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Abstract of ”An Inverse Spectral Problem for Hankel Operators” by Zhehui Liang, Ph.D.,

Brown University, May 2021

This dissertation is devoted to the study of inverse spectral problem of Hankel operators.

It is well-known that spectral characteristics of a Hankel operator does not uniquely define

it: there are many unitarily equivalent Hankel operators. However, as it was noticed in

breakthrough papers by P. Gerald and S. Grellier the spectral characteristics of the Hankel

operator and its one column truncation completely determine the compact Hankel operator.

This turns out to be true for general Hankel operators, which is one of the results of the

thesis.

For self-adjoint Hankel operators it is pretty easy to understand what the spectral char-

acteristics are. For the general case the approach is more involved and based on the theory

of complex symmetric operators. In both cases we state and prove an abstract theorem

that reduces the existence of a Hankel operator with prescribed spectral properties to the

asymptotic stability of some contractions, hence the “dynamical system approach” in the

title.

We then apply this abstract theorem to the particular case of compact operators; the

asymptotic stability there is obtained almost for free, and the description of spectral char-

acteristics can be greatly simplified. We are able to give new proofs for known results by

Gerard–Grillier, as well as to prove some new results.

For compact Hankel operator with simple singular values, we will show that it can be

uniquely characterized by two sequences of complex numbers whose modulus part satisfy an

intertwining relation. While for Hankel operator with non-simple singular values, we will

show that it will be uniquely characterized by two sequences of complex numbers with the

same requirement, together with two sequences of discrete probability measures on the unit

circle.
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Chapter 0

NOTATION

This short section contains the list of main symbols. We consider only separable

Hilbert spaces, usually denoted by H.

:= Equal by definition;

ℓ2 The Hilbert space formed by infinite complex sequence x = (x1, x2, ...) with

constraint
∞∑
i=1

|xi|2 <∞;

S Symbol for shift operator on spaces ℓ2 or H2(T);

T The unit circle on the complex plane, T := {z ∈ C : |z| = 1};

D The unit disk on the complex plane, D := {z ∈ C : |z| ≤ 1};

Hp(T) The Hardy space on T defined as Hp(T) := {f : f ∈ Lp(T), f =
∞∑
k=0

akz
k}

for 1 ≤ p <∞;

A∗ Adjoint of an operator A;

|A| Modulus of an operator A, |A| := (A∗A)1/2;

KerA The kernel space of an operator A;

RanA The range space of an operator A;
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PHx The orthogonal projection of a vector x onto a subspace H.

x∗ For x ∈ H, x∗ is the bounded linear functional on H defined as

y 7→ ⟨x, y⟩.

R Symbol for a self-adjoint operator;

R Symbol for a positive self-adjoint operator;

T Symbol for a contraction;

Γ̃ The restriction of an operator Γ on its essential part, that is Γ
∣∣
(Ker Γ)⊥

.

C, J Symbols for conjugations;

H⊥
0 The orthogonal complement of H0 on the whole space;

σ(A) The spectrum of an operator A;

σp(A) The point spectrum of an operator A;

ρ̃ The normalization of a finite measure ρ, i.e., the total measure of ρ̃ equals

1;

DT Defect operator of a contraction T , defined as DT := (I − T ∗T )1/2;

DT Defect space of a contraction T , defined as DT := ClosRanDT ;

DT Defect indice of a contraction T , defined as DT := dimDT ;

⇀ Symbol for weak convergence. We say a sequence of vector {xn}⇀ x0 if

and only if lim
n→∞

⟨xn, y⟩ → ⟨x, y⟩ holds for all y ∈ H.
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Chapter 1

INTRODUCTION TO HANKEL OPERATORS

In this chapter, we will first give the definition and some well-known results about

Hankel operators in section 1.1. To follow up, we will introduce some substantial

historical progress on the inverse spectral problem of Hankel operators in section 1.2.

1.1 Introduction to Hankel Operators

Definition 1.1.1. A Hankel matrix is an infinite matrix of form {γj+k}∞j,k>=0, i.e. a

matrix whose entries depend only on the sum of indices.

A Hankel operator Γ is a bounded operator in ℓ2 = ℓ2(Z+) whose matrix in the

standard basis {en}∞n=0 of ℓ
2 is Hankel, i.e. ⟨Γej, ek⟩ = γj+k holds for all j, k ∈ N . And

we call {γn}∞n=0 to be the Hankel coefficients of Γ.

Remark 1.1.2. Let S be the shift operator on ℓ2 defined as

S(x0, x1, x2, . . .) = (0, x0, x1, x2, . . .),

and its adjoint S∗ given by

S(x0, x1, x2, . . .) = (x1, x2, . . .).

3



The fact that an operator Γ is Hankel is equivalent to the following equation:

ΓS = S∗Γ, (1.1.1)

so the above identity (1.1.1) can also be used as the definition for Hankel operators.

The following result is a well-known theorem proved by Nehari in [2]. We first recall

the definition of bounded mean oscillation functions (BMO for abbreviation).

Definition 1.1.3 (Definition of BMO function). We say an integrable function f on

T is of bounded mean oscillation (BMO) if

∥f∥ := sup
I

1

|I|

∫
I

|f − fI |dm <∞,

where the supremum runs over all arcs of T and fI =
1
|I|

∫
I
fdm is the mean of f over

I.

Theorem 1.1.4 (Nehari, 1957). A Hankel operator Γ : ℓ2 → ℓ2 with coefficients

{γn}∞n=0 is bounded if and only if there exists a function f ∈ L∞(T), such that ∀n ≥ 0,

f̂(n) = γn. Or equivalently, the Fourier series
∑
n≥0

γne
inz is BMO.

Another famous result is proved by Hartman in [4], given an equivalent condition

for compact Hankel operators on ℓ2. We first recall the definition of vanishing mean

oscillation functions (VMO for abbreviation).

Definition 1.1.5 (Definition of VMO functions). We say an integrable function f on

T is of vanishing mean oscillation (VMO) if f ∈ BMO(T), and additionally, the mean

oscillation of f on I goes to 0 uniformly when the arc length of I goes to 0.

Theorem 1.1.6 (Hartman, 1958). A Hankel operator Γ : ℓ2 → ℓ2 with coefficients

{γn}∞n=0 is compact if and only if there exists a continuous function f on T, such that

f̂(n) = γn for n ≥ 0. Or equivalently, the Fourier series
∑
n≥0

γne
inz is a function belongs

to VMO(T).
4



As for finite rank Hankel operators, the following theorem is proved by L.Kronecker

in [5], stated as follow:

Theorem 1.1.7 (Kronecker 1881). A Hankel operator Γ with coefficients {γn}∞n=0 is

finite-rank, if and only if the sum of series

R(z) =
∞∑
i=0

γi
zi

is a rational function of z.

Remark 1.1.8. There is also another Hardy space representation for Hankel operators,

given in [1, Part B Chapter 1, p. 180], which we will just briefly introduce it here. (We

only need Definition 1.1.1 in the main part of this thesis).

We first recall the definition of Hardy space Hp(T) := {f : f ∈ Lp(T), f =
∞∑
k=0

akz
k}

for 1 ≤ p <∞. HereHp can be naturally identified with the spaces of analytic functions

on the unit disk D. For p = ∞, we define H∞ to be the space of all bounded analytic

function on the unit disk with the supremum norm.

Now we construct a map from H2 to H2
− := L2 ⊖H2. For a function φ ∈ L∞(T),

we define the operator Hφ as:

Hφf := P−(φf),

here f ∈ H2 and P− is the natural orthogonal projection from H2 to H2
−.

For this Hφ : H2 → H2
−, we can check that the representation matrix of Hφ,

with respect to basis B1 = {eint}n≥0 on H2, and basis B2 = {eint}n<0 for H2
−, is an

infinite symmetric matrix, thus Hφ has Hankel structure, and we call this Hφ as Hankel

operators from H2 to H2
−.

Now we can use this Hφ to define an operator from ℓ2 to ℓ2 which is Hankel. We

5



first define an involution operator J given by

J eikt = e−i(k+1)t holds for all k ∈ Z,

(easy to check that JH2 = H2
−, JH2

− = H2 and J 2 = I). Also recall the natural

Fourier transform mapping F defined as

f → (f̂(0), f̂(1), ....), (1.1.2)

mapping H2 to ℓ2. Here f̂(n) is the Fourier coefficients defined as f̂(n) :=
∫
T fe

−inzdz.

Now we define an operator Γ : ℓ2 → ℓ2 as

Γ := FJHφF−1.

We can see that Γ is a Hankel operator with Hankel coefficients γk = φ̂(−k − 1).

Remark 1.1.9. For this defined Hφ, we can see that it satisfies the following equation

HφS = P−SHφ, (1.1.3)

here S is the shift operator on H2 defined as Sf := eit. The above identity can also be

used as the definition of Hankel operators from H2 to H2
−.

Remark 1.1.10. From the definition of Hankel operators on Hardy spaces, it’s easy

to see that KerHφ is either trivial or infinite-dimensional (thus Ker Γ is also either

trivial or infinite-dimensional for Hankel operator Γ : ℓ2 → ℓ2). In fact, from (1.1.3),

we can see that KerHφ is S-invariant, thus by Beurling theorem (see [7, Chapter 1]),

it must has the form of θH2 where θ is an inner function, thus it must be trivial or

infinite-dimensional.

6



1.2 Historical Development on the Spectral Problem of Han-

kel Operators

1.2.1 Modulus of Hankel Operators

The spectral properties of Hankel operators was first studied in [6]. In this paper,

Khrushchev and Peller raised the following question:

Problem 1.2.1. Given R to be a non-negative self-adjoint operator on H, does there

exist a Hankel operator Γ such that its modulus |Γ| is unitary equivalent to R?

Easy to see that R needs to satisfy the following two conditions:

(i) dimKerR = 0 or ∞;

(ii) R is non-invertible.

We have discussed the proof of condition (i) in Remark 1.1.10. As for condition

(ii), it follows from the fact that if Γ is Hankel, then

∥Γek∥2 =
∑
j≥k

|αj|2 → 0 as k → ∞

So now the question is whether (i) and (ii) are also sufficient for Problem 1.2.1.

The first progress was made in [8]. It was shown that if R satisfies (i), (ii), and

additionally R has simple discrete spectrum, then R is unitary equivalent to |Γ| for

some Hankel Γ.

Then in 1990, Treil solved Problem 1.2.1, claiming that the discrete spectrum

condition is unnecessary. That is,

Theorem 1.2.2. R is a non-negative self-adjoint operator satisfying the following as-

sumptions:

(i) R is non-invertible;
7



(ii) dimKerR = 0 or ∞.

Then there exists a Hankel operator Γ , such that |Γ| is unitary equivalent to R.

1.2.2 Self-adjoint Hankel Operators

Now we consider the inverse spectral problem for Hankel operators.

Problem 1.2.3. For a given self-adjoint operator R, can we find out a Hankel operator

Γ, such that R is unitary equivalent to Γ?

To begin stating the equivalent conditions for this problem, we need some prepa-

ration on the definition of Von Neumann integral and scalar multiplicity function.

Given µ to be a finite positive Borel measure on R, and {H(t)}t∈R be a measurable

family of Hilbert spaces. Here the definition of measurable families is given as follow:

Definition 1.2.4 (Definition of measurable families). Let {H(t)}t∈R be a family of

Hilbert spaces, then we say {H(t)}t∈R is a measurable family if and only if there exists

at most a countable set Ω of functions f such that f(t) ∈ H(t), µ-a.e., such that

Span{f(t) : f ∈ Ω} = H(t) for µ− almost all t,

and the function

t→ ⟨f1(t), f2(t)⟩H(t)

is µ−measurable for any f1, f2 ∈ Ω.

If we denote N(t) := dimH(t), then we can indeed embed all H(t) in a Hilbert

space with orthogonal basis {en}∞n=1, and set

H(t) = Span{ek : 1 ≤ k ≤ N(t)}

8



Definition 1.2.5. We say a function g with values g(t) ∈ H(t) is measurable if the

scalar function

t→ ⟨g(t), f(t)⟩H(t)

is measurable for all f ∈ Ω.

Now we are ready to define the Von-Neumann integral space., and then followed by

the Von-Neumann theorem.

Definition 1.2.6. The Von-Neumann integral (or direct integral)
∫
⊕H(t)dµ(t) is a

Hilbert space consists of measurable functions f (see definition 1.2.5), such that

∥f∥ =

(∫
∥f(t)∥2H(t)dµ(t)

)1/2

<∞.

And the inner product on the Von-Neumann integral is defined as

⟨f, g⟩ =
∫

⟨f(t), g(t)⟩H(t)dµ(t),

where f, g ∈
∫
⊕H(t)dµ(t).

With this newly defined direct integral space, Von-Neumann proved that every self-

adjoint operators is unitary equivalent to a multiplication by independent variable on

some L2 space. The theorem is stated as follow:

Theorem 1.2.7 (Von Neumann’ theorem, see [11]). Each self-adjoint operator de-

fined on a separable Hilbert space is unitary equivalent to an operator A, which is a

multiplication by independent variable defined on a direct integral
∫
⊕H(t)dµ(t):

(Af)(t) = tf(t), f ∈
∫

⊕H(t)dµ(t).

And we say µ to be the scalar spectral measure of A, and we say the function N(t) =

dimH(t) to be the spectral multiplicity function of A.
9



It is also stated in [11] that two self-adjoint operators R1, R2 are unitary equivalent

if and only if their scalar spectral measures are mutually absolutely continuous and

their spectral multiplicity functions are equal almost everywhere.

Now back to the Problem 1.2.3. A.V. Megretskii, V.V.Peller, and S.R.Treil solved

problem 1.2.3 in [12, Theorem 1, p. 245]. The equivalent condition of such existence is

stated as follow:

Theorem 1.2.8. Let R be a bounded self-adjoint operator on Hilbert space, denote µ

be its scalar spectral measure, and N(t) be its spectral multiplicity function. Then R

is unitary equivalent to a Hankel operator Γ if and only if all the following conditions

hold

(i) dimKerR = 0 or ∞;

(ii) R is non-invertible;

(iii) The spectral multiplicity function N(t) satisfies: |N(t) − N(−t)| ≤ 2, µa-a.e.

(absolute continuous part of µ), and |N(t) − N(−t)| ≤ 1, µs-a.e. (singular part

of µ).

Here (iii) implies that if one of the N(t), N(−t) is ∞, then the other one must also be

∞.

Remark 1.2.9. Notice that condition (iii) also implies that for any self-adjoint Hankel

Γ, we have

| dimKer(Γ− λI)− dimKer(Γ + λI)| ≤ 1 holds for all λ ∈ R. (1.2.1)

Furthermore, [12] also shows that the inequality (1.2.1) is true for all bounded Hankel

Γ and all λ ∈ C, i.e.,

| dimKer(Γ− λI)− dimKer(Γ + λI)| ≤ 1 (1.2.2)
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holds for all λ ∈ C.

From Theorem 1.2.8, we can easily generate another version when R is compact.

Theorem 1.2.10. Let R be a bounded self-adjoint compact operator on Hilbert space,

then R is unitary equivalent to a Hankel operator Γ if and only if all the following

conditions hold

(i) dimKerR = 0 or ∞;

(ii) R is non-invertible;

(iii) | dimKer(R− λI)− dimKer(R+ λI)| ≤ 1 holds for all λ ∈ R.

1.2.3 Hankel Operators not Self-adjoint

For a general Hankel Γ which is not self-adjoint, the spectrum properties of Γ is also

deeply studied. In Remark 1.2.9, we have already given several spectrum properties

for a general Hankel Γ:

(i) 0 ∈ σ(Γ);

(ii) | dimKer(Γ− λI)− dimKer(Γ + λI)| ≤ 1 holds for all λ ∈ C. In particular, if λ

is a multiple eigenvalue of a Hankel Γ, then −λ must be an eigenvalue.

There are a lot of progress concentrating on whether there exists a Hankel Γ, such

that σ(Γ) = {0}. The first progress was made by S. Power in [13], proving that there

exists no non-trivial nilpotent Hankel operators (Γn = 0 for some n > 0). Then in 1991,

A. Metretskii constructed a non-trivial quasinilpotent Hankel operator in [14], i.e., a

Hankel operator Γ such that ∥Γn∥1/n → 0 as n→ ∞ (or equivalently, σ(Γ) = {0}).

Another substantial result is proved in [15], saying that there are no other con-

straints on the spectrum of Γ except for {0}. That is:

Theorem 1.2.11. Let σ be any compact subset on the complex plane containing zero.

Then there exists a Hankel operator Γ such that σ(Γ) = σ
11



When considering other spectral properties of Hankel operators, recall that the in-

equality (1.2.2) gives a restriction on the geometric multiplicities of eigenvalues. How-

ever, if we consider the algebraic multiplicities of eigenvalues (recall that the algebraic

multiplicity of an eigenvalue λ is the dimension of the space of all generalized eigen-

vectors, i.e. the dimension of the space
⋃
n≥1

Ker(Γ−λI)n), E. Abakumov proved in [16]

that there are no restrictions on the algebraic multiplicities of the eigenvalues, for the

special case of finite rank Hankel operators.

Theorem 1.2.12. Given a finite number of non-zero points λ1, λ2, ..., λn and multi-

plicities k1, ..., kn, there exists a finite rank Hankel operator Γ, such that its non-zero

eigenvalues are exactly λ1, ..., λn, and the corresponding algebraic multiplicities are ex-

actly k1, ..., kn with 0 an eigenvalue of infinite multiplicity.

1.2.4 The Spectral Data that Uniquely Determines a Hankel Operator

However, for all the results we stated in previous subsections (Theorem 1.2.8, The-

orem 1.2.10, Theorem 1.2.11 and Theorem 1.2.12), the constructed Hankel operator is

not unique. In other words, there are many unitary invariants of a Hankel operator

that share the same spectral property with a given operator R.

Thus we wonder, what type of spectral data that can uniquely determine a Hankel

operator?

The first pioneering progress of this problem was made by P. Gérard and S. Grellier

in [17]. Their results came up as a byproduct of the study of an integrable Hamiltonian

system called the cubic Szegö equation. For every u ∈ H2(T), they define the Hankel

operator of symbol u as:

Hu(h) := P+(uh), h ∈ H2(T).

We need to emphasize that this Hu is conjugate-linear, which is different from the

standard definition given in Definition 1.1.1 and Remark 1.1.8. In fact, we can set up
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a correspondence between Gérard-Grellier’s definition and Definition 1.1.1.

For a given u ∈ H2(T), we define a Hankel operator Γu on ℓ2 with related Hankel

coefficients {γk}∞k=0 satisfies γk = û(k), here û(k) is the Fourier coefficients û(k) =∫
T ue

−ikzdz. Then we will have the defined Hu is unitary equivalent to a conjugate-

linear operator CΓ on ℓ2. In fact, we have Hu = F−1(CΓ)F , where F is the Fourier

transform given in (1.1.2).

Now for the defined Hu, we can easily set up a rank-one perturbation relation. We

define the shift operator on H2(T) as Su := eixu, and then we have S∗Hu = HuS =

HS∗u, where S
∗ is the adjoint of S with the representation S∗u = P+(e

−ixu). We denote

this S∗Hu as a new operator Ku (which is also conjugate-linear), and we call this Ku

to be the shifted Hankle operator with symbol u. Then we have Hu and Ku is related

by the following identity

K2
u = H2

u − u⟨, u⟩.

For this H2
u, K

2
u, we can show that they are unitary equivalent to |Γ|2, |Γ1|2 respectively:

H2
u = F−1|Γ|2F , K2

u = F−1|Γ1|2F .

In the Gérard-Grellier’s work [17], they first considered a symbol u such that Hu

has rank N , and 1 /∈ RanHu, then they showed that the singular values of H2
u, K

2
u,

denoted as {λn}Nn=1, {µn}Nn=1, are simple and satisfies the following intertwining relation

λ21 > µ2
1 > ... > λ2N > µ2

N . (1.2.3)

And conversely, given two sequences {λn}Nn=1, {µn}Nn=1 satisfy the intertwining rela-

tion (1.2.3), we can find a unique u such that H2
u, K

2
u have non-zero singullar values

as {λn}Nn=1, {µn}Nn=1 respectively. If we further assume that {λn}Nn=1, {µn}Nn=1 are real

numbers, then Gérard-Grellier proved in the same paper [17] that we can find a sym-

13



bol u with real Fourier coefficients {û(k)}∞k=0, such that the induced Hankel operator

Γu, S
∗Γu on ℓ2 are self-adjoint and have simple eigenvalues as {λn}Nn=1, {µn}Nn=1 respec-

tively.

Later in a followup paper [36], Gérard-Grellier’ solved the case for general self-

adjoint Hankel operators with simple singular values. The result is stated as follow:

Theorem 1.2.13. Let {λn}∞n=1, {µn}∞n=1 be two sequences of real numbers such that

|λ1| > |µ1| > ... > |λn| > |µn| > ...→ 0,

then there exists a unique self-adjoint compact Hankel operator Γ, such that

(i) the non-zero eigenvalues of Γ are simple, and coincides with {λn}∞n=1;

(ii) the non-zero eigenvalues of S∗Γ are simple, and coincides with {µn}∞n=1.

Then in 2014, Gérard-Grellier also solved the case for compact Hankel operators

with multiple singular values. In [19], they described the spectral data by the corre-

sponding singular values together with some Blaschke products.

In this thesis, we will present a dynamical system approach for the inverse spectral

problems of Hankel operators by reducing the problem to the asymptotic stability of a

certain contraction. Different from the work by Gérard-Grellier, we solve the problem

by means of:

(i) Instead of using the language of conjugate-linear operators in [17], [36] and [19];

we treat Hankel operatoars as complex symmetric operators in the non self-adjoint

case;

(ii) To reconstruct the compact Hankel operators according to their singular values,

we will present a theorem so-called Abstract Borg’s theorem (see Theorem 8.0.1),

and then we construct the scalar spectral measure of the Hankel operator from

this theorem;
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(iii) For the multiple singular values case, we translate the spectral data by their

singular values and some probability measures, where those probability measures

are exactly the Clark measures of the Blaschke products given in [19].
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Chapter 2

STRUCTURE OF THIS THESIS

In this chapter, we will briefly introduce the structure of this thesis.

Throughout the historical studies of inverse spectral problems of Hankel operators

(see section 1.2), we can see that

(i) A Hankel operator cannot be uniquely characterized by the spectral data of its

own. There are many unitary invariants of it on ℓ2 which are also Hankel, and

share the same spectral properties;

(ii) From the studies of P. Gérard and S. Grellier in [17] and [18], we can see that the

spectral information of Γ and S∗Γ can completely characterize a Hankel operator.

In this thesis, we will further discuss the topic that what spectral data can uniquely

determine a Hankel operator.

