)
(
ûbi,j(x̂α, y

−
j+ 1

2

)− ubi,j(x̂α, y−j+ 1
2

)
))
· |ûbi,j|

≤

(
∆yj

∑k+1
β=1 ω̂βa(xi+ 1

2
, ŷβ) + ∆xi

∑k+1
α=1 ω̂αb(x̂α, yj+ 1

2
)
)
||e1,2||L∞(Ki,j)

∆yj
∑k+1

β=1 ω̂βa(xi+ 1
2
, ŷβ)ûbi,j(x

−
i+ 1

2

, ŷβ) + ∆xi
∑k+1

α=1 ω̂αb(x̂α, yj+ 1
2
)ûbi,j(x̂α, y

−
j+ 1

2

)
· |ûbi,j|

(4.36)

In particular, e1,3(x̂γ1 , ŷγ2) = 0 for γ1, γ2 = 1, 2, . . . , k, since ûbi,j = 0 at these points

by definition. Moreover, for γ = 1, 2, . . . , k+ 1, we have the following estimates from

(4.36),

|e1,3(x−
i+ 1

2

, ŷγ)|

≤

(
∆yj

∑k+1
β=1 ω̂βa(xi+ 1

2
, ŷβ) + ∆xi

∑k+1
α=1 ω̂αb(x̂α, yj+ 1

2
)
)
||e1,2||L∞(Ki,j)

∆yj
∑k+1

β=1 ω̂βa(xi+ 1
2
, ŷβ)ûbi,j(x

−
i+ 1

2

, ŷβ) + ∆xi
∑k+1

α=1 ω̂αb(x̂α, yj+ 1
2
)ûbi,j(x̂α, y

−
j+ 1

2

)
ûbi,j(x

−
i+ 1

2

, ŷγ)

≤
(∆yja

∗ + ∆xib
∗) ||e1,2||L∞(Ki,j)

∆yja∗
∑k+1

β=1 ω̂βû
b
i,j(x

−
i+ 1

2

, ŷβ)
ûbi,j(x

−
i+ 1

2

, ŷγ)

≤ρ (a∗ + b∗)

a∗ω̂γ
||e1,2||L∞(Ki,j) = O(hk+1),

(4.37)

and similarly, |e1,3(x̂γ, y
−
j+ 1

2

)| = O(hk+1), γ = 1, 2, . . . , k + 1. Therefore, following the



142

similar argument as (4.27), we have ||e1,3||L∞(Ki,j) = Λ2
k ·O(hk+1) = O(hk+1).

To sum up, we have ||e1||L∞(Ki,j) ≤ ||e1,1||L∞(Ki,j)+||e1,2||L∞(Ki,j)+||e1,3||L∞(Ki,j) =

O(hk+1).

We now estimate e2 as follows. If λ = 0, then θ2
i,j = 1, thus e2 = (1−θ2

i,j)ûi,j = 0.

If λ > 0, we have

|e2(x, y)|

=

(
1− LHS(ui,j)

LHS(ûi,j)

)
|ûi,j(x, y)| = LHS(ûi,j − ui,j)

LHS(ûi,j)
|ûi,j(x, y)|

=

(
λ∆xi∆yj

k+1∑
α=1

k+1∑
β=1

ω̂αω̂β (ûi,j(x̂α, ŷβ)− ui,j(x̂α, ŷβ))

+ ∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)

(
ûi,j(x

−
i+ 1

2

, ŷβ)− ui,j(x−i+ 1
2

, ŷβ)
)

+∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)
(
ûi,j(x̂α, y

−
j+ 1

2

)− ui,j(x̂α, y−j+ 1
2

)
))
×(

λ∆xi∆yj

k+1∑
α=1

k+1∑
β=1

ω̂αω̂βûi,j(x̂α, ŷβ) + ∆yj

k+1∑
β=1

ω̂βa(xi+ 1
2
, ŷβ)ûi,j(x

−
i+ 1

2

, ŷβ)

+∆xi

k+1∑
α=1

ω̂αb(x̂α, yj+ 1
2
)ûi,j(x̂α, y

−
j+ 1

2

)

)−1

· |ûi,j(x, y)|

≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) · ||e1||L∞(Ki,j) ·

(
λ∆xi∆yj

k+1∑
α=1

k+1∑
β=1

ω̂αω̂βûi,j(x̂α, ŷβ)

+a∗∆yj

k+1∑
β=1

ω̂βûi,j(x
−
i+ 1

2

, ŷβ) + b∗∆xi

k+1∑
α=1

ω̂αûi,j(x̂α, y
−
j+ 1

2

)

)−1

· |ûi,j(x, y)|

(4.38)

In particular, at the Gauss-Radau points, we have the following estimates from
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(4.38),

|e2(x̂γ1 , ŷγ2)|

≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) ||e1||L∞(Ki,j)×(
λ∆xi∆yj

k+1∑
α=1

k+1∑
β=1

ω̂αω̂βûi,j(x̂α, ŷβ)

)−1

ûi,j(x̂γ1 , ŷγ2)

≤λρ
2h2 + a∗ρh+ b∗ρh

λh2ω̂γ1ω̂γ2

||e1||L∞(Ki,j)

=

(
ρ2ω̂−1

γ1
ω̂−1
γ2

+
a∗ρ+ b∗ρ

λω̂γ1ω̂γ2

1

h

)
||e1||L∞(Ki,j)

=O(hk), for γ1, γ2 = 1, 2, . . . , k + 1,

(4.39)

therefore, following the similar argument as (4.27), we have ||e2||L∞(Ki,j) = Λ2
k ·

O(hk) = O(hk).

In particular, on the downstream edge Ii+ 1
2
, it follows from (4.38) that

|e2(xi+ 1
2
, ŷγ)|

≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) ||e1||L∞(Ki,j)×(
a∗∆yj

k+1∑
β=1

ω̂βûi,j(x
−
i+ 1

2

, ŷβ)

)−1

· ûi,j(x−i+ 1
2

, ŷγ)

≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) · ||e1||L∞(Ki,j)×(
a∗∆yjω̂γûi,j(x

−
i+ 1

2

, ŷγ)
)−1

· ûi,j(x−i+ 1
2

, ŷγ)

≤λρ
2h+ a∗ρ+ b∗ρ

a∗ω̂γ
||e1||L∞(Ki,j) = O(hk+1),

(4.40)

for γ = 1, 2, . . . , k+1. Similarly, on the downstream edge Jj+ 1
2
, we have |e2(x̂γ, yj+ 1

2
)| =

O(hk+1), for γ = 1, 2, . . . , k+1. Following the same lines as in (4.27), we have the es-

timate ||e2||L∞(I
i+ 1

2
∪J

j+ 1
2

) = Λk ·O(hk+1) = O(hk+1). Thus ||ũi,j−ui,j||L∞(I
i+ 1

2
∪J

j+ 1
2

) =

O(hk+1) by the triangle inequality.
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Gathering all results above, we finish the proof of Lemma 4.3.1.

The type-2 limiter is defined as follows,

ũi,j(x, y) = θi,jûi,j(x, y), ûi,j(x, y) = ui,j(x, y) + εi,j, (4.41)

where εi,j = −min{min(x,y)∈S ui,j(x, y), 0}, S ⊂ Ki,j is the set of points where we

want to preserve the positivity of solutions, and θi,j =
LHS(ui,j)

LHS(ûi,j)
∈ [0, 1].

We have the accuracy result for the conservative positivity-preserving limiter as

follows:

Lemma 4.3.2. Consider the solution ui,j of the scheme (4.31) with accuracy O(hk+1).

If λ = 0, the error introduced by the limiter (4.41) is ||ũi,j − ui,j||L∞(Ki,j) = O(h).

If λ > 0, the error introduced by the limiter (4.41) is ||ũi,j − ui,j||L∞(Ki,j) = O(hk).

Nevertheless, on the downstream edges, the errors in both cases are optimal, i.e.

||ũi,j − ui,j||L∞(I
i+ 1

2
∪J

j+ 1
2

) = O(hk+1).

Proof. For simplicity, we assume S = Ki,j. Same as (4.34), we decompose the

error as e = ui,j − ũi,j = (ui,j − ûi,j) + (ûi,j − ũi,j) = e1 + e2. It is clear that

|e1| = εi,j = O(hk+1). Consider e2 = (1− θi,j) ûi,j. If λ = 0, we have ||e2||L∞(Ki,j) =

(1− θi,j) ||ûi,j||L∞(Ki,j) = O(h), since ||ûi,j||L∞(Ki,j) = O(h) if θi,j < 1. If λ > 0, we

have the same estimates for e2 as (4.38) and (4.39). The estimates for e2 on the

downstream edges are exactly the same as (4.40) for both the cases λ = 0 and λ > 0.

Collecting all results above, we finish the proof of Lemma 4.3.2.

Since the accuracy of both type-1 and type-2 limiters is optimal on the down-

stream edges, we do not need to worry about the pollution of the non-optimal errors
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introduced by the limiters to the downstream cells. Thus we have the following

theorem for the positivity-preserving DG method of the equation (4.30).

Theorem 4.3.3. For the linear stationary hyperbolic equation (4.30), if the source

term and inflow boundary conditions are nonnegative, then the solution of the scheme

(4.31) modified by the limiter (4.33) or (4.41) is nonnegative, with the local accuracy

established in Lemmas 4.3.1 and 4.3.2, respectively.

Remark 4.3.1. In particular, in the space-time DG discretization for the equation

of the form ut + (a(x)u)x = s(x, t), the accuracy of the solution at the terminal time

is optimal, as the terminal time is indeed an outflow boundary.

4.4 Linear stationary hyperbolic equations in two

dimensions on triangular meshes

In this section, we study the high order conservative positivity-preserving discontin-

uous Galerkin method in two space dimensions on triangular meshes for the linear

stationary hyperbolic equation (4.30) with nonnegative source term and the inflow

boundary condition u|Γin(x, y) = g(x, y) ≥ 0, where Γin ⊂ ∂Ω is the inflow boundary.

We still assume λ ≥ 0 in (4.30) but a(x, y) and b(x, y) are not necessarily positive

(or negative).

Consider a regular triangulation Ωh of Ω which satisfies diam(K) ≤ ρh,∀K ∈ Ωh

for some ρ ≥ 1 independent of the refinement, where diam(K) is the diameter of

an element K, h = minK∈Ωh hK and hK is the radius of the largest ball inscribed in

K. For any triangle element K ∈ Ωh, we denote by |K| the area of K, and eiK , i =

1, 2, 3 the three edges of K, with length `iK , unit outer normal niK = (nix,K , n
i
y,K)T



146

and neighboring cells Ki, i = 1, 2, 3. We assume that the coefficients a(x, y) and

b(x, y) in (4.30) satisfy c∗ ≤
∣∣a(x, y)nix,K + b(x, y)niy,K

∣∣ ≤ c∗,∀K ∈ Ωh, (x, y) ∈

Ω, i = 1, 2, 3, for some positive constants c∗, c
∗. This assumption was adopted in the

optimal order error estimate for the DG method in [64], as the optimal accuracy is

unavailable for general meshes [54]. The assumption can be satisfied, for instance,

by the conditions on the coefficients a(x, y), b(x, y) in Section 4.3, together with the

triangulation obtained by splitting each cell therein from the skew diagonal of cells,

see Figure 4.1 for an illustration. The function space V of the P k-DG scheme is

defined as

V =
{
v ∈ L2(Ω) : v|K ∈ P k(K),∀K ∈ Ωh

}
,

where P k(K) denotes the space of polynomials of order no greater than k on the

element K. We define the cell average of v ∈ V on K as v̄K = 1
|K|

∫∫
K
v(x, y)dxdy,

and denote by vK = v|K for v ∈ V .

To save space, we only discuss the case that e1
K is the upstream edge and e2

K , e
3
K

are the downstream edges, as the discussion of the case of two upstream edges and

one downstream edge is almost the same with the first case.

The positivity-preserving P k-DG scheme of the equation (4.30) on triangular

meshes is to find u ∈ V , such that

−
∫∫

K

(auvx + buvy − λuv) dxdy

+

∫
e2K

(
an2

x,K + bn2
y,K

)
uKvds+

∫
e3K

(
an3

x,K + bn3
y,K

)
uKvds

= −
∫
e1K

(
an1

x,K + bn1
y,K

)
ũK1vds+

∫∫
K

svdxdy, ∀v ∈ P k(K),

(4.42)

for K ∈ Ωh, where we define ũK1 |e1K = I (g) if e1
K ⊂ Γin, with I denoting the polyno-

mial interpolation at the quadrature points on cell interfaces. In the computation,
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we solve uK on cell K based on the modified solution on upstream cells. Once uK is

obtained, we employ the positivity-preserving limiter to obtain the modified solution

ũK , and use it in the computation on the downstream cells.

If we take v = 1 on K in the scheme (4.42), the following equation satisfied by

the local mass can be obtained

λ|K|ūK +

∫
e2K

(
an2

x,K + bn2
y,K

)
uKds+

∫
e3K

(
an3

x,K + bn3
y,K

)
uKds

= −
∫
e1K

(
an1

x,K + bn1
y,K

)
ũK1ds+ |K|s̄K .

(4.43)

We define LHS(wK) = λ|K|w̄K+
∫
e2K

(
an2

x,K + bn2
y,K

)
wKds+

∫
e3K

(
an3

x,K + bn3
y,K

)
wKds,

for wK ∈ P k(K), to be the amount of local mass of wK on K. Since ũK1 ≥ 0 and

an1
x,K + bn1

y,K < 0 on the upstream edge in (4.43), we have the LHS(uK) ≥ 0.

Due to the lack of suitable quadrature rules, we do not have the type-1 limiter

available. The type-2 limiter is defined as follows,

ũK(x, y) = θK ûK(x, y), ûK(x, y) = uK(x, y) + εK , (4.44)

where εK = −min{min(x,y)∈S uK(x, y), 0}, S ⊂ K is the set of points where we want

to preserve the positivity of solutions, and θK = LHS(uK)
LHS(ûK)

∈ [0, 1].

We have the accuracy result for the conservative positivity-preserving limiter as

follows:

Lemma 4.4.1. Consider the solution uK of the scheme (4.42) with accuracy O(hk+1).

If λ = 0, the error introduced by the limiter (4.44) is ||ũK − uK ||L∞(K) = O(h). If

λ > 0, the error introduced by the limiter (4.44) is ||ũK − uK ||L∞(K) = O(hk).

Nevertheless, on the downstream edges, the errors in both cases are optimal, i.e.
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||ũK − uK ||L∞(e2K∪e
3
K) = O(hk+1).

Proof. For simplicity, we assume S = K. We decompose the error as

e = uK − ũK = (uK − ûK) + (ûK − ũK) = e1 + e2 (4.45)

It is clear that ||e1||L∞(K) = εK = O(hk+1).

For e2, we have e2 = ûK − ũK = (1 − θK)ûK . If λ = 0, we have ||e2||L∞(K) =

(1 − θK)||ûK ||L∞(K) = O(h), since ||ûK ||L∞(K) = O(h) if θK < 1. If λ > 0, we have

the estimate for e2 as follows,

|e2|

=(1− θK)ûK =

(
1− LHS(uK)

LHS(ûK)

)
ûK =

LHS(ûK − uK)

LHS(ûK)
ûK

=

(
λ|K|¯̂uK +

∫
e2K

(
an2

x,K + bn2
y,K

)
ûKds+

∫
e3K

(
an3

x,K + bn3
y,K

)
ûKds

)−1

×(
λ|K|

(
¯̂uK − ūK

)
+

∫
e2K

(
an2

x,K + bn2
y,K

)
(ûK − uK) ds

+

∫
e3K

(
an3

x,K + bn3
y,K

)
(ûK − uK) ds

)
ûK

≤
(λ|K|+ c∗`2

K + c∗`3
K) ||e1||L∞(K)

λ|K|¯̂uK + c∗`2
K

¯̂ue2K + c∗`3
K

¯̂ue3K
ûK ,

(4.46)

where v̄eiK = 1
`iK

∫
eiK
vKds, for v ∈ V , i = 1, 2, 3.

By the equivalence of norms in the finite-dimensional space P k(K) and the

rescaling argument, we have ||v||L∞(K) ≤ Ck
|K| ||v||L1(K) and ||v||L∞(eiK) ≤

C′k
`iK
||v||L1(eiK),

∀v ∈ P k(K), i = 1, 2, 3, for some positive constants Ck and C ′k depending only on k.



149

Therefore,

||e2||L∞(K) ≤
(λ|K|+ c∗`2

K + c∗`3
K) ||e1||L∞(K)

λ|K|
||ûK ||L∞(K)

¯̂uK

≤
(λ|K|+ 2c∗ρh) ||e1||L∞(K)

λ|K|
Ck

≤ Ck

(
1 +

2c∗ρ

πλ

1

h

)
||e1||L∞(K)

= O(hk),

(4.47)

where we have used the fact that ûK ≥ 0. Moreover, we have

||e2||L∞(e2K) ≤
(λ|K|+ c∗`2

K + c∗`3
K) ||e1||L∞(K)

c∗`2
K

||ûK ||L∞(e2K)

¯̂ue2K

≤
(λρ2h2 + 2c∗ρh) ||e1||L∞(K)

c∗h
C ′k

= C ′k
(λρ2h+ 2c∗ρ)

c∗
||e1||L∞(K)

= O(hk+1),

(4.48)

and, similarly, ||e2||L∞(e3K) = O(hk+1).

Gathering all results above and using triangle inequalities, we finish the proof of

Lemma 4.4.1.

Since the accuracy of the limiter (4.44) is optimal on the downstream edges, we

have the following theorem for the positivity-preserving DG method of the equation

(4.30).

Theorem 4.4.2. For the linear stationary hyperbolic equation (4.30), if the source

term and inflow boundary condition are nonnegative, then the solution of the scheme

(4.42) modified by the limiter (4.44) is nonnegative, with the local accuracy established

in Lemma 4.4.1.
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4.5 Nonlinear stationary hyperbolic equations in

one dimension

In this section, we study the high order conservative positivity-preserving discontin-

uous Galerkin method for the nonlinear stationary hyperbolic equation

f(u)x + λu = s(x), x ∈ Ω = (0, 1), (4.49)

where 0 ≤ f ′(u) ≤ a∗,∀u, and λ, s(x) ≥ 0. We assign the inflow boundary condi-

tion u(0) = u0 ≥ 0 for the equation. We would like to note that, the assumption

on invariant sign of f ′(u) for all u is essential, otherwise the stationary hyperbolic

equation may need boundary conditions from both sides for the problem to be well-

posed, see [38, 63] for instance. This condition is also necessary for the limiters to

be well-defined.

We adopt the partition for Ω and the function space V exactly the same as in

Section 4.2, as well as the notations if not otherwise stated.

The positivity-preserving P k-DG scheme of the equation (4.49) is to find u ∈ V ,

such that

−
∫ x

j+ 1
2

x
j− 1

2

f(u)vxdx+ f(u−
j+ 1

2

)v−
j+ 1

2

+

∫ x
j+ 1

2

x
j− 1

2

λuvdx

= f(ũ−
j− 1

2

)v+
j− 1

2

+

∫ x
j+ 1

2

x
j− 1

2

svdx, ∀v ∈ P k(Ij),

(4.50)

for j = 1, 2, . . . , N , where we define u−1
2

= u0. Note that the upstream cells adopt

the modified solution in the scheme.
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If we take the test function v = 1 on Ij in the scheme (4.50), the following

equation satisfied by the local mass is obtained,

λ∆xjūj + f(u−
j+ 1

2

) = f(ũ−
j− 1

2

) + ∆xj s̄j. (4.51)

Same as the linear case, we define LHS(wj) = λ∆xjw̄j + f(w−
j+ 1

2

), for wj ∈ P k(Ij),

to be the amount of local mass of wj on Ij. A notable difference is that, we no longer

have LHS(uj) ≥ 0.

The type-1 limiter for uj is defined as follows,

ũj(x) = θjûj(x), ûj(x) =
k+1∑
α=1

u+
j (x̂α)`α(x), (4.52)

where θj ∈ [0, 1] is taken such that the local mass is conservative, i.e. LHS(ũj) =

LHS(uj). Same as before, the type-1 limiter must be used in cooperation with the

Gauss-Radau quadrature.

If λ > 0, θj ∈ [0, 1] is uniquely determined. To see this, we define h(θ) =

LHS(θûj) − LHS(uj). It is clear that h(0) = f(0) − f(ũ−
j− 1

2

) − ∆xj s̄j ≤ 0,

h(1) = λ∆xj
∑k+1

α=1 ω̂αu
−
j (x̂α)+f((u−

j+ 1
2

)+)−f(u−
j+ 1

2

) ≥ 0, and h′(θ) > 0 for θ ∈ [0, 1].

Therefore, the existence and uniqueness of θj is guaranteed by the mean value the-

orem and monotonicity of h(θ). If λ = 0, we always take θj = 1, since u−
j+ 1

2

≥ 0,

which implies LHS(ûj) = f(u−
j+ 1

2

) = LHS(uj). Moreover, we have the accuracy

result of the limiter as follows:

Lemma 4.5.1. Consider the solution uj of the scheme (4.50) with accuracy O(∆xk+1
j ).

If λ = 0, the error introduced by the limiter (4.52) is ||ũj − uj||L∞(Ij) = O(∆xk+1
j ).

If λ > 0, the error introduced by the limiter (4.52) is ||ũj − uj||L∞(Ij) = O(∆xkj ), but

the error is optimal at the downstream point, i.e. |ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).
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Proof. From θjλ∆xj ¯̂uj + f(θjû
−
j+ 1

2

) = λ∆xjūj + f(u−
j+ 1

2

), we have the expression of

θj as follows,

θj =
λ∆xjūj + f ′(cj+ 1

2
)u−

j+ 1
2

λ∆xj ¯̂uj + f ′(cj+ 1
2
)û−

j+ 1
2

, (4.53)

where cj+ 1
2
∈ [u−

j+ 1
2

, û−
j+ 1

2

] satisfies the Lagrange mean value theorem f(θjû
−
j+ 1

2

) −

f(u−
j+ 1

2

) = f ′(cj+ 1
2
)(θjû

−
j+ 1

2

−u−
j+ 1

2

). Then the estimates are almost the same to those

in the proof of Lemma 4.2.1, except that a(xj+ 1
2
) is replaced by f ′(cj+ 1

2
).

