<mods:mods xmlns:mods="http://www.loc.gov/mods/v3" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-7.xsd"><mods:titleInfo><mods:title>C^2-Morse functions on the Deligne-Mumford compactification of the moduli space</mods:title></mods:titleInfo><mods:typeOfResource authority="primo">dissertations</mods:typeOfResource><mods:name type="personal"><mods:namePart>Chen, Changjie</mods:namePart><mods:role><mods:roleTerm type="text">creator</mods:roleTerm></mods:role></mods:name><mods:name type="personal"><mods:namePart>Kahn, Jeremy</mods:namePart><mods:role><mods:roleTerm type="text">Advisor</mods:roleTerm></mods:role></mods:name><mods:name type="personal"><mods:namePart>Breiner, Christine</mods:namePart><mods:role><mods:roleTerm type="text">Reader</mods:roleTerm></mods:role></mods:name><mods:name type="personal"><mods:namePart>Schwartz, Richard</mods:namePart><mods:role><mods:roleTerm type="text">Reader</mods:roleTerm></mods:role></mods:name><mods:name type="corporate"><mods:namePart>Brown University. Department of Mathematics</mods:namePart><mods:role><mods:roleTerm type="text">sponsor</mods:roleTerm></mods:role></mods:name><mods:originInfo><mods:copyrightDate>2024</mods:copyrightDate></mods:originInfo><mods:physicalDescription><mods:extent>, None p.</mods:extent><mods:digitalOrigin>born digital</mods:digitalOrigin></mods:physicalDescription><mods:note type="thesis">Thesis (Ph. D.)--Brown University, 2024</mods:note><mods:genre authority="aat">theses</mods:genre><mods:abstract>We present a series of C^2-Morse functions on the Deligne-Mumford compactification M_{g,n} bar of the moduli space of genus g Riemann/hyperbolic surfaces with n punctures. This series of functions converges to the systole function, which is topologically Morse. We will show that the critical points of our functions approach those of systole sublinearly, stratum-wise, and with the same indices. Our functions might be the first explicit examples of C^2-Morse functions on M_{g,n} bar, and the Morse handle decomposition may give rise to the first example of a natural cell decomposition of M_{g,n} bar, that works no matter if n is positive or equal to 0.</mods:abstract><mods:subject authority="fast" authorityURI="http://id.worldcat.org/fast" valueURI="http://id.worldcat.org/fast/00940919"><mods:topic>Geometry, Differential</mods:topic></mods:subject><mods:subject authority="fast" authorityURI="http://id.worldcat.org/fast" valueURI="http://id.worldcat.org/fast/01145803"><mods:topic>Teichmüller spaces</mods:topic></mods:subject><mods:subject><mods:topic>moduli space of curves</mods:topic></mods:subject><mods:subject authority="fast" authorityURI="http://id.worldcat.org/fast" valueURI="http://id.worldcat.org/fast/00940922"><mods:topic>Geometry, Hyperbolic</mods:topic></mods:subject><mods:language><mods:languageTerm authority="iso639-2b">English</mods:languageTerm></mods:language><mods:recordInfo><mods:recordContentSource authority="marcorg">RPB</mods:recordContentSource><mods:recordCreationDate encoding="iso8601">20240501</mods:recordCreationDate></mods:recordInfo></mods:mods>