In chapter 3, we mainly discuss the inverse spectral problem for self-adjoint Hankel

operators. A self-adjoint Hankel operator Γ satisfies Γ2 − Γ2
1 = uu∗ where Γ1 := ΓS =

S∗Γ and u = Γe0, thus we construct a tuple (R,R1, p) with relation R2 − R2
1 = pp∗

where R,R1 are self-adjoint and KerR = {0}. We want to find out whether there

exists a self-adjoint Γ, such that the tuple restricted on the essential part of Γ, i.e.,(
Γ̃ := Γ

∣∣
(Ker Γ)⊥

, Γ̃1 := Γ1

∣∣
(Ker Γ)⊥

, u
)
is unitary equivalent to

(
R,R1, p

)
. If such Γ exists,
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since we have

Γ̃1 = S∗∣∣
(Ker Γ)⊥

Γ̃,

we require the contraction T defined by T := R1R−1 to be unitary equivalent to

S∗
∣∣
(Ker Γ)⊥

, thus T is asymptotically stable. In fact, we show in Proposition 3.1.3 tells

us that there exists a unique Hankel Γ such that
(
Γ̃, Γ̃1, u

)
is unitary equivalent to(

R,R1, p
)
as long as we guarantee the asymptotic stability of T . Thus a self-adjoint

Hankel can be uniquely determined by two operators R,R1.

Then in chapter 5, we discuss the inverse spectral problem for general Hankel

operators Γ. Under this case we take Γ as a special type of operators called C-symmetric

operators (See Definition 4.1.6), and write the essential part Γ̃, Γ̃ as (5.1.5):

Γ̃ = Cϕ̃|Γ̃|J̃u, Γ̃1 = Cϕ̃1|Γ̃1|J̃u,

where here Ju is a conjugation commutes with |Γ|, |Γ1|, ϕ̃ is unitary and ϕ̃1 is partial

isometry which is unitary on ℓ2 ⊖Ker Γ1.

Since a general Hankel operator Γ satisfies |Γ̃|2 − |Γ̃1|2 = uu∗ where u := Γ∗e0, we

construct a tuple (R,R1, p, φ, φ1, Jp) that satisfies

(i) R,R1 are two positive, self-adjoint compact operators defined on a Hilbert space

H. In addition we have KerR = {0};

(ii) R2 −R2
1 = pp∗ for a vector p with ∥R−1p∥ ≤ 1;

(iii) Jp is a conjugation commutes with R,R1 and preserves p;

(iv) φ is a Jp-symmetric unitary operator, which commutes with R;

(v) φ1 is a Jp-symmetric partial isometry with Kerφ1 = KerR1, which commutes

with R1. In addition, we have φ1|
(KerR1)⊥

is unitary.
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We want to find out whether there exists a Hankel operator Γ, such that there exists

a conjugation Ju, commuting with |Γ| and |Γ1| and preserving u, such that induced

tuple
(
|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1, J̃u

)
is unitary equivalent to

(
R,R1, p, φ, φ1, Jp

)
. In fact, we

show in Proposition (5.1.6) that with the asymptotic stability of T := R1φ1φ
∗R−1,

there exists a unique Hankel operator Γ such that
(
|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1, J̃u

)
is unitary

equivalent to
(
R,R1, p, φ, φ1, Jp

)
. Thus a general Hankel operator can be uniquely

determined by two operators R1 := R1φ1,R := Rφ (which also means that a Hankel

operator can be uniquely determined by its essential part).

For the following chapters, we will further consider the case of compact Hankel

operators, and describe the spectral data of these two operators in a different way from

the results in [36].

We first need to consider the assumptions needed for Rφ,R1φ1 to guarantee the

asymptotic stability of T . Finding out the equivalent requirement for the asymptotic

stability of T is usually a hard issue, but things become easier if we have R,R1 are com-

pact. In chapter 7, we discuss the requirements we need to guarantee the asymptotic

stability of T .

(i) If p is cyclic with respect to R in H, then we will show that T will be asymptotic

stable for free.

(ii) If p is not cyclic with respect to R in H, then Proposition 7.5.1 gives a criterion

for the asymptotic stability of T . In addition, if we set a canonical choice for

φ, φ1 given in Lemma 6.3.2, then Proposition 7.6.3 gives an equivalent condition

for φ and φ1 for the asymptotic stability of T .

Secondly, to translates the spectral data of R1,R in compact case, we first need to

analyze the eigenspace structure R1, R, which will be the work in chapter 6. Denoting

H0 = Span
{
Rnp

∣∣n ≥ 0
}
, we have R|H0

, R1|H0
both have simple eigenvalues, and

R = R1 on H⊥
0 . The complete description of structure of tuple (R,R1, p) is stated in

Proposition 6.2.10.
18



With these preparations, now we are ready to translate the spectral data of R1,R1.

We classify the compact R,R1 into the following situations:

(a) H0 = H and R1,R are self-adjoint. Under this case, we have σ(φ) = σp(φ) ⊆

{±1} , σ(φ1) = σp(φ1) ⊆ {±1, 0} with Kerφ1 = KerR1, thus we can write φ, φ1 as

f(R), f1(R1) where f, f1 are some measurable unimodular functions that take values in

{±1}. With these assumptions, we show in Theorem 9.1.1 that a self-adjoint compact

Hankel operator with simple singular values can be uniquely characterized by two sets

of real sequences {λn}∞n=1, {µn}∞n=1 satisfying the following intertwining relation:

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0.

(b) H0 = H and R1,R are not self-adjoint. Under this case, φ, φ1 acts unitarily on

each one-dimensional eigenspace of R,R1 respectively. Under this condition, we show

in Theorem 9.2.1 that a a compact Hankel operator with simple singular values can

be uniquely characterized by two sets of complex sequences {λn}∞n=1, {µn}∞n=1, whose

modulus part satisfy an intertwining relation:

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0

(c) H0 ⊊ H. Under this case, if we consider the canonical choice of φ, φ1, then

Lemma 6.3.2 and Proposition 7.6.3 give the behavior of φ, φ1 on each eigenspaces of

R,R1. Denoting {ρk}∞k=1, {ρ1k}∞k=1 as the scalar spectral measure of φ, φ1 restricted to

the corresponding eigenspaces with respect to their *-cyclic vector, then we show in

Proposition 10.1.5 that a compact Hankel operator Γ can be uniquely determined by

two complex sequences {λn}∞n=1, {µn}∞n=1, which serves as the singular values of |Γ| and

|Γ1|, together with two normalized discrete probability measure {ρ̃k}∞k=1, {ρ̃1k}∞k=1.

Hence the four sequences {λn}∞n=1, {µn}∞n=1, {ρ̃k}∞k=1, {ρ̃1k}∞k=1 as a whole can be

regarded as the spectral data of a general compact Hankel operator.
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Chapter 3

A RESULT FOR SELF-ADJOINT HANKEL OP-

ERATORS

In this chapter, we discuss the inverse spectral problem for self-adjoint Hankel

operators.

First in section 3.1, we introduce the setting and some preparation work for the

work. For a self-adjoint Hankel operator Γ, we can show that Γ and Γ1 := ΓS satisfy

a rank-one perturbation relation (3.1.1), thus restricted on (Ker Γ)⊥ we get a triple(
Γ̃ := Γ

∣∣
(Ker Γ)⊥

, Γ̃1 := Γ1

∣∣
(Ker Γ)⊥

, u := Γe0
)
.

Next in section 3.2, we prove the main result (Proposition 3.1.3) in this chapter.

That is, for a given rank-one perturbation (R,R1, p) satisfying the following conditions:

(i) R,R1 are self-adjoint operators, KerR = {0};

(ii) R2 −R2
1 = pp∗;

(iii) The contraction T := R1R−1 is asymptotically stable,

then there exists a unique self-adjoint Hankel operator Γ, such that the triple restricted

on the essential part of Γ:
(
Γ̃, Γ̃1, u

)
is unitary equivalent to (R,R1, p). Thus from this

proposition, we can see that a self-adjoint Hankel operator can be uniquely determined

by the spectral data of two operators R,R1 which satisfy a rank-one perturbation

relation.
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In addition, we can further translate the spectral data of R,R1 under the self-

adjoint compact case. If we further assume that p is cyclic with respect to |R| in

H (under this case we can see that R has simple singular values), then we can show

that the spectral data of R,R1 can be characterized by two sets of real sequences

{λn}∞n=1, {µn}∞n=1 satisfying an intertwining relation

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0. (3.0.1)

In other words, given two real sequences {λn}∞n=1, {µn}∞n=1 with the intertwining relation

(3.0.1), there exists a unique self-adjoint compact Hankel operator Γ such that the non-

zero eigenvalues of Γ,Γ1 are simple, and coincide with {λn}∞n=1, {µn}∞n=1 respectively.

The detail of work in this paragraph can be found in chapter 8.

3.1 Setup of the Inverse Spectral Problem for Self-adjoint

Hankel Operators

Let Γ be a self-adjoint Hankel operator. Define Γ1 := ΓS = S∗Γ, which is also a

self-adjoint Hankel operator, then we can write

Γ2
1 = ΓSS∗Γ = Γ(I − e0e

∗
0)Γ = Γ2 − uu∗, (3.1.1)

where u := Γe0.

Since Γ is self-adjoint, we have RanΓ ⊕ Ker Γ = ℓ2, and (Ker Γ)⊥ is a reducing

subspace for both Γ and Γ1. Hence we restrict everything on (Ker Γ)⊥, and denote

Γ̃ := Γ
∣∣
(Ker Γ)⊥

, Γ̃1 := Γ1

∣∣
(Ker Γ)⊥

,
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then (3.1.1) can be transformed to

Γ̃2 − Γ̃2
1 = uu∗ (3.1.2)

Now let us try to go from the opposite direction. Suppose that we are given two self-

adjoint operators R, R1 on a Hilbert space H, and R,R1 are their modulus operator

respectively

R = Rφ, R1 = R1φ1,

where here φ, φ1 are partial isometries commuting with R,R1 respectively.

Our goal here to is find a Hankel operator Γ, such that the essential part Γ̃ and Γ̃1

are simultaneously unitary equivalent to R and R1 respectively, meaning that we have

Γ̃ = VRV∗, Γ̃1 = VR1V∗ for some unitary operator V . We can see from (3.1.1) that R

and R1 should satisfy the relation

R2 −R2
1 = pp∗ (3.1.3)

for a vector p ∈ RanR.

To begin with solving the inverse spectral problem, we first need to find a contrac-

tion T , (hopefully unitary equivalent to the backward shift S∗) such that R1 = T R.

The tool to find T is by using the following simple lemma.

Lemma 3.1.1 (Douglas Lemma). Let A and B be two bounded operators on a Hilbert

space H such that

∥Bh∥ ≤ ∥Ah∥ ∀h ∈ H,

or, equivalently, B∗B ≤ A∗A.

Then there exists a contraction T (i.e. ∥T∥ ≤ 1) such that B = TA.

In addition, if KerA = KerA∗ = {0}, then the operator T̃ := BA−1 (initially
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defined on ClosRanA) can be extended to a contraction T on the whole space H, and

its adjoint is given by T ∗ = (A∗)−1B∗; notice that the condition ∥T∥ ≤ 1 implies that

RanB∗ ∈ Dom(A∗)−1, so the operator T ∗ is well defined on all x ∈ H

For the specific condition, if A has dense range, the operator T is unique.

The specific proof of Lemma 3.1.1 can be found in [20].

When finding a contraction T satisfying R1 = T R, we usually assume KerR =

{0} to avoid the non-uniqueness of such T , meaning that we want R to be unitarily

equivalent to the esssential part of Γ (instead of Γ itself), i.e., to the operator Γ̃ :=

Γ|(Ker Γ)⊥ . In this case the operator T should be unitarily equivalent to S∗ restricted

on (Ker Γ)⊥, meaning that

T = Ṽ ∗S∗|(Ker Γ)⊥Ṽ (3.1.4)

for an unitary Ṽ .

In this situation the vector p from (3.1.3) should be a vector satisfying ∥R−1p∥ ≤ 1,

where here q := R−1p can be thinking as

q = Ṽ ∗P(Ker Γ)⊥e0.

So now we arrive at the following setup. Given a self-adjoint R with trivial kernel

on H, and a vector p with property q := R−1p with norm ∥q∥ ≤ 1, then R2 − pp∗ ≥ 0,

and we take a self-adjoint R1 such that

R2 −R2
1 = pp∗. (3.1.5)

Now applying the Douglas Lemma 3.1.1, there exists a unique contraction T such that

R1 = T R = RT ∗.
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Thus we can rewrite (3.1.5) as

R(I − T ∗T )R = Rqq∗R,

which implies that

I − T ∗T = qq∗ = ⟨·, q⟩q. (3.1.6)

Before stating the main result in this chapter, we need to define the asymptotic

stability of a contraction.

Definition 3.1.2. We say an operator T is asymptotically stable iff T n → 0 in the

strong operator topology as n→ ∞, i.e. iff for ∀x ∈ H

lim
n7→∞

∥T nx∥ → 0

Now go back to identity (3.1.4). In order to find a Hankel operator Γ such that

(Γ̃, Γ̃1, u) is unitary equivalent to (R,R1, p), we need T to be unitary equivalent to

S̃∗ := S∗
∣∣
(Ker Γ)⊥

, thus we need T to be asymptotically stable. In addition, the following

proposition shows that this requirement is also sufficient.

Proposition 3.1.3. If T is asymptotically stable, then there exist a unique self-adjoint

Hankel operator Γ and an unitary operator Ṽ : H → (Ker Γ)⊥ such that

Γ̃ := Γ|(Ker Γ)⊥ = ṼRṼ∗, (3.1.7)

Γ̃1 := Γ1|(Ker Γ)⊥ = ṼR1Ṽ∗, (3.1.8)

Γe0 = Ṽp; (3.1.9)

note that (3.1.9) implies that

P
(Ker Γ)⊥

e0 = Ṽq, (3.1.10)
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And the Hankel coefficients {γk}∞k=0 can be expressed by

γk = ⟨T kp, q⟩.

Moreover, Ker Γ = {0} if and only if ∥q∥ = 1 and q /∈ Ran{R}.

3.2 Proof of Proposition 3.1.3

3.2.1 Existence of Hankel Γ

Proof. Treating (3.1.6) as an identity for quadratic forms and substituting x ∈ H into

it we get

∥x∥2 − ∥T x∥2 = |⟨x, q⟩|2.

Then we substitute x by T kx for an arbitrary k ∈ N, we get

∥T kx∥2 − ∥T k+1x∥2 = |⟨T kx, q⟩|2,

Now taking the sum from k = 0 to k = n we get

∥x∥2 − ∥T n+1x∥2 =
n∑

k=0

|⟨T kx, q⟩|2.

Let n→ ∞ and using the asymptotic stability of T we see that

∥x∥2 =
∞∑
k=0

|⟨T kx, q⟩|2,

which means that the operator V : H → ℓ2

Vx =
(
⟨x, q⟩, ⟨T x, q⟩, ⟨T 2x, q⟩, . . .

)
=
(
⟨T kx, q⟩

)∞
k=0

(3.2.1)

is an isometry.
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We can see that

VT x =
(
⟨T x, q⟩, ⟨T 2x, q⟩, ⟨T 3x, q⟩, . . .

)
= S∗Vx,

so T is unitarily equivalent to either S∗ (if RanV = ℓ2) or to the restriction of S∗ to

RanV , which is a S∗-invariant subspace (if RanV ≠ ℓ2). (Here we use a simple fact

that an onto isometry is unitary.)

Let Ṽ be the operator V with the target space restricted to RanV , so Ṽ : H → RanV

is an unitary operator. Denoting by S̃∗ := S∗|RanV (so S̃∗ = S∗ if RanV = ℓ2), we see

that

ṼT Ṽ∗ = S̃∗, ṼT ∗Ṽ∗ = (S̃∗)∗ = P
RanVS|RanV =: S̃.

Define

Γ̃ := ṼRṼ∗, Γ̃1 := ṼR1Ṽ∗. (3.2.2)

Then the relation T R = R1 = R∗
1 = RT ∗ (remember that R and R1 are self-adjoint)

translates to

Γ̃S̃ = Γ̃1 = S̃∗Γ̃.

Extending Γ̃ and Γ̃1 to operators Γ and Γ1 on the whole space ℓ2 by setting them

to be 0 on (RanV)⊥, we can see that Ker Γ = (RanV )⊥ and that

Γ = VRV∗, Γ1 = VR1V∗.

Let us now show that Γ satisfies the identity ΓS = S∗Γ, i.e. that Γ is indeed a
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Hankel operator. For ∀f ∈ ℓ2 we decompose

f = P
RanVf + P

(RanV)⊥
f =: f1 + f2.

We know that S∗RanV ⊂ RanV , so S(RanV)⊥ ⊂ (RanV)⊥. Therefore Sf2 ⊥

RanV , so ΓSf2 = 0 = S∗Γf2. As for f1, since Ker Γ = (RanV)⊥, we have

ΓSf1 = ΓP
RanVSf1 = ΓS̃f1 = Γ̃S̃f1 = S̃∗Γ̃f1 = S∗Γf1,

so Γ is indeed a Hankel operator.

Now it remains to show the identities (3.1.7), (3.1.8) and (3.1.9). The first two

identities are exactly from (3.2.2).To show (3.1.9), we first derive a representation for

V∗.

For ∀x, y ∈ H, we have

⟨Vx, y⟩ =
∑
k

ȳk⟨T kx, q⟩

= ⟨x,
∑
k

yk(T ∗)kq⟩,

thus V∗y =
∑
k

yk(T ∗)kq. In specific, we have V∗e0 = q. In conclusion, we have

Γe0 = VRV∗Vq = VRq = Vp = Ṽp,

and we finish the proof of existence part.

3.2.2 Uniqueness of Hankel Γ

Proof. Suppose that the identities (3.1.7), (3.1.8), (3.1.9) hold for some unitary oper-

ator Ṽ : H → ClosRanΓ = (Ker Γ)⊥ ⊂ ℓ2.

Since for a Hankel operator Ker Γ is always S-invariant, the subspace (Ker Γ)⊥ is
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S∗-invariant, so the restriction S∗|(Ker Γ)⊥ is well defined. The identities (3.1.7), (3.1.8)

and the definition of T imply that

S∗|(Ker Γ)⊥ = ṼT Ṽ∗. (3.2.3)

Now denote Γ̃ := Γ|(Ker Γ)⊥ and Γ̃1 = Γ1|(Ker Γ)⊥ , we restrict both sides of identity

(3.1.1) on (Ker Γ)⊥ and write

Γ̃2
1 = Γ̃2 − uu∗,

where

u := Γe0 = Γ̃P(Ker Γ)⊥e0,

Then identities (3.1.7), (3.1.8) will be unitarily translated to

R2
1 = R2 − p̃p̃∗, where p̃ = Rq̃, q̃ = Ṽ∗P(Ker Γ)⊥e0.

Comparing this with R2
1 = R2 − pp∗ we conclude that p = αp̃, q = αq̃, for an |α| = 1.

To compute the Hankel coefficients {γk}∞k=1 of Γ, we have

γk = (Γe0, S
ke0) = ⟨(S∗)kΓe0, e0⟩ = ⟨(S∗)kΓP(Ker Γ)⊥e0, P(Ker Γ)⊥e0⟩

= ⟨T kRq̃, q̃⟩ = ⟨T kp̃, q̃⟩ = ⟨T kp, q⟩,

meaning that the coefficients {γk}∞k=0 does not depend on Ṽ . So the uniqueness is

proved.
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3.2.3 Trivial Kernel Condition

Proof. As we discussed in the proof of existence part, Ker Γ is trivial if and only if the

operator V defined by (3.2.1) satisfies RanV = ℓ2. The latter condition is equivalent to

S̃∗ = S∗, which happens if and only if T is unitarily equivalent to S∗, or, equivalently,

T ∗ is unitarily equivalent to S.

For the first direction, suppose Ker Γ = {0}, so T is unitarily equivalent to S∗. We

know that

I − SS∗ = e0e
∗
0, I − T ∗T = qq∗,

so by the unitary equivalence ∥q∥ = ∥e0∥ = 1. If q ∈ RanR, i.e. q = Rf , then

RT ∗f = T Rf = T q = 0,

and since KerR = {0} , we conclude that T ∗f = 0. But if Ker Γ = {0}. then T is an

isometry, which contradicts T ∗f = 0. So q /∈ RanR.

For the sufficiency part, suppose ∥q∥ = 1 and q /∈ RanR. We know that

T R2T ∗ = R2
1 = RT ∗T R = R(I − qq∗)R,

and that Ker(I−qq∗) = Span{q}. Since q /∈ RanR, we see that KerR(I−qq∗)R = {0},

so Ker T ∗ = {0}.

Now applying (3.1.6) to vector q we get that

q − T ∗T q = q,

and since Ker T ∗ = {0} we see that T q = 0.

Then left and right multiplying (3.1.6) by T and T ∗ respectively, we get

T T ∗ − T T ∗T T ∗ = T qq∗T ∗,
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and since T q = 0, we have T T ∗ = (T T ∗)2, which implies that T T ∗ is an orthogonal

projection. Since Ker T ∗ = {0}, we conclude that T T ∗ = I, i.e. T is an isometry.

In addition, we have that T is asymptotically stable, thus there is no reduced

subspace on which T (and so T ∗) is unitary. The identity (3.1.6) implies that rank(I−

T ∗T ) = 1, i.e. the defect indices of DT = 1.so T ∗ is unitarily equivalent to the shift

operator S, i.e. that

S = VT ∗V∗

for some unitary operator V : H → ℓ2. Defining Γ = ṼRṼ∗, Γ1 = ṼR1Ṽ∗, we can see

that

Γ1 = ΓS = S∗Γ,

thus Γ is indeed the Hankel operator with trivial kernel, which satisfies (3.1.7), (3.1.8)

and (3.1.9). Since such Hankel Γ that satisfies (3.1.7), (3.1.8) and (3.1.9) is unique, we

have finished the proof of trivial kernel condition.
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Chapter 4

INTRODUCTION TO CONJUGATION AND C−

SYMMETRIC OPERATORS

In last chapter, we talk about the inverse spectral problem for self-adjoint Hankel

operators. In chapter 4 and chapter 6, we discuss the same topic for a non self-adjoint

Hankel operator. In this chapter, we discuss some background definition and properties

before stating the main result for a non self-adjoint Hankel operator in chapter 5.

In section 4.1, we introduce the definition of conjugation and a special type of

operators called complex symmetric operators, and we show that all Hankel operators

are C-symmetric operators where C is the canonical conjugation defined as (4.1.2).

Next in section 4.2 and section 4.3 we will show two propositions that we will

frequently use in the following chapters. In section 4.2, we give the description of the

generalized polar decomposition (see Theorem 4.2.2) for C-symmetric operators. In

section 4.3, we prove a lemma related to rank-one perturbation, stated as below:

Lemma 4.0.1. Let a self-adjoint operator B = B∗ be a rank one perturbation of a

self-adjoint operator A = A∗,

B = A− αpp∗, α ∈ R, α ̸= 0.