The type-2 limiter for uj is defined as follows,

ũj(x) = θjûj(x), ûj(x) = uj(x) + εj, (4.54)

where εj = −min{minx∈S uj(x), 0}, S ⊂ Ij is the set of points where we want

to preserve the positivity of solutions, and θj ∈ [0, 1] is uniquely determined by

LHS(ũj) = LHS(uj).

We have the accuracy result for the limiter as follows,

Lemma 4.5.2. Consider the solution uj of the scheme (4.50) with accuracy O(∆xk+1
j ).

If λ = 0, the error introduced by the limiter (4.54) is ||ũj − uj||L∞(Ij) = O(∆xj).

If λ > 0, the error introduced by the limiter (4.54) is ||ũj − uj||L∞(Ij) = O(∆xkj ).

Nevertheless, at the downstream point, the errors in both cases are optimal, i.e.

|ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).

Proof. We have the same expression of θj as in (4.53). Therefore the estimates are

almost the same with those in the proof of Lemma 4.2.2, except that a(xj+ 1
2
) is

replaced by f ′(cj+ 1
2
).

Since the accuracy of both type-1 and type-2 limiters is optimal at the down-
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stream point of cells, the assumption on the optimal accuracy of the unmodulated

DG solution is appropriate. Collecting the Lemma 4.5.1 and 4.5.2, we attain the

following theorem for the positivity-preserving DG method for the equation (4.49).

Theorem 4.5.3. For the nonlinear stationary hyperbolic equation (4.49), if the

source term and inflow boundary condition are nonnegative, then the solution of

the scheme (4.50) modified by the limiters (4.52) or (4.54) is nonnegative, with the

local accuracy established in Lemma 4.5.1 and 4.5.2, respectively.

4.6 Numerical tests

In this section, we show the accuracy and effectiveness of the conservative positivity-

preserving DG methods established in previous sections for stationary hyperbolic

equations and time-dependent problems with implicit time discretization by ample

numerical tests. Most of the tests are taken from [46, 86, 91]. For simplicity, the

triangular meshes adopted in the two dimensional tests are obtained by splitting

the rectangular grids by the skew diagonals of every cells, see Figure 4.1 for an

illustration of a 6× 6 mesh. To save space, we only present the results of the type-2

limiters, as those of the type-1 limiters are almost the same (even thought the type-1

limiter is formally more accurate than the type-2).

We would like to note that, though the sub-optimal error estimates of the limiters

are sharp by artificial examples in 4.2.1 and 4.2.2, in numerical tests we have not

observed any degeneracy of orders of accuracy.

Example 4.6.1. (Comparison of the conservation property for different

limiters)
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Figure 4.1: A typical triangular mesh in the tests

We solve the simple hyperbolic equation ut +ux = 0 with implicit time discretiza-

tion by a variety of positivity-preserving schemes, and compare the results of different

positivity-preserving limiters. We first compute the solutions using the scaling lim-

iter [93] that preserves cell averages. Then, we replace the scaling limiter in these

algorithms by our conservative limiter that preserves the sum of cell average and out-

flow fluxes. Since the only difference is in the use of limiters, it would be convincing

that our notion of conservation is more appropriate if the results of the conservative

limiters are better than those of the scaling limiter.

The initial and boundary condition are given below

u(x, 0) =


1, 0 < x ≤ 1

0, otherwise

, x ∈ Ω; u(0, t) = 0, t ∈ [0, T ].

We first compute the equation on the domain Ω = [0, 5], with backward Euler

time discretization, CFL number ∆t
∆x

= 0.01 and spatial partition N = 500, to the

terminal time T = 2, based on the positivity-preserving P 2-DG scheme proposed in

[86] for one dimensional linear equations. We plot the cell averages of the numerical
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solutions at the terminal time for the cases with no limiter, with the scaling limiter

and with the conservative limiter, and compare them with the exact solution. The

results are shown in Figure 4.2, from which we can clearly observe a wrong shock

location with the use of the scaling limiter. The total mass of the exact solution at

the terminal time is
∫

Ω
u(x, T )dx = 1. In the numerical solutions, the total mass has

changed 3.10×10−12, 2.94×10−12 and 1.54×10−1 for the cases with no limiter, with

the conservative limiter and with the scaling limiter, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

exact solution

without limiter

(a) No limiter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

exact solution

conservative limiter

scaling limiter

(b) With limiter

Figure 4.2: Comparison of results for different limiters in the scheme of [86]

We then compute the equation on the space-time box Ω× [0, T ] by the space-time

DG discretization, based on the positivity-preserving R1-DG scheme proposed in [46]

for two dimensional linear equations. We take two space-time boxes Ω1 = [0, 50], T1 =

40 and Ω2 = [0, 100], T2 = 90, on the uniform meshes N1
x × N1

t = 500 × 400 and

N2
x × N2

t = 1000 × 900, respectively. We plot the cell averages of the numerical

solutions at the terminal times for the cases with no limiter, with the conservative

limiter and with the scaling limiter, and compare them with the exact solution. The

results are shown in the Figure 4.3, from which we can clearly observe the loss of

mass with the use of the scaling limiter. In the numerical solutions, the total mass

in the domain has changed 4.97 × 10−14, 4.77 × 10−14 and 8.59 × 10−2 at T1 for

the cases with no limiter, with the conservative limiter and with the scaling limiter,
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respectively, and 1.01× 10−13, 1.11× 10−13 and 1.47× 10−1 at T2 for the cases with

no limiter, with the conservative limiter and with the scaling limiter, respectively.
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Figure 4.3: Comparison of results for different limiters in the scheme of [46]

Finally, we compute the equation by the space-time DG based on the Q2 and Q3

schemes (4.31). Note that these two schemes are not positivity-preserving for cell

averages in general, namely, there is no theoretical guarantee that the cell averages

always remain nonnegative with the use of the scaling limiter. However, by trial and

error, we find a setting that keeps the cell averages nonnegative during simulation,

with the use of positivity-preserving scaling limiter. We take the space-time box

Ω = [0, 30], T = 25 on the uniform mesh Nx × Nt = 300 × 250. We plot the cell

averages of the numerical solutions at the terminal time for the cases with no limiter,

with the conservative limiter and with the scaling limiter, and compare them with the
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exact solution. The results are shown in Figure 4.4, from which we can clearly observe

the loss of mass with the use of the scaling limiter. The total mass in the domain

have changed 8.48 × 10−14, 8.53 × 10−14 and 1.88 × 10−1 in the Q2-DG scheme for

the cases with no limiter, with the conservative limiter and with the scaling limiter,

respectively, and 1.87×10−13, 1.88×10−13 and 7.78×10−2 in the Q3-DG scheme for

the cases with no limiter, with the conservative limiter and with the scaling limiter,

respectively.
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Figure 4.4: Comparison of results for different limiters in the scheme (4.31)

Example 4.6.2. A linear stationary hyperbolic equation in one dimension

We solve the equation (4.19) with a(x) = 1, λ = 6000 and s(x) = λ
(

1
9

cos4(x) + ε
)
−

4
9

cos3(x) sin(x) on the domain Ω = [0, π], where ε = 10−14 is taken such that the

source term is nonnegative. The boundary condition of the problem is u(0) = 1
9

+ ε
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and the exact solution is u(x) = 1
9

cos4(x) + ε.

We compute the equation using the P k-DG scheme (4.20) with k = 1, 2, 3, 4. The

errors, orders of convergence and data about positivity are given in Table 4.1, in

which the category name LC (%) stands for the percentage of limited cells in the

mesh. We can observe from the table that the negative values of the original scheme

are eliminated by the limiter and the order of accuracy remains optimal.

no Limiter with Limiter
k N L1 error order L∞ error order minuh L1 error order L∞ error order LC (%)
1 20 4.62E-04 - 9.00E-04 - -4.67E-05 4.63E-04 - 9.00E-04 - 20.00

40 1.16E-04 1.99 2.28E-04 1.98 -3.34E-06 1.16E-04 2.00 2.28E-04 1.98 10.00
80 2.90E-05 2.00 5.83E-05 1.97 -2.19E-07 2.90E-05 2.00 5.83E-05 1.97 5.00
160 7.26E-06 2.00 1.50E-05 1.96 -1.43E-08 7.26E-06 2.00 1.50E-05 1.96 2.50
320 1.82E-06 2.00 3.90E-06 1.94 -9.54E-10 1.82E-06 2.00 3.90E-06 1.94 1.25

2 20 2.04E-05 - 3.88E-05 - -2.30E-06 2.05E-05 - 3.88E-05 - 10.00
40 2.54E-06 3.01 4.84E-06 3.00 -1.49E-07 2.54E-06 3.01 4.84E-06 3.00 5.00
80 3.19E-07 2.99 5.98E-07 3.02 -9.58E-09 3.19E-07 2.99 5.98E-07 3.02 2.50
160 4.01E-08 2.99 7.33E-08 3.03 -6.28E-10 4.01E-08 2.99 7.33E-08 3.03 1.25
320 5.09E-09 2.98 8.86E-09 3.05 -4.25E-11 5.09E-09 2.98 8.86E-09 3.05 0.63

3 20 7.72E-07 - 1.57E-06 - -9.43E-07 9.58E-07 - 4.24E-06 - 10.00
40 4.79E-08 4.01 1.03E-07 3.93 -6.21E-08 5.38E-08 4.16 2.76E-07 3.94 5.00
80 3.01E-09 3.99 6.74E-09 3.93 -4.05E-09 3.19E-09 4.07 1.73E-08 4.00 2.50
160 1.89E-10 4.00 4.48E-10 3.91 -2.69E-10 1.94E-10 4.04 1.06E-09 4.02 1.25
320 1.19E-11 3.98 3.06E-11 3.87 -1.83E-11 1.21E-11 4.00 6.46E-11 4.04 0.63

4 20 2.44E-08 - 4.80E-08 - -1.12E-08 2.71E-08 - 4.80E-08 - 10.00
40 7.60E-10 5.01 1.47E-09 5.03 -1.83E-10 7.81E-10 5.12 1.47E-09 5.03 5.00
80 2.39E-11 4.99 4.45E-11 5.04 -3.02E-12 2.41E-11 5.02 4.45E-11 5.04 2.50
160 7.57E-13 4.98 1.32E-12 5.07 -4.17E-14 7.58E-13 4.99 1.32E-12 5.07 1.25
320 2.43E-14 4.96 3.97E-14 5.06 9.10E-15 2.43E-14 4.96 3.97E-14 5.06 0.00

Table 4.1: Results of Example 4.6.2

Example 4.6.3. A nonlinear stationary hyperbolic equation in one di-

mension

We solve the equation (4.49) with f(u) = u3 + 0.01u, λ = 5 and s(x) =

−8 sin(x) cos7(x) (3(cos8(x) + ε)2 + 0.01) + λ (cos8(x) + ε) on the domain Ω = [0, π],

where ε = 10−14 is taken such that the source term is nonnegative. The boundary

condition of the problem is u(0) = 1 + ε and the exact solution is u(x) = cos8(x) + ε.

We compute the equation using the P k-DG scheme (4.50) with k = 1, 2, 3, 4.

The errors, orders of convergence and data about positivity are given in the Table
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4.2. Same to the linear case, we can observe that the negative values of the original

scheme are eliminated by the limiter and the order of accuracy remains optimal.

no Limiter with Limiter
k N L1 error order L∞ error order minuh L1 error order L∞ error order LC (%)
1 20 7.45E-03 - 3.02E-02 - -1.49E-04 7.45E-03 - 3.02E-02 - 30.00

40 1.91E-03 1.96 7.97E-03 1.92 -8.48E-07 1.91E-03 1.96 7.97E-03 1.92 17.50
80 4.91E-04 1.96 2.03E-03 1.97 -6.90E-09 4.91E-04 1.96 2.03E-03 1.97 8.75
160 1.26E-04 1.96 5.11E-04 1.99 -5.30E-11 1.26E-04 1.96 5.11E-04 1.99 3.13
320 3.22E-05 1.97 1.28E-04 2.00 -3.36E-13 3.22E-05 1.97 1.28E-04 2.00 0.63

2 20 4.57E-04 - 2.12E-03 - -1.27E-06 4.57E-04 - 2.12E-03 - 20.00
40 5.72E-05 3.00 2.62E-04 3.01 -1.18E-08 5.72E-05 3.00 2.62E-04 3.01 10.00
80 7.22E-06 2.98 3.20E-05 3.03 -7.14E-11 7.22E-06 2.98 3.20E-05 3.03 5.00
160 9.17E-07 2.98 3.96E-06 3.01 -2.48E-13 9.17E-07 2.98 3.96E-06 3.01 1.88
320 1.16E-07 2.98 4.92E-07 3.01 9.44E-15 1.16E-07 2.98 4.92E-07 3.01 0.00

3 20 2.30E-05 - 1.19E-04 - -9.63E-07 2.30E-05 - 1.19E-04 - 20.00
40 1.44E-06 3.99 7.83E-06 3.93 -5.10E-09 1.44E-06 3.99 7.83E-06 3.93 10.00
80 9.24E-08 3.97 4.95E-07 3.98 -2.42E-11 9.24E-08 3.97 4.95E-07 3.98 5.00
160 5.86E-09 3.98 3.11E-08 3.99 -1.07E-13 5.86E-09 3.98 3.11E-08 3.99 0.63
320 3.71E-10 3.98 1.94E-09 4.00 9.43E-15 3.71E-10 3.98 1.94E-09 4.00 0.00

4 20 1.05E-06 - 6.46E-06 - -6.21E-09 1.05E-06 - 6.46E-06 - 10.00
40 3.31E-08 4.98 1.88E-07 5.10 -3.05E-11 3.31E-08 4.98 1.88E-07 5.10 5.00
80 1.05E-09 4.97 5.80E-09 5.02 -8.17E-14 1.05E-09 4.97 5.80E-09 5.02 2.50
160 3.35E-11 4.98 1.79E-10 5.02 9.65E-15 3.35E-11 4.98 1.79E-10 5.02 0.00
320 1.06E-12 4.98 5.54E-12 5.01 1.00E-14 1.06E-12 4.98 5.54E-12 5.01 0.00

Table 4.2: Results of Example 4.6.3

Example 4.6.4. A nonlinear time-dependent hyperbolic equation in one

dimension with backward Euler time discretization

We solve the equation (4.1) with backward Euler time discretization, and take

f(u) = u3

3
, s(x) = 0. The initial and boundary condition of the equation are given

below

u(x, 0) =


1, x ≤ 1

0, otherwise

, x ∈ Ω; u(0, t) = 1, t ∈ [0, T ],

where Ω = [0, 3] and T = 2.5.

We compute the equation using the P k-DG scheme (4.50) with k = 1, 2, 3, 4, CFL

number ∆t
∆x

= 0.5 and spatial partition N = 150. We zoom in the pre-shock zone and

draw the cell averages of the numerical solutions in this area in Figure 4.5, with a

comparison with the exact solution and the results without limiter. From the figures,
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we can observe that the negative cell averages of the original numerical scheme are

eliminated by the limiter.
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Figure 4.5: Results of Example 4.6.4

Example 4.6.5. Linear stationary hyperbolic equations in two dimensions

with smooth solutions

We solve the equation (4.30) with constant coefficients a(x, y) ≡ a = 0.7, b(x, y) ≡

b = 0.3 and s(x, y) ≡ 0 in the domain Ω = [0, 1] × [0, 1]. The inflow boundary

conditions are u(x, 0) = 0, 0 < x ≤ 1 and u(0, y) = sin6(πy), 0 ≤ y ≤ 1. The exact

solution of the problem is

u(x, y) =


0, y < b

a
x

sin6(π(y − b
a
x))e−

λ
a
x y ≥ b

a
x.
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We take λ = 1, which corresponds to the purely absorbing medium in RTE, and

λ = 0, which corresponds to the transparent medium in RTE, in the tests.

We compute the equations using the Qk-DG scheme (4.31) on rectangular meshes,

and the P k-DG scheme (4.42) on triangular meshes. The errors, orders of conver-

gence and data about positivity are given in the Table 4.3 - Table 4.6, from which

we can observe that the positivity and optimal accuracy are both attained by the

algorithms.

no Limiter with Limiter
k Nx ×Ny L1 error order L∞ error order minuh L1 error order L∞ error order LC (%)
1 20× 20 1.43E-03 - 2.66E-02 - -3.07E-04 1.42E-03 - 2.66E-02 - 35.00

40× 40 3.38E-04 2.08 6.94E-03 1.94 -2.06E-05 3.38E-04 2.07 6.94E-03 1.94 29.25
80× 80 8.21E-05 2.04 1.76E-03 1.98 -1.03E-06 8.21E-05 2.04 1.76E-03 1.98 25.98

160× 160 2.03E-05 2.02 4.42E-04 1.99 -4.61E-08 2.03E-05 2.02 4.42E-04 1.99 24.05
320× 320 5.04E-06 2.01 1.11E-04 2.00 -1.99E-09 5.04E-06 2.01 1.11E-04 2.00 22.95

2 20× 20 6.32E-05 - 1.26E-03 - -1.59E-06 6.32E-05 - 1.26E-03 - 14.50
40× 40 7.79E-06 3.02 1.63E-04 2.96 -2.73E-08 7.79E-06 3.02 1.63E-04 2.96 13.13
80× 80 9.71E-07 3.01 2.07E-05 2.98 -4.36E-10 9.71E-07 3.01 2.07E-05 2.98 12.58

160× 160 1.21E-07 3.00 2.60E-06 2.99 -6.86E-12 1.21E-07 3.00 2.60E-06 2.99 12.23
320× 320 1.51E-08 3.00 3.26E-07 3.00 -1.15E-13 1.51E-08 3.00 3.26E-07 3.00 12.06

3 20× 20 2.77E-06 - 6.61E-05 - -3.64E-07 2.78E-06 - 6.61E-05 - 18.50
40× 40 1.72E-07 4.01 4.35E-06 3.92 -7.14E-09 1.72E-07 4.01 4.35E-06 3.92 16.56
80× 80 1.07E-08 4.00 2.76E-07 3.98 -1.21E-10 1.07E-08 4.00 2.76E-07 3.98 15.55

160× 160 6.71E-10 4.00 1.73E-08 3.99 -1.94E-12 6.71E-10 4.00 1.73E-08 3.99 15.20
320× 320 4.19E-11 4.00 1.08E-09 4.00 -3.06E-14 4.19E-11 4.00 1.08E-09 4.00 14.98

4 20× 20 1.08E-07 - 2.56E-06 - -2.03E-08 1.09E-07 - 2.56E-06 - 19.50
40× 40 3.37E-09 5.01 8.33E-08 4.94 -3.45E-10 3.38E-09 5.01 8.33E-08 4.94 17.94
80× 80 1.05E-10 5.00 2.62E-09 4.99 -5.55E-12 1.05E-10 5.00 2.62E-09 4.99 17.31

160× 160 3.29E-12 5.00 8.19E-11 5.00 -9.54E-14 3.29E-12 5.00 8.19E-11 5.00 16.75
320× 320 1.07E-13 4.94 2.57E-12 5.00 -2.15E-15 1.07E-13 4.94 2.57E-12 5.00 16.53

Table 4.3: Results of Example 4.6.5 on rectangular meshes with λ = 1

Example 4.6.6. Linear stationary hyperbolic equations in two dimensions

with discontinuous solutions

We solve the equation (4.30) with constant coefficients a(x, y) ≡ a = 0.7, b(x, y) ≡

b = 0.3, s(x, y) ≡ 0 in the domain Ω = [0, 1]× [0, 1]. The inflow boundary conditions

are u(x, 0) = 0, 0 < x ≤ 1 and u(0, y) = 1, 0 ≤ y ≤ 1. The exact solution of the

problem is

u(x, y) =


0, y < b

a
x

e−
λ
a
x y ≥ b

a
x.
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no Limiter with Limiter
k Nx ×Ny L1 error order L∞ error order minuh L1 error order L∞ error order LC (%)
1 20× 20 1.92E-03 - 2.37E-02 - -2.89E-03 1.89E-03 - 2.37E-02 - 22.13

40× 40 4.40E-04 2.13 6.85E-03 1.79 -1.32E-04 4.40E-04 2.10 6.85E-03 1.79 17.22
80× 80 1.05E-04 2.07 1.81E-03 1.92 -5.02E-06 1.05E-04 2.07 1.81E-03 1.92 14.23

160× 160 2.57E-05 2.03 4.67E-04 1.96 -1.88E-07 2.57E-05 2.03 4.67E-04 1.96 12.62
320× 320 6.38E-06 2.01 1.18E-04 1.98 -7.32E-09 6.38E-06 2.01 1.18E-04 1.98 11.77

2 20× 20 9.43E-05 - 1.92E-03 - -2.44E-05 9.47E-05 - 1.92E-03 - 10.38
40× 40 1.14E-05 3.05 2.62E-04 2.87 -4.59E-07 1.14E-05 3.05 2.62E-04 2.87 8.28
80× 80 1.42E-06 3.01 3.45E-05 2.92 -7.72E-09 1.42E-06 3.01 3.45E-05 2.92 7.74

160× 160 1.77E-07 3.00 4.39E-06 2.97 -1.23E-10 1.77E-07 3.00 4.39E-06 2.97 7.42
320× 320 2.21E-08 3.00 5.54E-07 2.99 -1.95E-12 2.21E-08 3.00 5.54E-07 2.99 7.34

3 20× 20 5.87E-06 - 1.04E-04 - -1.03E-05 6.77E-06 - 1.04E-04 - 14.75
40× 40 3.70E-07 3.99 7.30E-06 3.83 -2.32E-07 3.78E-07 4.16 7.30E-06 3.83 11.94
80× 80 2.31E-08 4.00 4.85E-07 3.91 -4.05E-09 2.32E-08 4.03 4.85E-07 3.91 10.50

160× 160 1.44E-09 4.00 3.13E-08 3.96 -6.52E-11 1.44E-09 4.00 3.13E-08 3.96 9.86
320× 320 9.02E-11 4.00 1.98E-09 3.98 -1.03E-12 9.02E-11 4.00 1.98E-09 3.98 9.43

4 20× 20 3.16E-07 - 5.85E-06 - -5.81E-07 3.32E-07 - 5.85E-06 - 9.75
40× 40 9.83E-09 5.01 2.05E-07 4.83 -1.08E-08 9.97E-09 5.06 2.05E-07 4.83 8.75
80× 80 3.03E-10 5.02 6.72E-09 4.93 -1.89E-10 3.04E-10 5.03 6.72E-09 4.93 8.59

160× 160 9.41E-12 5.01 2.21E-10 4.93 -3.08E-12 9.41E-12 5.01 2.21E-10 4.93 8.36
320× 320 3.06E-13 4.94 7.25E-12 4.93 -4.90E-14 3.06E-13 4.95 7.25E-12 4.93 8.31

Table 4.4: Results of Example 4.6.5 on triangular meshes with λ = 1

no Limiter with Limiter
k Nx ×Ny L1 error order L∞ error order minuh L1 error order L∞ error order LC (%)
1 20× 20 2.66E-03 - 2.81E-02 - -1.12E-03 2.64E-03 - 2.81E-02 - 35.00

40× 40 6.10E-04 2.12 7.23E-03 1.96 -8.44E-05 6.10E-04 2.11 7.23E-03 1.96 29.25
80× 80 1.46E-04 2.06 1.82E-03 1.99 -4.12E-06 1.46E-04 2.06 1.82E-03 1.99 25.97

160× 160 3.59E-05 2.03 4.56E-04 2.00 -1.87E-07 3.59E-05 2.03 4.56E-04 2.00 24.05
320× 320 8.89E-06 2.01 1.14E-04 2.00 -8.21E-09 8.89E-06 2.01 1.14E-04 2.00 22.95

2 20× 20 1.14E-04 - 1.32E-03 - -1.65E-06 1.14E-04 - 1.32E-03 - 14.50
40× 40 1.40E-05 3.03 1.67E-04 2.98 -2.78E-08 1.40E-05 3.03 1.67E-04 2.98 13.19
80× 80 1.74E-06 3.01 2.09E-05 3.00 -4.39E-10 1.74E-06 3.01 2.09E-05 3.00 12.56

160× 160 2.17E-07 3.00 2.61E-06 3.00 -1.32E-11 2.17E-07 3.00 2.61E-06 3.00 12.21
320× 320 2.71E-08 3.00 3.27E-07 3.00 -4.61E-13 2.71E-08 3.00 3.27E-07 3.00 12.07

3 20× 20 4.96E-06 - 7.10E-05 - -4.14E-07 4.97E-06 - 7.10E-05 - 19.25
40× 40 3.08E-07 4.01 4.48E-06 3.98 -7.61E-09 3.08E-07 4.01 4.48E-06 3.98 16.69
80× 80 1.92E-08 4.00 2.81E-07 4.00 -1.24E-10 1.92E-08 4.00 2.81E-07 4.00 15.53

160× 160 1.20E-09 4.00 1.76E-08 4.00 -3.10E-12 1.20E-09 4.00 1.76E-08 4.00 15.21
320× 320 7.50E-11 4.00 1.10E-09 4.00 -8.31E-14 7.50E-11 4.00 1.10E-09 4.00 15.01

4 20× 20 1.94E-07 - 2.68E-06 - -2.70E-08 1.95E-07 - 2.68E-06 - 19.25
40× 40 6.04E-09 5.01 8.42E-08 4.99 -5.42E-10 6.05E-09 5.01 8.42E-08 4.99 17.88
80× 80 1.88E-10 5.00 2.63E-09 5.00 -1.18E-11 1.88E-10 5.00 2.63E-09 5.00 17.30

160× 160 5.88E-12 5.00 8.24E-11 5.00 -2.73E-13 5.88E-12 5.00 8.24E-11 5.00 16.74
320× 320 1.92E-13 4.93 2.78E-12 4.89 -6.56E-15 1.92E-13 4.93 2.80E-12 4.88 16.48

Table 4.5: Results of Example 4.6.5 on rectangular meshes with λ = 0
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no Limiter with Limiter
k Nx ×Ny L1 error order L∞ error order minuh L1 error order L∞ error order LC (%)
1 20× 20 3.67E-03 - 2.70E-02 - -5.59E-03 3.58E-03 - 2.70E-02 - 22.38

40× 40 8.02E-04 2.19 7.41E-03 1.87 -4.09E-04 8.02E-04 2.16 7.41E-03 1.87 17.22
80× 80 1.86E-04 2.11 1.91E-03 1.96 -1.85E-05 1.87E-04 2.10 1.91E-03 1.96 14.21

160× 160 4.52E-05 2.04 4.80E-04 1.99 -7.38E-07 4.52E-05 2.04 4.80E-04 1.99 12.61
320× 320 1.12E-05 2.02 1.20E-04 2.00 -2.94E-08 1.12E-05 2.02 1.20E-04 2.00 11.77

2 20× 20 1.68E-04 - 2.05E-03 - -2.81E-05 1.69E-04 - 2.05E-03 - 11.63
40× 40 2.02E-05 3.05 2.64E-04 2.96 -4.80E-07 2.02E-05 3.06 2.64E-04 2.96 9.25
80× 80 2.50E-06 3.02 3.32E-05 2.99 -7.89E-09 2.50E-06 3.02 3.32E-05 2.99 8.54

160× 160 3.12E-07 3.00 4.16E-06 3.00 -1.25E-10 3.12E-07 3.00 4.16E-06 3.00 8.27
320× 320 3.89E-08 3.00 5.21E-07 3.00 -1.96E-12 3.89E-08 3.00 5.21E-07 3.00 8.18

3 20× 20 1.02E-05 - 1.14E-04 - -1.22E-05 1.19E-05 - 1.14E-04 - 15.38
40× 40 6.43E-07 3.99 7.90E-06 3.85 -2.52E-07 6.58E-07 4.17 7.90E-06 3.85 12.50
80× 80 4.02E-08 4.00 5.10E-07 3.95 -4.20E-09 4.03E-08 4.03 5.10E-07 3.95 11.00

160× 160 2.51E-09 4.00 3.21E-08 3.99 -6.67E-11 2.51E-09 4.00 3.21E-08 3.99 10.34
320× 320 1.57E-10 4.00 2.01E-09 4.00 -1.05E-12 1.57E-10 4.00 2.01E-09 4.00 9.87

4 20× 20 5.55E-07 - 6.22E-06 - -6.07E-07 5.85E-07 - 6.22E-06 - 10.13
40× 40 1.71E-08 5.02 2.16E-07 4.85 -1.19E-08 1.73E-08 5.08 2.16E-07 4.85 9.34
80× 80 5.26E-10 5.02 6.96E-09 4.96 -1.99E-10 5.28E-10 5.04 6.96E-09 4.96 8.84

160× 160 1.63E-11 5.01 2.20E-10 4.98 -3.16E-12 1.63E-11 5.01 2.20E-10 4.98 8.48
320× 320 5.36E-13 4.93 7.06E-12 4.96 -4.96E-14 5.36E-13 4.93 7.06E-12 4.96 8.32

Table 4.6: Results of Example 4.6.5 on triangular meshes with λ = 0

We test the cases of λ = 1 and λ = 0, which correspond to the purely absorbing

medium and transparent medium in RTE, respectively.

The solutions are computed by the Qk-DG scheme (4.31) on rectangular meshes,

and by the P k-DG scheme (4.42) on triangular meshes, with the spatial partition

Nx ×Ny = 100× 100. We draw the contours of the solutions on rectangular meshes

in Figures 4.6 and 4.8 for the cases λ = 1 and λ = 0, respectively. The contours of

the solutions on triangular meshes are given in Figures 4.10 and 4.12 for the cases

λ = 1 and λ = 0, respectively. Moreover, we slice the solutions along y = 0.25 and

plot the averages of the solution along the line in Figures 4.7, 4.9, 4.11 and 4.13.

From the figures, we can observe that the negative averages of the solution in the

original scheme are eliminated by the positivity-preserving technique.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.6: Solutions of Example 4.6.6 on rectangular meshes with λ = 1
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Figure 4.7: Solutions of Example 4.6.6 on rectangular meshes with λ = 1, cut along
y = 0.25
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.8: Solutions of Example 4.6.6 on rectangular meshes with λ = 0
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Figure 4.9: Solutions of Example 4.6.6 on rectangular meshes with λ = 0, cut along
y = 0.25
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.10: Solutions of Example 4.6.6 on triangular meshes with λ = 1
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Figure 4.11: Solutions of Example 4.6.6 on triangular meshes with λ = 1, cut along
y = 0.25
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.12: Solutions of Example 4.6.6 on triangular meshes with λ = 0
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Figure 4.13: Solutions of Example 4.6.6 on triangular meshes with λ = 0, cut along
y = 0.25
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4.7 Concluding remarks

In this chapter, we have constructed high order conservative positivity-preserving

discontinuous Galerkin methods for various stationary hyperbolic equations in one

and two space dimensions, based on a novel definition of conservation for station-

ary equations. Two types of conservative positivity-preserving limiters are intro-

duced, where the type-1 limiter relies on particular Gauss-Radau quadratures for

the schemes while the type-2 limiter does not. The errors introduced by the limiters

are of optimal order on downstream edges, thus the limiter does not pollute the

original high order accuracy on downstream cells. Moreover, for time-dependent hy-

perbolic problems with implicit time discretization, the errors introduced by limiters

are always optimal.

The positivity-preserving technique proposed in this chapter is easy to implement,

simple to prove for the positivity, and applicable for general types of stationary

hyperbolic equations, compared with the previous work.



Chapter Five

Local characteristic decomposition

free finite difference WENO

schemes
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5.1 Introduction

It has long been recognized that, the solutions of nonlinear hyperbolic equations

can develop discontinuities (shocks) in finite time, even if the initial condition is

smooth. Such a phenomenon greatly challenges the robustness of high order nu-

merical methods, as spurious oscillations typically appear near shocks in numerical

approximations (the Gibbs phenomenon), and may blow/mess up the simulation in

later times. There have been numerous high order numerical methods developed to

address this issue, among which the essentially non-oscillatory (ENO)/weighted es-

sentially non-oscillatory (WENO) schemes have gained great success and have been

widely used in applications.

The ENO methods, first developed by Harten et al. [33], use adaptive strategy

to choose the smoothest stencil among several candidates to reconstruct the solution

from its cell averages, hence the methods yield essentially non-oscillatory approxi-

mation near shocks. The original ENO scheme was based on the framework of finite

volume methods, where the numerical fluxes at cell interfaces are obtained through

reconstructed solution. Later, Shu and Osher proposed the finite difference ENO

scheme in [73] based on ENO interpolation for nodal values and high order finite

difference approximation for spatial derivatives of fluxes, which saves considerable

computational cost in multi-dimensions, as the derivatives can be approximated di-

mension by dimension in finite difference schemes. Their subsequent work in [74]

developed a simpler finite difference ENO scheme based on the Shu-Osher lemma

to approximate the fluxes at cell interfaces by standard reconstruction for fluxes at

grid points. The WENO methods were developed upon ENO, with the idea of using

a convex combination of all candidate stencils rather than only one stencil in the

original ENO scheme. In the pioneer work of WENO schemes, Liu et al. [48] used
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linear weights to combine the candidate stencils in r-th order ENO schemes to yield

(r+ 1)-th order of accuracy. It was later improved by Jiang and Shu [35] to achieve

(2r − 1)-th order of accuracy on the same stencils, by adopting nonlinear weights

based on smoothness indicators designed for optimal accuracy in smooth regions and

essentially non-oscillatory fashion near discontinuities. Thereafter, intensive modi-

fications and improvements of the WENO procedure have been developed, e.g. the

mapped WENO [34], WENO-Z [4, 9], modified WENO to handle negative weights

[68], multi-resolution WENO [99], Hermite WENO [61], among other variants. Both

finite volume [33] and finite difference [73, 74] frameworks for ENO can be used with

the above WENO procedures. In our work, we use the classic WENO-JS procedure

[35], as it is most widely used and relatively simple to code. For more details about

the history and development of ENO and WENO methods, one can refer to the

surveys [71, 72].

The ENO/WENO methods perform very well for scalar conservation laws as they

achieve uniformly high order accuracy in smooth regions and resolve shocks sharply

with essentially non-oscillatory quality. However, when dealing with hyperbolic sys-

tems, the component-wise ENO/WENO procedure often produces oscillatory results

near shocks, especially when waves corresponding to different characteristic fields in-

teract, such as in Riemann problems. The primary approach to resolve this problem

is to apply the ENO/WENO procedure to the local characteristic fields of the system

obtained by local characteristic decomposition for the conserved variables/fluxes, and

transform the results back to the conserved variables/fluxes afterwards. Below, we

briefly review how the WENO methods for hyperbolic systems are used in cooper-

ation with the local characteristic decomposition. For the ease of comparison with

the algorithm to be developed in this chapter, we demonstrate it as per example of

the alternative formulation of finite difference WENO scheme developed in [36] from
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[73], which will be introduced with more details in Section 5.3.

We consider the hyperbolic system of m (m > 1) components

ut + f(u)x = 0, (5.1)

in one space dimension, where u = (u1, . . . , um) ∈ Rm are the conserved variables

and f(u) = (f1(u), . . . , fm(u)) ∈ Rm are the fluxes. Now and henceforth, we use

bold face font to denote vectors or matrices.

Consider uniform grids with the grid point xj = j∆x centering in the cell Ij =

[xj− 1
2
, xj+ 1

2
] = [(j − 1

2
)∆x, (j + 1

2
)∆x],∀j ∈ Z. The semi-discrete (2r − 1)-th order

alternative formulation of finite difference WENO scheme for (5.1) is formulated as

duj
dt

+
1

∆x

(
f̂j+ 1

2
− f̂j− 1

2

)
= 0, (5.2)

where uj is the approximation to u(xj, t), f̂j+ 1
2

= f̂(u−
j+ 1

2

,u+
j+ 1

2

, · · · ) is the nu-

merical flux, whose definition and arguments omitted for brevity will be detailed

in later sections, and u±
j+ 1

2

are approximations to u(xj+ 1
2
, t) from interpolants on

Ij and Ij+1. We denote the WENO interpolation for a scalar-valued grid func-

tion v at xj+ 1
2

on Ij by v−
j+ 1

2

= weno(vj−r+1, . . . , vj+r−1), whose implementation

will be detailed in Section 5.3. The WENO interpolation for v+
j− 1

2

follows from

mirror symmetry, i.e. v+
j− 1

2

= weno(vj+r−1, . . . , vj−r+1). We shall abuse the nota-

tion to also let it denote the component-wise WENO interpolation for vectors, e.g.

v−
j+ 1

2

= weno(vj−r+1, . . . ,vj+r−1).

The flowchart of the alternative formulation of finite difference WENO algorithm

(5.2) with local characteristic decomposition, based on the nodal values {unj }j∈Z at

time level tn, is given as follows, where the superscript n is omitted for brevity and
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the computation is carried out for all j ∈ Z:

1. Approximate the solution at xj+ 1
2

by the arithmetic mean uj+ 1
2

= 1
2

(uj + uj+1),

or the Roe’s average [65] satisfying f(uj+1)− f(uj) = ∂f
∂u

(uj+ 1
2
) (uj+1 − uj), if

it is available.

2. Perform the eigendecomposition on the Jacobian matrix: ∂f
∂u

(uj+ 1
2
) = Rj+ 1

2
Λj+ 1

2
R−1
j+ 1

2

,

where Λj+ 1
2

and Rj+ 1
2

are the diagonal matrix containing all eigenvalues and

the eigenmatrix consist of a complete set of eigenvectors as its columns, re-

spectively, of the Jacobian matrix.

3. Calculate the local characteristic variables: vi = R−1
j+ 1

2

ui, on the stencils i =

j − r + 1, . . . , j + r.

4. Perform the WENO interpolation for the local characteristic variables to obtain

v−
j+ 1

2

= weno(vj−r+1, . . . ,vj+r−1) and v+
j+ 1

2

= weno(vj+r, . . . ,vj−r+2).

5. Transform the local characteristic variables back to the conserved variables:

u±
j+ 1

2

= Rj+ 1
2
v±
j+ 1

2

.

6. Calculate the numerical fluxes f̂j+ 1
2

to evolve the scheme (5.2) in time.

As we can see, the steps 1, 2, 3 and 5 are extra costs due to the local characteristic

decomposition. In particular, there are 2r matrix-vector multiplications at every

cell interface xj+ 1
2

at the step 3, which is responsible for most of the floating point

operations.

There have been some attempts on avoiding or reducing the costs on local charac-

teristic decomposition in numerical schemes, meanwhile maintaining the essentially

non-oscillatory performance, but only limited successes were achieved. In [35], Jiang
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and Shu computed the weights in WENO from entropy and pressure instead of the

characteristic variables for Euler systems, to reduce part of the operations in local

characteristic decomposition. In [98], Zheng et al. argued that at the contact dis-

continuity on interface of two-medium flow, direct WENO interpolation for primary

variables is better than component-wise interpolation for conserved variables, but

local characteristic decomposition was still applied therein to the primitive variables

to get more satisfactory results. Low order central schemes [52, 49] can be used

without local characteristic decomposition. However, the local characteristic decom-

position is still necessary to control spurious oscillations when orders of the schemes

are high [59].

In this chapter, we propose an efficient implementation of finite difference WENO

schemes that is local characteristic decomposition free, for a special class of hyper-

bolic systems endowed with a coordinate system of Riemann invariants. Exam-

ples of such systems include all two-component hyperbolic systems and some multi-

component systems to be introduced in Section 5.2. The key idea of the method is to

apply the WENO procedure to the nodal values of the coordinate system of Riemann

invariants, which are (one-to-one) nonlinear algebraic functions of the conserved vari-

ables, and transform the interpolated values back to the conserved variables in the

calculation of fluxes. The improvement in efficiency is due to the fact that, the

characteristic decomposition for the WENO procedure is calculated locally, namely

the conserved variables/fluxes at every node need to be projected onto local charac-

teristic fields by different inverse eigenmatrices at different cell interfaces, while the

Riemann invariants have definite algebraic relation with the conserved variables thus

only need to be calculated once per node. A comparison of floating point operations

in these two methods are shown in Appendix C.1. The good non-oscillatory per-

formance of such treatment is justified by both theoretical properties of hyperbolic
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systems and numerical tests.

Due to the nonlinearity of the algebraic relation between Riemann invariants

and conserved variables/fluxes, we cannot use any reconstruction based numerical

schemes like the finite volume WENO or the traditional Shu-Osher lemma based

finite difference WENO, as we cannot directly transfer the cell averages between Rie-

mann invariants and conserved variables/fluxes. On the other hand, the transform

between nodal values is straightforward, thus we adopt the alternative formulation

of finite difference WENO scheme [36], which is based on WENO interpolation for

nodal values. Its implementation will be demonstrated in Section 5.3. For detailed

introduction and comparison with the traditional finite difference WENO for the

alternative formulation, one can refer to [36].

The rest of the chapter is organized as follows. In Section 5.2, we review the

definition of Riemann invariants and their important properties, and give examples

of hyperbolic systems endowed with a coordinate system of Riemann invariants. In

Section 5.3, we give a detailed description for our algorithm. We use numerical tests

in Section 5.4 to demonstrate the efficiency and good performance of our methods.

Finally, we end up with some concluding remarks in Section 5.5.

5.2 Riemann invariants

In this section, we review the definition and important properties of Riemann invari-

ants of hyperbolic system of conservation laws.

We consider the hyperbolic system (5.1), with u = (u1, . . . , um)T the conserved

variables taking values in an open set O ⊂ Rm, and f(u) = (f1(u), . . . , fm(u))T a
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smooth flux function on O. From hyperbolicity, the Jacobian matrix ∂f
∂u

has a com-

plete set of eigenvectors r1(u), r2(u), . . . , rm(u) corresponding to the real eigenvalues

λ1(u) ≤ λ2(u) ≤ . . . ≤ λm(u), for all u ∈ O.

The Riemann invariants of the hyperbolic system (5.1) is defined as follows [75]:

Definition 5.2.1. An i-Riemann invariant (1 ≤ i ≤ m) of the hyperbolic system

(5.1) is a scalar-valued function w(u) on O, such that ∇w(u) · ri(u) = 0, ∀u ∈

O, where ri(u) is an eigenvector of the Jacobian matrix ∂f
∂u

corresponding to the

eigenvalue λi(u).

Riemann invariants are closely related to the Riemann problem, which is a

Cauchy problem of the hyperbolic system (5.1) with the initial condition

u(x, 0) =


ul, x < 0

ur, x > 0

, (5.3)

where ul and ur are constant states. It is well-known that the solution u(x, t) of

the Riemann problem typically develops from the initial discontinuity at the origin

into m + 1 constant states in sector regions separated by the i-shock, contact or

rarefaction wave, for i = 1, 2, . . . ,m, which is a characterization of the fundamental

behavior of solutions of hyperbolic systems involving discontinuities. An important

property of Riemann invariants across waves is stated as follows [75]:

Theorem 5.2.2. The change of an i-Riemann invariant w of the hyperbolic system

(5.1) across an i-shock wave is of third order in ε, i.e. |w(ul) − w(ur)| = O(ε3),

where ul and ur are the states on the left and right sides of the i-shock, respectively,

and ε = |λi(ul)−λi(ur)| is a measure of the strength of the i-shock. In addition, the

i-Riemann invariant is unchanged across an i-rarefaction or contact wave.