Then there exists a conjugation Jp commuting with both A and B and preserving p,
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Jpp = p.

Moreover, Jp|H0
is uniquely determined where H0 := Span{Anp : n ≥ 0}. Indeed,

we have JpA
np = Anp holds for all n ∈ N.

4.1 Definition of Conjugation and Complex Symmetric Oper-

ators

To begin with, we need some definitions and preparation work, borrowed from [22].

Definition 4.1.1. An operator C in a complex Hilbert space H is called a conjugation,

if and only if it is

(i) conjugate-linear: C(αx+ βy) = ᾱCx+ β̄Cy for all x, y ∈ H ;

(ii) involutive: C2 = I ;

(iii) isometric: ∥Cx∥ = ∥x∥ for all x ∈ H.

The followings are some typical examples of conjugations.

Example 4.1.2. Let (X,µ) be a measurable space, then the canonical conjugation C

on L2(X,µ) is just the pointwise complex conjugation:

(Cf)x = f(x).

Particularly, the canonical conjugation defined on Cn is given by

C(z1, z2, ..., zn) = (z1, z2..., zn)

Example 4.1.3. The Toeplitz conjugation on Cn is defined as

C(z1, z2, ..., zn) = (zn, zn−1, ...z1)
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The following is a well-known result, giving the existence of a set of C-real orthogonal

basis {en}∞n=1, stated in [22].

Definition 4.1.4. We call a vector v ∈ H a C-real vector if Cv = v.

Lemma 4.1.5. If C is a conjugation on H, then there exists an orthogonal basis {en}∞n=1

such that Cen = en holds for all n. In particular,

C(
∑
n

αnen) =
∑
n

αnen

holds for all {αn}n≥0 ∈ ℓ2. And we call such basis {en}∞n=1 C-real orthogonal basis.

From the definition of C-real orthogonal basis, it’s easy to see that for any two

vectors x, y ∈ H and any conjugation C, we have

⟨Cx, y⟩ = ⟨Cy, x⟩. (4.1.1)

Now we introduce the definition of C-symmetric operators.

Definition 4.1.6. Let C be a conjugation on Hilbert space H. A bounded linear operator

T on H is called C-symmetric iff T ∗ = CTC.

If we have an operator T is C−symmetric, and we take a C-real orthogonal basis

{en}n≥0, then we can show that the representation matrix of T with respect to this

basis {en}∞n=1 is a complex symmetric matrix. In fact,

[T ]ij = ⟨Tej, ei⟩ = ⟨CT ∗Cej, ei⟩ = ⟨Cei, T ∗Cej⟩

= ⟨ei, T ∗ej⟩ = ⟨Tei, ej⟩ = [T ]ji

We record here some well-know examples of complex symmetric operators, and their

corresponding C-real orthogonal basis.
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Example 4.1.7. For any Hankel operator Γ, we have Γ = CΓ∗C where here C is the

canonical conjugation on ℓ2:

C(z1, z2, z3...) = (z1, z2, z3...). (4.1.2)

Hence Γ is a C-symmetric operator. Here the C-real orthogonal basis can be simply

taken to be the original orthogonal basis {en}∞n=0.

4.2 Generalization of Polar Decomposition for C-symmetric

operators

In this section we will introduce a generalized polar decomposition for C-symmetric

operators. We begin with the definition of partial conjugation.

Definition 4.2.1 (See [21]). An anti-linear operator J in Hilbert space is called a par-

tial conjugation if (Ker J)⊥ is invariant for J and J|
(Ker J)⊥

is a conjugation. Denoting

K := (Ker J)⊥, then we often say that J is a partial conjugation on K.

Let us recall that an operator U is called a partial isometry if its restriction to

(KerU)⊥ is an isometry; note that (KerU)⊥ does not need to be U -invariant. If

denoting K := (KerU)⊥, we sometimes say that U is a partial isometry on K.

Recall also that any bounded operator T in a Hilbert space admits a unique polar

decomposition T = U |R|, where |R| := (R∗R)1/2, and U is a partial isometry with

KerU = KerT .

Then we have a generalized polar decomposition for complex symmetric operators,

given in [21]:

Theorem 4.2.2. If T = U |T | is the polar decomposition of a C−symmetric operator

T , then T = CJ|T |, where J is a partial conjugation satisfy Ker J = KerT , which

commutes with |T | :=
√
T ∗T . In particular, the partial isometry U is C−symmetric

and factors as U = CJ.
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Remark 4.2.3. Note that we can always find a conjugation J̃, such that J̃ = J on

(Ker J)⊥. In fact, we can take J′ is an arbitrary partial conjugation with support

Ker J, and then define J̃ := J + J′. With this conjugation J̃, we can reach several

corollaries from Theorem 4.2.2.

Corollary 4.2.4. If T is a bounded C-symmetric operator on H, then T = CJ|T |, where

J is a conjugation that commutes with |T |. In addition, the choice of J is unique if

and only if KerT = {0}.

Corollary 4.2.5. If T is a bounded C-symmetric operator, then T = W |T | where W is

a C-symmetric unitary operator.

4.3 A Property Related to Rank-one Perturbation

In last chapter, we have shown that a self-adjoint Hankel operator Γ satisfies a rank-

one perturbation relation: Γ2 − Γ2
1 = uu∗, where Γ1 := ΓS and u = Γe0. For a general

Hankel operator Γ, we can derive a similar identity. In fact, since Γ1 = ΓS = S∗Γ, we

have

|Γ|2 − |Γ1|2 = Γ∗Γ− Γ∗SS∗Γ = Γ∗(I − SS∗)Γ = Γ∗(e0e
∗
0)Γ,

so denoting u := Γ∗e0, we have

|Γ|2 − |Γ1|2 = uu∗, (4.3.1)

In this section, we will prove the result in lemma 4.0.1, which will be frequently

used in later discussion. Applying this lemma to (4.3.1), we can find a conjugation Ju

commuting with |Γ|, |Γ1| and preserves u. In addition, this conjugation is unique if u

is cyclic with respect to |Γ| in H.

Proof of Lemma 4.0.1. To begin with, we need the following lemma.
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Lemma 4.3.1. (Modified from [24, Theorem 2.2]) Let J be a conjugation on L2(ρ),

where ρ is a Borel measure on R, which is compact supported. Then the following two

statements are equivalent:

(i) MxJ = JMx, where Mx is the operator of multiplication by independent variable;

(ii) There exists a function ϕ(x) ∈ L∞(ρ), |ϕ(x)| = 1 ρ− a.e., such that: Jf =

Mϕ(x)J1f holds ρ−a.e . Here J1 is the canonical conjugation on L2(ρ) defined by

J1 : f(x) → f(x)

Proof. We only need to show (i) =⇒ (ii), while the other direction is easy to check. We

know that MxJJ1 = JMxJ1 = JJ1Mx, hence Mx commutes with an unitary operator

JJ1 on L2(ρ). By [Theorem 3.2, [25]], JJ1 = Mϕ for a ϕ(x) ∈ L2(ρ), J = Mϕ(x)J1.

Since JJ1 = Mϕ is unitary, we conclude that |ϕ| = 1 ρ-a.e.

Now get back to the proof of Lemma 4.0.1

By Von Neumann’s theorem (See Theorem 1.2.7), up to unitary equivalence we can

assume that A is the multiplication by independent variable Mx on L2(ρ), and p is a

function f(x) ∈ L2(ρ). By Lemma 4.3.1, since MxJ = JMx, we have J = Mϕ(x)J1 for

a certain function ϕ(x) ∈ L∞(ρ), |ϕ(x)| = 1 ρ− a.e. Then from Jf = f , we have

ϕ(x)f(x) = f(x)

Thus we can set ϕ(x) = f(x)

f(x)
where f(x) ̸= 0, and set ϕ(x) to be any unit value where

f(x) = 0. This gives the existence of such conjugation Jp.

To see that Jp is unique on H0, we can show by induction that JpA
np = Anp for

all n ∈ N.

In fact, the equation holds trivially when n = 0. Assume that the equation holds

36



for n = k, then for n = k + 1,

JpA
k+1p = AJpA

kp = AAkp = Ak+1p,

thus Jp is uniquely defined on H0 = Span{Anp : n ≥ 0}.

The following lemma gives all such conjugations that satisfy the property in Lemma

4.0.1. It’s easy to see that such conjugation Jp is unique if and only if p is a cyclic

vector for A.

Lemma 4.3.2. If Jp is a conjugation from Lemma 4.0.1, then any other such conju-

gation J′
p that also satisfies the requirement in Lemma 4.0.1 will be given by J′

p = ψJp,

where ψ is unitary Jp-symmetric operators commuting with A and preserves p, ψp = p.

Proof. If J′
p is another conjugation, commuting with A and preserving p, then J′

p = ψJp,

where ψ := J′
pJp. It is east to see that ψ is a unitary operator. It is also easy to see

that ψ is Jp-symmetric operator commuting with A and that ψp = p.

On the other hand, if ψ is a Jp-symmetric unitary operator, commuting with A

and such that ψp = p, then the (conjugate-linear) operator J′
p := ψJp is a conjugation

commuting with A and preserving p.

Indeed, the operator J′
p is trivially conjugate-linear, isometric, preserves p and

commutes with A (and so with B). To show that J′
p is an involution we use the

Jp-symmetry of ψ:

(J′
p)

2 = ψJpψJp = Jpψ
∗ψJp = J2

p = I;

here in the second equality we use the fact that ψ is Jp-symmetric.

Remark 4.3.3. Since ψ commutes with A and preserves p, it is easy to see that ψ
∣∣
H0

=

I|H0
.
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Chapter 5

GENERAL HANKEL OPERATORS AS COMPLEX

SYMMETRIC OPERATORS

In chapter 3, we have discussed the inverse spectral problem for a self-adjoint

Hankel operator. In this chapter, we will discuss the same topic for a general Hankel

operator taken as a C-symmetric operator. We will also show that a Hankel operator

can be uniquely determined by the spectral data of two operators satisfying a rank-one

perturbation relation.

In section 5.1, we introduce the setting and some preparation work for the game.

Briefly speaking, we can find a conjugation Ju, such that this Ju commutes with |Γ| and

|Γ1|, and also preserves u := Γ∗e0. Then we apply the generalized polar decomposition

Theorem 4.2.2 to Γ,Γ1, and restrict Γ,Γ1 on the essential part of Γ, thus we can write

them as the form in (5.1.5):

CΓ̃ = ϕ̃|Γ̃|J̃u, CΓ̃1 = ϕ̃1|Γ̃1|J̃u. (5.0.1)

We also need to emphasize that the choice of Ju is unique if and only if u is cyclic

with respect to |Γ| on H. Under this case, the choice of unitary ϕ̃ and partial isometry

ϕ̃1 is also unique.

Next in section 5.2 and section 5.3, we state and prove the main result (Proposition

38



5.2.3 and Proposition 5.2.4) in this chapter. That is, given a triple (R,R1, Jp, φ, φ1, p)

satisfying the following properties

(i) R,R1 ≥ 0, KerR = {0}, are self-adjoint operators in H, and p ∈ H and such that

R2 −R2
1 = pp∗.

(ii) Jp is a conjugation commuting with R and R1 and preserving p, Jpp = p.

(iii) φ is a Jp-symmetric unitary operator commuting with R.

(iv) φ1 is a Jp-symmetric partial isometry, Kerφ1 = KerR1, commuting with R1; note

that if KerR1 = {0} then φ1 is unitary.

(v) The contraction T := R1φ1φ
∗R−1 is asymptotically stable;

then there exists a unique Hankel operator Γ, such that we can find a conjuga-

tion Ju commuting with |Γ|, |Γ1| and preserves u, satisfying that the induced triple

(|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1, Ju) is unitary equivalent to (R,R1, p, φ, φ1, Jp).

Thus we can see that a general Hankel operator can be uniquely determined by

the spectral data of two operators Rφ,R1φ1, which satisfy a rank-one perturbation

relation.

In addition, we can also further translate the spectral data of Rφ,R1φ1 under the

compact case.

Denoting H0 := Span{|Γ̃|nu
∣∣n ≥ 0}. Then Proposition 6.2.2 implies that there

exists two positive real sequences {λk}∞k=1, {µk}∞k=1, such that the non-zero eigenvalues

of |Γ̃|
∣∣
H0
, |Γ̃1|

∣∣
H0

are simple, and coincide with {λk}∞k=1, {µk}∞k=1 respectively.

We can further show that |Γ̃|, |Γ̃1| has no non-zero eigenvalues other than {λk}∞k=1,
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{µk}∞k=1. Thus we can write all eigenspaces of |Γ̃|, |Γ̃1| as the following:

E1
λk

:= Ker(|Γ̃1| − λkI), Eλk
:= Ker(|Γ̃| − λkI);

E1
µk

:= Ker(|Γ̃1| − µkI), Eµk
:= Ker(|Γ̃| − µI),

For the non self-adjoint compact Γ, we can also take a canonical choice of tuple

(Ju, ϕ̃, ϕ̃1), which is given by Lemma 6.3.2, together with the equivalent condition of

asymptotic stability given in Lemma 7.6.3, we have the structure of φ on Eλk
,Eµk

, and

the structure of φ1 on E1
λk
,E1

µk
, which is given as follow:

(i) ϕ̃|
Eµk

= I, ϕ̃1|E1
λk

= I;

(ii) uλk
is a *-cyclic vector for ϕ̃

∣∣
Eλk

, where uλk
:= PEλk

u;

(iii) uµk
is a *-cyclic vector for ϕ̃1

∣∣
E1
µk

, where uµk
:= PE1

µk
u.

Now with the preparations above, we consider two different situations under the

compact case:

(i) H0 = ℓ2. Then we have Eµk
,E1

λk
are trivial, and Eλk

,E1
µk

are of dimension 1.

Under this situation, we have the choice of Ju is unique, and we conclude that Γ will be

uniquely determined by the eigenvalues of two operators |Γ̃|ϕ̃, |Γ̃1|ϕ̃1. In other words,

given two sequences of complex numbers {λn}∞n=1, {µn}∞n=1, whose modulus satisfy an

intertwining relation:

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0,

we can find a compact Hankel operator Γ with simple singular values, with the uniquely

determined tuple (Ju, ϕ, ϕ1), satisfying that the non-zero eigenvalues of |Γ|ϕ, |Γ1|ϕ1 are

simple, and coincide with {λn}∞n=1, {µn}∞n=1 respectively.

The detail of work under this situation can be found in section 9.2 in chapter 8.

(ii) H0 ⊊ ℓ2, then we can define a measure ρ̃k(s) to be the scalar spectral measure
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of ũλk
:=

uλk

∥uλk
∥ with respect to ϕ̃|

Eλk

. And we also similarly define ρ̃1k(s) to be the

scalar spectral measure of µ̃k :=
uµk

∥uµk
∥ with respect to ϕ̃1|E1

µk

:

⟨(ϕ̃− zI)−1ũλk
, ũλk

⟩ =
∫
T

dρ̃k(s)

s− z
, ⟨(ϕ̃1 − zI)−1ũµk

, ũµk
⟩ =

∫
T

dρ̃1k(s)

s− z
.

We conclude that ρ̃k(s), ρ̃
1
k(s) are both positive discrete probability measures (see

Proposition 10.1.2), and we conclude that the four sequences {λn}∞n=1, {µn}∞n=1, {ρ̃k}∞k=1,

{ρ̃1k}∞k=1 will uniquely determine a Hankel operator (see Theorem 10.1.5).

The specific description of the theorem can be found in chaper 9.

5.1 Setup

Given a bounded Hankel operator Γ, we have mentioned in Example 4.1.7 that

Γ and Γ1 := S∗Γ are C-symmetric, thus applying Theorem 4.2.2, there exists partial

conjugations J and J1 commuting with |Γ| and |Γ1| respectively, such that Ker J =

Ker Γ, Ker J1 = Ker Γ1 and

Γ = CJ|Γ|, Γ1 = CJ1|Γ1|, (5.1.1)

where here J, J1 commutes with |Γ|, |Γ1| respectively.

Now recall that we have derived in (4.3.1) that

|Γ|2 − |Γ1|2 = uu∗, (5.1.2)

where u = Γ∗e0. We apply Lemma 4.0.1 to (4.3.1) with A = |Γ|2, B = |Γ1|2, α = 1,

then we have that there exists a conjugation Ju commuting with |Γ|2 and |Γ1|2 and

such that Juu = u.

We want to show that Ju also commutes with |Γ| and |Γ1|. We need the following

short lemma.
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Lemma 5.1.1. Let R be a bounded, self-adjoint positive operator on Hilbert space H,

and J is a conjugation on H. Then the following two statements are equivalent:

(i) R commutes with J ;

(ii) R2 commutes with J.

Proof. (i) =⇒ (ii) is trivial, we only need to prove the other direction.

Since R2 commutes with J, for any polynomial p with real coefficients, p(R2) also

commutes with J: p(R2)J = Jp(R2). Since the scalar spectrum measure σ(R2) is

compact supported, we can take a polynomial sequence {pn(x)}∞n=1 which converges

uniformly to ϕ(x) =
√
x on σ(R2). Then by ϕ(R2)J = Jϕ(R2) we have

RJ = JR

Now back to identity (5.1.2), we know that Ju commutes with |Γ|, |Γ1|. Thus we

can rewrite the polar decomposition form in (5.1.1) as

Γ = CϕJu|Γ| = Cϕ|Γ|Ju, Γ1 = Cϕ1Ju|Γ1| = Cϕ1|Γ1|Ju, (5.1.3)

where ϕ := JJu, ϕ1 := J1Ju are partial isometries, commuting with |Γ| and |Γ1| re-

spectively. Since Ju commutes with |Γ| and with |Γ1|, both Ker Γ = Ker |Γ| and

Ker Γ1 = Ker |Γ1| are invariant for Ju, so Kerϕ = Ker Γ, Kerϕ1 = Ker Γ1.

We can rewrite those above identities (5.1.3) as

CΓ = ϕ|Γ|Ju, CΓ1 = ϕ1|Γ1|Ju. (5.1.4)

Since Ju commute with |Γ|, both Ker Γ = Ker |Γ| and (Ker Γ)⊥ are invariant for Ju,

and therefore Ju(Ker Γ)⊥ = (Ker Γ)⊥.
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Now restricting everything to (Ker Γ)⊥ and denoting Γ̃ := Γ
∣∣
(Ker Γ)⊥

, Γ̃1 := Γ1

∣∣
(Ker Γ)⊥

,

J̃u := Ju

∣∣
(Ker Γ)⊥

, ϕ̃ := ϕ
∣∣
(Ker Γ)⊥

, ϕ̃1 = ϕ1

∣∣
(Ker Γ)⊥

we can see that

CΓ̃ = ϕ̃|Γ̃|J̃u, CΓ̃1 = ϕ̃1|Γ̃1|J̃u. (5.1.5)

Remark 5.1.2. We can easily see that (5.1.5) is well-defined. In fact, though (Ker Γ)⊥ is

not necessarily an invariant subspace for Γ, it is a reducing subspace for |Γ|, and since

u ∈ RanΓ∗ ⊥ Ker Γ, it is also reducing for |Γ1|2, and so for |Γ1|. It is also invariant

for ϕ1 and for Ju, so everything in the right hand sides of (5.1.5) is well defined, which

means that (Ker Γ)⊥ is invariant for CΓ and for CΓ1.

Now back to (5.1.5). Since Ju(Ker Γ)⊥ = (Ker Γ)⊥, J̃u is a conjugation on (Ker Γ)⊥,

commuting with |Γ̃| and preserving u (note that u = Γ∗e0 ∈ Ran |Γ|). We can see that

ϕ̃ is unitary since Kerϕ = Ker Γ. Note also that the operator Γ̃1 can have a non-trivial

kernel (at most one-dimensional), and the action of ϕ̃1 on this kernel does not matter

in (5.1.5). So, let us assume for definiteness that ϕ̃1

∣∣
Ker Γ̃1

= 0, i.e. that ϕ̃1 is a partial

isometry with Ker ϕ̃1 = Ker Γ̃1.

Remark 5.1.3. As it was shown above, see Lemma 4.3.2, the conjugation J̃u and the

operators ϕ̃, ϕ̃1 in (5.1.5) are not unique, and are defined up to equivalence. Namely,

the two triples (J̃u, ϕ̃, ϕ̃1) and (J̃′
u, ϕ̃

′, ϕ̃′
1) are in the same equivalent class if there exists

an J̃u-symmetric unitary operator ψ commuting with |Γ̃| and preserving u, ψu = u,

such that

J̃′
u = ψJ̃u, ϕ̃′ = ϕ̃ψ∗, ϕ̃′

1 = ϕ̃1ψ
∗.

We can easily check that (5.1.5) is still true if we substitute (J̃u, ϕ̃, ϕ̃1) by (J̃′
u, ϕ̃

′, ϕ̃′
1):

CΓ̃ = ϕ̃′|Γ̃|J̃′
u, CΓ̃1 = ϕ̃′

1|Γ̃1|J̃′
u

Now we give an expression of the Hankel coefficients of Γ, i.e. {γk}∞k=0, implying
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that Γ could be uniquely determined by |Γ̃|, u, J̃u, ϕ̃, ϕ̃1. In other words, the uniqueness

of Γ only depends on the essential part of Γ, i.e. Γ
∣∣
(Ker Γ)⊥

.

Proposition 5.1.4. Given a Hankel operator Γ, with the tuple (|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1, Ju)

defined in (5.1.5). Then the Hankel coefficients {γk}∞k=0 can be expressed as

γk = ⟨(S∗)ku, v⟩, (5.1.6)

where S∗ := |Γ̃1|ϕ̃∗
1ϕ̃|Γ̃|−1, v := Jue0, and here S̃∗ is the restriction of backward shift

on (Ker Γ)⊥, i.e.

S̃∗ := S∗|
(Ker Γ)⊥

Proof. From Γ1 = S∗Γ together with (5.1.4), we have

Cϕ1|Γ1|Ju = S∗Cϕ|Γ|Ju,

Thus

ϕ1|Γ1| = S∗ϕ|Γ|. (5.1.7)

Restricted on (Ker Γ)⊥ and denote S̃∗ := S∗|
(Ker Γ)⊥

, we can rewrite it as

|Γ̃1|ϕ̃1 = S̃∗|Γ̃|ϕ̃, S̃∗ = |Γ̃1|ϕ̃1ϕ̃
∗|Γ̃|−1.

Now using the definition of S∗, since we have ϕ̃, ϕ̃1 are J̃u-symmetric, we have

S∗J̃u = J̃u|Γ̃1|ϕ̃1ϕ̃
∗|Γ̃|−1 = J̃uS̃

∗
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thus S̃∗ = J̃uS̃
∗J̃u, and S = (S∗)∗ satisfies

|Γ̃1|ϕ̃1 = S̃∗|Γ̃|ϕ̃ = |Γ̃|ϕ̃S

Now using v = Jue0 = JuCe0 = JuCJuv, and since (Ker Γ)⊥ is an invariant subspace

for |Γ|, ϕ, we can write

u = Γ∗e0 = Γ∗Juv

= (|Γ|JC)Ju(JuCJuv)

= |Γ|JJuv = |Γ|ϕv = |Γ̃|ϕ̃v. (5.1.8)

Now using (4.1.1), we can express the Hankel symbol γk as

γk = ⟨Γek, e0⟩ = ⟨Ske0, u⟩ = ⟨J2
ue0, (S

∗)ku⟩

= ⟨Ju(S
∗)ku, v⟩ = ⟨J̃u(S̃

∗)ku, v⟩

= ⟨(S∗)ku, v⟩. (5.1.9)

We will use this equation (5.1.6) in a later proof.

5.2 Plan of the Game and Main Result

Given a Hankel operator Γ, in section 5.1 we have setup a tuple (|Γ|, |Γ1|, J̃u, ϕ̃, ϕ̃1, u)

with the following properties:

(i) |Γ̃|, |Γ̃1| are self-adjoint positive operators. In addition, |Γ̃| has trivial kernel;

(ii) |Γ̃|2 − |Γ̃1|2 = uu∗;

(iii) J̃u is a conjugation which commutes with |Γ̃|, |Γ̃1| and preserves u, i.e. J̃uu = u;
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(iv) ϕ̃ is a J̃u-symmetric unitary operator which commutes with |Γ̃|;

(v) ϕ̃1 is a J̃u-symmetric partial unitary operator which commutes with |Γ̃1|.

Now we consider the inverse direction of the problem. Assume that we are given a

tuple (R,R1, Jp, φ, φ1, p), which shares similar properties as tuple (|Γ|, |Γ1|, J̃u, ϕ̃, ϕ̃1, u):

(i) R,R1 ≥ 0, KerR = {0}, are self-adjoint operators in H, and p ∈ H and such that

R2 −R2
1 = pp∗.

Note that the above identity implies that p ∈ RanR and ∥R−1p∥ ≤ 1.

(ii) Jp is a conjugation commuting with R and R1 and preserving p, Jpp = p.

(iii) φ is a Jp-symmetric unitary operator commuting with R.

(iv) φ1 is a Jp-symmetric partial isometry, Kerφ1 = KerR1, commuting with R1; note

that if KerR1 = {0} then φ1 is unitary.

Remark 5.2.1. The first thing to notice is that the dimension of KerR1 is at most 1.

This can been easily seen from a later Lemma 6.2.1.

The second thing is that φ1|
(KerR1)⊥

is unitary, implied by (iv). In fact, since we

already have φ1|
(KerR1)⊥

is isometry, it suffices to show that φ1|
(KerR1)⊥

is onto. From

equation φ1Jp = Jpφ
∗
1, since Ranφ

∗
1 = (KerR1)

⊥ and (KerR1)
⊥ is a reducing subspace

for Jp, we have (KerR1)
⊥ ⊆ Ran(Jpφ

∗
1), hence (KerR1)

⊥ ⊆ Ranφ1.

We want to know whether we can find a Hankel operator Γ and choose an appro-

priate a partial conjugation Ju, which commutes with |Γ| and preserving u = Γ∗e0 such

that the tuple (|Γ̃|, |Γ̃1|, J̃u, ϕ̃, ϕ̃1, u) defined in equation (5.1.5) is unitary equivalent to

(R,R1, Jp, φ, φ1, p), i.e., the following identities hold

|Γ̃| = ṼRṼ∗, |Γ̃1| = ṼR1Ṽ∗; (5.2.1)

ϕ̃ = ṼφṼ ∗, ϕ̃1 = Ṽφ1Ṽ∗, J̃u = ṼJpṼ∗, u = Ṽp, (5.2.2)
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for some unitary operator Ṽ : H → (Ker Γ)⊥.

Remark 5.2.2. For the case when p is a cyclic vector with respect to R in H, then by

Lemma 4.3.2, we know that Jp is uniquely defined. (Thus with the unitary equivalence

relation in (5.2.1) and (5.2.2), we have u is a cyclic vector with respect to |Γ̃| on

(Ker Γ)⊥). In this case, we can write φ, φ1 as f(R), f1(R1) for some Borel measurable,

unimodular functions f, f1.

In this chapter, we will prove the following two propositions as our main results.

Proposition 5.2.3. If contraction T := φ1R1R
−1φ∗ (see Douglas Lemma 3.1.1) is

asymptotically stable (see definition 3.1.2), then there exists a unique Hankel operator

Γ such that

CΓ̃ = ṼRφJpṼ∗, (5.2.3)

CΓ̃1 = ṼR1φ1JpṼ∗, (5.2.4)

Γ∗e0 = Ṽp (5.2.5)

for some unitary operator Ṽ : H → (Ker Γ)⊥; here, recall C is the standard conjugation

on ℓ2 defined by (4.1.2).

The coefficients {γk}∞k=1 of the Hankel operator Γ can be calculated as

γk = ⟨Tkp, q⟩. (5.2.6)

where T = φ∗
1R1R

−1φ = JpT Jp and q := R−1φ∗p = φ∗R−1p.

Furthermore, Ker Γ = {0} if and only if ∥q∥ = 1 and q /∈ RanR (recall that

∥R−1p∥ ≤ 1, so ∥q∥ ≤ 1).

Proposition 5.2.4. The identities (5.2.3), (5.2.4), and (5.2.5) are equivalent to the

unitary equivalence of the tuples (|Γ̃|, |Γ̃1|, J̃u, ϕ̃, ϕ̃1, u) and (R,R1, Jp, φ, φ1, p), i.e. to

the identities (5.2.1), (5.2.2). (In other words, there exists a conjugation Ju defining on
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H, such that we can construct a tuple (|Γ̃|, |Γ̃1|, J̃u, ϕ̃, ϕ̃1, u) which is unitary equivalent

to (R,R1, Jp, φ, φ1, p), and also satisfying (5.1.5)).

We first show that the two propositions aboveare equivalent, then we will present

the proof of Proposition 5.2.3 in the next subsection.

Proof. Substituting (5.2.1) and (5.2.2) into (5.1.5) we immediately get (5.2.3), (5.2.4),

and (5.2.5), so we only need to prove the other direction.

Now Assuming (5.2.3), (5.2.4) and (5.2.5), let us show that

|Γ̃| = ṼRṼ∗, |Γ̃1| = ṼR1Ṽ∗.

We first show that Γ̃∗ = ṼJpφ
∗R(Ṽ)∗C. Indeed,

⟨Γ̃x, y⟩ = ⟨CṼRφJpṼ∗x, y⟩ = ⟨Cy, ṼRφJpṼ∗x⟩

= ⟨φ∗RṼ∗Cy, JpṼ∗x⟩ = ⟨Ṽ∗x, Jpφ
∗RṼ∗Cy⟩

= ⟨x, Ṽ∗Jpφ
∗RṼ∗Cy⟩

Thus Γ̃∗ = Ṽ∗Jpφ
∗RṼ∗C, and we have

|Γ̃| =
(
(Γ̃)∗Γ̃

)1/2

=

(
ṼJpφ

∗R2φJp(Ṽ)∗
)1/2

=

(
ṼR2Ṽ∗

)1/2

= ṼRṼ∗.

Similarly we can get |Γ̃1| = ṼR1Ṽ∗. The fact that φ1 is only a partial isometry does not

spoil anything; since φ1 commutes with R1 and Kerφ1 = KerR1, we have φ
∗
1R1φ = R1,

and the rest of the computations follows exactly as for the case of |Γ|.

Next we define a conjugation J̃u on (Ker Γ)⊥ = Ran Ṽ by setting J̃u := ṼJpṼ∗.

Easy to see that J̃u commutes with |Γ̃| = ṼRṼ∗, |Γ̃1| = ṼR1Ṽ∗ and preserves Ṽp. Now
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we extend J̃u to a conjugation Ju defining on the whole space ℓ2. This can be done by

following the process stated in Remark 4.2.3 (we can set J̃′
u to be an arbitrary partial

conjugation with support Ker Γ, and then let Ju = J̃u⊕ J̃′
u, thus we have Ju commutes

with |Γ|, |Γ1|, and this Ju also preserves Ṽp).

Define ϕ̃ := ṼφṼ∗, ϕ̃1 := Ṽφ1Ṽ∗. Clearly ϕ̃ is a unitary operator commuting with

|Γ̃|, and ϕ̃1 is a partial isometry, Ker ϕ̃1 = Ker Γ̃1 commuting with |Γ1|. Now we can

rewrite equations (5.2.3), (5.2.4) as

Γ̃ = C(ṼRṼ∗)(ṼφṼ∗)(ṼJpṼ∗) = C|Γ̃|ϕ̃ J̃u,

Γ̃1 = C(ṼR1Ṽ∗)(Ṽφ1Ṽ∗)(ṼJpṼ∗) = C|Γ̃|ϕ̃1J̃u,

which are exactly identities (5.1.5) (for the particular choice of J̃u, ϕ̃, ϕ̃1).

Finally, let us notice that (5.2.5) is just the identity u = Ṽp.

5.3 Proof of Proposition 5.2.3

The whole proof consists of three different parts: existence, uniqueness and the

trivial kernel condition.

5.3.1 Existence of Hankel Operator Γ

Proof. Let us first rewrite the equation R2−R2
1 = pp∗. Since φ is unitary and commutes

with R, we can write

R2 = φ∗R2φ. (5.3.1)

Similarly, since φ1 is a partial isometry commuting with R1, Kerφ1 = KerR1, we have

R2
1 = (R1φ1)

∗(R1φ1) = φ∗RT ∗T Rφ, (5.3.2)
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where the last equality follows from the definition of T . Denoting q̂ := Jpq, we have

p = Jpp = JpRφq = Rφ∗Jpq = Rφ∗q̂. (5.3.3)

Combining (5.3.1), (5.3.2) and (5.3.3), the equation R2 − R2
1 = pp∗ can be translated

to

φ∗R(I − T ∗T )Rφ = Rφ∗q̂q̂∗Rφ.

Since the operator Rφ has trivial kernel, we conclude that

I − T ∗T = (q̂)(q̂)∗. (5.3.4)

Applying both sides of (5.3.4) to x and taking inner product with x, we get

∥x∥2 − ∥T x∥2 = |⟨x, q̂⟩|2.

Replacing x in the above identity by T x, (T )2x, ..., (T )n−1x, and summing up all n

equations, we see that

∥x∥2 − ∥T nx∥2 =
n−1∑
i=0

|⟨q̂, T ix⟩|2.

Letting n→ ∞ and using the asymptotic stability of T , we conclude that

∥x∥2 =
∞∑
n=0

|⟨T nx, q̂⟩|2, (5.3.5)

which implies that the operator V : H → ℓ2 defined by

Vx :=
(
⟨x, q̂⟩, ⟨T x, q̂⟩, ⟨T 2x, q̂⟩, . . .

)
=
(
⟨T kx, q̂⟩

)∞
k=0

(5.3.6)
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is an isometry. The above identity (5.3.6) implies that

S∗V = VT . (5.3.7)

Denote Ṽ as the operator V with the restricted target space on RanV ; then the

operator Ṽ : H → RanV is unitary. Trivially (5.3.6) implies that RanV is S∗-invariant,

so we can define S̃∗ : RanV → RanV as S̃∗ := S∗|
RanV . Denote by S̃ the adjoint of

S̃∗, S̃ := (S̃∗)∗ = P
RanVS|RanV . Then the identity (5.3.7) implies that

S̃∗ = ṼT Ṽ∗ and S̃ = ṼT ∗Ṽ∗. (5.3.8)

Now we define operator Γ and Γ1 as following

Γ := CVRφJpV∗ Γ1 := CVR1φ1JpV∗. (5.3.9)

We will show that Γ is a Hankel operator by proving that ΓS = Γ1 = S∗Γ.

To show that ΓS = Γ1, we recall that T∗ = φ∗R−1R1φ1 and that T∗Jp = JpT ∗;

together with identity T ∗V∗ = V∗S (which is just the adjoint of (5.3.7)) it gives us

Γ1 = CVR1φ1JpV∗ = CVRφT∗JpV∗

= CVRφJpT ∗V∗ = CVRφJpV∗S

= ΓS.

And for the identity Γ1 = S∗Γ, recalling that T = R1φ1R
−1φ∗ and using (5.3.7),

we have

CΓ1 = VR1φ1JpV∗ = VT RφJpV∗

= S∗VRφJpV∗ = S∗CΓ.
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Since C commutes with S∗, we see that CΓ1 = CS∗Γ, and left multiplying this identity

by C we get the desired result.

Thus we know Γ is a Hankel operator. It remains to show that Γ satisfies (5.2.3),

(5.2.4) and (5.2.5).

Using the definition of Γ,Γ1 in (5.3.9), we know Ker Γ = (RanV)⊥, hence we can

write

Γ̃ := Γ|
(Ker Γ)⊥

= CVRφJpṼ∗ = CṼRφJpṼ∗, (5.3.10)

Γ̃1 := Γ1|
(Ker Γ)⊥

= CṼR1φ1JpṼ∗; (5.3.11)

Thus (5.2.3) and (5.2.4) holds.

For (5.2.5), we first derive the expression for V∗ and show that V∗e0 = q̂. From the

definition of V in (5.3.6), for ∀x ∈ H,∀y ∈ ℓ2, we have

⟨Vx, y⟩ =
∞∑
k=0

yk⟨T kx, q̂⟩

= ⟨x,
∞∑
k=0

yk(T ∗)kq̂⟩,

Hence V∗y =
∞∑
k=0

yk(T ∗)kq̂, and we have V∗e0 = S0q̂ = q̂. Together with Γ∗ =

VJpφ
∗RV∗C gained from (5.3.9), we have

Γ∗e0 = VJpφ
∗RV∗e0

= VJpφ
∗Rq̂

= VJpp = Vp = Ṽp.
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5.3.2 Uniqueness of Hankel Operator Γ

Proof. Now let’s discuss the uniqueness by showing that the Hankel symbol γk =

⟨Γek, e0⟩ must have representation (5.2.6), which is independent of V . Assuming that

we are given Hankel operator Γ and Γ1 = ΓS that satisfy (5.2.3), (5.2.4) and (5.2.5), we

have already built up the unitary equivalence between the tuple ⟨|Γ̃|, |Γ̃1|, J̃u, ϕ̃, ϕ̃1, u⟩

and ⟨R,R1, Jp, φ, φ1, p⟩ in the proof of Proposition 5.2.4.

Now applying Proposition 5.1.4, we have γk = ⟨(S∗)ku, v⟩, whereS∗ = |Γ̃1|ϕ̃∗
1ϕ̃|Γ̃|−1

is unitary equivalent to T := φ∗
1R1R

−1φ, and the definition of v is also given in Propo-

sition 5.1.4.

We first show that q = Ṽ∗v. Indeed from (5.1.8), we have

Ṽp = u = |Γ̃|φ̃v = ṼRφṼ∗v,

thus p = RφṼ∗v and q = Ṽ∗v. Now from (5.1.6), we can write

γk = ⟨(S∗)ku, v⟩

= ⟨ṼTkṼ∗Ṽp, Ṽq⟩

= ⟨Tkp, q⟩. (5.3.12)

Thus we get (5.2.6), and the coefficients {γk}∞k=0 only depends on the tuple ⟨R,R1, p, φ, φ1⟩,

which is independent of Ṽ . The uniqueness is done.

5.3.3 The Trivial Kernel Condition of Hankel Γ

Proof. As discussed above, Ker Γ = {0} if and only if V : H → ℓ2 defined by (5.3.6)

satisfies RanV = ℓ2, and this is equivalent to T being unitary equivalent to S∗.

If Ker Γ = {0}, then S∗ is unitarily equivalent to the backward shift S∗, and
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comparing identities

I − SS∗ = e0e
∗
0, I − T ∗T = (Jpq)(Jpq)

∗

we conclude that ∥q∥ = ∥Jqq∥ = 1. Now assuming q ∈ RanR, q = Rx, we will lead to

a contradiction.

Take a vector f = φ1φ
∗Jpx, thus x = Jpφφ

∗
1f and Jpq = Rφφ∗

1f , Hence

T Rφφ∗
1f = T (Jpq) = S∗e0 = 0.

But on the other hand we have

T Rφφ∗
1 = R1 = φ1φ

∗RT ∗,

where the last equality follows from R1 is a self-adjoint operator. Hence we have

φ1ϕ
∗RT ∗f = 0,

so T ∗f = 0, which contradicts to the fact that T ∗ is an isometry. Hence q /∈ RanR.

Now we prove the sufficiency part. Suppose ∥q∥ = 1 and q /∈ RanR. We first show

that KerR1 = {0}.

Let R1x = 0 for a x ̸= 0. Applying to x the identity

R2
1 = R

(
I − ⟨·, φq⟩φq

)
R,

we get that

Rx = ⟨Rx, φq⟩φq;

note that Rx ̸= 0 because R has trivial kernel. This implies Rφ∗x = φ∗Rx = αq,
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α = ⟨Rx, φq⟩−1 which contradicts the assumption q /∈ RanR.

Now from the definition of S∗: φ∗
1R1 = φ∗RT ∗, we know Ker T ∗ = {0} since

KerR1 = {0}.

In addition, we apply Jpq on both sides of (5.3.4) we get T ∗T Jpq = 0, together

with Ker T ∗ = {0}, we have T Jpq = 0, hence by the definition of T = R1φ
∗
1φR

−1 we

also get Tq = 0.

Now left and right multiplying (5.3.4) by S∗ and S respectively, we get

T T ∗ − T T ∗T T ∗ = T
(
⟨·, Jpq⟩Jpq

)
T ∗ = 0,

hence T ∗T is a projection. Furthermore, since Ker T ∗ = {0}, we have T T ∗ = I and

T ∗ is an isometry.

ByWold Decomposition Theorem [26, Theorem 1.1, p. 3], there exists an orthogonal

decomposition for the whole Hilbert space: H = H0 ⊕ H1, such that S|H0
is unitary

and S|H1
is a unilateral shift. Since S∗ is asymptotically stable proved in subsection

5.4 which has no unitary part, we have H0 = {0} and thus there exists a wandering

subspace L, such that H = ⊕∞
n=0(S)nL.

To show that T unitary equivalent to backward shift operator S∗, it’s suffices to

show that dimL = 1.

Now apply vector T ∗x for an arbitrary x into (5.3.4), we get

⟨T ∗x, Jpq⟩Jpq = T ∗x− T ∗(T T ∗)x = T ∗x− T ∗x = 0,

hence Jpq ⊥ Ran T ∗, and L is the space spanned by Jpq, which is of dimension 1. This

implies T is unitarily equivalent to S∗, and Ker Γ = {0}.
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Chapter 6

EIGENSPACE STRUCTURE OF COMPACT RANK-

ONE PERTURBATION

In chapter 2 and chapter 4, we have discussed the inverse spectral problem for

self-adjoint Hankel operators and non self-adjoint Hankel operators as C-symmetric

operators respectively. Starting from this chapter, we will mainly focus on the category

of compact Hankel operators.

Recall that for a general Hankel operator Γ, Γ and Γ1 := ΓS satisfy a rank-one

perturbation relation: |Γ|2 − |Γ1|2 = uu∗. And also recall that in section 5.1, we

construct a triple (|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1, J̃u). Thus in this chapter, we start with a triple

(R,R1, p, φ, φ1, Jp) with similar properties:

(i) R,R1 are two positive, self-adjoint compact operator defined on a Hilbert space

H. In addition we have KerR = {0};

(ii) R2 −R2
1 = pp∗ for a vector p with ∥R−1p∥ ≤ 1;

(iii) Jp is a conjugation commutes with R,R1 and preserves p.

(iv) φ is a Jp-symmetric unitary operator, which commutes with R;

(v) φ1 is a Jp-symmetric partial isometry with Kerφ1 = KerR1, which commutes

with R1. In addition, we have φ1|
(KerR1)⊥

is unitary (See Remark 5.2.1);
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(vi) The contraction T defined as T := φ1R1R
−1φ∗ is asymptotically stable.

In this chapter, we will mainly focus on the eigenspaces structure of R,R1. Denoting

H0 = Span{Rnp|n ≥ 0}, we start this chapter by stating an equivalent condition of

H0 = H, i.e., the cyclicity of p (see Lemma 6.1.1). Then in section 6.2, we first analyze

the eigenspace structure of R,R1 onH0, and then we derive the structure of eigenspaces

of R,R1 on the whole space H.

Finally, we close this chapter by generating a canonical choice of φ, φ1, which is

given in Lemma 6.3.2. For the canonical choice of φ, φ1, we can further analyze the

behavior of φ, φ1 acting on each eigenspaces of R,R1 (see Proposition 7.6.3). We can

also show that the conjugation Jp will be uniquely determined if taking the canonical

choice of φ.φ1 (see Remark 7.6.6)

6.1 Setting and preparation

We start this section with a tuple (R,R1, p, φ, φ1, Jp) which satisfies (i), (ii), (iii),

(iv), (v), (vi) stated at the beginning of this chapter. Denoting H0 := Span{Rnp|n ≥

0}, we first derive an equivalent condition of H0 = H, i.e., the cyclicity of vector p.

Lemma 6.1.1. With the assumptions above, p is cyclic with respect to R if and only

if

(i) For every λ ∈ σ(R), we have dimKer(R− λI) ≤ 1;

(ii) Proj
Ker(R−λI)

p ̸= 0.

Proof. If we have the cyclicity of vector p, we will prove (i) and (ii) by contradiction.

If dimKer(R − λI) ≥ 2 for a certain λ, then H0 ∩ Ker(R − λI) have at most

dimension 1 spanned by Proj
Ker(R−λI)

p (will be a trivial space if Proj
Ker(R−λI)

p = 0) ,

thus p can’t be cyclic with respect to R.

For (ii), if Proj
Ker(R−λI)

p = 0, then H0 ∩Ker(R− λI) = ∅, thus p can’t be cyclic.
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For the other direction, under (i) and (ii), we denote the spectrum of R as

λ1 > λ2 > ... > λn → 0,

and we write p =
∞∑
k=1

pk where pk ∈ Ker(R − λkI). (The case when R is of finite-

rank, i.e. finitely many eigenvalues, is trivially true, so we only consider case when

dimRanR = ∞)

We can show that

lim
n→∞

( 1

2λ1

)n
(R + λ1I)

np ⇀ p1.