181

Roughly speaking, the i-Riemann invariant is unchanged or almost unchanged

across an i-wave, consult Figure 5.1, where h, hu are the conserved variables, and

w1, w2 are the 1 and 2-Riemann invariants, respectively, in a Riemann problem of

the shallow water equations (5.5).
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Figure 5.1: Conserved variables and Riemann invariants in a Riemann problem of
the shallow water equations

The WENO interpolation/reconstruction procedure performs very well if there

is only one discontinuity in the stencil. However, the results turn out to be less

satisfactory when there are multiple shocks in the stencil. The property of Riemann

invariants in Theorem 5.2.2 gives us a hint to perform the WENO procedure on

the 1, 2-Riemann invariants of hyperbolic systems when m = 2, as there is only one

major discontinuity in each Riemann invariant in Riemann problems. We shall show

in numerical section that such a treatment yields very satisfactory non-oscillatory

results.
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A direct extension of the above approach to hyperbolic systems with m ≥ 3 is to

perform the WENO procedure on m variables, each of which only admits one major

jump in stencils. An ideal choice is the coordinate system of Riemann invariants,

which is defined as follows [19]:

Definition 5.2.3. The system (5.1) is endowed with a coordinate system of Riemann

invariants if there exist m scalar-valued functions w1(u), w2(u), . . . , wm(u) on O such

that,

∇wi(u) · rj(u) = δi,j, i, j = 1, 2, . . . ,m,

where δ is the Kronecker delta, rj(u) is an eigenvector of the Jacobian matrix ∂f
∂u

cor-

responding to the eigenvalue λj(u), 1 ≤ j ≤ m. The variables (w1(u), w2(u), . . . , wm(u))

are called a coordinate system of Riemann invariants of (5.1).

To this end, we give some examples of hyperbolic systems of conservation laws

endowed with a coordinate system of Riemann invariants.

Example 5.2.1. The linear hyperbolic system

ut + Aux = 0, (5.4)

where A = RΛR−1 for some diagonal matrix Λ and eigenmatrix R, has a coordinate

system of Riemann invariants (w1, w2, . . . , wm) with wi(u) = liu, 1 ≤ i ≤ m, where

li is the i-th row of R−1.

Example 5.2.2. The shallow water equations in one dimension

 h

hu


t

+

 hu

hu2 + 1
2
gh2


x

= 0 (5.5)

where h is the water height, u is the velocity of the fluid, and g is the gravitational
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constant, is endowed with a coordinate system of Riemann invariants (w1, w2) =

(u+ 2
√
gh, u− 2

√
gh).

The shallow water equations in two dimensions


h

hu

hv


t

+


hu

hu2 + 1
2
gh2

huv


x

+


hv

huv

hv2 + 1
2
gh2


y

= 0, (5.6)

where u and v are velocities of the fluid in x and y directions, respectively, has

coordinate systems of Riemann invariants (w1, w2, w3) = (u − 2
√
gh, v, u + 2

√
gh)

and (w1, w2, w3) = (v − 2
√
gh, u, v + 2

√
gh) in x and y directions, respectively, in

the sense that the states of fluid are constant in the other direction (in this case,

the system is of the form of one dimensional equations, which is known as the split

multi-dimensional problem).

Example 5.2.3. The hyperbolic system of electrophoresis of m components

∂tui + ∂x

(
ciui∑n
j=1 uj

)
= 0, i = 1, 2, . . . ,m, (5.7)

where c1 < c2 < · · · < cm are positive constants, is endowed with a coordinate system

of Riemann invariants (w1, w2, . . . , wm), where wi ∈ (ci, ci+1) is the solution of the

equation
∑m

j=1
uj

cj−w = 0, for i = 1, 2, . . . ,m− 1, and wm =
∑m

j=1
uj
cj

.

This system models the separation of ionized chemical compounds in solution

driven by an electric filed, where ci and ui denote the electrophoretic mobility and

concentration of the i-th component, respectively, see [2] for more details about its

physical backgrounds.

Example 5.2.4. The hyperbolic system of planar electromagnetic waves in nonlinear
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isotropic dielectrics 

B1

B2

D1

D2


t

+



−Ψ′(r)
r
D2

Ψ′(r)
r
D1

Ψ′(r)
r
B2

−Ψ′(r)
r
B1


x

= 0, (5.8)

where B = (B1, B2)T is the magnetic induction, D = (D1, D2) is the electric dis-

placement, Ψ(r) is the electromagnetic energy, and r =
√
B2

1 +B2
2 +D2

1 +D2
2, is

endowed with a coordinate system of Riemann invariants (w1, w2, w3, w4).

If we define a, b, p, q by peia = 1√
2

(B2 +D1 − i(B1 −D2)) and qeib = 1√
2
(−B2 +

D1 + i(B1 + D2)), then w1 = a, w2 = b, and w3, w4 are the 1, 2-Riemann invariants

of the smaller hyperbolic system

 p

q


t

+

 Ψ′(r)
r
p

−Ψ′(r)
r
q


x

= 0, r =
√
p2 + q2. (5.9)

5.3 The algorithms

In this section, we overview the WENO-JS interpolation, and establish our algo-

rithms in the framework of alternative formulation of finite difference WENO scheme

in one and two space dimensions. We shall assume the grids are uniform and, for

simplicity, only consider periodic boundaries.
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5.3.1 Overview of the WENO-JS interpolation

The (2r − 1)-th order WENO-JS interpolation for a scalar-valued grid function v is

described as follows.

First, we define the small stencils Sk = {xj−r+k, . . . , xj−1+k} to calculate the

(r − 1)-th order polynomial interpolant p(k)(x) of v on Ij, for k = 1, 2, . . . , r, and

the big stencil S0 = ∪rk=1Sk = {xj−r+1, . . . , xj+r−1} to calculate the (2r− 2)-th order

polynomial interpolant p(0)(x) of v on Ij, such that

p(k)(xj−r+k+m−1) = vj−r+k+m−1, m = 1, 2, . . . , r,

for k = 1, 2, . . . , r, and

p(0)(xj−r+m) = vj−r+m, m = 1, 2, . . . , 2r − 1,

so that we yield

v
−(k)

j+ 1
2

= p(k)(xj+ 1
2
) =

r∑
m=1

a(k)
m vj−r+k+m−1 = v(xj+ 1

2
) +O(∆xr), k = 1, 2, . . . , r,

(5.10)

and

v
−(0)

j+ 1
2

= p(0)(xj+ 1
2
) =

r∑
k=1

γkv
−(k)

j+ 1
2

= v(xj+ 1
2
) +O(∆x2r−1), (5.11)

where {γk}rk=1 are the so-called optimal linear weights with γk ≥ 0, for k = 1, 2, . . . , r

[8] and
∑r

k=1 γk = 1, and {a(k)
m }rm,k=1 are constant coefficients.

Then, we introduce the nonlinear weights {ωk}rk=1, which is designed in the prin-

ciple that, in smooth regions wk is close to γk to achieve optimal accuracy while,
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if containing discontinuities, wk is close to zero to minimize the contribution of the

stencil containing discontinuities in WENO interpolation:

ωk =
ω̃k∑r
m=1 ω̃m

, ω̃k =
γk

(βk + ε)2
, k = 1, 2, . . . , r, (5.12)

where ε is a small positive number, e.g. ε = 10−6, to avoid the case of linear weights

being divided by zero, and {βk}rk=1 are the smoothness indicators of the polynomial

interpolant p(k)(x) on Ij:

βk =
r∑
`=1

∆x2`−1

∫
Ij

(
d`

dx`
p(k)(x)

)2

dx. (5.13)

Finally, the WENO-JS interpolation v−
j+ 1

2

is calculated by

v−
j+ 1

2

=
r∑

k=1

ωkv
−(k)

j+ 1
2

. (5.14)

For instance, in the fifth order (r = 3) WENO-JS interpolation, we have

v
−(1)

j+ 1
2

=
3

8
vj−2 −

5

4
vj−1 +

15

8
vj,

v
−(2)

j+ 1
2

= −1

8
vj−1 +

3

4
vj +

3

8
vj+1,

v
−(3)

j+ 1
2

=
3

8
vj +

3

4
vj+1 −

1

8
vj+2,

and

γ1 =
1

16
, γ2 =

5

8
, γ3 =

5

16
,
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and

β1 =
13

12
(vj−2 − 2vj−1 + vj)

2 +
1

4
(vj−2 − 4vj−1 + 3vj)

2,

β2 =
13

12
(vj−1 − 2vj + vj+1)2 +

1

4
(vj−1 − vj+1)2,

β3 =
13

12
(vj − 2vj+1 + vj+2)2 +

1

4
(3vj − 4vj+1 + vj+2)2.

For expressions of smoothness indicators in higher order WENO-JS interpolations,

one can refer to [3].

5.3.2 The algorithm in one dimension

For the domain [xa, xb], we take the uniform partition xa = x0 < x1 < . . . < xN = xb,

and denote ∆x ≡ xj − xj−1, xj− 1
2

= 1
2

(xj−1 + xj), for j = 1, 2, . . . , N . In the

finite difference WENO scheme, we seek uj to approximate u(xj, t), and u±
j+ 1

2

to

approximate the solution at xj+ 1
2

from Ij and Ij+1, respectively. For the ease of

writing, we shall use subscript indices exceeding the domain in the cyclic sense.

The semi-discrete (2r − 1)-th order alternative formulation of finite difference

WENO scheme for the hyperbolic system (5.1) in one dimensions is given by (5.2),

in which we define

f̂j+ 1
2

= h(u−
j+ 1

2

,u+
j+ 1

2

) +
r−1∑
m=1

a2m∆x2m

(
∂2m

∂x2m
f

)
j+ 1

2

, (5.15)

where h(·, ·) is the numerical flux based on exact or approximate Riemann solvers,

e.g. the Godunov flux, the Lax-Friedrichs flux, or the HLLC-type fluxes, among

others, and the coefficients a2 = − 1
24
, a4 = 7

5760
, a6 = − 31

967680
, a8 = 127

154828800
, a10 =

− 73
3503554560

, . . ., are obtained through Taylor expansion to approximate the spacial
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derivative of flux with high accuracy, see [73].

Following the practice in [60, 36], we calculate u±
j+ 1

2

in h(u−
j+ 1

2

,u+
j+ 1

2

) by WENO

interpolation, while use simple central difference to approximate the spatial deriva-

tives of f in the remaining terms to save computational costs, as these terms contain

at least ∆x2 in the coefficients, which is expected to contribute much less oscilla-

tions. To attain enough accuracy, we use the stencil {xj−r+1, . . . , xj, . . . , xj+r} in the

central difference approximation for
(
∂2m

∂x2m f
)
j+ 1

2

.

For instance, in the fifth order finite difference WENO, we use

(
∂2

∂x2
f

)
j+ 1

2

=
1

∆x2

(
− 5

48
fj−2 +

13

16
fj−1 −

17

24
fj −

17

24
fj+1 +

13

16
fj+2 −

5

48
fj+3

)
,(

∂4

∂x4
f

)
j+ 1

2

=
1

∆x4

(
1

2
fj−2 −

3

2
fj−1 + fj + fj+1 −

3

2
fj+2 +

1

2
fj+3

)
.

If the hyperbolic system (5.1) is endowed with a coordinate system of Riemann

invariants w with the one-to-one algebraic relation w = w(u) and u = u(w) to the

conserved variables u, the (2r−1)-th order alternative formulation of finite difference

WENO scheme based on the nodal values {unj }Nj=1 at time level tn is given as follows,

where the superscript n is omitted for simplicity and computation is carried out for

all j = 1, 2, . . . , N :

1. Calculate the coordinate system of Riemann invariants wj = w (uj).

2. Perform the WENO interpolation introduced in Section 5.3.1 on {wj}Nj=1 to ob-

tain w−
j+ 1

2

= weno(wj−r+1, . . . ,wj+r−1) and w+
j+ 1

2

= weno(wj+r, . . . ,wj−r+2).

3. Transform the results back to the conserved variables by u±
j+ 1

2

= u
(
w±
j+ 1

2

)
.

4. Calculate the numerical fluxes f̂j+ 1
2

to evolve the scheme (5.2) in time.
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To this end, we would like to introduce the time-marching approach used the

algorithm. For the ODE system,

ut = L(u), (5.16)

which is obtained from the semi-discrete finite difference scheme, we adopt the 4-th

order 5 stage strong stability preserving Runge-Kutta (SSPRK(4, 5)) method [76],

u(1) = un + 0.39175222700392∆tL(un),

u(2) = 0.44437049406734un + 0.55562950593266u(1) + 0.36841059262959∆tL(u(1)),

u(3) = 0.62010185138540un + 0.37989814861460u(2) + 0.25189177424738∆tL(u(2)),

u(4) = 0.17807995410773un + 0.82192004589227u(3) + 0.54497475021237∆tL(u(3)),

un+1 = 0.00683325884039un + 0.51723167208978u(2) + 0.12759831133288u(3)

+ 0.34833675773694u(4) + 0.08460416338212∆tL(u(3))

+ 0.22600748319395∆tL(u(4)),

where un and un+1 are solutions at the time level tn and tn+1, respectively, and

∆t = tn+1 − tn. We refer to [25] and [26] for more details about the strong stability

preserving (SSP), also called the total variation diminishing (TVD), Runge-Kutta

or multi-step time discretization approaches.

In the numerical section, we shall use WENO schemes with spatial accuracy

higher than fourth order (the temporal accuracy), as in applications it is usually the

spatial accuracy that restricts the resolution of simulations.
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5.3.3 The algorithm in two dimensions

For the two dimensional domain [xa, xb] × [ya, yb], we take the uniform partition

xa = x0 < x1 < · · · < xN = xb and ya = y0 < y1 < · · · < yM = yb in x and

y directions, respectively, and denote by ∆x ≡ xi − xi−1, xi− 1
2

= 1
2

(xi−1 + xi) for

i = 1, 2, . . . , N , and ∆y ≡ yj−yj−1, yj− 1
2

= 1
2

(yj−1 + yj) for j = 1, 2, . . . ,M . We seek

ui,j to approximate u(xi, yj, t), and u±
i+ 1

2
,j

and u±
i,j+ 1

2

to approximate u(xi+ 1
2
, yj, t)

and u(xi, yj+ 1
2
, t), respectively, from different sides, in the finite difference WENO

schemes.

The semi-discrete (2r − 1)-th order alternative formulation of finite difference

WENO scheme for the hyperbolic system

ut + f(u)x + g(u)y = 0, (5.17)

in two dimensions is formulated as

dui,j
dt

+
1

∆x

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
+

1

∆y

(
ĝi,j+ 1

2
− ĝi,j− 1

2

)
= 0, (5.18)

for i = 1, 2, . . . , N, j = 1, 2, . . . ,M , where the fluxes are defined the same way as in

one dimensional case, thanks to the advantage of finite difference schemes.

If the x-split problem of (5.17) is endowed with a coordinate system of Riemann

invariants w and the y-split problem of (5.17) is endowed with a coordinate system

of Riemann invariants v, the algorithm based on the nodal values {uni,j}
N,M
i=1,j=1 at

time level tn is given as follows, where the superscript n is omitted for brevity and

computation is carried out for all i = 1, 2, . . . , N, j = 1, 2, . . . ,M :
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1. Calculate the coordinate systems of Riemann invariants wi,j = w (ui,j) and

vi,j = v (ui,j).

2. Perform the WENO interpolation introduced in Section 5.3.1 on {wi,j}N,Mi=1,j=1

and {vi,j}N,Mi=1,j=1 to obtain w−
i+ 1

2
,j

= weno(wi−r+1,j, . . . ,wi+r−1,j), w+
i+ 1

2
,j

=

weno(wi+r,j, . . . ,wi−r+2,j), and v−
i,j+ 1

2

= weno(vi,j−r+1, . . . ,vi,j+r−1), v+
i,j+ 1

2

=

weno(vi,j+r, . . . ,vi,j−r+2).

3. Calculate u±
i+ 1

2
,j

= u
(
w±
i+ 1

2
,j

)
and u±

i,j+ 1
2

= u
(
v±
i,j+ 1

2

)
.

4. Calculate the numerical fluxes f̂i+ 1
2
,j and ĝi,j+ 1

2
to evolve the scheme (5.18) in

time.

We adopt the same time marching approach in the algorithm as in the one space

dimension.

5.4 Numerical tests

In this section, we study the accuracy, efficiency and essentially non-oscillatory

performance of the algorithm established in the previous sections, and compare

them with those of the component-wise and local characteristic decomposition based

WENO methods. For convenience, the component-wise WENO, local characteristic

decomposition based WENO and Riemann invariants based WENO methods shall

be abbreviated to CW-WENO, LCD-WENO and RI-WENO, respectively. We adopt

the Lax-Friedrichs flux as the lowest order term in the flux (5.15). The numerical

tests are carried out for examples given in Section 5.2, except for the first one, as

the RI-WENO and LCD-WENO are exactly the same for linear hyperbolic systems.
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Example 5.4.1. (Accuracy and efficiency)

In this example, we compare the accuracy and efficiency of RI-WENO with those

of the CW-WENO and LCD-WENO for the one dimensional shallow water equations

(5.5).

It is easy to verify that, if v(x, t) is a classic solution of the inviscid Burgers’

equation vt +
(
v2

2

)
x

= 0, then h(x, t) = 4
9
v2(x, t) and u(x, t) = 2

3
v(x, t) are solutions

of the shallow water equations with the gravitational constant g = 1
4
, thus we let

v(x, 0) = 1
2

sin(x) + 1 to determine the corresponding initial conditions of h and u.

We set the the domain Ω = [0, 2π] and enforce the periodic boundary condition in

the tests. The CFL conditions are taken as ∆t = 1
10λmax

∆x
2r−1

4 in accuracy tests and

∆t = 1
10λmax

∆x in efficiency tests, where λmax = ||
(
|u|+

√
gh
)
||∞, and the terminal

time is T = 0.1.

The errors and orders of convergence of CW-WENO, RI-WENO and LCD-

WENO for h are given in Table 5.1, from which we can clearly observe that RI-

WENO has the same orders of convergence as those of CW-WENO.

Moreover, we compare the CPU times of CW-WENO, RI-WENO and LCD-

WENO on different grids for different orders. The code is run on Oscar[1] with

1 core and 8GB memory, and we count the CPU times by taking the average of 1000

trials of the complete computation. The results are given in Table 5.2, from which we

can see that RI-WENO has roughly the same efficiency as CW-WENO while reduces

considerable computational costs from LCD-WENO.

Example 5.4.2. (Shallow water equations in one dimension)

In this test, we compare the essentially non-oscillatory performance of RI-WENO
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method CW-WENO RI-WENO LCD-WENO

r N L1 error order L1 error order L1 error order

3 20 5.08E-04 - 1.07E-04 - 1.29E-03 -
40 1.53E-05 5.05 3.12E-06 5.10 9.23E-05 3.80
80 4.12E-07 5.22 9.18E-08 5.08 6.03E-06 3.94
160 1.16E-08 5.16 2.79E-09 5.04 3.64E-07 4.05
200 3.71E-09 5.09 9.28E-10 4.93 1.23E-07 4.87

4 10 4.09E-03 - 8.43E-04 - 4.53E-03 -
20 7.82E-05 5.71 6.90E-06 6.93 2.88E-04 3.98
40 7.66E-07 6.67 6.42E-08 6.75 1.78E-05 4.01
60 5.81E-08 6.36 5.61E-09 6.01 3.63E-06 3.92

5 10 1.75E-03 - 3.42E-04 - 2.12E-03 -
20 8.11E-06 7.76 8.91E-07 8.58 3.89E-05 5.77
30 1.87E-07 9.30 2.04E-08 9.32 3.26E-06 6.12
40 1.41E-08 9.00 1.28E-09 9.62 3.65E-07 7.61

6 12 2.11E-04 - 3.86E-05 - 2.84E-04 -
20 1.93E-06 9.20 2.68E-07 9.73 9.25E-06 6.70
30 1.89E-08 11.40 2.92E-09 11.15 4.76E-07 7.32
40 9.34E-10 10.46 1.09E-10 11.41 3.81E-08 8.78

Table 5.1: Accuracy of h of different WENO methods in Example 5.4.1

method CW-WENO RI-WENO LCD-WENO

r N CPU time (s) CPU time (s) CPU time (s)

3 50 1.58E-03 1.74E-03 3.55E-03
100 6.22E-03 6.52E-03 1.44E-02
150 9.94E-03 1.07E-02 2.77E-02
200 1.72E-02 1.84E-02 4.87E-02

4 50 2.78E-03 2.97E-03 5.27E-03
100 1.08E-02 1.13E-02 2.11E-02
150 2.03E-02 2.10E-02 4.35E-02
200 3.35E-02 3.69E-02 6.76E-02

5 50 3.78E-03 3.95E-03 6.50E-03
100 1.47E-02 1.52E-02 2.60E-02
150 2.88E-02 2.96E-02 5.42E-02
200 4.65E-02 5.18E-02 8.38E-02

6 50 4.84E-03 5.01E-03 7.94E-03
100 1.90E-02 1.95E-02 3.18E-02
150 3.81E-02 3.88E-02 6.71E-02
200 6.57E-02 6.76E-02 1.03E-01

Table 5.2: CPU times of different WENO methods in Example 5.4.1



194

with that of CW-WENO and LCD-WENO for the shallow water equations (5.5) in

one dimension.