Since H0 is weakly closed, thus we have p1 ∈ H0. In fact we have

( 1

2λ1

)n
(R + λ1I)

np =
∞∑
k=0

(1
2
+

λk
2λ1

)n
pk,

thus

lim
n→∞

⟨
( 1

2λ1

)n
(R + λ1I)

np, pi⟩ =


∥p1∥2 if i = 1

0 else

so we have p1 ∈ H0.

Similarly we can also show that

lim
n→∞

( 1

2λ2

)n{
(R + λ2I)

np− (λ1 + λ2)
np1

}
⇀ p2,

and p2 ∈ H0. Thus followed by the process of induction, if we have p1, p2, ..., pk ∈ H0,

then since

lim
n→∞

( 1

2λk+1

)n{
(R + λk+1I)

np−
k∑

i=1

(λi + λk+1)
npi

}
⇀ pk+1,
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then we will have pk+1 ∈ H0. Hence pk ∈ H0 holds for all k and H = Span{pk|k ≥

1} ⊂ H0, p is cyclic.

Remark 6.1.2. In fact, Lemma 6.1.1 is also true for a general compact operator without

given the trivial kernel condition. The statement can be modified as follow:

Proposition 6.1.3. Let A be a compact operator on a Hilbert space H with simple eigen-

values, then there exists a vector x ∈ A, such that x is a cyclic vector for A in H.

In fact, if we write all eigenvalues {λk}∞k=1 in the non-increasing order:

|λ1| ≥ |λ2| ≥ ....,

then we can take x to be

x = e0 +
∞∑
k=1

1

k2
ek,

here ek is a unit vector in Ker(A− λkI), and e0 is a unit vector in KerA if 0 ∈ σp(A),

otherwise we take e0 = 0. The proof is very much similar to the proof of Lemma 6.1.1.

In this section we discuss the case when operator R is not cyclic (that is, there

doesn’t exist any vector p such that p is cyclic with respect to R inH.). Then according

to Lemma 6.1.1 R have some non-simple singular values.

6.2 Non-simple Eigenvalues for Operators of Rank-one Per-

turbation

We begin this part with the following simple lemma.

Lemma 6.2.1. For ∀λ ∈ R+ ∪ {0}, we have

∣∣ dimKer(R− λI)− dimKer(R1 − λI)
∣∣ ≤ 1.
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Proof. For all vector x ∈ Ker(R − λI) ∩ p⊥, we have x ∈ Ker(R2
1 − λ2I), thus x ∈

Ker(R1 − λI) as R1 is positive. Thus Ker(R− λI) ∩ p⊥ ⊆ Ker(R1 − λI), and we have

dimKer(R− λI) ≤ dimKer(R1 − λI) + 1.

Similarly, Ker(R1 − λI) ∩ p⊥ ⊆ Ker(R− λI) and we have

dimKer(R1 − λI) ≤ dimKer(R− λI) + 1.

So the dimension of two kernel space at most differ by 1.

From Lemma 6.2.1, it’s easily seen that dimKerR1 ≤ 1.

Now we first restrict R2 −R2
1 = pp∗ on H0:

R2|H0
−R2

1|H0
= pp∗.

Since p is cyclic with respect to H0, thus R|H0
have simple singular values. For the

special case, if R|H0
has finite rank, then R1 is also finite rank. For the following

discussion, we assume that dimRanR|H0
= ∞.

In the next section, we will show the following proposition, which gives the eigenspace

structure for (R,R1) restricted on H0.

Proposition 6.2.2. There exists an intertwining sequence

λ1 > µ1 > λ2 > µ2 > ....→ 0, (6.2.1)

such that the non-zero eigenvalues of R|H0
, R1|H0

are simple, and coincide with {λk}∞k=1.

{µk}∞k=1 respectively.

6.2.1 Eigenspace Structure on H0

We show Proposition 6.2.2 in the following steps.
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Proposition 6.2.3. The dimension of any eigenspace of R1|H0
is no more than 1, i.e.

R1|H0
has simple singular values.

Proof. For any λ, if dimKer(R1 − λI) ≥ 3, since we have

Ker(R1 − λI) ∩ p⊥ ⊆ Ker(R− λI), (6.2.2)

this contradicts to the fact that R has simple singular values on H0.

If dimKer(R1 − λI) = 2 for some λ, then by (6.2.2), we can take a non-zero vector

x such that

x ∈ Ker(R− λI) ∩Ker(R1 − λI) ∩H0,

then applying this x to R2 − R2
1 = pp∗ we get ⟨x, p⟩ = 0, which contradicts to the

property that P
Ker(R−λI)

p ̸= 0 given in Lemma 6.1.1.

Proposition 6.2.4. Denoting the non-zero eigenvalues of R,R1 as {λk}∞k=1, {µk}∞k=1

respectively with

λ1 > λ2 > ...→ 0, µ1 > µ2 > ...→ 0

then we have

λk ≥ µk, µk ≥ λk+1

holds for all k.

Proof. Here we use the mini-max definition for singular values. That is,

λ2k = min
subspaceF⊆H0,codimF=k−1

max
x∈F ,∥x∥=1

⟨R2x, x⟩ (6.2.3)

µ2
k = min

subspaceG⊆H0,codimG=k−1
max

x∈G,∥x∥=1
⟨R2

1x, x⟩ (6.2.4)
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To show λk ≥ µk, we take a subspace F ⊆ H0 with codim = k − 1 where (6.2.3)

reaches its equality. Then we have

µ2
k ≤ max

x∈F ,∥x∥=1
⟨R2

1x, x⟩ ≤ max
x∈F ,∥x∥=1

⟨R2x, x⟩ = λ2k

To show that µk ≥ λk+1, we take a subspace G ⊆ H0 with codim = k − 1 where

(6.2.4) reaches its equality. Then denoting F1 := G ∩ p⊥, then F1 has codim no more

than k where R coincides with R1 on F1. Thus we have

µ2
k = max

x∈G,∥x∥=1
⟨R2

1x, x⟩ ≥ max
x∈F1,∥x∥=1

⟨R2
1x, x⟩ = max

x∈F1,∥x∥=1
⟨R2x, x⟩ ≥ λ2k+1

Proposition 6.2.5. (6.2.1) holds for {λk}∞k=1, {µk}∞k=1 defined in Proposition 6.2.4.

Equivalently saying, we have

λk > µk, µk > λk+1

Proof. We prove the two inequalities by contradiction.

(i) If λk = µk, we take a subspace F as

F =
∞⊕
i=k

(
Ker(R− λiI) ∩H0

)
,

then codimF = k − 1 in H0 and max
x∈F ,∥x∥=1

⟨R2x, x⟩ = λ2k. The maximum can only be

reached when x ∈ Ker(R− λkI).

Now for any vector x ∈ F , we have

⟨R2
1x, x⟩ = ⟨R2x, x⟩ − |⟨x, p⟩|2 ≤ λ2k∥x∥2 − |⟨x, p⟩|2 ≤ λ2k∥x∥2. (6.2.5)

Thus if we have µk = λk, then according to (6.2.5), there exists a vector x ∈ F , such
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that ∥Rx∥ = λk∥x∥ and x ⊥ p. This contradicts to the fact that ProjKer(R−λkI)∩H0
p ̸=

0, which is given in Lemma 6.1.1

(ii) If µk = λk+1, we take a subspace G ⊆ H0 as

G = KerR1

∞⊕
i=k

(
Ker(R1 − µiI) ∩H0

)
,

then we have max
x∈G,∥x∥=1

⟨R2
1x, x⟩ = µ2

k, and the maximum can only be achieved when

x ∈ Ker(R1 − µk).

Denote again F1 := G ∩ p⊥, since

µ2
k = max

x∈G,∥x∥=1
⟨R2

1x, x⟩ ≥ max
x∈F1,∥x∥=1

⟨R2
1x, x⟩ = max

x∈F1,∥x∥=1
⟨R2x, x⟩ ≥ λ2k+1, (6.2.6)

where here the maximum of first equality in (6.2.6) holds when x ∈ Ker(R1−µk)∩H0,

and the first inequality inside (6.2.6) is reached when this x ⊥ p. Thus if we have

µk = λk+1, we have p ⊥ Ker(R1 − µkI)

Now take a vector y ∈ Ker(R1 − µkI), since y ⊥ p, we have Ry = R1y = µky, and

µk is a simple singular value for both R|H0
and R1|H0

. Together with the property that

R = R1 on H⊥
0 , we have

Ker(R− µkI) = Ker(R1 − µkI) on H.

Now apply a x ∈ Ker(R − µkI) to the equation R1φ1 = T Rφ, we have φ1x = T φx.

Since Ker(R − µkI) = Ker(R1 − µkI) is a reducing subspace for R,R1, φ, φ1, thus T

maps unitarily on Ker(R − µkI), which leads to a contradiction to the asymptotic

stability of T .

Remark 6.2.6. For the special case when H0 has finite dimension, we have the following

result:
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Proposition 6.2.7. If dimH0 <∞, there exists an intertwining sequence

λ1 > µ1 > ... > λN > µN ≥ 0

such that R
∣∣
H0
, R1

∣∣
H0

have simple eigenvalues, and their eigenvalues coincides with

{λk}Nk=1. {µk}Nk=1 respectively.

6.2.2 Eigenspace Structure on H

With the result in Proposition 6.2.2, we are ready to deep into the eigenspace

structure of (R,R1) on H. We derive the structure of eigenspaces of R,R1 by the

following steps.

Lemma 6.2.8. For a non-zero τ ̸= λk, µk for all k, we have

Ker(R− τI) = Ker(R1 − τI) = 0

Proof. We first show that Ker(R−τI) = Ker(R1−τI). For all x ∈ Ker(R−τI), we have

x ⊥ Ker(R − λkI) for all k, thus x ⊥ H0. R = R1 on H⊥
0 , we have x ∈ Ker(R1 − τI).

Thus Ker(R− τI) ⊆ Ker(R1− τI). Similarly for all x ∈ Ker(R1− τI), we have x ⊥ H0

and x ∈ Ker(R− τI), thus

Ker(R− τI) = Ker(R1 − τI).

Now we show that T can’t be asymtotically stable if the kernel space is non-trivial.

If Ker(R − τx) ̸= ∅, then apply x ∈ Ker(R − τI) into equation T φR = φ1R1, we

get T φx = φ1x. Since φ commutes with R, and φ1 commutes R1, thus we have

Ker(R− τI) is a reducing subspace with respect to R,R1, φ, φ1, and T maps unitarily

on Ker(R− τI), which contradicts to the asymptotic stability of T .
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Now we know that R,R1 has no eigenvalues other than {λk}∞k=1, {µk}∞k=1 and 0. We

denote

Eλk
:= Ker(R− λkI), Eµk

:= Ker(R− µkI); (6.2.7)

E1
λk

:= Ker(R1 − λkI), E1
µk

:= Ker(R1 − µkI). (6.2.8)

Note that all of those eigenspaces have finite dimension since R,R1 are compact.

In addition, Lemma 6.2.1 implies that the dimension between Eλk
and E1

λk
, Eµk

and

E1
µk

at most differs by 1.

Proposition 6.2.9. Eλk
, E1

λk
, Eµk

, E1
µk

satisfy the following properties

(i) E1
λk

⊆ H⊥
0 , Eµk

⊆ H⊥
0 ;

(ii) Denote

pk := PH0∩Ker(R−λkI)
p, p1k := PH0∩Ker(R1−µkI)

p, (6.2.9)

then we have

Eλk
= E1

λk
⊕ Span{pk}, E1

µk
= Eµk

⊕ Span{p1k}.

Proof. For (i), since we have

H0 =
∞⊕
k=1

(
Ker(R− λkI) ∩H0

)
=

∞⊕
k=1

(
H0 ∩Ker(R1 − µkI)

)⊕(
H0 ∩KerR1

)
,

and we have Ker(R1 − λkI) ⊥ Ker(R1 − µjI) for all j and Ker(R1 − λkI) ⊥ KerR1,

thus Ker(R1 − λkI) ⊥ H0. Similarly we also have Ker(R− µk) ⊥ H0 for all k.

Now for (ii), since R = R1 on H⊥
0 , which implies R = R1 on E1

λk
and Eµk

for all k.

Thus E ′
λk

⊆ Eλk
, Eµk

⊆ E ′
µk
.

On the other hand, we also know that pk ∈ Eλk
and p1k ∈ E1

µk
(easy to see that
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pk, p
1
k ̸= 0 because p is cyclic with respect to R and R1 on H0). Hence

Span{pk} ⊕ E1
λk

⊆ Eλk
, Span{p1k} ⊕ Eµk

⊆ E1
µk
, (6.2.10)

then applying Lemma 6.2.1 to (6.2.10), and we finish the proof of (ii).

So far, we can describe the complete structure of all eigenspaces of R,R1.

Proposition 6.2.10. Let (R,R1, p, φ, φ1, Jp) be a tuple satisfying the setting in sub-

section 6.1, and we again denote H0 = Span{Rnp : n ≥ 0}. If R is not finite rank,

then there exists an intertwining sequences

λ1 > µ1 > λ2 > µ2 > ... >→ 0,

such that

(i) R|H0
, R1|H0

have simple eigenvalues {λk}∞k=1, {µk}∞k=1 respectively;

(ii)

H⊥
0 =

( ∞⊕
k=1

E1

λk

)⊕( ∞⊕
k=1

Eµk

)
(6.2.11)

(iii)

Eλk
= E1

λk
⊕ Span{pk}, E1

µk
= Eµk

⊕ Span{p1k},

where pk, p
1
k are defined in (6.2.9).

For the special case when R,R1 are finite rank operators, proposition 6.2.10 will be

modified as follow:

Proposition 6.2.11. Let (R,R1, p, φ, φ1, Jp) be a tuple satisfying the setting in sub-

section 6.1. In addition, R is a finite rank operator. Then there exists an intertwining
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sequence

λ1 > µ1 > ... > λN > µN ≥ 0,

such that

(i) R|H0
, R1|H0

have simple eigenvalues {λk}Nk=1, {µk}Nk=1 respectively;

(ii) H⊥
0 =

(
N⊕
k=1

E1

λk

)⊕(
N⊕
k=1

Eµk

)
;

(iii)

Eλk
= E1

λk
⊕ Span{pk}, E1

µk
= Eµk

⊕ Span{p1k},

where pk, p
1
k are defined in (6.2.9).

For the special case when µN = 0, we have dimE1
µN

= 1, and EµN
is trivial.

Remark 6.2.12. Since we have the decomposition of the whole space

H = H0

⊕( N⊕
k=1

E1

λk

)⊕( N⊕
k=1

Eµk

)

implied by (6.2.11), we can also analyze the structure of φ, φ1 on H. In fact, since

φ, φ1 commutes with R,R1 respectively, we have

(i) φ acts unitarily on Eλk
, Eµk

for all k.

(ii) In Remark 5.2.1, we already know φ1|
(KerR1)⊥

is unitary. Since E1
λk
, E1

µk
⊆

(KerR1)
⊥ are all invariant subspaces for φ1. Thus we have φ1 acts unitarily

on E1
λk
, E1

µk
. Another way to see this is that φ1|E1

λk

, φ1|E1
µk

are both finite-rank

isometry, thus they are onto.
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6.3 Canonical Choice for φ and φ1

In this section, we generate a canonical choice for φ, φ1 and Jp onH. As we have dis-

cussed in Remark 5.1.3, the choice of Ju is not unique and we say two triples (J̃u, ϕ̃, ϕ̃1)

and (J̃′
u, ϕ̃

′, ϕ̃′
1) are in the same equivalent class iff there exists a J̃u−symmetric unitary

operator ψ such that

J̃′
u = ψJ̃u, ϕ̃′ = ϕ̃ψ∗, ϕ̃′

1 = ϕ̃1ψ
∗.

As we have stated in Proposition 5.2.4, we have built up unitary equivalence between

tuples (Jp, φ, φ1) and (J̃u, ϕ̃, ϕ̃1). Now we define a similar equivalence class relation for

the tuple (Jp, φ, φ1).

Definition 6.3.1. We say two tuples (Jp, φ, φ1) and (J′
p, φ

′, φ′
1) are in the same equiv-

alent class if and only if there exists and Jp-symmetric unitary operator ψ, such that

J′
p = ψJp, φ′ = φψ∗, φ′

1 = φ1ψ
∗.

Easy to check that the two tuples (Jp, φ, φ1) and (J′
p, φ

′, φ′
1) from the same equiv-

alent class define the same Hankel Γ in Proposition 5.2.3 and the same contraction

S∗ := φ1R1R
−1φ∗.

The following lemma gives the canonical choice of φ, φ1 from a given equivalent

class.

Lemma 6.3.2. In each equivalent class of (Jp, φ, φ1), there exists a unique triple

(J′
p, φ

′, φ′
1) such that

φ′
1|E1

λk

= I, φ′|
Eµk

= I.
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Proof. As we have discussed in subsection 6.2, H⊥
0 can be decomposed as

H⊥
0 =

( ∞⊕
k=1

E1
λk

)⊕( ∞⊕
k=1

Eµk

)
.

.

Now we define an operator ψ, such that

(i) ψ = φ on Eµk
for all k ∈ N;

(ii) ψ = φ1 on E1
λk

for all k ∈ N;

(iii) ψ = I on H0.

Since we have assumed that φ, φ1 are Jp-symmetric in subsection 6.1, and E1
λk
, Eµk

are all reducing subspaces for Jp, we know ψ is Jp-symmetric. In addition, from Remark

6.2.12, we know that φ, φ1 acts unitarily on Eµk
, E1

λk
respectively, hence ψ is unitary,

and the tuple (J′
p, φ

′, φ′
1) defined as

J′
p := ψJp, φ′ := φψ∗, φ′

1 := φ1ψ
∗

satisfy

φ′|
Eµk

= I, φ′
1|E1

λk

= I.

Here the uniqueness of such triple follows from the uniqueness of ψ.

We say the triple (Jp, φ, φ1) which satisfies

φ1|E1
λk

= I, φ|
Eµk

= I hold for all k ∈ N

to be the canonical choice of (Jp, φ, φ1). Indeed, we can show that given the choice of

φ, φ1 and the asymptotic stability of T , Jp will be uniquely determined. The explicit

representation of Jp will be given in a later Remark 7.6.6.
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Chapter 7

ASYMPTOTIC STABILITY OF CONTRACTION

In chapter 2 and chapter 4, we have studied the inverse spectral problem for self-

adjoint Hankel operators and non self-adjoint Hankel operators as C-symmetric opera-

tors respectively. Notice that in both cases (Propostition 3.1.3 and Proposition 5.2.3)

we require the asymptotic stability of a defined contraction T (In chapter 2, T is given

as T = R1R−1. And in chapter 4, T is given as T = R1φ1φ
∗R−1).

However, finding out an equivalent condition for the asymptotic stability is not an

easy thing. The following stability test is a criterion for asymptotic stability given in

[12].

Lemma 7.0.1. Let T be a contraction on a Hilbert space. If T has no eigenvalues on

the unit circle T and the set σ(T ) ∩ T is at most countable, then T is asymptotically

stable.

In addition, Nagy gave an equivalent condition for asymptotic stability in his book

[26]. Here we first introduce the definition of defect operators, defect indices, and

minimal unitary dilation, which will also be used in later chapters.

Definition 7.0.2. Let T be a contraction on a Hilbert space H (thus T ∗T ≤ I and

T T ∗ ≤ I), we define the operators

DT = (I − T ∗T )1/2, DT ∗ = (I − T T ∗)1/2,
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which are self-adjoint, and bounded by 0 and 1. We call DT , DT ∗ be the defect operators

of T , T ∗ respectively.

In addition, we call DA := ClosRanDA to DA∗ := ClosRanDA∗ to be the defect

spaces, and

DT := dimDT H, DT ∗ := dimDT ∗H

to be the defect indices of T and T ∗ respectively.

Definition 7.0.3. Let A be an operator on a Hilbert space H1, and B be an operatoar

on a Hilbert space H2 which containing H1. We call B a dilation of A if

An = PH1Bn

Definition 7.0.4 (Theorem 4.2, Chapter 1,[26]). For every contraction T on a Hilbert

space H1, there exists a unitary dilation U on a space H2 containing H1 as a subspace,

which is minimal, that is,

H2 = Span{UnH1|n ∈ Z}.

This minimal unitary dilation is determined up to isomorphism, and thus is called

the minimal unitary dilation of T .

With the preparations of those definitions above, Nagy gave an equivalent condition

of asymptotic stability in his book [26], stated as below:.

Theorem 7.0.5 (Proposition 1.3, Chapter 2, [26]). Let T be a contraction on a Hilbert

space H1, and U be its minimal dilation on a Hilbert space H2 containing H1. Then T

is asymptotically stable if and only if the following two properties hold:

(i) The defect index DT is finite;
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(ii) The minimal unitary dilation U is a bilateral shift of multiplicity equal to DT .That

is, there exists a subspace L ⊆ H2 (called wandering space) with dimension DT ,

satisfies

H2 =
∞⊕

n=−∞

UnL

For the special case of complete non-unitary dilation (See Definition 7.3.1), the

following result was stated:

Theorem 7.0.6 (Proposition 6.7, Chapter 2, [26]). Let T be a completely non-

unitary contraction, and suppose that the intersection of the spectrum of T with the

unit circle T has Lebesgue measure 0, then both T and T ∗ are asymptotically stable.

However, finding the spectral property of T and its minimal unitary dilation U is

still not an easy thing, but things become easier if we assume that R,R1 are compact.

In this chapter, we mainly discuss the asymptotic stability of T := R1φ1φ
∗R−1 under

the condition that R,R1 are compact.

We first restate the setting. We are given a tuple (R,R1, p, φ, φ1, Jp) satisfying

(i) R,R1 are two positive, self-adjoint compact operators defined on a Hilbert space

H. In addition we have KerR = {0};

(ii) R2 −R2
1 = pp∗ for a vector p with ∥R−1p∥ ≤ 1;

(iii) Jp is a conjugation commutes with R,R1 and preserves p, implied by Lemma 4.0.1

and Lemma 5.1.1;

(iv) φ is a Jp-symmetric unitary operator, which commutes with R;

(v) φ1 is a Jp-symmetric partial isometry with Kerφ1 = KerR1, which commutes

with R1. In addition, we have φ1|
(KerR1)⊥

is unitary (See Remark 5.2.1);
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In addition, T is the unique contraction which satisfies

R1φ1 = T Rφ, (7.0.1)

implied by Douglas Lemma 3.1.1.

In this chapter, we will show that

(i) If H0 = H, i.e., p is a cyclic vector for R. Then T is automatically asymptotically

stable without any further assumptions;

(ii) If H0 ⊊ H, then the condition (ii) in Proposition 7.5.1 gives a criterion for the

asymptotically stability of T .

Finally, in section 7.6, we give an equivalent condition for the asymptotic stability of

T in Proposition 7.6.3 when taking the canonical choice of φ, φ1. With this proposition,

we can further analyze the behavior of φ, φ1 restricted on each eigenspaces of R,R1,

which will be discussed later in chapter 9.