We first solve a Riemann problem with g = 10 and the initial condition

h(x, 0) =


0.125, x < 0

1.000, x > 0

, u(x, 0) = 0,

on the domain Ω = [−5, 5] with the partition N = 200. The plots of h of different

methods at T = 1 are compared in Figure 5.2, where the reference solution are given

by the exact Riemann solver.

We then solve a periodic boundary problem with g = 1 and the initial condition

h(x, 0) =


2.0, 0 < x < 10

1.5, 10 < x < 20

, u(x, 0) = 0,

on the domain Ω = [0, 20] with the partition N = 200. The plots of h of differ-

ent methods at T = 20 are compared in Figure 5.3, where the reference solution is

obtained from the fifth order LCD-WENO on a grid containing 10000 cells.

By comparison, we observe the essentially non-oscillatory effect of RI-WENO is

much better than CW-WENO, and similar to LCD-WENO.

Example 5.4.3. (Shallow water equations in two dimensions)

In this test, we compare the essentially non-oscillatory performance of RI-WENO

with that of CW-WENO and LCD-WENO for the shallow water equations (5.6) in

two dimensions.
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Figure 5.2: Solution h of different WENO methods for the Riemann problem in
Example 5.4.2.
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(a) CW-WENO, r = 3
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(b) RI-WENO, r = 3
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(c) LCD-WENO, r = 3
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Figure 5.3: Solution h of different WENO methods for the periodic boundary prob-
lem in Example 5.4.2.
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We solve a periodic boundary problem with g = 1 and the initial condition

h(x, y, 0) =



2.5, 0 < x < 10, 0 < y < 10

2.0, 0 < x < 10, 10 < y < 20

0.5, 10 < x < 20, 0 < y < 10

1.5, 10 < x < 20, 10 < y < 20

, u(x, y, 0) = v(x, y, 0) = 0,

on the domain Ω = [0, 20]2 with N = M = 200.

The contours of h of different methods at T = 5 are shown in Figure 5.4, from

which we can observe oscillations in the fourth quadrant in CW-WENO are elimi-

nated by RI-WENO and LCD-WENO. Moreover, we plot the cut of h along y = 10

for different methods, and compare them with the reference solution obtained from

the fifth order LCD-WENO on a 1000× 1000 grid in Figure 5.5, from which we can

see the non-oscillatory fashion of RI-WENO.

Example 5.4.4. (Equations of electrophoresis)

In this test, we compare the essentially non-oscillatory performance of RI-WENO

with that of CW-WENO and LCD-WENO for the electrophoresis equations (5.7).

We solve the three-component periodic boundary problem with the electrophoretic

mobilities c1 = 2, c2 = 4, c3 = 5, and the initial condition

u1(x, 0) =


1, 0 < x < π

2

0.01, π
2
< x < 2π

, u2(x, 0) =


0.01, 0 < x < 3π

2

1, 3π
2
< x < 2π

, u3(x, 0) = 1,

on the domain Ω = [0, 2π] with N = 200.
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(a) CW-WENO, r = 3 (b) RI-WENO, r = 3 (c) LCD-WENO, r = 3

(d) CW-WENO, r = 4 (e) RI-WENO, r = 4 (f) LCD-WENO, r = 4

(g) CW-WENO, r = 5 (h) RI-WENO, r = 5 (i) LCD-WENO, r = 5

(j) CW-WENO, r = 6 (k) RI-WENO, r = 6 (l) LCD-WENO, r = 6

Figure 5.4: Contours of h of difference WENO methods in Example 5.4.3.
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(a) CW-WENO, r = 3
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(b) RI-WENO, r = 3
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(c) LCD-WENO, r = 3
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Figure 5.5: Cut of h along y = 10 of difference WENO methods in Example 5.4.3.
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The plots of u1 of different methods at T = 0.5 are compared in Figure 5.6, where

the reference solution is obtained from the fifth order LCD-WENO on a grid con-

taining 10000 cells. The results of RI-WENO apparently have much less oscillation

compared with those of CW-WENO and similar fashion with LCD-WENO.
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(c) LCD-WENO, r = 3
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Figure 5.6: Solution u1 of different WENO methods in Example 5.4.4.

Example 5.4.5. (Equations of planar electromagnetic wave)
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In this test, we compare the essentially non-oscillatory performance of RI-WENO

with that of CW-WENO and LCD-WENO for the planar electromagnetic wave equa-

tions (5.8). One can check that, if the electromagnetic energy satisfies Ψ′(r)
r

= rα for

some α > 0, the 1, 2-Riemann invariants of the smaller hyperbolic system in Example

5.2.4 have the expressions w3(p, q) = p−qG−1(log 1
q
) and w4(p, q) = p+qG−1(log 1

q
),

where G(·) is defined in the Appendix C.2.

We solve the periodic boundary problem with α = 2 and the initial condition

B1(x, 0) =


1, 0 < x < 2

0, 2 < x < 4

, B2(x, 0) = D1(x, 0) = D2(x, 0) = 1,

on the domain Ω = [0, 4] with N = 400.

The plots of D1 of different methods at T = 0.3 are compared in Figure 5.7, where

the reference solution is obtained from the fifth order LCD-WENO on a grid con-

taining 10000 cells. From the comparison, we can see that RI-WENO has excellent

essentially non-oscillatory performance.

5.5 Concluding remarks

In this chapter, we establish a local characteristic decomposition free WENO method

for hyperbolic system of conservation laws endowed with a coordinate system of

Riemann invariants. We apply the WENO procedure to the coordinate system of

Riemann invariants instead of the local characteristic fields of the hyperbolic sys-

tem, thereby the efficiency is improved significantly. Due to the nonlinear algebraic

relation of Riemann invariants and conserved variables/fluxes, we have to adopt the
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(c) LCD-WENO, r = 3
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Figure 5.7: Solution D1 of different WENO methods in Example 5.4.5.
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interpolation based alternative formulation of finite difference WENO method. Nu-

merical tests show that the Riemann invariants based WENO method has optimal

order of convergence and roughly the same efficiency as that of the components-

wise WENO, but its essentially non-oscillatory fashion is similar to that of local

characteristic decomposition based WENO.



Chapter Six

Conclusion
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This dissertation is based on the work in [87, 86, 85, 84], with the main con-

tributions on designing third order bound-preserving Lax-Wendroff discontinuous

Galerkin methods for scalar conservation laws and the Euler equations, establishing

positivity-preserving discontinuous Galerkin methods for stationary hyperbolic bal-

ance laws, and proposing an efficient (local characteristic decomposition free) finite

difference weighted essentially non-oscillatory scheme for the systems of hyperbolic

conservation laws endowed with a coordinate system of Riemann invariants.

In the first topic of this dissertation, we have designed third order maximum-

principle-satisfying DG methods for scalar conservation laws and positivity-preserving

DG methods for the Euler equations based on the Lax-Wendroff temporal discretiza-

tion, within the Zhang–Shu bound-preserving framework [93, 94]. For the first order

spatial derivatives in the equations, we adopt the classic Lax-Friedrichs flux used

in the bound-preserving work[93, 94], so that the proofs of the bound-preserving of

this part can be omitted. The main difficulty of the bound-preserving Lax-Wendroff

DG methods is the appearance of high order derivatives and mixed derivatives (in

high dimensions) resulting from the Lax-Wendroff procedure. We adopt the bound-

preserving DDG flux in [11] and the average fluxes to discretize the second and third

order derivatives, respectively, such that the high order part is also bound-preserving.

As for the mixed derivatives, by carefully designed expansions of high order temporal

derivatives, we avoid their appearance in our numerical schemes, which is the key to

the success of bound-preserving in high dimensions. Finally, we prove that, under

suitable CFL conditions, the cell average of the LWDG scheme at the next time step

is bounded, provided the solution stays in the desired bounds at the current time

step. The scaling limiters, which were proved not to affect the high order accuracy

and mass conservation of solutions, can then be used to enforce the bounds for the

whole solution at the next time step, hence closing the loop of the bound-preserving
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LWDG algorithm.

For stationary hyperbolic equations, it is known that their physical solutions are

nonnegative, provided the corresponding boundary conditions and source terms are

nonnegative. In the second topic, we establish the positivity-preserving DG meth-

ods for this kind of equation. We first follow the studies of Yuan et al. (2016) [90]

and Ling et al. (2018) [46] in the Zhang–Shu bound-preserving framework [93], to

rigorously preserve the positivity of cell averages of the designed DG scheme so that

the conservative scaling limiter can be used to attain positivity without affecting

accuracy. Via suitable quadrature rules in the DG formulation, we have successfully

constructed the positivity-preserving scheme with the accuracy of arbitrarily high

order for the variable coefficient equation (3.1) with λ = 0, and second and third

orders for the variable coefficient equation (3.1) with λ > 0 and the nonlinear equa-

tion (3.2) with λ ≥ 0, in one space dimension. Moreover, we have proposed the

positivity-preserving scheme for constant coefficient equations with arbitrarily high

order accuracy in two space dimensions and arbitrary odd order accuracy in three

space dimensions. In a further study of this topic, we clarify a more appropriate

definition of mass conservation for stationary hyperbolic equations. Instead of pre-

serving the cell averages as we did in the previous work, we preserve the sum of the

cell average and outflow fluxes in each cell. Novel conservative positivity-preserving

limiters are proposed to accommodate the new definition of conservation, and their

accuracy is investigated. The genuinely conservative high order positivity-preserving

DG methods are established based on this definition. The new methods are able to

preserve the positivity of more general types of equations with much simpler imple-

mentations and easier proofs for accuracy and the Lax-Wendroff theorem, compared

with the previous methods.

In the last topic, we propose a local characteristic decomposition free finite dif-
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ference WENO scheme for a particular class of systems of hyperbolic conservation

laws, including the shallow water equations, equations of electrophoresis, and the

planar electromagnetic waves in isotropic dielectrics, etc. As observed from numer-

ical practices, e.g. [51, 59], the reconstruction performed on conservative variables

is worse than the reconstruction on characteristic variables for the shock capturing

fidelity of numerical methods for hyperbolic systems. Due to this reason, the local

characteristic decomposition technique is widely used in the computation of com-

pressible fluid dynamics, though it is computationally expensive. The main goal

of our work is to find an alternative to the characteristic variables in the WENO

reconstruction/interpolation procedure to avoid the expensive computational cost

spent on local characteristic decomposition. As analyzed per the example of Rie-

mann problems, the coordinate system of Riemann invariants admits only one major

discontinuity in each component, thus it is expected to provide good shock captur-

ing fidelity when WENO procedure is applied to it. We have verified this conjecture

through extensive numerical experiments. By comparison, the Riemann invariants

based WENO method has roughly the same efficiency as that of the components-wise

WENO, which saves roughly half of the simulation time from the local characteristic

decomposition based WENO scheme, but its essentially non-oscillatory fashion is

similar to that of the local characteristic decomposition based WENO.
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210

A.1 Skipped details of CFL conditions and proofs

of bound-preserving for the scalar conserva-

tion law and Euler equations

A.1.1 Constants in the CFL condition (2.29)

Denote

M f
1 = maxm≤u≤M |f ′(u)|,

M f
2 = maxm≤u≤M |f ′′(u)|,

M g
1 = maxm≤u≤M |g′(u)|,

M g
2 = maxm≤u≤M |g′′(u)|,

then the constants Q1 and Q2 in the CFL condition (2.29) are defined as:

Q1 = min{q1
1, q

1
2, . . . , q

1
6}, where

q1
1 = 1

8Mf
1

minγ ω̂γ,

q1
2 = 1

4

4β1− 1
2

5(M−m)Mf
2 + 4

3
Mf

1

,

q1
3 = 1

4
2−8β1

20(M−m)Mf
2 + 8

3
Mf

1

,

q1
4 = 1

4

β0− 3
2

+4β1

15(M−m)Mf
2 + 4

3
Mf

1

,

q1
5 = 1

4

ω̂
1/2
1

Mf
1 (β0−1+4β1)1/2

,

q1
6 = 1

4

ω̂
1/2
Nq

Mf
1 (6−24β1)1/2

,

Q2 = min{q2
1, q

2
2, . . . , q

2
6}, where

q2
1 = 1

8Mg
1

minγ ω̂γ,

q2
2 = 1

4

4β1− 1
2

5(M−m)Mg
2 + 4

3
Mg

1
,

q2
3 = 1

4
2−8β1

20(M−m)Mg
2 + 8

3
Mg

1
,

q2
4 = 1

4

β0− 3
2

+4β1

15(M−m)Mg
2 + 4

3
Mg

1
,

q2
5 = 1

4

ω̂
1/2
1

Mg
1 (β0−1+4β1)1/2 ,
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q2
6 = 1

4

ω̂
1/2
Nq

Mg
1 (6−24β1)1/2 ,

Define

c1 = M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 + 2M f
1M

g
1

2),

c2 = M f
1M

g
1 +Q1(10(M −m)M f

1M
g
1M

f
2 + 5(M −m)M f

1

2
M g

2 + 2M g
1M

f
1

2
),

then Q3 and Q4 in (2.29) are defined as:

Q3 = min{q3
1, q

3
2, q

3
3, q

3
4}, where

q3
1 =

ω̂2
1

2ω̂1α1
x+4Q2c1

,

q3
2 =

ω̂1ω̂Nq
2ω̂Nqα

1
x+4Q2c1

,

q3
3 =

ω̂1α1
y

2c2
,

q3
4 =

ω̂Nqα
1
y

2c2
,

Q4 = min{q4
1, q

4
2, q

4
3, q

4
4}, where

q4
1 =

ω̂2
1

2ω̂1α1
y+4Q1c2

,

q4
2 =

ω̂1ω̂Nq
2ω̂Nqα

1
y+4Q1c2

,

q4
3 = ω̂1α1

x

2c1
,

q4
4 =

ω̂Nqα
1
x

2c1
.

A.1.2 Coefficients in the expansion (2.30)

For convenience, we introduce the constants

dγ1 = 2L′−1(r̂γ), dγ2 = 2L′0(r̂γ), dγ3 = 2L′1(r̂γ), γ = 1, 2, . . . , 2Nq − 1,

where L−1, L0, L1 are the Lagrange basis in (2.15) and {r̂γ, γ = 1, . . . , 2Nq − 1} are

the Gauss-Lobatto points on [−1, 1]. It is clear that |dγi | ≤ 4, for i = 1, 2, 3, γ =

1, 2, . . . , 2Nq − 1.
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The coefficients z1, . . . , z14,β in the expansion (2.30) are defined as follows.

z1 =λx

(
1

2
ω̂1α

1
x + λy

2Nq−1∑
β=1

ω̂β×(
−1

4
f ′g′dβ1 +

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
1 + λyf

′g′2
)

(x−
i− 1

2

, ŷβ)

)
z2 =λx

(
1

2
ω̂Nqα

1
x + λy

2Nq−1∑
β=1

ω̂β×(
−1

4
f ′g′dβ2 +

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
2 − 2λyf

′g′2
)

(x−
i− 1

2

, ŷβ)

)
z3 =λx

(
1

2
ω̂2Nq−1α

1
x + λy

2Nq−1∑
β=1

ω̂β×(
−1

4
f ′g′dβ3 +

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
3 + λyf

′g′2
)

(x−
i− 1

2

, ŷβ)

)
z4 =

1

4
ω̂2

1 −
1

2
λxω̂1α

1
x + λxλy

2Nq−1∑
β=1

ω̂β×(
−1

4
f ′g′dβ1 +

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
1 + λyf

′g′2
)

(x+
i− 1

2

, ŷβ)

z5 =
1

4
ω̂1ω̂Nq −

1

2
λxω̂Nqα

1
x + λxλy

2Nq−1∑
β=1

ω̂β×(
−1

4
f ′g′dβ2 +

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
2 − 2λyf

′g′2
)

(x+
i− 1

2

, ŷβ)

z6 =
1

4
ω̂1ω̂2Nq−1 −

1

2
λxω̂2Nq−1α

1
x + λxλy

2Nq−1∑
β=1

ω̂β×(
−1

4
f ′g′dβ3 +

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
3 + λyf

′g′2
)

(x+
i− 1

2

, ŷβ)

z7 =
1

4
ω̂1ω̂2Nq−1 −

1

2
λxω̂1α

1
x + λxλy

2Nq−1∑
β=1

ω̂β×(
1

4
f ′g′dβ1 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
1 − λyf ′g′2

)
(x−

i+ 1
2

, ŷβ)
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z8 =
1

4
ω̂Nq ω̂2Nq−1 −

1

2
λxω̂Nqα

1
x + λxλy

2Nq−1∑
β=1

ω̂β×(
1

4
f ′g′dβ2 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
2 + 2λyf

′g′2
)

(x−
i+ 1

2

, ŷβ)

z9 =
1

4
ω̂2Nq−1ω̂2Nq−1 −

1

2
λxω̂2Nq−1α

1
x + λxλy

2Nq−1∑
β=1

ω̂β×(
1

4
f ′g′dβ3 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
3 − λyf ′g′2

)
(x−

i+ 1
2

, ŷβ)

z10 =λx

(
1

2
ω̂1α

1
x + λy

2Nq−1∑
β=1

ω̂β×(
1

4
f ′g′dβ1 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
1 − λyf ′g′2

)
(x+

i+ 1
2

, ŷβ)

)
z11 =λx

(
1

2
ω̂Nqα

1
x + λy

2Nq−1∑
β=1

ω̂β×(
1

4
f ′g′dβ2 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
2 + 2λyf

′g′2
)

(x+
i+ 1

2

, ŷβ)

)
z12 =λx

(
1

2
ω̂2Nq−1α

1
x + λy

2Nq−1∑
β=1

ω̂β×(
1

4
f ′g′dβ3 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)d

β
3 − λyf ′g′2

)
(x+

i+ 1
2

, ŷβ)

)
,

z13,β =
1

4
ω̂2Nq−1 −

λx
2
α1
x

z14,β =
1

4
ω̂1 −

λx
2
α1
x

Moreover, we have the following lower bound estimates for z1, . . . , z14,β under the
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CFL condition (2.29).

z1 ≥λx
(

1

2
ω̂1α

1
x − λy×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
))
≥ 0

z2 ≥λx
(

1

2
ω̂Nqα

1
x − λy×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) + 2Q2M
f
1M

g
1

2
))
≥ 0

z3 ≥λx
(

1

2
ω̂2Nq−1α

1
x − λy×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
))
≥ 0

z4 ≥
1

4
ω̂2

1 −
1

2
λxω̂1α

1
x − λxQ2×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
)
≥ 0

z5 ≥
1

4
ω̂1ω̂Nq −

1

2
λxω̂Nqα

1
x − λxQ2×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) + 2Q2M
f
1M

g
1

2
)
≥ 0

z6 ≥
1

4
ω̂1ω̂2Nq−1 −

1

2
λxω̂2Nq−1α

1
x − λxQ2×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
)
≥ 0
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z7 ≥
1

4
ω̂1ω̂2Nq−1 −

1

2
λxω̂1α

1
x − λxQ2×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
)
≥ 0

z8 ≥
1

4
ω̂Nq ω̂2Nq−1 −

1

2
λxω̂Nqα

1
x − λxQ2×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) + 2Q2M
f
1M

g
1

2
)
≥ 0

z9 ≥
1

4
ω̂2

2Nq−1 −
1

2
λxω̂2Nq−1α

1
x − λxQ2×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
)
≥ 0

z10 ≥λx
(

1

2
ω̂1α

1
x − λy×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
))
≥ 0

z11 ≥λx
(

1

2
ω̂Nqα

1
x − λy×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) + 2Q2M
f
1M

g
1

2
))
≥ 0

z12 ≥λx
(

1

2
ω̂2Nq−1α

1
x − λy×(

M f
1M

g
1 +Q2(10(M −m)M f

1M
g
1M

g
2 + 5(M −m)M g

1
2M f

2 ) +Q2M
f
1M

g
1

2
))
≥ 0

and z13,β, z14,β ≥ 0,∀β.
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A.1.3 Coefficients in the expansion (2.41)

The coefficients of the expansion (2.41) are

z10 =λ2

(
γ̂

2
(4β1 −

1

2
) +

∆t

12
γ̂(3 + γ) (ux)

−
j− 1

2
+ λγ̂u−

j− 1
2

)
e+
j− 3

2

z11 =λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ) (ux)

−
j− 1

2
− 2λγ̂u−

j− 1
2

)
ej−1

z12 =λ2

(
γ̂

2
(β0 −

3

2
+ 4β1) +

∆t2

12λ
γ̂γ (uxx)

−
j− 1

2
+

∆t

4
γ̂(3 + γ) (ux)

−
j− 1

2
+ λγ̂u−

j− 1
2

)
e−
j− 1

2

z13 =
1

4
ω̂1 − λ2

(
γ̂

2
(4β1 −

1

2
) +

γ̂

2
(β0 −

3

2
+ 4β1) +

∆t

12
γ̂(3 + γ) (ux)

−
j+ 1

2

−∆t2

12λ
γ̂γ (uxx)

+
j− 1

2
+

∆t

4
γ̂(3 + γ) (ux)

+
j− 1

2
+ λγ̂u−

j+ 1
2

− λγ̂u+
j− 1

2

)
e+
j− 1

2

z14 =
1

4
ω̂Nq − λ2

(
γ̂

2
(2− 8β1) +

γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ) (ux)

+
j− 1

2

−∆t

3
γ̂(3 + γ) (ux)

−
j+ 1

2
− 2λγ̂u−

j+ 1
2

+ 2λγ̂u+
j− 1

2

)
ej

z15 =
1

4
ω̂2Nq−1 − λ2

(
γ̂

2
(β0 −

3

2
+ 4β1) +

γ̂

2
(4β1 −

1

2
) +

∆t2

12λ
γ̂γ (uxx)

−
j+ 1

2

+
∆t

12
γ̂(3 + γ) (ux)

+
j− 1

2
+

∆t

4
γ̂(3 + γ) (ux)

−
j+ 1

2
− λγ̂u+

j− 1
2

+ λγ̂u−
j+ 1

2

)
e−
j+ 1

2

z16 =λ2

(
γ̂

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
γ̂γ (uxx)

+
j+ 1

2
+

∆t

4
γ̂(3 + γ) (ux)

+
j+ 1

2
− λγ̂u+

j+ 1
2

)
e+
j+ 1

2

z17 =λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ) (ux)

+
j+ 1

2
+ 2λγ̂u+

j+ 1
2

)
ej+1

z18 =λ2

(
γ̂

2
(4β1 −

1

2
) +

∆t

12
γ̂(3 + γ) (ux)

+
j+ 1

2
− λγ̂u+

j+ 1
2

)
e−
j+ 3

2
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Under the condition λ ≤ min{q7, q8, q9, q10, q11}, we have the estimates as follows

z10 ≥λ2

(
γ̂

2
(4β1 −

1

2
)− ∆t

12
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e+
j− 3

2

≥ 0,

z11 ≥λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ)||ux||∞ − 2λγ̂||u||∞

)
ej−1 ≥ 0,

z12 ≥λ2

(
γ̂

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
γ̂γ||uxx||∞ −

∆t

4
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e−
j− 1

2

≥ 0,

z13 ≥
1

4
ω̂1 − λ2×(
γ̂

2
(β0 − 2 + 8β1) +

∆t2

12λ
γ̂γ||uxx||∞ +

∆t

3
γ̂(3 + γ)||ux||∞ + 2λγ̂||u||∞

)
||e||∞ ≥ 0,

z14 ≥
1

4
ω̂Nq − λ2

(
γ̂(2− 8β1) +

2∆t

3
γ̂(3 + γ)||ux||∞ + 4λγ̂||u||∞

)
||e||∞ ≥ 0,

z15 ≥
1

4
ω̂2Nq−1 − λ2×(
γ̂

2
(β0 − 2 + 8β1) +

∆t2

12λ
γ̂γ||uxx||∞ +

∆t

3
γ̂(3 + γ)||ux||∞ + 2λγ̂||u||∞

)
||e||∞ ≥ 0,

z16 ≥λ2

(
γ̂

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
γ̂γ||uxx||∞ −

∆t

4
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e+
j+ 1

2

≥ 0,

z17 ≥λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ)||ux||∞ − 2λγ̂||u||∞

)
ej+1 ≥ 0,

z18 ≥λ2

(
γ̂

2
(4β1 −

1

2
)− ∆t

12
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e−
j+ 3

2

≥ 0,

A.1.4 Constants in the CFL condition (2.55)

Q1 = min{q1
1, q

1
2, . . . , q

1
11}, where

q1
1 = ω̂1

8||(|u|+c)||∞ ,

q1
2 = 1

4

6(β0− 3
2

+4β1)

∆x2||uxx||∞+6∆x||ux||∞+4||u||∞ ,

q1
3 = 1

4
3(2−8β1)

4(∆x||ux||∞+||u||∞)
,

q1
4 = 1

4

3(4β1− 1
2

)

∆x||ux||∞+2||u||∞ ,

q1
5 = 1

8||u||∞

(
ω̂1

β0−2+8β1

) 1
2
,

q1
6 = 1

8||u||∞

(
ω̂Nq

2(2−8β1)

) 1
2
,
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q1
7 = 1

4

6(4β1− 1
2

)

(3+γ)∆x||ux||∞+γ̂∆x||vy ||∞+12||u||∞ ,

q1
8 = 1

4
3(2−8β1)

2(3+γ)∆x||ux||∞+2γ̂∆x||vy ||∞+12||u||∞ ,

q1
9 = 1

4

6(β0− 3
2

+4β1)

γ∆x2||uxx||∞+3(3+γ)∆x||ux||∞+3γ̂∆x||vy ||∞+12||u||∞ ,

q1
10 = 1

4

(
ω̂1

4γ̂(β0−2+8β1)||e||∞

) 1
2
,

q1
11 = 1

4

(
ω̂Nq

8γ̂(2−8β1)||e||∞

) 1
2
,

Q2 = min{q2
1, q

2
2, . . . , q

2
11}, where

q2
1 = ω̂1

8||(|v|+c)||∞ ,

q2
2 = 1

4

6(β0− 3
2

+4β1)

∆y2||vyy ||∞+6∆y||vy ||∞+4||v||∞ ,

q2
3 = 1

4
3(2−8β1)

4(∆y||vy ||∞+||v||∞)
,

q2
4 = 1

4

3(4β1− 1
2

)

∆y||vy ||∞+2||v||∞ ,

q2
5 = 1

8||v||∞

(
ω̂1

β0−2+8β1

) 1
2
,

q2
6 = 1

8||v||∞

(
ω̂Nq

2(2−8β1)

) 1
2
,

q2
7 = 1

4

6(4β1− 1
2

)

(3+γ)∆y||vy ||∞+γ̂∆y||ux||∞+12||v||∞ ,

q2
8 = 1

4
3(2−8β1)

2(3+γ)∆y||vy ||∞+2γ̂∆y||ux||∞+12||v||∞ ,

q2
9 = 1

4

6(β0− 3
2

+4β1)

γ∆y2||vyy ||∞+3(3+γ)∆y||vy ||∞+3γ̂∆y||ux||∞+12||v||∞ ,

q2
10 = 1

4

(
ω̂1

4γ̂(β0−2+8β1)||e||∞

) 1
2
,

q2
11 = 1

4

(
ω̂Nq

8γ̂(2−8β1)||e||∞

) 1
2
,

Let

c1 = 3ω̂1∆x||(vxu+vux)||∞+ω̂1Q1∆x2||A4||∞+12(||uv||∞+Q1

3
∆x||A5||∞+Q1

3
||A6||∞)

c′1 = 3ω̂1∆y||(uyv+uvy)||∞+ω̂1Q2∆y2||A1||∞+12(||uv||∞+Q2

3
∆y||A2||∞+Q2

3
||A3||∞)

c2 = 3ω̂Nq∆x||(vxu + vux)||∞ + ω̂NqQ1∆x2||A4||∞ + 12(||uv||∞ + Q1

3
∆x||A5||∞ +

2Q1

3
||A6||∞)

c′2 = 3ω̂Nq∆y||(uyv + uvy)||∞ + ω̂NqQ2∆y2||A1||∞ + 12(||uv||∞ + Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞)

c3 = 6ω̂1α
1
x+3ω̂1Q2∆y||(uyv+uvy)||∞+ω̂1Q

2
2∆y2||A1||∞+12Q2(||uv||∞+Q2

3
∆y||A2||∞+

Q2

3
||A3||∞)

c′3 = 6ω̂1α
1
y+3ω̂1Q1∆x||(vxu+vux)||∞+ω̂1Q

2
1∆x2||A4||∞+12Q1(||uv||∞+Q1

3
∆y||A5||∞+
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Q1

3
||A6||∞)

c4 = 6ω̂Nqα
1
x + 3ω̂NqQ2∆y||(uyv + uvy)||∞ + ω̂NqQ

2
2∆y2||A1||∞ + 12Q2(||uv||∞ +

Q2

3
∆y||A2||∞ + 2Q2

3
||A3||∞)

c′4 = 6ω̂Nqα
1
y + 3ω̂NqQ1∆x||(vxu + vux)||∞ + ω̂NqQ

2
1∆x2||A4||∞ + 12Q1(||uv||∞ +

Q1

3
∆x||A5||∞ + 2Q1

3
||A6||∞),

then

Q3 = min{q3
1, q

3
2, q

3
3, q

3
4}, where

q3
1 =

6ω̂1α1
y

c1
,

q3
2 =

6ω̂Nqα
1
y

c2
,

q3
3 =

3ω̂2
1

c3
,

q3
4 =

3ω̂1ω̂Nq
c4

,

Q4 = min{q4
1, q

4
2, q

4
3, q

4
4}, where

q4
1 = 6ω̂1α1

x

c′1
,

q4
2 =

6ω̂Nqα
1
x

c′2
,

q4
3 =

3ω̂2
1

c′3
,

q4
4 =

3ω̂1ω̂Nq
c′4

.
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A.1.5 Coefficients in the expansion (2.57)

The coefficients z1, . . . , z16,β in the expansion (2.57) are defined as follows.

z1 =λx

(
1

2
ω̂1α

1
x − ω̂1

λy
4

∆y(uyv + uvy)(x
−
i− 1

2

, y+
j− 1

2

) + ω̂1

λ2
y

12
∆y2A1(x−

i− 1
2

, y+
j− 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ1uv +

λy
12
dγ1∆yA2 +

λy
3
A3

)
(x−

i− 1
2

, ŷγ)

)

z2 =λx

(
1

2
ω̂Nqα

1
x − ω̂Nq

λy
4

∆y(uyv + uvy)(x
−
i− 1

2

, yj) + ω̂Nq
λ2
y

12
∆y2A1(x−

i− 1
2

, yj)

+λy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ2uv +

λy
12
dγ2∆yA2 −

2λy
3
A3

)
(x−

i− 1
2

, ŷγ)

)

z3 =λx

(
1

2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λy
4

∆y(uyv + uvy)(x
−
i− 1

2

, y−
j+ 1

2

)

+ ω̂2Nq−1

λ2
y

12
∆y2A1(x−

i− 1
2

, y−
j+ 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ3uv +

λy
12
dγ3∆yA2 +

λy
3
A3

)
(x−

i− 1
2

, ŷγ)

)

z4 =
1

4
ω̂2

1 −
λx
2
ω̂1α

1
x − ω̂1

λxλy
4

∆y(uyv + uvy)(x
+
i− 1

2

, y+
j− 1

2

) + ω̂1

λxλ
2
y

12
∆y2A1(x+

i− 1
2

, y+
j− 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ1uv +

λy
12
dγ1∆yA2 +

λy
3
A3

)
(x+

i− 1
2

, ŷγ)

z5 =
1

4
ω̂1ω̂Nq −

λx
2
ω̂Nqα

1
x − ω̂Nq

λxλy
4

∆y(uyv + uvy)(x
+
i− 1

2

, yj) + ω̂Nq
λxλ

2
y

12
∆y2A1(x+

i− 1
2

, yj)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ2uv +

λy
12
dγ2∆yA2 −

2λy
3
A3

)
(x+

i− 1
2

, ŷγ)

z6 =
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λxλy
4

∆y(uyv + uvy)(x
+
i− 1

2

, y−
j+ 1

2

)

+ ω̂2Nq−1

λxλ
2
y

12
∆y2A1(x+

i− 1
2

, y−
j+ 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ3uv +

λy
12
dγ3∆yA2 +

λy
3
A3

)
(x+

i− 1
2

, ŷγ)
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z7 =
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂1α

1
x + ω̂1

λxλy
4

∆y(uyv + uvy)(x
−
i+ 1

2

, y+
j− 1

2

)

− ω̂1

λxλ
2
y

12
∆y2A1(x−

i+ 1
2

, y+
j− 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ1uv −

λy
12
dγ1∆yA2 −

λy
3
A3

)
(x−

i+ 1
2

, ŷγ)

z8 =
1

4
ω̂Nq ω̂2Nq−1 −

λx
2
ω̂Nqα

1
x + ω̂Nq

λxλy
4

∆y(uyv + uvy)(x
−
i+ 1

2

, yj)

− ω̂Nq
λxλ

2
y

12
∆y2A1(x−

i+ 1
2

, yj)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ2uv −

λy
12
dγ2∆yA2 +

2λy
3
A3

)
(x−

i+ 1
2

, ŷγ)

z9 =
1

4
ω̂2Nq−1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x + ω̂2Nq−1

λxλy
4

∆y(uyv + uvy)(x
−
i+ 1

2

, y−
j+ 1

2

)

− ω̂2Nq−1

λxλ
2
y

12
∆y2A1(x−

i+ 1
2

, y−
j+ 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ3uv −

λy
12
dγ3∆yA2 −

λy
3
A3

)
(x−

i+ 1
2

, ŷγ)

z10 =λx

(
1

2
ω̂1α

1
x + ω̂1

λy
4

∆y(uyv + uvy)(x
+
i+ 1

2

, y+
j− 1

2

)− ω̂1

λ2
y

12
∆y2A1(x+

i+ 1
2

, y+
j− 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ1uv −

λy
12
dγ1∆yA2 −

λy
3
A3

)
(x+

i+ 1
2

, ŷγ)

)

z11 =λx

(
1

2
ω̂Nqα

1
x + ω̂Nq

λy
4

∆y(uyv + uvy)(x
+
i+ 1

2

, yj)− ω̂Nq
λ2
y

12
∆y2A1(x+

i+ 1
2

, yj)

+λy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ2uv −

λy
12
dγ2∆yA2 +

2λy
3
A3

)
(x+

i+ 1
2

, ŷγ)

)

z12 =λx

(
1

2
ω̂2Nq−1α

1
x + ω̂2Nq−1

λy
4

∆y(uyv + uvy)(x
+
i+ 1

2

, y−
j+ 1

2

)

− ω̂2Nq−1

λ2
y

12
∆y2A1(x+

i+ 1
2

, y−
j+ 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ3uv −

λy
12
dγ3∆yA2 −

λy
3
A3

)
(x+

i+ 1
2

, ŷγ)

)
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z13,β =λx

(
1

2
α1
x −

λy
4

∆y(uyv + uvy)(x
−
i− 1

2

, ŷβ) +
λ2
y

12
∆y2A1(x−

i− 1
2

, ŷβ)

)
z14,β =λx

(
1

2
α1
x +

λy
4

∆y(uyv + uvy)(x
+
i+ 1

2

, ŷβ)−
λ2
y

12
∆y2A1(x+

i+ 1
2

, ŷβ)

)
z15,β =

1

4
ω̂2Nq−1 −

λx
2
α1
x +

λxλy
4

∆y(uyv + uvy)(x
−
i+ 1

2

, ŷβ)−
λxλ

2
y

12
∆y2A1(x−

i+ 1
2

, ŷβ)

z16,β =
1

4
ω̂1 −

λx
2
α1
x −

λxλy
4

∆y(uyv + uvy)(x
+
i− 1

2

, ŷβ) +
λxλ

2
y

12
∆y2A1(x+

i− 1
2

, ŷβ)

Under the CFL condition (2.55), we have the following estimates.

z1 ≥λx
(

1

2
ω̂1α

1
x − ω̂1

λy
4

∆y||(uyv + uvy)||∞ − ω̂1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z2 ≥λx
(

1

2
ω̂Nqα

1
x − ω̂Nq

λy
4

∆y||(uyv + uvy)||∞ − ω̂Nq
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

))
≥ 0

z3 ≥λx
(

1

2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λy
4

∆y||(uyv + uvy)||∞ − ω̂2Nq−1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z4 ≥
1

4
ω̂2

1 −
λx
2
ω̂1α

1
x − ω̂1

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂1

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z5 ≥
1

4
ω̂1ω̂Nq −

λx
2
ω̂Nqα

1
x − ω̂Nq

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂Nq

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

)
≥ 0

z6 ≥
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λx
4
Q2∆y||(uyv + uvy)||∞

− ω̂2Nq−1
λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0
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z7 ≥
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂1α

1
x − ω̂1

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂1

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z8 ≥
1

4
ω̂Nq ω̂2Nq−1 −

λx
2
ω̂Nqα

1
x − ω̂Nq

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂Nq

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

)
≥ 0

z9 ≥
1

4
ω̂2Nq−1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λx
4
Q2∆y||(uyv + uvy)||∞

− ω̂2Nq−1
λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z10 ≥λx
(

1

2
ω̂1α

1
x − ω̂1

λy
4

∆y||(uyv + uvy)||∞ − ω̂1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z11 ≥λx
(

1

2
ω̂Nqα

1
x − ω̂Nq

λy
4

∆y||(uyv + uvy)||∞ − ω̂Nq
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

))
≥ 0

z12 ≥λx
(

1

2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λy
4

∆y||(uyv + uvy)||∞ − ω̂2Nq−1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z13,β ≥λx
(

1

2
α1
x −

λy
4

∆y||(uyv + uvy)||∞ −
λy
12
Q2∆y2||A1||∞

)
≥ 0, ∀β

z14,β ≥λx
(

1

2
α1
x −

λy
4

∆y||(uyv + uvy)||∞ −
λy
12
Q2∆y2||A1||∞

)
≥ 0, ∀β

z15,β ≥
1

4
ω̂2Nq−1 −

λx
2
α1
x −

λx
4
Q2∆y||(uyv + uvy)||∞ −

λx
12
Q2

2∆y2||A1||∞ ≥ 0, ∀β

z16,β ≥
1

4
ω̂1 −

λx
2
α1
x −

λx
4
Q2∆y||(uyv + uvy)||∞ −

λx
12
Q2

2∆y2||A1||∞ ≥ 0, ∀β
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A.1.6 Constants in the CFL condition (2.58)

The constants appearing in the CFL condition (2.58) are defined as follows.

C(x−
i+ 1

2

, ŷβ) =

∆x

αx

(
(2E(x−

i+ 1
2

, ŷβ) + p(x−
i+ 1

2

, ŷβ))
(
|f̃ 1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 1(xi+ 1

2
, ŷβ)|

)
+2ρ(x−

i+ 1
2

, ŷβ)
(
|f̃ 4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 4(xi+ 1

2
, ŷβ)|

)
+Q1

∆x

αx

(
|f̃ 1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 1(xi+ 1

2
, ŷβ)|

)(
|f̃ 4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 4(xi+ 1

2
, ŷβ)|

)
+

1

2
Q1

∆x

αx

(
|f̃ 2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 2(xi+ 1

2
, ŷβ)|

)2

+
1

2
Q1

∆x

αx

(
|f̃ 3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 3(xi+ 1

2
, ŷβ)|

)2

+(2|m(x−
i+ 1

2

, ŷβ)|+
p(x−

i+ 1
2

, ŷβ)

αx
)
(
|f̃ 2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 2(xi+ 1

2
, ŷβ)|

)
+2|n(x−

i+ 1
2

, ŷβ)|
(
|f̃ 3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 3(xi+ 1

2
, ŷβ)|

))

C(x+
i+ 1

2

, ŷβ) =

∆x

αx

(
(2E(x+

i+ 1
2

, ŷβ) + p(x+
i+ 1

2

, ŷβ))
(
|f̃ 1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 1(xi+ 1

2
, ŷβ)|

)
+2ρ(x+

i+ 1
2

, ŷβ)
(
|f̃ 4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 4(xi+ 1

2
, ŷβ)|

)
+Q1

∆x

αx

(
|f̃ 1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 1(xi+ 1

2
, ŷβ)|

)(
|f̃ 4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 4(xi+ 1

2
, ŷβ)|

)
+

1

2
Q1

∆x

αx

(
|f̃ 2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 2(xi+ 1

2
, ŷβ)|

)2

+
1

2
Q1

∆x

αx

(
|f̃ 3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 3(xi+ 1

2
, ŷβ)|

)2

+(2|m(x+
i+ 1

2

, ŷβ)|+
p(x+

i+ 1
2

, ŷβ)

αx
)
(
|f̃ 2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 2(xi+ 1

2
, ŷβ)|

)
+2|n(x+

i+ 1
2

, ŷβ)|
(
|f̃ 3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌ 3(xi+ 1

2
, ŷβ)|

))
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D(x̂α, y
−
j+ 1

2

) =

∆x

αy

(
(2E(x̂α, y

−
j+ 1

2

) + p(x̂α, y
−
j+ 1

2

))
(
|f̃ 1(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 1(x̂α, yj+ 1

2
)|
)

+2ρ(x̂α, y
−
j+ 1

2

)
(
|f̃ 4(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 4(x̂α, yj+ 1

2
)|
)

+Q2
∆y

αy

(
|f̃ 1(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 1(x̂α, yj+ 1

2
)|
)(
|f̃ 4(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 4(x̂α, yj+ 1

2
)|
)

+
1

2
Q2

∆y

αy

(
|f̃ 2(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 2(x̂α, yj+ 1

2
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+
1

2
Q2

∆y

αy

(
|f̃ 3(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 3(x̂α, yj+ 1

2
)|
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+2|m(x̂α, y
−
j+ 1

2

)|
(
|f̃ 2(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 2(x̂α, yj+ 1

2
)|
)
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−
j+ 1

2

)|+
p(x̂α, y

−
j+ 1

2

)

αy
)
(
|f̃ 3(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 3(x̂α, yj+ 1

2
)|
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D(x̂α, y
+
j+ 1

2

) =

∆x

αy

(
(2E(x̂α, y

+
j+ 1

2

) + p(x̂α, y
+
j+ 1

2

))
(
|f̃ 1(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 1(x̂α, yj+ 1

2
)|
)

+2ρ(x̂α, y
+
j+ 1

2

)
(
|f̃ 4(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 4(x̂α, yj+ 1

2
)|
)

+Q2
∆y
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(
|f̃ 1(x̂α, yj+ 1

2
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2
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2
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2
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)

+
1

2
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(
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2
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2
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+
1

2
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(
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2
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2
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+2|m(x̂α, y
+
j+ 1

2

)|
(
|f̃ 2(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 2(x̂α, yj+ 1

2
)|
)

+2(|n(x̂α, y
+
j+ 1

2

)|+
p(x̂α, y

+
j+ 1

2

)

αy
)
(
|f̃ 3(x̂α, yj+ 1

2
)|+Q2∆y|f̌ 3(x̂α, yj+ 1

2
)|
))
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A.2 Derivatives in the Euler equations

To simplify the derivation and coding, we need to compute a lot of intermediate vari-

ables before finally obtaining mt,mtt,mttt, (and nt, ntt, nttt in 2D), and Et, Ett, Ettt

to be used in the Lax-Wendroff procedure. The expressions of the intermediate and

target variables are given as follows.