7.1 Preparation

We first discuss the case when p is a cyclic vector with respect to R. We introduce

the following lemma, which is a slight modification of [12, lemma 3.2].

Lemma 7.1.1. Let ∥T ∥ ≤ 1, and let K be a compact operator with dense range.

Assume that an operator A satisfies

T K = KA. (7.1.1)

If A is weakly asymptotically stable, meaning that An → 0 in the weak operator

topology (W.O.T) as n→ ∞, then T is asymptotically stable.

Proof. Iterating (7.1.1) we get that T nK = KAn, n ≥ 1. Take x ∈ H. Since An → 0

in W.O.T. and K is compact, we have that ∥KAnx∥ → 0.
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So limn→∞ ∥T ny∥ = 0 for all y ∈ RanK. Thus, we have strong convergence on a

dense set S.

For any y ∈ H and any positive ε, we can find a x such that ∥x − y∥ ≤ ε
3
. Then

we can find a sufficiently large N , such that ∥T nx− x∥ ≤ ε
3
holds for all n ≥ N . Then

we have

∥T ny − y∥ ≤ ∥y − x∥+ ∥x− T nx∥+ ∥T nx− T ny∥ ≤ 2∥y − x∥+ ∥x− T nx∥ ≤ ε

Thus we conclude (by ε/3-Theorem) that T n → 0 in the strong operator topology.

Recall that for an operator R (in a Hilbert space) its modulus |R| is defined as

|R| := (R∗R)1/2

Lemma 7.1.2. For the operators R and T from (7.0.1), there exists a unique contrac-

tion A, such that

T R1/2 = R1/2A

Proof. Since R1φ1 = T Rφ, we have

R2
1 = (R1φ1)(R1φ1)

∗ = T Rφφ∗RT ∗ = T R2T ∗.

Hence by T ∗T ≤ I, we have

R2 ≥ R2
1 = T R2T ∗ ≥ T RT ∗T RT ∗ = (T RT ∗)2

This tells us R ≥ T RT ∗ and

∥R1/2x∥ ≥ ∥R1/2T ∗x∥ holds for all x ∈ H
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Thus by Douglas Lemma 3.1.1, we can find a contraction denoted as A∗, satisfying

A∗R1/2 = R1/2T ∗.

Taking the adjoint for the equation above, and we finish the proof of this lemma.

By Lemma 7.1.1 and Lemma 7.1.2 we can see that, in order to show that T is

asymptotically stable, it’s sufficient to show that A is weakly asymptotically stable.

7.2 Case when p is Cyclic

To prove the weak asymptotic stability of A we need to investigate its structure in

more detail.

We know that R2
1 = R2− pp∗ ≤ R2. By the Löwner–Heinz inequality with α = 1/2

we have that R1 ≤ R, so by Lemma 3.1.1 there exists an unique contraction Q such

that

R
1/2
1 = QR1/2 (7.2.1)

The following simple proposition (modified from [12, Lemma 3.5]) gives an expres-

sion for operator A.

Proposition 7.2.1. The operator A from Lemma 7.1.2 is given by

A = Q∗φ1Qφ
∗.

Proof. We calculate the representation of R1φ1 in two different ways. First we have

R1φ1 = T R1/2R1/2φ = R1/2AR1/2φ.
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On the other hand,

R1φ1 = R1/2Q∗QR1/2φ1.

Since KerR = {0}, combining the two equations above, we get

A = Q∗QR1/2φ1φ
∗R−1/2 = Q∗(R

1/2
1 φ1φ

∗R−1/2) = Q∗φ1Qφ
∗, (7.2.2)

which finishes our proof.

In addition, the following proposition gives the structure of Q.

Proposition 7.2.2. Let H0 be the smallest invariant subspace of R that contains p.

Then the operator Q with respect to the decomposition H = H0 ⊕ H⊥
0 has the block

structure

Q =

Q0 0

0 I

 ,

where Q0 defined on H0 is a strict contraction (i.e. ∥Q0x∥ < ∥x∥ for all x ̸= 0).

Proof. We know that

R2
1 = R2 − pp∗, (7.2.3)

so R2 coincides with R2
1 on p⊥.

One can easily see that H0 is an invariant subspace for R2 and for R2
1, and therefore

so is H⊥
0 . That means H0 and H⊥

0 are reducing subspaces for both R2 and R2
1, i.e. that

these operators in the decomposition H = H0 ⊕H⊥
0 are block diagonal. Therefore, the

same is true for R1/2

Easy to see that R1/2 and R
1/2
1 coincide on H⊥

0 , which is a reducing space for both

operators, so only need to show that Q0 is a strict contraction.
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Using (7.2.3) and the identity R
1/2
1 = QR1/2 = R1/2Q∗, we can write

R2 − pp∗ = R2
1 = R1/2Q∗QRQ∗QR1/2.

Recalling that p = Rφq, we can rewrite the above identity as

R1/2
(
R− (R1/2φq)(R1/2φq)∗

)
R1/2 = R1/2Q∗QRQ∗QR1/2.

Since KerR = {0}, we have

Q∗QRQ∗Q = R− (R1/2φq)(R1/2φq)∗. (7.2.4)

Applying both sides to x, and taking the inner product with x, we get

(RQ∗Qx,Q∗Qx) = (Rx, x)− |(x,R1/2ϕ(R)q)|2. (7.2.5)

Now, take x such that ∥Qx∥ = ∥x∥. Since ∥Q∥ ≤ 1, we have

⟨x, x⟩ = ⟨Qx,Qx⟩ = ⟨x,Q∗Qx⟩ ≤ ∥x∥∥Q∗Qx∥ ≤ ∥x∥2.

Thus we have x = Q∗Qx. The equation (7.2.5) can be rewritten in this case as

(Rx, x) = (Rx, x)− |(x,R1/2φq)|2,

which implies that x ⊥ R1/2φq. Applying equation (7.2.4) to such x, and using again

the fact that Q∗Qx = x, we get that

Q∗QRx = Rx.

Hence set H1 := {h ∈ H : h ∈ H, ∥Qh∥ = ∥h∥} = Ker(I − Q∗Q) is an invariant sub-
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space for R, which is orthogonal to φR1/2q. Therefore

H1 ⊥ Span{RnR1/2φq : n ≥ 0} = Span{Rnp : n ≥ 0} = H0,

and so Q0 = Q|H0 is a strict contraction.

Now from Proposition 7.2.2, we have Q is a pure contraction since p is a cyclic

vector for R, thus by proposition 7.2.1 we know that A is also a pure contraction.

Remark 7.2.3. Indeed, we can also show that Q∗
0 is also a pure contraction on H0. For

all x, y ∈ H0, we have

⟨Q∗
0x, y⟩ = ⟨x,Q0y⟩ ≤ ∥x∥∥Q0y∥ < ∥x∥∥y∥

Take y = Q∗
0x, then we have ∥Q∗

0x∥ < ∥x∥.

7.3 Case when p is not Cyclic

When p is not cyclic with respect to R inside H, instead we show that A is a

completely non-unitary contraction under certain assumptions of φ, φ1. Beforehead,

we recall the definition of completely nonunitary (c.n.u) contraction.

Definition 7.3.1. (From [26]) We call a contraction T : H → H a completely nonuni-

tary contraction (c.n.u) if and only if for no nonzero reducing subspace E for T is T |
E

is a unitary operator.

Proposition 7.3.2. The contraction A is completely non-unitary if and only if φ1φ
∗

does not have any non-zero reducing subspace E ⊂ H⊥
0 such that φ∗E ⊥ H0.

To prove this proposition we need the following simple observation.

Lemma 7.3.3. Let A be a contraction and E be a subspace. The following statements

are equivalent:
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(i) The subspace E is a reducing subspace for A such that A
∣∣
E
is unitary;

(ii) The operator A acts isometrically on E (i.e. ∥Ax∥ = ∥x∥ for all x ∈ E) and

AE = E.

Proof of lemma 7.3.3. The proof of this lemma is simple.

Suppose that we have (i), then we have A
∣∣
E
is isometric and onto, thus (ii) holds.

For the other direction, suppose that we have (ii). Since we already have A
∣∣
E

is isometric and onto, which implies that A
∣∣
E
is unitary. It’s sufficient to show that

AE⊥ ⊂ E⊥.

In fact, for ∀x ∈ E, y ∈ E⊥, we have

⟨Ax,Ay⟩ = ⟨A∗Ax, y⟩ = ⟨x, y⟩ = 0,

here the first equality results A
∣∣
E
is isometric. Thus E is reducing subspace for A, and

(i) holds.

Proof of Proposition 7.3.2. Assume that E ⊂ H⊥
0 is a reducing subspace for φ1φ

∗ such

that φ∗E ⊂ H⊥
0 .

Since Q = Q∗ = I on H⊥
0 , we have for any x ∈ E,

Ax = Q∗φ1Qφ
∗x = Q∗φ1φ

∗x = φ1φ
∗x; (7.3.1)

in the second equality we used the fact that φ∗x ∈ H⊥
0 , and in the last one the fact

that φ1φ
∗x ∈ E ⊂ H⊥

0 .

Since φ1 acts isometrically on H⊥
0 (Kerφ1 can only belongs to H0), we have

∥Ax∥ = ∥φ1φ
∗x∥ = ∥x∥,

i.e. A acts isometrically on E.

Also, this implies that φ1φ
∗ acts isometrically on E. In addition, φ is unitary, and
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(see Remark 5.2.1) we know φ1

∣∣
(KerR1)⊥

is unitary, therefore φφ∗
1 acts unitarily on its

reducing subspace E. Now from (7.3.1) we have

AE = φ1φ
∗E = E.

Applying Lemma 7.3.3, we can see that E is a reducing subspace for A such that

A|
E
is unitary, so A is not c.n.u.

Now let’s move on to the sufficiency. If A is not c.n.u., then we can find a reducing

subspace E for A, such that A|
E

= Q∗φ1Qφ
∗|

E
is unitary. Using that Q is a pure

contraction on H0, we have

φ∗E ⊂ H⊥
0 , φ1φ

∗E ⊂ H⊥
0 ;

AE = φ1φ
∗E = E.

Thus E = φ1φ
∗E ⊂ H⊥

0 . In addition, since φ1φ
∗E⊥ ⊥ φ1φ

∗E, thus φ1φ
∗E⊥ ⊆ E⊥,

and E is a reducing subspace for φ1φ
∗. This gives a contradiction, so we finish the

proof.

7.4 C.n.u Implies Weakly Asymptotic Stability

Recall that in Subsection 7.2, we have shown that the operator A is a pure contrac-

tion, and in Subsection 7.3 we have shown that A is c.n.u under certain assumptions

for φ, φ1. Since a pure contraction is certainly c.n.u from the Definition 7.3.1, it’s

sufficient to prove that completely non-unitary implies asymptotical stability.

The following proposition and its proof is inspired from [27].

Proposition 7.4.1. Let A be a completely non unitary contraction on a Hilbert space

H, then A is weakly asymptotically stable.

80



Proof. Denote set H1 as

H1 :=

{
x
∣∣∥Anx∥ = ∥A∗nx∥ = ∥x∥ holds for ∀n ∈ N

}
, (7.4.1)

we firstly show that H1 = {0}.

For ∀x ∈ H1 and ∀n ∈ N,

∥x∥2 = ∥Anx∥ = ⟨Anx,Anx⟩ = ⟨A∗nAnx, x⟩ ≤ ∥A∗nAnx∥∥x∥ ≤ ∥x∥2,

thus we have A∗nAnx = x holds for all n, and similarly we have AnA∗nx = x.

On the contrary, if a vector x satisfies that A∗nAnx = AnA∗nx = x holds for all n,

then we have

∥Anx∥2 = ⟨A∗nAnx, x⟩ = ⟨x, x⟩ = ∥x∥2,

and similarly we have ∥A∗nx∥ = ∥x∥, thus we have

H1 =

{
x
∣∣A∗nAnx = AnA∗nx = x holds for ∀n ∈ N

}
. (7.4.2)

Thus H1 is a subspace. Furthermore, H1 is a reducing subspace for A and A∗. In

fact, for all x ∈ H1, we have

∥AnAx∥ = ∥x∥, ∥A∗nAx∥ = ∥A∗(n−1)x∥ = ∥x∥

∥AnA∗x∥ = ∥An−1x∥ = ∥x∥, ∥A∗nA∗x∥ = ∥A∗(n+1)x∥ = ∥x∥

Thus by (7.4.1), we have Ax,A∗x ∈ H1. Since we also have A
∣∣
H1
, A∗
∣∣
H1

is onto due

to (7.4.2), applying Lemma 7.3.3 we have A
∣∣
H1

is unitary. Since we are given that A

is c.n.u, we have H1 = {0}.

Now we prove that A is weakly asymptotically stable by contradiction. Assume
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that A is not weakly asymptotically stable, then there exists x, y ∈ H, a positive ε,

and a subsequence {nj}∞j=1 such that

|⟨Anjx, y⟩| > ε. (7.4.3)

We know that the set {Anjx}∞j=1 is bounded, and since H is reflexive and separable,

thus weakly compactness implies sequentially weakly compactness, hence there exists

a subsequence of {Anjx}∞j=1 which is weakly convergent. Without lose of generality, we

take this subsequence to be {Anjx}∞j=1 itself. Denote Anjx ⇀ x0 for a x0.

Thus for a fixed k ∈ N we have

A∗kAkAnjx ⇀ A∗kAkx0 when nj → ∞. (7.4.4)

On the other hand, we can show that A∗kAkAnjx ⇀ x0. In fact we have

∥A∗kAkAnjx− Anjx∥2 = ∥A∗kAkAnjx∥2 + ∥Anjx∥2 − 2⟨A∗kAkAnjx,Anjx⟩

≤ ∥Ak+njx∥2 + ∥Anjx∥2 − 2∥Ak+njx∥2

= ∥Anjx∥2 − ∥Ak+njx∥2.

Here the right hand side of the above inequality goes to 0 when nj → ∞, because

sequence ∥Anx∥∞n=1 is monotonically decreasing, hence convergent. And since Anjx ⇀

x0, we have

A∗kAkAnjx ⇀ x0 when nj → ∞. (7.4.5)

Together with (7.4.4), we have A∗kAkx0 = x0. Similar to the process above, we can

get AkA∗kx0 = x0. By (7.4.2), we have x0 ∈ H1, which implies that x0 = 0. Hence

Anjx ⇀ 0 weakly which contradicts to (7.4.3).

Remark 7.4.2. We can also use functional model theory to shorten the proof of Propo-
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sition 7.4.1.

Since every completely non-unitary operator A is unitary equivalent to a so-called

model operator Mθ defined on the functional space Kθ. Here θ(z) is called to be the

characteristic function of A, which is an analytic function defined as

θA(z) =
(
− A+ zDA∗(I − zA∗)−1DA

)∣∣
DA
, z ∈ unit disk D. (7.4.6)

For a given z satisfying that I−zA∗ is bounded invertible, θA(z) is a bounded operator

mapping DA := ClosRanDA to DA∗ := ClosRanDA∗ .

And the model space Kθ is an appropriately constructed subspace of a weighted

space L2(E∗ ⊕ E,W ) on the unit circle T with respect to the normalized Lebesgue

measure W on T, where E∗, E are some Hilbert spaces with dimensions DA∗ ,DA re-

spectively (See Definition 7.0.2). And the model operatorMθ is the compression of the

multiplication operator Mz onto Kθ. That is,

Mθ = PθMz|Kθ
, (7.4.7)

Here Pθ is the orthogonal projection onto Kθ. The specific choice of Kθ can be

found in [26, Proposition 2.1, Chapter VI]. (As for the foundation of functional model

theory, details can be found in [26, Chapter VI] and [28, P. 109-115]).

From (7.4.7), we have

Mn
θ = PKθ

Mn
z

∣∣
Kθ

,

since Mn
z → 0 when n → 0 in the weak operator topology of B(L2(E∗ ⊕ E,W )) (the

set of all bounded operators on this space), we claim thatMn
θ → 0 when n→ ∞ in the

weak operator topology of B(Kθ) as well, thus A
n → 0 in the weak operator topology.
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7.5 Main Result

Combining the results in subsections 6.1-6.4, we reach the following proposition.

Proposition 7.5.1. T defined by T := φ1R1R
−1φ∗ is asymptotically stable if one of

the following two conditions hold

(i) H0 = H, i.e. p is cyclic with respect to R in H;

(ii) φ1φ
∗ does not have any non-zero reducing subspace E ⊂ H⊥

0 such that φ∗E ⊥ H0.

Proof of Proposition 7.3.3. To show that T is asymptotically stable, it suffices to show

that the operator A defined by

T R1/2 = R1/2A

is weakly asymptotically stable according to Lemma 7.1.1 and Lemma 7.1.2. And

furthermore by Lemma 7.4.1, it’s sufficient to show that A is a completely non-unitary

contraction.

When H0 = H holds, by Proposition 7.2.1 we have A = Q∗φ1Qφ
∗. Since Q is a

pure contraction according to Proposition 7.2.2, we have A is also a pure contraction,

thus a completely non-unitary contraction.

When H0 ⊊ H, according to Proposition 7.3.2, we still have A is a c.n.u. So we

finish the proof.

7.6 Asymptotic Stability under the Canonical Choice

In this section, we consider the asymptotic stability of contraction T under the

canonical choice of φ, φ1. We will show that the requirement in Proposition 7.5.1 can

be substituted by a sufficient and necessary condition.

Recall the definition of four eigenspaces Eλk
and E1

λk
, Eµk

and E1
µk

stated in (6.2.7),

the definition of pk, p
1
k given in (6.2.9), and the canonical choice of φ, φ1 given in Lemma
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6.3.2:

φ1|E1
λk

= I, φ|
Eµk

= I. (7.6.1)

We first state the definition of star-cyclicity.

Definition 7.6.1. Here we say a vector x is *-cyclic for A in H if and only if

Span
{
Anx, (A∗)nx|n ≥ 0

}
= H.

An equivalent definition in [29, Def 3.1,Chapter IX ,p. 268] is given as follow:

We say a vector x is *-cyclic for A in H if and only if H is the smallest reducing

subspace for A that contains x.

Definition 7.6.2. We say that an operator A on H is cyclic if and only if there exists

a vector x ∈ H, such that

Span

{
Anx|n ≥ 0

}
= H.

Similarly, we say an operator A on H is *-cyclic if and only if there exists a vector

x ∈ H, such that

Span
{
Anx, (A∗)nx|n ≥ 0

}
= H.

J. Bram proved in [30] that a normal operator A is *-cyclic if and only if A is cyclic.

The results below gives an equivalent condition of φ, φ1 which guarantees the

asymptotic stability of T .

Proposition 7.6.3. Under the choice of φ, φ1 given in (7.6.1), T is asymptotically

stable if and only if both of the two conditions below are satisfied:

(i) For all k the vector pk is *-cyclic for the operator φ
∣∣
Eλk

;

85



(ii) For all k the vector p1k is *-cyclic for the operator φ1

∣∣
E1

µk

.

Proof of Lemma 7.6.3. If for some k the vector pk is not *-cyclic for φ
∣∣
Eλk

, then there

exists a subspace Hk ⊂ Eλk
, Hk ⊥ pk (and so Hk ⊂ E1

λk
) which is a reducing subspace

for φ
∣∣
Eλk

(and thus for φ).

We know that R = R1 on E1
λk
, and that φ1|E1

λk
= I, so the representation T =

φ1R1R
−1φ∗ implies that

T x = φ∗x ∈ Hk ∀x ∈ Hk.

Therefore Hk is an invariant subspace for T (in fact, one can show that it is a

reducing subspace, but we do not need this in the proof) on which T acts isometrically,

and so T cannot be asymptotically stable.

Similarly, if p1k is not *-cyclic for φ1|E1
µk

for a certain k, then we can find a subspace

of E1
µk

denoted as H1
k , H

1
k ⊥ p1k (simply set H1

k := E1
µk

⊖ Span{(φ∗
1)

np1k, φ
n
1p

1
k : n ≥ 0}),

which is a reducing subspace for φ1|E1
µk

.

Since φ|
Eµk

= I, applying any x ∈ H1
k to R1φ1 = T Rφ implies that

T x = φ1x ∀x ∈ H1
k .

Hence H1
k is an invariant subspace for T . Noticing that φ1 is an isometry restricted

on H⊥
0 , thus T can’t be asymptotically stable.

So, we proved that the conditions (i), (ii) are necessary for the asymptotic stability

of T .

To prove the sufficiency of these conditions, we will show that under (i), (ii), A =

Q∗φ1Qφ
∗ is c.n.u. Then proposition 7.4.1 implies that A is weakly asymptotically

stable, and so by Lemma 7.1.1 and Lemma 7.1.2, T is asymptotically stable.

So, let us assume that conditions (i), (ii) are satisfied, but A is not c.n.u. Then

there exists a reducing subspace L where A|
L
is unitary. Since A∗ = φQ∗φ∗

1Q acts
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isometrically on L, we have L ⊆ H⊥
0 . From A|L = (Q∗φ1Qφ

∗)|L is unitary, and we

also know from Proposition 7.2.2 and Remark 7.2.3 that both Q and Q∗ are pure

contractions on H0, thus

φ∗L ⊆ H⊥
0 , φ1φ

∗L = L. (7.6.2)

Now take a vector x ∈ L ⊆ H⊥
0 . We write x = a + b where a ∈

∞⊕
k=1

E1
λk

and

b ∈
∞⊕
k=1

Eµk
. Then

φ∗x = φ∗a+ φ∗b = φ∗a+ b.

Here φ∗a ∈
⊕
k

Eλk
=
⊕
k

E1
λk

⊕ H0. On the other hand, from (7.6.2) we have

φ∗x ∈ H⊥
0 , thus φ

∗a ∈
⊕
k

E1
λk
.

So now we have

Ax = φ1φ
∗x = φ∗a+ φ1b,

where here we use φ1|E1
λk

= I in the second identity. Since Ax ∈ L ⊆ H⊥
0 , we have

φ1b ∈
∞⊕
k=1

Eµk
. Hence by induction, we will get

Anx = (φ∗)na+ (φ1)
nb, (7.6.3)

holds for all n ∈ N, where (φ∗)na ∈
⊕
k

E1
λk
, φn

1b ∈
⊕
k

Eµk
.

And similar property holds for A∗, with the same notation of x, a, b, we have

(A∗)nx = φna+ (φ∗
1)

nb, (7.6.4)

where φna ∈
⊕
k

E1
λk
, (φ∗

1)
nb ∈

⊕
k

Eµk
.

Now we need the following simple lemma.
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Lemma 7.6.4. Let U be an arbitrary operator on a Hilbert space H, and x is a *-cyclic

vector with respect to U on H, then for ∀y ∈ H, we have

PxSpan
{
Uny, (U∗)ny|n ≥ 0

}
̸= 0.