A.2.1 One dimensional space

u = m
ρ

,

ux = mx
ρ
− uρx

ρ
,

uxx = −2mxρx
ρ2 + mxx

ρ
+m(2ρ2

x

ρ3 − ρxx
ρ2 ),

ρt = −mx,

mt = −
(
γ̂Ex + 3−γ

2
mxu+ 3−γ

2
mux

)
,

Et = −
(
γExu+ γEux − γ̂

2
mxu

2 − γ̂muux
)
,

ut = mt
ρ
− uρt

ρ
,

ρtx = −mxx,

mtx = −
(
γ̂Exx + 3−γ

2
mxxu+ (3− γ)mxux + 3−γ

2
muxx

)
,

Etx = −
(
γExxu+ 2γExux + γEuxx − γ̂

2
mxxu

2 − 2γ̂mxuux − γ̂mu2
x − γ̂muuxx

)
,

utx = mtx
ρ
− mxρt

ρ2 − mtρx+mρtx
ρ2 + 2uρxρt

ρ2 ,

ρtt = −mtx,

mtt = −
(
γ̂Etx + 3−γ

2
mtxu+ 3−γ

2
mxut + 3−γ

2
mtux + 3−γ

2
mutx

)
,

Ett = −
(
γEtxu+ γExut + γEtux + γEutx − γ̂

2
mtxu

2 − γ̂mxuut − γ̂mtuux − γ̂mutux

−γ̂muutx),

utt = −2mtρt
ρ2 + mtt

ρ
+ u(

2ρ2
t

ρ2 − ρtt
ρ

),

ρttt = −(mtt)x,
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mttt = −
(
γ̂Ett + 3−γ

2
mttu+ 3−γ

2
mutt + (3− γ)mtut

)
x
,

Ettt = −
(
γEttu+ γEutt + 2γEtut − γ̂

2
mttu

2 − γ̂m(u2
t + uutt)− 2γ̂mtuut

)
x
.

A.2.2 Two dimensional space

u = m
ρ

,

v = n
ρ
,

ux = mx
ρ
− uρx

ρ
,

uy = my
ρ
− uρy

ρ
,

vx = nx
ρ
− vρx

ρ
,

vy = ny
ρ
− vρy

ρ
,

uxx = −2mxρx
ρ2 + mxx

ρ
+m(2ρ2

x

ρ3 − ρxx
ρ2 ),

uyy = −2myρy
ρ2 + myy

ρ
+m(

2ρ2
y

ρ3 − ρyy
ρ2 ),

uxy = −ρymx
ρ2 − myρx

ρ2 + 2mρyρx
ρ3 + mxy

ρ
− mρxy

ρ2 ,

vxx = −2nxρx
ρ2 + nxx

ρ
+ n(2ρ2

x

ρ3 − ρxx
ρ2 ),

vyy = −2nyρy
ρ2 + nyy

ρ
+ n(

2ρ2
y

ρ3 − ρyy
ρ2 ),

vxy = −ρynx
ρ2 − nyρx

ρ2 + 2nρyρx
ρ3 + nxy

ρ
− nρxy

ρ2 ,

ρt = −mx − ny,

mt = −
(
γ̂Ex + 3−γ

2
mxu+ 3−γ

2
mux − γ̂

2
nxv − γ̂

2
nvx +myv +mvy

)
,

nt = −
(
nxu+ nux + γ̂Ey − γ̂

2
myu− γ̂

2
muy + 3−γ

2
nyv + 3−γ

2
nvy
)
,

Et = −
(
γExu+ γEux − γ̂

2
mxu

2 − γ̂muux − γ̂
2
mxv

2 − γ̂mvvx
)

−
(
γEyv + γEvy − γ̂

2
nyu

2 − γ̂nuuy − γ̂
2
nyv

2 − γ̂nvvy
)

ut = mt
ρ
− uρt

ρ
,

vt = nt
ρ
− vρt

ρ
,

ρtx = −mxx − nxy,

ρty = −mxy − nyy,
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mtx = −
(
γ̂Exx + 3−γ

2
mxxu+ (3− γ)mxux + 3−γ

2
muxx

− γ̂
2
nxxv − γ̂nxvx − γ̂

2
nvxx +mxyv +myvx +mxvy +mvxy

)
mty = −

(
γ̂Exy + 3−γ

2
mxyu+ 3−γ

2
mxuy + 3−γ

2
myux + 3−γ

2
muxy

− γ̂
2
nxyv − γ̂

2
nxvy − γ̂

2
nyvx − γ̂

2
nvxy +myyv + 2myvy +mvyy

)
ntx = −

(
nxxu+ 2nxux + nuxx + γ̂Exy − γ̂

2
mxyu− γ̂

2
myux

− γ̂
2
mxuy − γ̂

2
muxy + 3−γ

2
nxyv + 3−γ

2
nyvx + 3−γ

2
nxvy + 3−γ

2
nvxy

)
nty = −

(
nxyu+ nxuy + nyux + nuxy + γ̂Eyy − γ̂

2
myyu− γ̂myuy − γ̂

2
muyy

+3−γ
2
nyyv + (3− γ)nyvy + 3−γ

2
nvyy

)
Etx = −(γExxu+ 2γExux + γEuxx − γ̂

2
mxxu

2 − 2γ̂mxuux − γ̂mu2
x

− γ̂muuxx − γ̂
2
mxxv

2 − 2γ̂mxvvx

− γ̂mv2
x− γ̂mvvxx+γExyv+γEyvx+γExvy+γEvxy− γ̂

2
nxyu

2− γ̂nyuux− γ̂nxuuy

−γ̂nuxuy − γ̂nuuxy − γ̂
2
nxyv

2 − γ̂nyvvx − γ̂nxvvy − γ̂nvxvy − γ̂nvvxy
)

Ety = −(γEyyv + 2γEyvy + γEvyy − γ̂
2
nyyv

2 − 2γ̂nyvvy − γ̂nv2
y

− γ̂nvvyy − γ̂
2
nyyu

2 − 2γ̂nyuuy

− γ̂nu2
y− γ̂nuuyy+γExyu+γExuy+γEyux+γEuxy− γ̂

2
mxyv

2− γ̂mxvvy− γ̂myvvx

−γ̂mvyvx − γ̂mvvxy − γ̂
2
mxyu

2 − γ̂mxuuy − γ̂myuux − γ̂muyux − γ̂muuxy
)

utx = mtx
ρ
− mxρt

ρ2 − mtρx+mρtx
ρ2 + 2uρxρt

ρ2 ,

uty = mty
ρ
− myρt

ρ2 − mtρy+mρty
ρ2 + 2uρyρt

ρ2 ,

vtx = ntx
ρ
− nxρt

ρ2 − ntρx+nρtx
ρ2 + 2vρxρt

ρ2 ,

vty = nty
ρ
− nyρt

ρ2 − ntρy+nρty
ρ2 + 2vρyρt

ρ2 ,

ρtt = −mtx − nty,

mtt = −
(
γ̂Etx + 3−γ

2
mtxu+ 3−γ

2
mxut + 3−γ

2
mtux + 3−γ

2
mutx

− γ̂
2
ntxv − γ̂

2
nxvt − γ̂

2
ntvx − γ̂

2
nvtx +mtyv +myvt +mtvy +mvty

)
ntt = −

(
ntxu+ nxut + ntux + nutx + γ̂Ety − γ̂

2
mtyu− γ̂

2
myut − γ̂

2
mtuy − γ̂

2
muty

+3−γ
2
ntyv + 3−γ

2
nyvt + 3−γ

2
ntvy + 3−γ

2
nvty

)
Ett = −

(
γEtxu+ γExut + γEtux + γEutx − γ̂

2
mtxu

2 − γ̂mxuut − γ̂mtuux − γ̂mutux

− γ̂muutx − γ̂
2
mtxv

2 − γ̂mxvvt − γ̂mtvvx − γ̂mvtvx − γ̂mvvtx + γEtyv + γEyvt
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+ γEtvy + γEvty − γ̂
2
ntyu

2 − γ̂nyuut − γ̂ntuuy − γ̂nutuy − γ̂nuuty − γ̂
2
ntyv

2

−γ̂nyvvt − γ̂ntvvy − γ̂nvtvy − γ̂nvvty)

utt = −2mtρt
ρ2 + mtt

ρ
+ u(

2ρ2
t

ρ2 − ρtt
ρ

),

vtt = −2ntρt
ρ2 + ntt

ρ
+ v(

2ρ2
t

ρ2 − ρtt
ρ

),

ρttt = −(mtt)x − (ntt)y,

mttt = −
(
γ̂Ett + 3−γ

2
mttu+ 3−γ

2
mutt + (3− γ)mtut − γ̂

2
nttv − γ̂

2
nvtt − γ̂ntvt

)
x

− (mttv +mvtt + 2mtvt)y

nttt = − (nutt + nttu+ 2ntut)x

−
(
γ̂Ett − γ̂

2
mttu− γ̂

2
mutt − γ̂mtut + 3−γ

2
nttv + 3−γ

2
nvtt + (3− γ)ntvt

)
y

Ettt = −
(
γEttu+ γEutt + 2γEtut − γ̂

2
mttu

2 − γ̂m(u2
t + uutt)− 2γ̂mtuut

− γ̂
2
mttv

2 − γ̂m(v2
t + vvtt)− 2γ̂mtvvt

)
x

−
(
γEttv + γEvtt + 2γEtvt − γ̂

2
nttu

2 − γ̂n(u2
t + uutt)− 2γ̂ntuut

− γ̂
2
nttv

2 − γ̂n(v2
t + vvtt)− 2γ̂ntvvt

)
y

A.3 Maximum-principle-satisfying LWDG schemes

for scalar conservation laws in one dimension

on nonuniform meshes

We have discussed the bound-preserving LWDG schemes on uniform meshes in Sec-

tions 2.2 and 2.3. In this appendix, we show how to extend the technique to nonuni-

form meshes. For simplicity, we only consider the scalar conservation law in one space

dimension, but the same methodology can be adopted to construct bound-preserving

schemes for the Euler equations and multi-dimensional spaces.
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We first introduce a direct extension of the maximum-principle-satisfying LWDG

from uniform meshes, which is simple and efficient but has constraints on mesh sizes,

i.e. 1
2
<

∆xj+1

∆xj
< 2,∀j. Another way of extension is based on the composite Gauss-

Lobatto rule, as used in [11], which removes the constraints on meshes but is less

efficient. In practice, we recommend to combine both in the way that the composite

Gauss-Lobatto rule is only used on the cells where it is necessary, i.e. the cells that

violate 1
2
<

∆xj+1

∆xj
< 2.

A.3.1 A direct extension of the maximum-principle-satisfying

LWDG scheme from uniform meshes

We define the DDG flux on nonuniform meshes as

ûx
DDG
j+ 1

2
= β0,j+ 1

2

[u]j+ 1
2

∆xj+ 1
2

+ {ux}j+ 1
2

+ β1,j+ 1
2
∆xj+ 1

2
[uxx]j+ 1

2
(A.1)

where ∆xj+ 1
2

= min{∆xj,∆xj+1} and β0,j+ 1
2
, β1,j+ 1

2
, j = 1, 2, . . . , N are penalty

parameters satisfying (A.2) for the purpose of maximum-principle-preserving.

1

8
max{ ∆xj

∆xj+ 1
2

,
∆xj+1

∆xj+ 1
2

} < β1,j+ 1
2
<

1

4
min{ ∆xj

∆xj+ 1
2

,
∆xj+1

∆xj+ 1
2

}, ∀j,

β0,j+ 1
2
> max{3

2

∆xj+ 1
2

∆xj
− 4β1,j+ 1

2

∆x2
j+ 1

2

∆x2
j

,
3

2

∆xj+ 1
2

∆xj+1

− 4β1,j+ 1
2

∆x2
j+ 1

2

∆x2
j+1

}, ∀j
(A.2)

Note that to make sense of (A.2), the nonuniform meshes must have a mild

change in mesh size, i.e. 1
2
<

∆xj+1

∆xj
< 2,∀j.

Similar to (2.13), we have the expansion of the DDG flux on nonuniform meshes.

Lemma A.3.1. For u ∈ V , the DDG flux ûx
DDG
j+ 1

2
defined in (A.1) can be expanded
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on nonuniform meshes as

ûx
DDG
j+ 1

2
=(

1

2∆xj
−

4β1,j+ 1
2
∆xj+ 1

2

∆x2
j

)u+
j− 1

2

+ (− 2

∆xj
+

8β1,j+ 1
2
∆xj+ 1

2

∆x2
j

)uj

+ (−
β0,j+ 1

2

∆xj+ 1
2

+
3

2∆xj
−

4β1,j+ 1
2
∆xj+ 1

2

∆x2
j

)u−
j+ 1

2

+ (
β0,j+ 1

2

∆xj+ 1
2

− 3

2∆xj+1

+
4β1,j+ 1

2
∆xj+ 1

2

∆x2
j+1

)u+
j+ 1

2

+ (
2

∆xj+1

−
8β1,j+ 1

2
∆xj+ 1

2

∆x2
j+1

)uj+1 + (− 1

2∆xj+1

+
4β1,j+ 1

2
∆xj+ 1

2

∆x2
j+1

)u−
j+ 3

2

(A.3)

The proof follows from direct computation and the fact that u is piecewise

quadratic.

We now state the main result.

Theorem A.3.2. Given m ≤ un ≤ M and the DDG flux (A.1) with parameters

(A.2), the cell averages ūn+1
j , j = 1, 2, . . . , N of the solution of scheme (2.8) are

bounded between m and M under the CFL condition (A.4):

∆t ≤ min{q1, q2, . . . , q10}, (A.4)

where q1 = ω̂1

2M1
minj ∆xj, q2 = minj{

4β
1,j+ 1

2
∆x

j+ 1
2
− 1

2
∆xj

5(M−m)M2+ 4
3
M1
}, q3 = minj{

4β
1,j+ 1

2
∆x

j+ 1
2
− 1

2
∆xj+1

5(M−m)M2+ 4
3
M1

},

q4 = minj{
2∆xj−8β

1,j+ 1
2

∆x
j+ 1

2

20(M−m)M2+ 8
3
M1
}, q5 = minj{

2∆xj+1−8β
1,j+ 1

2
∆x

j+ 1
2

20(M−m)M2+ 8
3
M1
},

q6 = minj{
β

0,j+ 1
2

∆xj
∆x

j+ 1
2

− 3
2

+4β
1,j+ 1

2

∆x
j+ 1

2
∆xj

15(M−m)M2+ 4
3
M1

∆xj},

q7 = minj{
β

0,j+ 1
2

∆xj+1
∆x

j+ 1
2

− 3
2

+4β
1,j+ 1

2

∆x
j+ 1

2
∆xj+1

15(M−m)M2+ 4
3
M1

∆xj+1},

q8 = 1
M1

minj

 2ω̂1∆x2
j

3(β
0,j− 1

2

∆xj
∆x

j− 1
2

− 3
2

+4β
1,j− 1

2

∆x
j− 1

2
∆xj

)+3(4β
1,j+ 1

2

∆x
j+ 1

2
∆xj

− 1
2

)


1
2

,
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q9 = 1
M1

minj

 2ω̂Nq∆x2
j

3(2−8β
1,j− 1

2

∆x
j− 1

2
∆xj

)+3(2−8β
1,j+ 1

2

∆x
j+ 1

2
∆xj

)

 1
2

,

q10 = 1
M1

minj

 2ω̂2Nq−1∆x2
j

3(β
0,j+ 1

2

∆xj
∆x

j+ 1
2

− 3
2

+4β
1,j+ 1

2

∆x
j+ 1

2
∆xj

)+3(4β
1,j− 1

2

∆x
j− 1

2
∆xj

− 1
2

)


1
2

.

Proof. We have exactly the same results as in (2.17), (2.18), and (2.19), except that

the coefficients in (2.19) are now

z1 =
λ2
j

4
f ′2
−
j− 1

2

(
(4β1,j− 1

2

∆xj− 1
2
∆xj

∆x2
j−1

− 1

2

∆xj
∆xj−1

) + ∆tf ′′
−
j− 1

2
ux
−
j− 1

2

∆xj
∆xj−1

+
4λj
3
f ′
−
j− 1

2

∆x2
j

∆x2
j−1

)
+
λ2
j

4
f ′2

+
j− 1

2
(4β1,j− 1

2

∆xj− 1
2
∆xj

∆x2
j−1

− 1

2

∆xj
∆xj−1

),

z2 =
λ2
j

4
f ′2
−
j− 1

2

(
(2

∆xj
∆xj−1

− 8β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)− 4∆tf ′′
−
j− 1

2
ux
−
j− 1

2

∆xj
∆xj−1

−8λj
3
f ′
−
j− 1

2

∆x2
j

∆x2
j−1

)
+
λ2
j

4
f ′2

+
j− 1

2
(2

∆xj
∆xj−1

− 8β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)

z3 =
λ2
j

4
f ′2
−
j− 1

2

(
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2

∆xj
∆xj−1

+ 4β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)

+3∆tf ′′
−
j− 1

2
ux
−
j− 1

2

∆xj
∆xj−1

+
4λj
3
f ′
−
j− 1

2

∆x2
j

∆x2
j−1

)
+
λ2
j

4
f ′2

+
j− 1

2
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2

∆xj
∆xj−1

+ 4β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)

z4 =
1

2
ω̂1 −

λ2
j

4
f ′2
−
j− 1

2
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2
+ 4β1,j− 1

2

∆xj− 1
2

∆xj
)

−
λ2
j

4
f ′2

+
j− 1

2

(
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2
+ 4β1,j− 1

2

∆xj− 1
2

∆xj
) + 3∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λj
3
f ′

+
j− 1

2

)

−
λ2
j

4
f ′2
−
j+ 1

2

(
(4β1,j+ 1

2

∆xj+ 1
2

∆xj
− 1

2
) + ∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λj
3
f ′
−
j+ 1

2

)

−
λ2
j

4
f ′2

+
j+ 1

2
(4β1,j+ 1

2

∆xj+ 1
2

∆xj
− 1

2
)



233

z5 =
1

2
ω̂N −

λ2
j

4
f ′2
−
j− 1

2
(2− 8β1,j− 1

2

∆xj− 1
2

∆xj
)

−
λ2
j

4
f ′2

+
j− 1

2

(
(2− 8β1,j− 1

2

∆xj− 1
2

∆xj
)− 4∆tf ′′

+
j− 1

2
ux

+
j− 1

2

+
8λj
3
f ′

+
j− 1

2

)

−
λ2
j

4
f ′2
−
j+ 1

2

(
(2− 8β1,j+ 1

2

∆xj+ 1
2

∆xj
)− 4∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

− 8λj
3
f ′
−
j+ 1

2

)

−
λ2
j

4
f ′2

+
j+ 1

2
(2− 8β1,j+ 1

2

∆xj+ 1
2

∆xj
)

z6 =
1

2
ω̂2Nq−1 −

λ2
j

4
f ′2
−
j− 1

2
(4β1,j− 1

2

∆xj− 1
2

∆xj
− 1

2
)

−
λ2
j

4
f ′2

+
j− 1

2

(
(4β1,j− 1

2

∆xj− 1
2

∆xj
− 1

2
) + ∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λj
3
f ′

+
j− 1

2

)

−
λ2
j

4
f ′2
−
j+ 1

2

(
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2
+ 4β1,j+ 1

2

∆xj+ 1
2

∆xj
) + 3∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λj
3
f ′
−
j+ 1

2

)

−
λ2
j

4
f ′2

+
j+ 1

2
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2
+ 4β1,j+ 1

2

∆xj+ 1
2

∆xj
)

z7 =
λ2
j

4
f ′2
−
j+ 1

2
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2

∆xj
∆xj+1

+ 4β1,j+ 1
2

∆xj∆xj+ 1
2
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It can be verified that

1

2

Nq−1∑
γ=2

ω̂γ +
1

2

2Nq−2∑
γ=Nq+1
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under the CFL condition (A.4).

Since II can be written as a half of a convex combination of point values of un, we

still have 1
2
m ≤ II ≤ 1

2
M as before, which implies m ≤ ūn+1

j ≤M, j = 1, 2, . . . , N

A.3.2 A maximum-principle-satisfying scheme on arbitrary

nonuniform meshes

To construct the maximum-principle-satisfying scheme on arbitrary nonuniform meshes,

we shall first introduce the composite quadrature rule to be used. Define ∆xj+ 1
2

=

1
3

min{∆xj,∆xj+1} and denote by ũ1
j = u(xj− 1

2
−∆xj− 1

2
), ũ2

j = u(xj− 1
2
−1

2
∆xj− 1

2
), ũ3

j =

u(xj− 1
2

+ 1
2
∆xj− 1

2
), ũ4

j = u(xj− 1
2

+ ∆xj− 1
2
), ũ5

j = u(xj+ 1
2
− ∆xj+ 1

2
), ũ6

j = u(xj+ 1
2
−

1
2
∆xj+ 1

2
), ũ7

j = u(xj+ 1
2

+ 1
2
∆xj+ 1

2
), ũ8

j = u(xj+ 1
2

+ ∆xj+ 1
2
), for the cell Ij.