Here P is the projection operator.

Proof of Lemma 7.6.4. If the projection is zero, then we have x ⊥ Uny, (U∗)ny for all

n. Thus accordingly, we have

y ⊥ Unx, (U∗)nx for all n,

from the *-cyclicity of x, we have y ⊥ H, which gives a contradiction.

Now back to the proof of Proposition 7.6.3. For the chosen vector x ∈ L, there

exists a k ∈ N such that x1k := P
E1

λk

x ̸= 0 or xk := P
Eµk

x ̸= 0.

If x1k ̸= 0, then applying Lemma 7.6.4 we have

Ppk
Span

{
φnx1k, (φ

∗)nx1k|n ≥ 1
}
̸= 0.

Thus we can find a n ∈ N such that Ppk
(φnx1k) ̸= 0 or Ppk(φ

∗)nx1k ̸= 0.

If Ppk(φ
nx1k) ̸= 0, then it contradicts to the equation (7.6.4) where we have φna ∈⊕

k

E1
λk
. If Ppk(φ

∗)nx1k ̸= 0, then it contradicts to the equation (7.6.3) where we have

(φ∗)na ∈
⊕
k

E1
λk
.

Similarly, if xk ̸= 0 for a k, applying Lemma 7.6.4 we have

Pp1k
Span

{
φn
1xk, (φ

∗
1)

nxk|n ≥ 1
}
̸= 0.

Then we can also find a n ∈ N such that P
p1k
(φn

1xk) ̸= 0 or Pp1k
(φ∗

1)
nxk ̸= 0. Thus

we have φn
1b /∈

⊕
k

Eµk
or (φ∗

1)
nb /∈

⊕
k

Eµk
, which contradicts to (7.6.3) and (7.6.4)

respectively, and it will also leads to a contradiction.
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So there doesn’t exist such reducing subspace L satisfying A|
L
is unitary. Hence A

is c.n.u, and we finish the proof of sufficiency part.

Remark 7.6.5. Since φ
∣∣
Eλk

is unitary and finite rank, with this restriction, we can show

that only cyclicity (instead of ∗−cyclicity) is required. That is,

(i) For all k the vector pk is cyclic for the operator φ
∣∣
Eλk

on Eλk
;

(ii) For all k the vector p1k is cyclic for the operator φ1

∣∣
E1

µk

on E1
µk
.

The specific explanantion of this part can be found in Remark 10.1.4.

Remark 7.6.6. We need to mention here that the conjugation Jp will be uniquely

determined under the canonical choice of φ, φ1. Since all eigenspaces of R,R1 are

invariant subspaces for Jp, and we have

H =
( ∞⊕

k=1

Eλk

)
⊕
( ∞⊕

k=1

Eµk

)
,

it’s sufficient to determine value of Jp on Eλk
and E1

µk
(since Eµk

⊂ E1
µk
) for all k.

We first show that Jppk = pk, Jpp
1
k = p1k hold for all k. In fact, since JpR = RJp,

apply pk on both sides we get

RJppk = JpRpk = λkJppk.

Since Jppk ∈ H0, we have Jppk = αkpk for a αk ∈ C with module 1. Hence we have

p = Jpp = Jp

∞∑
k=1

pk =
∞∑
k=1

αkpk,

thus αk = 1 and Jppk = pk hold for all k. Jpp
1
k = p1k can be shown in a similar process.
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Now since Jppk = pk and φ|
Eλk

is Jp-symmetric, thus for all n ∈ N we have

Jpφ
npk = (φ∗)nJppk = (φ∗)npk,

Jp(φ
∗)npk = φnJppk = φnpk.

thus Jp|Eλk

is uniquely determined implied by Proposition 7.6.3.

Similarly we have Jp|E1
µk

is uniquely determined by

Jp(φ
n
1p

1
k) = (φ∗

1)
np1k, Jp((φ

∗
1)

np1k) = φn
1p

1
k for all n.

Thus the uniqueness of Jp is proved.
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Chapter 8

ABSTRACT BORG’S THEOREM

In a previous Proposition 6.2.2, we have shown that for a given rank-one pertur-

bation (R,R1, p, φ, φ1) with R2 − R2
1 = pp∗, under the cyclicity of vector p and the

asymptotical stability of contraction T , there exists an intertwining sequence

λ1 > µ1 > λ2 > µ2 > ....→ 0, (8.0.1)

such that R
∣∣
H0
, R1

∣∣
H0

has simple eigenvalues as {λk}∞k=1. {µk}∞k=1 respectively.

Thus in this chapter we consider the inverse problem. Given an intertwining real

sequence

λ1 > µ1 > λ2 > µ2 > ....→ 0,

can we find a rank-one perturbation (R,R1, p), such that R,R1 has the corresponding

eigenvalues? Fortunately the answer to this question is positive, and in this chapter

we will prove the following so-called The Abstract Borg’s Theorem:

Theorem 8.0.1 (Abstract Borg’s Theorem). Given two sequences {λ2k}k≥1 and {µ2
k}k≥1

satisfying intertwining relations (8.0.1) and such that λ2k → 0 as k → ∞, there exists

an unique (up to unitary equivalence) triple (W,W1, p), such that W = W ∗ ≥ 0,

KerW = {0} is a compact operator with simple eigenvalues {λ2k}∞k=1, and the operator
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W1 = W − pp∗ has {µ2
k}∞k=1 as its (simple) non-zero eigenvalues (W1 can also have a

simple eigenvalue at 0).

Moreover, the two identities ∥W−1/2p∥ = 1, ∥W−1p∥ = ∞ hold if and only if:

∞∑
j=1

(
1−

µ2
j

λ2j

)
= ∞, (8.0.2)

∞∑
j=1

(
µ2
j

λ2j+1

− 1

)
= ∞. (8.0.3)

Remark 8.0.2. The original Borg’s theorem [32] states that the potential q of a Schrödinger

operator L, Ly = y′′ + q(x)y on an interval is uniquely defined by the two sets of

eigenvalues, corresponding to two specific boundary conditions. Later Levinson [33]

extended this result by showing that essentially any non-degenerate pair of self-adjoint

boundary conditions would work.

Changing boundary conditions for a Schrödinger operator is essentially a rank one

perturbation (by an unbounded operator). Namely, if L1 and L2 are Schrödinger

operators on an interval with the same potential, but with two different self-adjoint

boundary conditions, then for any λ /∈ σ(L1)∪σ(L2) the difference (L1−λI)−1− (L2−

λI)−1 is a rank one operator (and the operators (L1−λI)−1, (L2−λI)−1 are compact).

Thus, by picking a real λ the problem can be reduced to rank one perturbations of

compact self-adjoint operators.

Our Theorem 8.0.1 deals with rank one perturbations of (abstract) compact self-

adjoint operators, hence we give its name. We do not assume that our operators came

from Schrödinger operators, so we only reconstruct the spectral measure, and are not

concerned with the reconstruction of the potential. However, it is well known how

to reconstruct the potential from the spectral measure, or, more precisely, from the

Titchmarsh–Weyl m-function, so it should be possible to get the Borg’s result from

our abstract theorem.

Note also, that Theorem 8.0.1 gives not only uniqueness, but the existence as well.
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Remark 8.0.3. Note also that the triple (W,W1, p) we constructed in Theorem 8.0.1

satisfies that P
Ker(W−λ2

kI)
p ̸= 0 for all k, hence by Lemma 6.1.1 the cyclicity of p with

respect to W is automatically satisfied. In fact, if there is a k such that

pk := P
Ker(W−λ2

kI)
p = 0

Then λ2k is a common eigenvalue for W,W1, which gives us contradiction.

Similarly we also have P
Ker(W1−µ2

kI)
p ̸= 0 holds for all k.

In section 8.1, we prove the existence and uniqueness part of the abstract Borg’s

theorem. Inside this proof, we give an expression for the scalar spectral measure of W

with respect to p (see definition in (8.1.3)), denoted as ρ(s), and its coefficients has the

form in (8.1.9).

In section 8.2, we will translate the trivial kernel condition of Γ we get from Propo-

sition 3.1.3 and Proposition 5.2.3, in terms of {λk}∞k=1 and {µk}∞k=1. Within this part,

we also give an equivalent condition of KerW1 = {0}, and furthermore, give an ex-

pression for the scalar spectral measure of W1 with respect to p (see the definition in

(8.1.4)), denoted as ρ1(s), and its coefficients has the form in Proposition 8.2.9.

In section 8.3, we discuss a special case, i.e., a finite-rank version for The Abstract

Borg’s Theorem. Here the proof for Theorem 8.3.1 is similar to the proof of Theorem

8.0.1, so we omit it.

Finally we close this chapter by considering the inverse problem for the case of

rank-one perturbation (W,W1, p), when p is not cyclic with respect to W . Given an

intertwining real sequence

λ1 > µ1 > λ2 > µ2 > ....→ 0

with their corresponding geometric multiplicities, we can also reconstruct the triple

(W,W1, p). In this case, we will have the following result, which is a simple generalized

93



version of Abstract Borg’s theorem:

Theorem 8.0.4 (Generalized abstract Borg’s theorem). Given positive sequences {λk}∞k=1

and {µk}∞k=1 satisfying the following intertwining property:

λ1 > µ1 > λ2 > µ2 > ... > λk > µk...→ 0,

and also integer sequences {m(λk)}∞k=1, {m(µk)}∞k=1 satisfying for ∀k ≥ 0, m(λk) ≥

1,m(µk) ≥ 0, then there exists a unique triple (W,W1, p) satisfying:

(i) W,W1 are positive, compact self-adjoint operators;

(ii) W −W1 = pp∗;

(iii) For all k ∈ N, W has singular values λ2k with multiplicity m(λk), and singular

values µ2
k with multiplicity m(µk);

(iv) For all k ∈ N, W1 has singular values λ
2
k with multiplicity m(λk)−1, and singular

values µ2
k with multiplicity m(µk) + 1;

We will prove this Theorem 8.0.4 in the last section 8.4 of this chapter.

8.1 Proof of Abstract Borg’s Theorem: Existence and Unique-

ness Part

8.1.1 Some Preparation Work: the Definition of Scalar Spectral Measure

and Cauchy Transform

Since everything is defined up to unitary equivalence, by Von Neumann Theorem

1.2.7 we can then assume without loss of generality that W is the multiplicationMs by

the independent variable s in the weighted space L2(ρ),and the vector p is represented

by the function 1 in L2(ρ). Here ρ(s) is called to be the scalar spectral measure with
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respect to the vector p, defined as following:

〈
(W − zI)−1p, p

〉
=

∫
σ(W )

dρ(s)

s− z
. (8.1.1)

We also call F (z) :=
∫ dρ(s)

s−z
to be the Cauchy transform of ρ(s).

Since W is a compact operator with eigenvalues {λ2k}k≥1, the measure ρ is purely

atomic, that is:

ρ =
∑
k≥1

akδλ2
k
, ak > 0. (8.1.2)

Since the choice of ak can uniquely determine the triple W,W1, p up to unitary

equivalence. We want to find out values of {ak}∞k=1 according to the given intertwining

sequence.

The following proposition gives the Cauchy transform of an operator under a rank

one perturbation, also stated in cf. [11, Chapter 9], [34, Theorem 5.8.1, p. 335]

Proposition 8.1.1 (Aronszajn-Krein formula). Assume that Wα is a rank-one per-

turbation of operator W : Wα = W − αpp∗, then the Borel transform of W and Wα

defined as

F (z) =
〈
(W − zI)−1p, p

〉
, Fα(z) =

〈
(Wα − zI)−1p, p

〉
have the following relation

Fα(z) =
F (z)

1− αF (z)
.

Back to our main problem. Denote the Cauchy transform ofW andW1 with respect
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to p to be

F (z) =
〈
(W − zI)−1p, p

〉
=

∫
σ(W )

dρ(s)

s− z
; (8.1.3)

F1(z) =
〈
(W1 − zI)−1p, p

〉
=

∫
σ(W1)

dρ1(s)

s− z
. (8.1.4)

Applying Proposition 8.1.1 and take α = 1, we have

1− F =
F

F1

. (8.1.5)

8.1.2 Guess and Proof for Function F

In order to find out the coefficients {ak}∞k=1 in the scalar spectral measure (8.1.2),

we need to give a guess for the function F .

Denote σ = {λk}∞k=1 ∪ {0} and σ1 = {µk}∞k=1 ∪ {0}, then we know F (z) has simple

poles at {λk}∞k=1 and analytic at C \ σ, F1(z) has simple poles at {µk}∞k=1 and analytic

at C \ σ1. Thus 1− F = F
F1

should be a function which is analytic function on C \ σ,

and has simple zeros at {µk}∞k=1 and simple poles at {λk}∞k=1.

In the following part of this section, we will prove our guess for the function F,

which is:

Proposition 8.1.2. We have the following equation for function F hold

1− F (z) =
F

F1

=
∞∏
k=1

(
z − µ2

k

z − λ2k

)
. (8.1.6)

We first prove that the right hand side of (8.1.6) converges uniformly on compact

subset of C \ σ.

Lemma 8.1.3. ΦN(z) =
N∏
k=1

(
z−µ2

k

z−λ2
k

)
converges uniformly on compact subset of C \ σ.

Proof. We use the trivial fact that the convergence of
∞∑
k=0

|fk(z)−1| implies the conver-
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gence of
∞∏
k=0

fk(z) (convergence here always means the uniform convergence on compact

subset). Since
∣∣∣1− z−µ2

k

z−λ2
k

∣∣∣ = ∣∣∣µ2
k−λ2

k

z−λ2
k

∣∣∣, it is sufficient to show that
∞∑
k=1

∣∣∣µ2
k−λ2

k

z−λ2
k

∣∣∣ converges.
For z in a compact K ⊂ C \ σ, and sufficiently large k (i.e. for all k > N)

∣∣∣∣µ2
k − λ2k
z − λ2k

∣∣∣∣ ≤ C(K,N)|λ2k − µ2
k| ≤ C(K,N)(λ2k − λ2k−1),

thus:

∞∑
k=N

∣∣∣∣µ2
k − λ2k
z − λ2k

∣∣∣∣ ≤ C(K,N)λ2N <∞,

and the convergence follows trivially.

Now denote lim
N→∞

ΦN(z) → Φ(z) on C \ σ. Before we introduce several properties

for this function Φ(z), let us recall the definition of Nevanlinna function and its integral

representation.

Definition 8.1.4. Nevanlinna function is an analytic function on the open half plane

and image has non-negative imaginary part.

Theorem 8.1.5 (Integral representation). Every Nevanlinna function f admits a fol-

lowing integral representation

f(z) = C +Dz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ) (8.1.7)

where C is a real constant, D is non-negative, µ is a Borel measure on R satisfying∫
R

dµ(λ)
1+λ2 <∞.

Conversely, if a function has this type of form, then it’s a Nevanlinna function,

and the representation is unique.

Now let us get back to discuss function Φ(z).

Lemma 8.1.6. Function Φ(z) satisfies the following properties:
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(i) lim
z→∞

Φ(z) = 1;

(ii) function −Φ(z) is a Nevanlinna function, restricted on C+;

(iii) Φ(z) is symmetric, i.e. Φ(z) = Φ(z), in particular, Φ(z) is real for all x ∈ R \ σ;

(iv) Φ(z) has simple poles at {λ2k}∞k=1, simple zeros at {µ2
k}∞k=1.

Proof. (i) This is true because

∞∑
k=1

log |z − µ2
k

z − λ2k
| ≤

∞∑
k=1

|λ2k − µ2
k|

|z − λ2k|

≤
∞∑
k=1

|λ2k − λ2k+1|
|z| − |λ1|2

≤ |λ21|
|z| − |λ1|2

goes to 0 when z → ∞, hence lim
z→∞

Φ(z) = 1.

(ii) It’s equivalent to show that 1
Φ(z)

=
∞∏
i=1

(
z−λ2

i

z−µ2
i

)
is a Nevanlinna function on C+.

Only need to show that 0 < arg 1
Φ(z)

< π.

Denoting Z to be the point z on the complex plane C+, and A1, A2, ... to be the

point of sequence {λn} on the real axis, and B1, ..., Bn, ... to be {µn}. Then arg 1
Φ(z)

is

given by

0 < ∡B1ZA1 + ....+ ∡BnZAn < π,

While this is trivially true because {λn} and {µn} are two interwining sequences,

and all those angles don’t intersect with each other.

Here (iii) and (iv) is trivial, so we omit it.

Now we prove the following property.
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Lemma 8.1.7. The function Φ(z) given above is the only function that satisfies (i),(ii),(iii),

and (iv) in Lemma 8.1.6

Proof. Assume that Φ1(z) is another function that satisfies those properties. Denote

their ratio to be: Ψ := Φ1/Φ. Additionally, we have both functions have simple poles

at µn and simple zeros at λn, hence Ψ(z) is analytic and zero-free in C \ {0}.

In addition, we have lim
z→∞

Ψ(z) = 1 since both Φ(z),Φ1(z) satisfy (i) in Lemma

8.1.6.

Moreover, for x ∈ R \ {0} we have Ψ(x) > 0. Indeed, on R \ σ \ σ1 functions

Φ1 and Φ are real and have the same sign (If Φ(x),Φ1(x) have different signs for a

certain x ∈ R/σ/σ1, then lim
x→+∞

Φ(x) and lim
x→+∞

Φ(x) have different signs, which gives a

contradiction to (i) in Lemma 8.1.6), so Ψ(x) > 0 on R \ σ \ σ1. Since Ψ is continuous

and zero-free on R \ {0}, this tells us that Ψ is positive on R \ {0}.

Next, let us notice that Ψ(z) does not take real negative values. If Im z > 0, then

according to (ii) in Lemma 8.1.6, ImΦ1(z) < 0, ImΦ(z) < 0, so Ψ(z) = Φ1(z)/Φ(z)

cannot be negative real. If Im z < 0, the symmetry Ψ(z) = Ψ(z) implies the same

conclusion. And, as we just discussed above, on the real line Ψ takes positive real

values.

So Ψ omits infinitely many points, therefore by the Picard’s Theorem, 0 is not the

essential singularity for Ψ. Trivial analysis shows that 0 cannot be a pole, otherwise

1
Ψ

is analytic at 0, which also contradicts to the fact that Ψ can’t take negative real

values on real axis. Hence we have 0 is a removable singularity for function Ψ, and Ψ

is an entire function. By Liouville’s Theorem, condition Ψ(∞) = 1 implies that Ψ ≡ 1

for all z ∈ C, hence the lemma is proved.

Remark 8.1.8. For the last paragraph of the proof for Lemma 8.1.7, we can also consider

the square root Ψ1/2, where we take the principal branch of the square root (cut along

the negative half-axis). Then ReΨ(z)1/2 ≥ 0, so by the Casorati–Weierstrass Theorem,
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0 cannot be the essential singularity for Ψ1/2. Again, trivial reasoning shows that 0

cannot be a pole, so again, Ψ1/2 is an entire function. The condition Ψ1/2(∞) = 1 then

implies that Ψ1/2(z) ≡ 1.

Now back to the proof of Proposition 8.1.2.

Proof of Proposition 8.1.2. At the beginning of this section, we have mentioned that

F
F1

is a function which is analytic on C \ σ, with simple poles at {λk}∞k=1, and simple

zeros at {µk}∞k=1,and equals 1 at ∞, which corresponds to property (i), (iv) in Lemma

8.1.6.

Now we can show that function F
F1

also satisfies the property (ii), (iii) in Lemma

8.1.6.

In fact, for property (ii), to show that F
F1

maps C+ to C−, according to (8.1.5) it’s

equivalent to show that F (z) maps C+ to C+. This is trivially true, because we have

shown that

F (z) =
∑
k≥1

ak
λ2k − z

(8.1.8)

is analytic on C/σ, and each single term ak
λ2
k−z

has positive imaginary part if Im(z) > 0.

As for property (iii), to show F
F1

is symmetric, it is equivalent to show that F (z) is

symmetric, which is also trivially true from (8.1.8).

So far we have shown that F
F1

and Φ(z) are two functions that satisfy all four

properties (i), (ii), (iii), (iv) given in Lemma 8.1.6. Hence those two functions coincide,

and we proved Proposition 8.1.2.

8.1.3 Coefficients of the Scalar Spectral Measure ρ(s)

In this section, we calculate the coefficients for the scalar spectral measure ρ(s)

mentioned in (8.1.1). We will show the following lemma.
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Lemma 8.1.9. The function Φ(z) = 1−F (z) = F (z)
F1(z)

defined by (8.1.6) can be decom-

posed as

Φ(z) = 1−
∑
n≥1

an
λ2n − z

,

where

an = (λ2n − µ2
n)
∏
k ̸=n

(
λ2n − µ2

k

λ2n − λ2k

)
. (8.1.9)

Proof. Consider functions Φ
N

defined as

Φ
N
(z) =

N∏
k=1

(
z − µ2

k

z − λ2k

)
.

Trivially

Φ
N
(z) = 1−

∑
n≥1

aNn
λ2n − z

, (8.1.10)

where

aNn = (λ2n − µ2
n)

N∏
k=1
k ̸=n

(
λ2n − µ2

k

λ2n − λ2k

)
> 0 if n ≤ N, (8.1.11)

and aNn = 0 if n > N . This is because the two functions on left hand side and right

hand side have the same poles and the same residues, so their difference is a polynomial.

Then let z → ∞, we know that polynomial equals 0 at ∞. Hence those two functions

are equal.

Next, let N → ∞. We know, see Lemma 8.1.3 that ΦN(z) converges uniformly to

Φ(z) in any compact subset K ⊂ C \ σ. Hence, to prove the lemma it remains to show

that 1−
∑
n≥1

aNn
λ2
n−z

converges to 1−
∑
n≥1

an
λ2
n−z

uniformly.
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Take z = 0 in (8.1.10). Then we have

1−
∑
n≥1

aNn
λ2n

=
N∏
k=1

(
µ2
k

λ2k

)
> 0,

so
∑
n≥1

aNn
λ2
n
≤ 1.

Notice that for any fixed n the sequence aNn ↗ an as N → ∞, so
∑
n≥1

an
λ2
n
≤ 1.

Take an arbitrary compact K ⊂ C \ σ. Clearly for any z ∈ K,

∣∣∣∣ aNn
λ2n − z

∣∣∣∣ ≤ aNn
dist(K, σ)

≤ an
dist(K, σ)

≤ λ21
dist(K, σ)

· an
λ2n
,

so the condition
∑

n≥1 an/λ
2
n ≤ 1 implies that

∑
n≥1

aNn
λ2
n−z

is uniformly bounded, thus by

dominated convergence theorem, we have
∑
n≥1

aNn
λ2
n−z

converges uniformly on K, and

lim
N→∞

∑
n≥1

aNn
λ2n − z

=
∑
n≥1

lim
N→∞

aNn
λ2n − z

=
∑
n≥1

an
λ2n − z

Remark 8.1.10. We also need to calculate the coefficients of ρ1(s) (which is the scalar

spectral measure ofW1 with respect to p given in (8.1.4)) for a future use in Proposition

10.1.5. However, this is slightly different from calculating ρ(s) since KerW = {0} but

KerW1 can be non-trivial. We will go back to this calculation in Proposition 8.2.9.