We adopt the composite Gauss-Lobatto rule as follows: The interval Ij is divided

into three subintervals, i.e. Ij = [xj− 1
2
, xj− 1

2
+∆xj− 1

2
]∪[xj− 1

2
+∆xj− 1

2
, xj+ 1

2
−∆xj+ 1

2
]∪

[xj+ 1
2
− ∆xj+ 1

2
, xj+ 1

2
], and each subinterval is assigned with the 2Nq − 1 Gauss-

Lobatto quadrature rule, which results in the quadrature points {x̃j1, x̃
j
2, . . . , x̃

j
6Nq−5}

and quadrature weights {ω̃j1, ω
j
2, . . . , ω̃

j
6Nq−5} on the interval Ij as follows,

x̃jα =


xj− 1

2
+
(
x̂α+1

2

)
∆xj− 1

2
α = 1, 2, . . . , 2Nq − 1,

xj− 1
2

+ ∆xj− 1
2

+
(
x̂α−2Nq+2+1

2

)(
∆xj −∆xj− 1

2
−∆xj+ 1

2

)
α = 2Nq, . . . , 4Nq − 3,

xj+ 1
2
−∆xj+ 1

2
+
(
x̂α−4Nq+4+1

2

)
∆xj+ 1

2
α = 4Nq − 2, . . . , 6Nq − 5,
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and

ω̃jα =



∆x
j− 1

2

∆xj
ω̂α α = 1, 2, . . . , 2Nq − 2

∆x
j− 1

2

∆xj
ω̂2Nq−1 +

(
1−

∆x
j− 1

2

∆xj
−

∆x
j+ 1

2

∆xj

)
ω̂1 α = 2Nq − 1,(

1−
∆x

j− 1
2

∆xj
−

∆x
j+ 1

2

∆xj

)
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∆x
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2

∆xj
−

∆x
j+ 1

2

∆xj

)
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∆x
j+ 1

2

∆xj
ω̂1 α = 4Nq − 3,

∆x
j+ 1

2

∆xj
ω̂α−4Nq+4 α = 4Nq − 2, . . . , 6Nq − 5,

respectively, where {x̂α, α = 1, 2, . . . , 2Nq − 1} and {ω̂α, α = 1, 2, . . . , 2Nq − 1} are

the Gauss-Lobatto points on [−1, 1] and weights satisfying
∑2Nq−1

α=1 ω̂α = 1.

We redefine the DDG flux on nonuniform meshes:

ûx
DDG
j+ 1

2
= β0

[u]j+ 1
2

∆xj+ 1
2

+ {ux}j+ 1
2

+ β1∆xj+ 1
2
[uxx]j+ 1

2
, (A.5)

where β0, β1 are penalty parameters satisfying 1
8
< β1 < 1

4
, β0 > 3

2
− 4β1, j =

1, 2, . . . , N as in the uniform meshes.

Similarly, we have the expansion of DDG fluxes for u ∈ V.

ûx
DDG
j+ 1

2
=

1

∆xj+ 1
2

(
(
1

2
− 4β1)ũ5 + (8β1 − 2)ũ6 + (−β0 +

3

2
− 4β1)u−

j+ 1
2

+(β0 −
3

2
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2
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1

2
)ũ8

)

and

ûx
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2
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1
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2
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2
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2
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1

2
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The main result is as follows,

Theorem A.3.3. Given m ≤ un ≤ M and the DDG flux (A.5), the cell averages

ūn+1
j , j = 1, 2, . . . , N of the solution of scheme (2.8) are bounded between m and M

under the CFL condition (A.6).

∆t ≤ min{q1, q2, . . . , q7}, (A.6)

where q1 = ω̂1

2M1
minj ∆xj, q2 =

4β1− 1
2

5(M−m)M2+ 4
3
M1

minj ∆xj+ 1
2
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3
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.

Proof. We have exactly the same results as in (2.17) and (2.18), but now II is ex-

panded differently:
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where
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∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(4β1 −

1

2
) + ∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

− 4

3

∆t

∆xj+ 1
2

f ′
+
j+ 1

2

)
One can verify that

1

2

Nq−1∑
γ=2

ω̂jγ +
1

2

2Nq−2∑
γ=Nq+1

ω̂jγ +
1

2

4Nq−4∑
γ=2Nq

ω̂jγ +
1

2

5Nq−5∑
γ=4Nq−2

ω̂jγ +
1

2

6Nq−5∑
γ=5Nq−3

ω̂jγ

+z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 =
1

2
,
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and

z1 ≥
λj
4

∆t

∆xj− 1
2

f ′2
−
j− 1

2

(
(4β1 −

1

2
)− 5(M −m)M2

∆t

∆xj− 1
2

− 4

3

∆t

∆xj− 1
2

M1

)

+
λj
4

∆t

∆xj− 1
2

f ′2
+
j− 1

2
(4β1 −

1

2
) ≥ 0,

z2 ≥
λj
4

∆t

∆xj− 1
2

f ′2
−
j− 1

2

(
(2− 8β1)− 20(M −m)M2

∆t

∆xj− 1
2

− 8

3

∆t

∆xj− 1
2

M1

)

+
λj
4

∆t

∆xj− 1
2

f ′2
+
j− 1

2
(2− 8β1) ≥ 0,

z3 ≥
λj
4

∆t

∆xj− 1
2

f ′2
−
j− 1

2

(
(β0 −

3

2
+ 4β1)− 15(M −m)M2

∆t

∆xj− 1
2

− 4

3

∆t

∆xj− 1
2

M1

)

+
λj
4

∆t

∆xj− 1
2

f ′2
+
j− 1

2
(β0 −

3

2
+ 4β1) ≥ 0,

z4 ≥
1

2
ω̂j1 −

λj
4

∆t

∆xj− 1
2

M2
1 (β0 −

3

2
+ 4β1)

− λj
4

∆t

∆xj− 1
2

M2
1

(
(β0 −

3

2
+ 4β1) + 15(M −m)M2

∆t

∆xj− 1
2

+
4

3

∆t

∆xj− 1
2

M1

)
≥ 0,

z5 ≥
1

2
ω̂jNq −

λj
4

∆t

∆xj− 1
2

M2
1 (2− 8β1)

− λj
4

∆t

∆xj− 1
2

M2
1

(
(2− 8β1) + 20(M −m)M2

∆t

∆xj− 1
2

+
8

3

∆t

∆xj− 1
2

M1

)
≥ 0,

z6 ≥
1

2
ω̂j2Nq−1 −

λj
4

∆t

∆xj− 1
2

M2
1 (4β1 −

1

2
)

− λj
4

∆t

∆xj− 1
2

M2
1

(
(4β1 −

1

2
) + 5(M −m)M2

∆t

∆xj− 1
2

+
4

3

∆t

∆xj− 1
2

M1

)
≥ 0,

z7 ≥
1

2
ω̂j4Nq−3 −

λj
4

∆t

∆xj+ 1
2

M2
1

(
(4β1 −

1

2
) + 5(M −m)M2

∆t

∆xj+ 1
2

+
4

3

∆t

∆xj+ 1
2

M1

)

− λj
4

∆t

∆xj+ 1
2

M2
1 (4β1 −

1

2
) ≥ 0,

z8 ≥
1

2
ω̂j5Nq−4 −

λj
4

∆t

∆xj+ 1
2

M2
1

(
(2− 8β1) + 20(M −m)M2

∆t

∆xj+ 1
2

+
8

3

∆t

∆xj+ 1
2

M1

)

− λj
4

∆t

∆xj+ 1
2

M2
1 (2− 8β1) ≥ 0,
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z9 ≥
1

2
ω̂j6Nq−5 −

λj
4

∆t

∆xj+ 1
2

M2
1

(
(β0 −

3

2
+ 4β1) + 15(M −m)M2

∆t

∆xj+ 1
2

+
4

3

∆t

∆xj+ 1
2

M1

)

− λj
4

∆t

∆xj+ 1
2

M2
1 (β0 −

3

2
+ 4β1) ≥ 0,

z10 ≥
λj
4

∆t

∆xj+ 1
2

f ′2
−
j+ 1

2
(β0 −

3

2
+ 4β1)

+
λj
4

∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(β0 −

3

2
+ 4β1)− 15(M −m)M2

∆t

∆xj+ 1
2

− 4

3

∆t

∆xj+ 1
2

M1

)
≥ 0,

z11 ≥
λj
4

∆t

∆xj+ 1
2

f ′2
−
j+ 1

2
(2− 8β1)

+
λj
4

∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(2− 8β1)− 20(M −m)M2

∆t

∆xj+ 1
2

− 8

3

∆t

∆xj+ 1
2

M1

)
≥ 0,

z12 ≥
λj
4

∆t

∆xj+ 1
2

f ′2
−
j+ 1

2
(4β1 −

1

2
)

+
λj
4

∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(4β1 −

1

2
)− 5(M −m)M2

∆t

∆xj+ 1
2

− 4

3

∆t

∆xj+ 1
2

M1

)
≥ 0,

under the CFL condition (A.6).

Therefore, we have m ≤ ūn+1
j ≤M, j = 1, 2, . . . , N following the same arguments

as before.

A.3.3 Numerical tests on nonuniform meshes

We demonstrate the accuracy and effectiveness of the maximum-principle-satisfying

algorithm established in Section A.3.1 and Section A.3.2 on nonuniform meshes.

Example A.3.1. We solve the linear equation ut+ux = 0 in the domain Ω = [−1, 1]

with periodic boundary conditions and discontinuous initial condition

u0(x) =


1, −1 ≤ x ≤ 0,

−1, 0 ≤ x ≤ 1.
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and take the terminal time T = 100 to show the effect of the maximum-principle-

preserving.

We solve the Burgers’ equation ut +
(
u2

2

)
x

= 0 in the domain Ω = [0, 2π] with

initial condition u0(x) = 1
2

+ sin(x) and periodic boundary conditions, and take the

terminal time T = 0.3 to show the accuracy.

For the algorithm established in Section A.3.1, we generate the nonuniform

meshes by adding uniformly distributed perturbation within [−0.1∆x, 0.1∆x] on

the inner nodes of the uniform mesh. For the algorithm established in Section A.3.2,

we generate the nonuniform meshes by adding uniformly distributed perturbation

within [−0.3∆x, 0.3∆x] on the inner nodes of the uniform mesh.

The results are given in Table A.1 and Figure A.1, from which we can observe

the third order accuracy and maximum-principle-preserving effect.

Algorithm A.3.1 Algorithm A.3.2
N L1 error order L∞ error order L1 error order L∞ error order
20 9.33E-04 – 1.50E-03 – 1.19E-03 – 2.37E-03 –
40 1.15E-04 3.02 2.38E-04 2.65 1.44E-04 3.05 3.61E-04 2.72
80 1.41E-05 3.03 4.09E-05 2.54 1.90E-05 2.92 8.56E-05 2.08
160 1.73E-06 3.03 5.56E-06 2.88 2.01E-06 3.24 9.33E-06 3.20
320 2.11E-07 3.03 8.14E-07 2.77 2.72E-07 2.89 1.69E-06 2.46
640 2.59E-08 3.03 1.04E-07 2.96 3.23E-08 3.07 1.93E-07 3.13

Table A.1: Results of Example A.3.1, Burgers’ equation at T = 0.3
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(a) Algorithm A.3.1 with limiter
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(b) Algorithm A.3.1 without limiter
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(c) Algorithm A.3.2 with limiter
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(d) Algorithm A.3.2 without limiter

Figure A.1: Results of Example A.3.1 with discontinuous initial condition at T =
100. N = 160. Solid line: exact solution; Squares: numerical solution (cell averages).
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B.1 The positivity of solution at downwind points

in one space dimension

In this appendix, we prove that the solutions of schemes proposed in Section 3.2 are

nonnegative at downwind points under certain mesh size conditions, provided the

positivity of the boundary condition and source term.

Theorem B.1.1. For the problem (3.1) with a(x) > 0 and f, u(0) ≥ 0, the solution

of the scheme (3.8) satisfies u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N , for k = 1, 2, 3, . . . if λ = 0,

and for k = 1, 2 if λ∆xj ≤ 2 minx∈Ij a(x), j = 1, 2, . . . , N.

Proof. If λ = 0, we take the test function w = 1 in the scheme (3.8) to yield the

equations

a(xj+ 1
2
)u−

j+ 1
2

= a(xj− 1
2
)u−

j− 1
2

+∼
∫
Ij

fdx, j = 1, 2, . . . , N,

satisfied by the solution. Since a(x) > 0, f(x) ≥ 0 on Ω, and u−1
2

= u(0) ≥ 0, by

induction, we have u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N.

If λ > 0 and k = 1, it is easy to check that the test function ξ(x) = 1
a(x

j+ 1
2

)
−

2λ(x
j+ 1

2
−x)

a(x
j+ 1

2
)(2a(xj)+λ∆xj)

∈ P 1(Ij) satisfies

−∼
∫
Ij

(a(x)vξx − λvξ) dx+ a(xj+ 1
2
)v−
j+ 1

2

ξ−
j+ 1

2

= v−
j+ 1

2

, (B.1)

for all v ∈ P 1(Ij). Moreover, ξ(xj+ 1
2
) = 1

a(x
j+ 1

2
)
> 0 and ξ(xj− 1

2
) =

2a(xj)−λ∆xj
a(x

j+ 1
2

)(2a(xj)+λ∆xj)
≥

0 if λ∆xj ≤ 2 minx∈Ij a(x), which implies that ξ(x) ≥ 0 on Ij. Therefore, by taking



247

the test function w = ξ (extends to zero outside Ij) in the scheme (3.8), we have

u−
j+ 1

2

= a(xj− 1
2
)u−

j− 1
2

ξ+
j− 1

2

+∼
∫
Ij

fξdx, (B.2)

which implies u−
j+ 1

2

≥ 0 if u−
j− 1

2

≥ 0. Since u−1
2

= u(0) ≥ 0, by induction, we have

u−
j+ 1

2

≥ 0 for j = 1, 2, . . . , N.

If λ > 0 and k = 2, one can check that ξ(x) = ξ1L1(x) + ξ2L2(x) + ξ3L3(x)

satisfies the equation (B.1) for all v ∈ P 2(Ij), where L1(x), L2(x), L3(x) are the

Lagrange basis at {x̂1, x̂2, xj+ 1
2
} with L1(x̂1) = 1, L2(x̂2) = 1, L3(xj+ 1

2
) = 1, and

ξ1 =
2
√

3a(x̂1)(2
√

3a(x̂2)− λ∆xj)

a(xj+ 1
2
)
(
12a(x̂1)a(x̂2) + 3a(x̂1)λ∆xj + 3a(x̂2)λ∆xj + λ2∆x2

j

) ,
ξ2 =

2
√

3a(x̂2)(2
√

3a(x̂1) + λ∆xj)

a(xj+ 1
2
)
(
12a(x̂1)a(x̂2) + 3a(x̂1)λ∆xj + 3a(x̂2)λ∆xj + λ2∆x2

j

) ,
ξ3 =

1

a(xj+ 1
2
)
.

Moreover, if λ∆xj ≤ 2 minx∈Ij a(x), we have ξ(x̂1) = ξ1 ≥ 0, ξ(x̂2) = ξ2 ≥ 0 and

ξ(xj− 1
2
) =

12a(x̂1)a(x̂2)− 3a(x̂1)λ∆xj − 3a(x̂2)λ∆xj + λ2∆x2
j

a(xj+ 1
2
)
(
12a(x̂1)a(x̂2) + 3a(x̂1)λ∆xj + 3a(x̂2)λ∆xj + λ2∆x2

j

) ≥ 0.

Therefore, follow the same lines as in the case k = 1, we obtain u−
j+ 1

2

≥ 0 for

j = 1, 2, . . . , N.

Almost the same arguments can be used to prove a similar theorem for the scheme

(3.12) with k = 1 and scheme (3.13) with k = 2, except that the positivity of ξ at

the midpoint need to be checked due to the quadrature rules adopted on the right

hand side the schemes. The theorem is stated as follows and the proof is omitted.

Theorem B.1.2. For the problem (3.2) with a(u) ≥ c > 0, and f, u(0), λ ≥ 0, the
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solutions of the scheme (3.12) with k = 1 and scheme (3.13) with k = 2 satisfy

u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N if λ∆xj ≤ 2c, j = 1, 2, . . . , N.

Remark B.1.1. For the time-dependent linear problem ut + (a(x)u)x = 0, the back-

ward Euler time discretization approach yields the stationary equations (a(x)un)x +

∆t−1un = ∆t−1un−1, n = 1, 2, . . . , T
∆t

. Therefore, the backward Euler discontinuous

Galerkin scheme (3.8) is positivity-preserving under the CFL condition minx∈Ij a(x) ∆t
∆xj

≥ 1
2
,∀j, if the positivity-preserving limiter is not applied until the computation of un

is completed at the time level n. This result can be viewed as an extension of the the-

oretical result of positivity-preserving backward Euler discontinuous Galerkin method

for ut + ux = 0 analyzed in [55].

B.2 Investigation of the schemes (3.7) and (3.8) for

some special a(x)

The unmodulated P k-DG schemes (3.7) for the equation (3.1) could result in

negative cell averages in the solution for some special a(x). For instance, one can

take a(x) = 1 + x, a(x) = 1 + x2, a(x) = 1 + x3, a(x) = 1 + x4, a(x) = 1 + x5 in the

unmodulated P 1, P 2, P 3, P 4, P 5-DG schemes, respectively, for some particular λ.

More precisely, for the test function ξ ∈ P k([0, h]), s.t.

−
∫ h

0

(a(x)vξx − λvξ) dx+ a(h)v(h)ξ(h) =
1

h

∫ h

0

vdx, ∀v ∈ P k([0, h]),

where a(x) = 1 + xk, k = 1, 2, 3, 4, 5, ξ(h) is strictly negative for sufficiently small h,

though limh→0 ξ(hx) = 1− x ≥ 0 for x ∈ [0, 1].
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One can check that, if λ = 0:

• For k = 1, limh→0
ξ(h)
h

= −1
6
.

• For k = 2, limh→0
ξ(h)
h2 = − 1

30
.

• For k = 3, limh→0
ξ(h)
h3 = − 1

140
.

• For k = 4, limh→0
ξ(h)
h4 = − 1

630
.

• For k = 5, limh→0
ξ(h)
h5 = − 1

2772
.

One can also check that, if λ = 1
2
:

• For k = 1, limh→0
ξ(h)
h

= − 1
12

.

• For k = 2, limh→0
ξ(h)
h2 = − 7

240
.

• For k = 3, limh→0
ξ(h)
h3 = − 47

6720
.

• For k = 4, limh→0
ξ(h)
h4 = − 383

241920
.

• For k = 5, limh→0
ξ(h)
h5 = − 349

967680
.

Therefore, we can construct proper source term f(x) ≥ 0 with large values around

x = h, such that the average of the solution on the cell [0, h] is negative.

However, using the positivity-preserving scheme defined in (3.8), the above prob-

lems are resolved. One can check that, for the test function ξ ∈ P k([0, h]), s.t.

−∼
∫ h

0

(a(x)vξx − λvξ) dx+ a(h)v(h)ξ(h) =
1

h

∫ h

0

vdx, ∀v ∈ P k([0, h]),

where a(x) = 1 + xk, k = 1, 2, 3, 4, 5, we still have limh→0 ξ(hx) = 1 − x but now

ξ(h) = 0 in all those cases.
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C.1 A comparison of operations in LCD-WENO

and RI-WENO for one dimensional shallow

water equations

We analyze and compare the floating point operations in the local characteristic

decomposition based WENO (LCD-WENO) and Riemann invariants based WENO

(RI-WENO) algorithms for one dimensional shallow water equations in Table C.1.

From comparison, it is clear that, RI-WENO exempts the computations at steps 1

steps LCD-WENO RI-WENO

1
u = 1

2 (uj + uj+1),
None

or Roe’s average.

2
R(u) =

[
1 1

u−
√
gh u +

√
gh

]
, w1 = u + 2

√
gh,

R−1(u) =

[
1
2 + u

2
√
gh
− 1

2
√
gh

1
2 −

u
2
√
gh

1
2
√
gh

]
. w2 = u− 2

√
gh.

3 vi = R−1ui, i = j − r + 1, . . . , j + r. None

4
v−
j+ 1

2

= weno(vj−r+1, . . . ,vj+r−1), w−
j+ 1

2

= weno(wj−r+1, . . . ,wj+r−1),

v+
j+ 1

2

= weno(vj+r, . . . ,vj−r+2), w+
j+ 1

2

= weno(wj+r, . . . ,wj−r+2)

5 u±
j+ 1

2

= Rv±
j+ 1

2

u±
j+ 1

2

= u

(
w±
j+ 1

2

)
6 f̂(u−

j+ 1
2

,u+
j+ 1

2

, · · · ) f̂(u−
j+ 1

2

,u+
j+ 1

2

, · · · )

Table C.1: Comparison of operations in LCD-WENO and RI-WENO algorithms
for one dimensional shallow water equations

and 3, saves computational costs at step 2, and has exactly the same costs at steps

4, 5 and 6. (At step 5, both algorithms use 4 multiplications and two additions, due

to the relation h = c (w1 − w2)2 , u = 1
2
(w1 + w2), hu = h ∗ u, where c = 1

16g
.)
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C.2 The definition of G(·) and computation of G−1(·)

in Example 5.4.5

Let

g(u) =
1

(1 + 2+α
2α

)u+ 2+α
2α
u−1 −

√(
2+α
2α

)2
u2 +

(
2+α
2α

)2
u−2 + 8+8α−2α2

4α2

, u > 0,

then

G(u) =

∫ u

1

g(y)dy

=
1

16(1 + α)

(
−α log 16 + (8 + 4α) log u+ 4α log(1 + u2) + 2α log

(
α− αu2 + t

−α + αu2 + t

)
+ (α + 2) log

(
−α2 − 4α− 4 + (α2 − 4α− 4)u2 + (2 + α)t

α2 − 4α− 4 + (−α2 − 4α− 4)u2 + (2 + α)t

)
+(α + 2) log

(
−α2 + 4α + 4 + (α2 + 4α + 4)u2 + (2 + α)t

α2 + 4α + 4 + (−α2 + 4α + 4)u2 + (2 + α)t

))
,

where t =
√
α2(u2 − 1)2 + (4α + 4)(u2 + 1)2.

Note thatG(u) is a log-like monotone increasing concave function with
(

2+α
2+2α

)
u−1 <

g(u) < u−1 for u ∈ (0,∞), and limu→0+
g(u)

( 2+α
2+2α)u−1

= 1, limu→∞
g(u)
u−1 = 1, thus one

can compute G−1(log 1
q
) by solving u from the equation G(u) + log q = 0 based on

the Newton iteration.
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