8.1.4 Existence and uniqueness of the triple (W,W1, p)

Proof. Define a measure ρ(s) as ρ =
∞∑
k=1

akδλ2
k
, where {ak}∞k=1 is defined by (8.1.9). Let

W be the multiplication by independent variable in L2(ρ):

(Wf)(t) = tf(t),
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and let p ≡ 1. Clearly W is a positive compact operator with simple eigenvalues

{λ2k}∞k=1, and its Borel transform

F (z) =
〈
(W − zI)−1p, p

〉
is given by

F (z) =

∫
R

dρ(s)

s− z
=

∞∑
k=1

ak
λ2k − z

.

Now take W1 = W − pp∗, and let F1(z) = ((W1 − zI)−1p, p). Recall that by

Proposition 8.1.1 we have

1− F =
F

F1

. (8.1.12)

Thus applying Lemma 8.1.9, we get

1− F (z) =
∏
k≥1

(
z − µ2

k

z − λ2k

)
=
F

F1

.

Together with (8.1.12), we know that F1 has simple poles exactly at points {µ2
k}k≥1, so

{µ2
k}k≥1 are the non-zero eigenvalues of W1. So the existence of the triple (W,W1, p)

is proved.

The uniqueness follows immediately from Lemma 8.1.7.

8.2 Proof of Abstract Borg’s Theorem: Trivial Kernel Condi-

tion

Recall that in Proposition 3.1.3 and Proposition 5.2.3, we have discussed the equiv-

alent condition for triple (R,R1, p) such that the constructed Hankel operator Γ has
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trivial kernel. That is,

∥q∥ = ∥R−1p∥ = 1, q /∈ RanR. (8.2.1)

Now comparing equation R2 −R2
1 = pp∗ with W −W1 = pp∗, we need to derive an

equivalent condition for:

∥W−1/2p∥ = 1, ∥W−1p∥ = ∞. (8.2.2)

In this section, we will translate the condition (8.2.1) in terms of {λn}∞n=1 and

{µn}∞n=1. Then we derive the equivalent condition for KerW1 = {0} (we will see that

this condition is also closely related to the two identities in (8.2.2)). Finally, we give

an expression for the coefficients of ρ1(s) =
∑
k≥1

bkδµ2
k
(s) + b0δ0(s), which is defined as

the scalar spectral measure of W1 with respect to p:

〈
(W1 − zI)−1p, p

〉
=

∫
R

dρ1(s)

s− z

8.2.1 The Equivalence of Two Identities in Abstract Borg’s theorem

Proposition 8.2.1. The trivial kernel condition ∥W−1/2p∥ = 1 and ∥W−1p∥ = ∞ is

equivalent to the following

(i)
∞∑
j=1

(
1− µ2

j

λ2
j

)
= ∞ ;

(ii)
∑∞

j=1

(
µ2
j

λ2
j+1

− 1
)
= ∞.

Proof. We first show that

∥PKer(W−λ2
kI)
p∥ =

√
ak. (8.2.3)
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In fact, since the scalar spectral measure ρ(s) satisfies that

∫
R
f(s)ρ(s) = ⟨p, f(W )p⟩

for all f ∈ C(R), thus we take a sequence of polynomials {fn} that converges to 1{x=λ2
k},

then we have

ak = ⟨p, P
Ker(W−λ2

kI)
p⟩ = ∥PKer(W−λ2

kI)
p∥2

Then from (8.2.3), condition ∥W− 1
2p∥ = 1 can be written as

∞∑
k=1

ak
λ2k

= 1. (8.2.4)

Now recall equation (8.1.6)

∞∏
k=1

(
z − µ2

k

z − λ2k

)
= 1−

∞∑
k=1

ak
λ2k − z

, (8.2.5)

we take real z < 0, z → 0−, then by (8.2.5) and monotone convergence theorem, we

have

1−
∞∑
k=1

ak
λ2k

=
∞∏
k=1

µ2
k

λ2k
. (8.2.6)

Hence
∞∑
k=1

ak
λ2
k
= 1 is equivalent to

∞∏
k=1

µ2
i

λ2i
= 0, (8.2.7)
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which is also equivalent to:

∞∑
k=1

(
µ2
k

λ2k
− 1

)
= −∞, (8.2.8)

gives us the condition for (9.1.2).

Now for the second condition ∥W−1p∥ = ∞, using (8.2.3) again, it’s equivalent to

∞∑
k=1

ak
λ4k

= ∞. (8.2.9)

We rewrite (8.1.6) as

∞∏
k=1

(
z − µ2

k

z − λ2k

)
= 1−

∞∑
k=1

ak
(λ2k − z) + z

λ2k(λ
2
k − z)

= 1−
∑
k≥1

ak
λ2k

−
∑
k≥1

akz

λ2k(λ
2
k − z)

,

assuming that we already have
∞∑
k=1

ak
λ2
k
= 1, then we have

−1

z

∞∏
k=1

(
z − µ2

k

z − λ2k

)
=

∞∑
k=1

ak
λ2k(λ

2
k − z)

. (8.2.10)

Now denoting the function of z in (8.2.10) as G(z). We apply z = −λ2N to G(z),

and let N → ∞, then RHS of (8.2.10) increases monotonically to
∞∑
k=1

ak/λ
4
k. Therefore

condition (8.2.9) is equivalent to

lim
N→∞

G(−λ2N) = lim
N→∞

1

λ2N

∞∏
k=1

(
λ2N + µ2

k

λ2N + λ2k

)
= ∞. (8.2.11)

Denote GN(z) =
1
λ2
N

N−1∏
k=1

(
z−µ2

k

z−λ2
k

)
, we will prove the following lemma.

Lemma 8.2.2. The following statements are equivalent:

106



(i) lim
N→∞

G(−λ2N) = ∞ ;

(ii) lim
N→∞

GN(−λ2N) = ∞;

(iii) lim
N→∞

GN(0) = ∞ .

Proof of Lemma 8.2.2. (i) ⇐⇒ (ii): To prove this equivalence, it is sufficient to show

that

0 < C1 ≤
∞∏

k=N

(
λ2N + µ2

k

λ2N + λ2k

)
≤ C2 <∞ (8.2.12)

with constants C1, C2 independent of N . Note that for k ≥ N , we trivially have

1

2
≤ λ2N + µ2

k

λ2N + λ2k
≤ 1. (8.2.13)

Here the upper bound trivially implies the upper bound in (8.2.12) with C2 = 1.

To get the lower bound in (8.2.12), we use the estimate (8.2.13) and the following

inequality

lnx ≥ (ln 2)(x− 1), ∀ x ∈ [1/2, 1].

Thus

∞∑
k=N

ln 2

(
λ2N + µ2

k

λ2N + λ2k
− 1

)
=

∞∑
k=N

− ln 2
λ2k − µ2

k

λ2N + λ2k
≥ (− ln 2)

∞∑
k=N

λ2k − µ2
k

λ2N
≥ − ln 2,

we see that the lower bound in (8.2.12) holds with C1 =
1
2
.

(ii) ⇐⇒ (iii): The function GN is analytic and zero free in the disc DN of radius

2λ2N centered at −λ2N , since we have λ2N is smaller than µ2
N−1 and so the function

ln |GN(z)| is harmonic in this disc.

Now we can find a sufficiently large N , such that ln |Gn(z)| is non-negative on the

disk Dn when n ≥ N . In fact, if we goes from (ii) to (iii), then we find a sufficiently
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large N , such that |Gn(−λ2n)| > 1 when n ≥ N . Then applying the maximum principle

to function ln |Gn(z)|, then we have |Gn(z)| > 1 will be hold on the whole disk ClosDn.

Similarly, we can also assume ln |Gn(z)| is non-negative when going from (iii) to (ii).

Now applying Harnack inequality for function ln |GN(z)| on the disk DN (see Re-

mark 8.2.3)

1

3
ln |GN(−λ2N)| ≤ ln |GN(0)| ≤ 3 ln |GN(−λ2N)|, (8.2.14)

which proves the equivalence (ii) ⇐⇒ (iii).

Now get back to the equation (8.2.11). By lemma 8.2.2, condition (8.2.9) is equiv-

alent to lim
N→∞

GN(0) = ∞, hence

lim
N→∞

1

λ21

N−1∏
k=1

µ2
k

λ2k+1

= lim
N→∞

1

λ2N

N−1∏
k=1

µ2
k

λ2k
= ∞,

And condition
∞∏
k=1

µ2
k

λ2
k+1

= ∞ is equivalent to

∞∑
k=1

(
µ2
k

λ2k+1

− 1

)
= ∞ (8.2.15)

Thus (8.2.8) together with (8.2.15) finish our proof for Proposition 8.2.1.

Remark 8.2.3. Inside the proof of Lemma 8.2.2, we use Harnack inequality (see [35])

for (8.2.14), which can be stated as below:

Theorem 8.2.4 (Harnack inequality). Let f be a non-negative function defined on a

closed ball B(x0, R). If f is continuous on the closed ball and harmonic on its interior,

then for every point x with |x− x0| = r < R, we have

1− (r/R)

[1 + (r/R)]n−1
f(x0) ≤ f(x) ≤ 1 + (r/R)

[1− (r/R)]n−1
f(x0)
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8.2.2 Trivial Kernel Condition for W1 and the Spectral Measure ρ1(s)

With the constructed triple (W,W1, p) in Theorem 8.0.1, we discuss the trivial

kernel condition of W1 in this subsection, and in addition, we give an expression for

the coefficients of ρ1(s) =
∑
k≥1

bkδµ2
k
(s) + b0δ0(s), which is defined as the scalar spectral

measure of W1 with respect to p:

〈
(W1 − zI)−1p, p

〉
=

∫
R

dρ1(s)

s− z
.

Proposition 8.2.5. If the coefficients {an}n≥1 given in Lemma 8.1.9 satisfies
∑
n≥1

an
λ2
n
<

1, then b0 = 0, and the coefficients {bn}n≥1 can be written as:

bn = (λ2n − µ2
n)
∏
k ̸=n

(
µ2
n − λ2k
µ2
n − µ2

k

)
(8.2.16)

Proof. From (8.1.5) we have

1 + F1(z) =
F1

F
=

∞∏
i=1

(
z − λ2i
z − µ2

i

)
.

If
∞∏
i=1

(
λ2
i

µ2
i

)
<∞ (thus by (8.2.6) we have

∑
n≥1

an
λ2
n
< 1), then follow a similar proce-

dure as the proof in Lemma 8.1.9, we write

1 +
∑
n

bNn
µ2
n − z

=
N∏
k=1

(
z − λ2k
z − µ2

k

)
,

then we have

bNn = (λ2n − µ2
n)

N∏
k=1,k ̸=n

(
µ2
n − λ2k
µ2
n − µ2

k

)
if n ≥ N,

and bNn = 0 if n > N .
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Now take a upper bound B for
∞∏
i=1

(
λ2
i

µ2
i

)
, then we have

∑
n

bNn
µ2
n

< B − 1.

Since bNn > 0 and bNn ↘ bn as N → ∞, where bn has the formula as

bn = (λ2n − µ2
n)
∏
k ̸=n

(
µ2
n − λ2k
µ2
n − µ2

k

)
,

we have
∑
n≥1

bn
µ2
n
< B − 1 and

∑
n≥1

bNn
µ2
n−z

converges uniformly to
∑
n≥1

bn
µ2
n−z

on any compact

K ⊂ σ.

Thus in this case we can write ρ1(s) =
∑
n

bnδµ2
k
(z) where bn has the form in (8.2.16).

Proposition 8.2.6. For the triple (W,W1, p) constructed in Theorem 8.0.1, we have

KerW1 ̸= {0} iff the following two equations hold:

∑
n≥1

an
λ2n

= 1,
∑
n≥1

an
λ4n

<∞. (8.2.17)

Hence by Proposition 8.2.1, (8.2.17) is also equivalent to:

∞∏
k=1

(λ2k
µ2
k

)
= ∞,

∞∏
k=1

( µ2
k

λ2k+1

)
= ∞. (8.2.18)

Proof. The proof is very much similar to the proof in Proposition 3.1.3.

We define two positive self-adjoint operators R,R1 as: R := W 1/2, R1 = W
1/2
1 , and

also a contraction T := R1R
−1 implied by Douglas Lemma 3.1.1, and also a vector

q := R−1p. Then the two equations in (8.2.17) are equivalent to:

∥q∥ = 1, q ∈ RanR
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(i) Under the condition that ∥q∥ < 1, we have shown in Proposition 8.2.5, that

KerW1 = {0};

(ii) Suppose that ∥q∥ = 1 and q /∈ RanR. Since we have

W1 = R2
1 = RT ∗TR = R(I − qq∗)R (8.2.19)

Since Ker(I − qq∗) = Span{q} and q /∈ RanR, we can see that KerR(I − qq∗)R = {0},

thus KerW1 = {0}.

(iii) Suppose that ∥q∥ = 1 and q ∈ RanR. Using (8.2.19) again, and apply u :=

R−1q to (8.2.19), we have (I − qq∗)Ru = 0, thus W1u = 0.

Now in contrast with the case when
∑
k≥1

ak
λ2
k
< 1, we consider the case when

∑
k≥1

ak
λ2
k
=

1. We first prove the following lemma:

Lemma 8.2.7. For all z /∈ { 1
µ2
j
}j≥1, we have the following equation

∞∏
j=1

1− zλ2j
1− zµ2

j

= 1− b0z +
∑
k≥1

bkz

µ2
kz − 1

is well-defined and holds for some constant b0 ∈ C. Here coefficients {bk}k≥1 has the

expression in (8.2.16).

Proof of Lemma 8.2.7. The first step is similar to the proof of Proposition 8.1.9. We

consider rewriting a finite product

N∏
j=1

1− zλ2j
1− zµ2

j

= 1 +
N∑
k=1

bNk
µ2
k − 1

z

= 1 +
N∑
k=1

bNk z

µ2
kz − 1

, (8.2.20)

then we have the coefficients bNk has the expression

bNk = (λ2k − µ2
k)

N∏
n=1,n̸=k

(µ2
k − λ2n
µ2
k − µ2

n

)
,

here bNk > 0 and bNn ↘ bn as N → ∞.
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Now we rewrite (8.2.20) and define function HN(z) as:

HN(z) :=
1

z

( N∏
j=1

1− zλ2j
1− zµ2

j

− 1
)
=

N∑
k=1

bNk
µ2
kz − 1

. (8.2.21)

Let z = 0, and we take the expansion of infinite product at z = 0 on LHS, we have the

sum

N∑
k=1

bNk =
N∑
j=1

(λ2j − µ2
j)

is bounded from above, thus let N → ∞, we have
∞∑
k=1

bk <∞.

Now again for the function HN(z) defined in (8.2.21), we write

HN(z) = HN(0) +

∫ z

0

H ′
N(t)dt. (8.2.22)

Here H ′
N(t) has the expression

H ′
N(t) =

N∑
j=1

−bNj µ2
j

(µ2
j t− 1)2

.

Thus for a compact set K which doesn’t intersect with any of { 1
µ2
j
}j≥1 and any

t ∈ K, we have

∣∣ −bNj µ2
j

(µ2
j t− 1)2

∣∣ ≤ C(K, σ)bNj .

Since
∑
j≥1

bj <∞, we have

N∑
j=1

−bNj µ2
j

(µ2
j t− 1)2

→
∞∑
j=1

−bjµ2
j

(µ2
j t− 1)2
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uniformly on K. Hence we take N → ∞ in (8.2.22), we get

1

z

( ∞∏
j=1

1− zλ2j
1− zµ2

j

− 1
)
= lim

N→∞
HN(0) +

∫ z

0

∞∑
j=1

−bjµ2
j

(µ2
j t− 1)2

Hence

1

z

( ∞∏
j=1

1− zλ2j
1− zµ2

j

− 1
)
=

∞∑
j=1

bj
µ2
kz − 1

+ C

for some constant C ∈ C. And we finish the proof of lemma 8.2.7.

With Lemma 8.2.7, we replace z by 1
z
, we get that for z /∈ {µ2

j}j≥1, we have the

following equation

∞∏
j=1

λ2j − z

µ2
j − z

= 1− b0
1

z
+
∑
k≥1

bk
µ2
k − z

,

where {bk}j≥1 has the form as (8.2.16). The only remaining thing to do is to find the

value of b0.

Lemma 8.2.8. With the assumptions that
∑
k≥1

ak
λ2
k
= 1 and

∑
k≥1

ak
λ4
k
<∞, we have

b0 =
(∑

k≥1

ak
λ4k

)−1

Proof. If we denote the scalar spectral measure ρ1(s) =
∑
k≥1

δµ2
k
(s) + b0δ0(s), and sub-

stitute it into

1 + F1(z) =
F1(z)

F (z)
=

∞∏
k=1

(z − λ2k
z − µ2

k

)
= 1 +

∑
k≥1

bk
µ2
k − z

− b0
z
.

Hence we have

b0 = lim
z→0

[
− z

∞∏
k=1

(z − λ2k
z − µ2

k

)]
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On the other hand, from (8.2.10) we have

−1

z

∞∏
k=1

(
z − µ2

k

z − λ2k

)
=

∞∑
k=1

ak
λ2k(λ

2
k − z)

. (8.2.23)

Let z → 0, then we get 1
b0

=
∑
k≥1

ak
λ4
k
, hence we finish the proof of Lemma 8.2.8.

Thus combining the results we get in Proposition 8.2.5, Lemma 8.2.7 and Lemma

8.2.8, we can give an expression for all coefficients of ρ1(s).

Proposition 8.2.9. Denote the scalar spectral measure of W1 with respect to p defined

by (8.1.4) to be ρ1(s). Then ρ1(s) =
∑
k≥1

bkδµ2
k
(s) + b0δ0(s) where:

bn = (λ2n − µ2
n)
∏
k ̸=n

(
µ2
n − λ2k
µ2
n − µ2

k

)
, when n ≥ 1

and

b0 =


0 if

∑
n

an
λ2
n
< 1, or

∑
n

an
λ2
n
= 1 and

∑
n

an
λ4
n
= ∞.(∑

n

an
λ4
n

)−1
if
∑
n

an
λ2
n
= 1 and

∑
n

an
λ4
n
<∞.

(8.2.24)

We can show that the coefficients {ak}k≥1 in (8.1.9), and the coefficients {bk}k≥0 in

Proposition 8.2.9 satisfy the following identities.

Proposition 8.2.10 (Modified from Corollary 1, [36]). For all m, p ≥ 1, we have

∑
j≥1

aj
λ2j − µ2

m

= 1, (8.2.25)

∑
j≥1

bj
λ2m − µ2

j

= 1− b0
λ2m

, (8.2.26)

∑
j≥1

aj
(λ2j − µ2

m)(λ
2
j − µ2

p)
=
δmp

bm
, (8.2.27)

∑
j≥1

bj
(µ2

j − λ2m)(µ
2
j − λ2p)

=
δmp

am
− b0
λ2mλ

2
p

. (8.2.28)
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Here δmp = 1 if m = p, and equals 0 otherwise.

Proof of Proposition 8.2.10. Recall that in previous calculation, the coefficients {ak}k≥0,

{bk}k≥0 is given by

1−
∑
k≥1

ak
λ2k − z

=
∏
k≥1

(z − µ2
k

z − λ2k

)
(8.2.29)

1 +
∑
k≥1

bk
µ2
k − z

− b0
z

=
∏
k≥1

(z − λ2k
z − µ2

k

)
(8.2.30)

Then (8.2.25) can be achieved by setting z = µ2
m in (8.2.29), and (8.2.26) can be

achieved by setting z = λ2m in (8.2.30).

For the case of m ̸= p in (8.2.27), we have

∑
j≥1

aj
(λ2j − µ2

m)(λ
2
j − µ2

p)

=
∑
j≥1

aj
[ 1

λ2j − µ2
m

− 1

λ2j − µ2
p

] 1

µ2
m − µ2

p

=
1

µ2
m − µ2

p

[∑
j≥1

aj
λ2j − µ2

m

−
∑
j≥1

aj
λ2j − µ2

p

]
= 0.

Here the last identity follows from (8.2.25).

For the case of m = p in (8.2.27), we take the differentiation on both sides of

(8.2.29), and then we have

∑
k≥1

− ak
(λ2k − z)2

=
∑
k≥1

µ2
k − λ2k

(z − λ2k)
2

∏
n̸=k

(z − µ2
n

z − λ2n

)
.

By setting z = µ2
m, we get

∑
k≥1

ak
(λ2k − µ2

m)
2
=

1

λ2m − µ2
m

∏
n̸=m

(µ2
m − µ2

n

µ2
m − λ2n

)
=

1

bm
.
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For the case of m ̸= p in (8.2.28), we have

∑
j≥1

bj
(µ2

j − λ2m)(µ
2
j − λ2p)

=
∑
j≥1

bj
[ 1

µ2
j − λ2m

− 1

µ2
j − λ2p

] 1

λ2m − λ2p

=
1

λ2m − λ2p

[∑
j≥1

bj
µ2
j − λ2m

−
∑
j≥1

bj
µ2
j − λ2p

]
=

1

λ2m − λ2p

[
(
b0
λ2m

− 1)− (
b0
λ2p

− 1)
]
= − b0

λ2mλ
2
p

Here the third identity follows from (8.2.26).

For the case of m = p in (8.2.28), we take the differentiation on both sides of

(8.2.26), and then we get

∑
k≥1

bk
(µ2

k − z)2
+
b0
z2

=
∑
k≥1

λ2k − µ2
k

(z − µ2
k)

2

∏
n ̸=k

(z − λ2n
z − µ2

n

)
.

By taking z = λ2m, we get

∑
k≥1

bk
(µ2

k − λ2m)
2
=

1

λ2m − µ2
m

∏
n̸=m

(λ2m − λ2n
λ2m − µ2

n

)
− b0
λ4m

=
1

am
− b0
λ4m

8.3 Abstract Borg’s Theorem: Finite Rank Case

Similar to the description in Theorem 8.0.1, we can also write the finite rank version

of Abstract Borg’s Theorem, which can be stated as below:

Theorem 8.3.1 (Abstract Borg’s Thoerem, Finite Rank Version). Given two se-

quences {λ2k}Nk=1, {µ2
k}Nk=1 satisfy the following intertwining relation

λ21 > µ2
1 > ... > λ2N > µ2

N ≥ 0,
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then there exists an unique (up to unitary equivalence) triple (W,W1, p), such that

W,W1 are positive self-adjoint compact operators with trivial kernel, and also satisfy

W1 = W − pp∗. In addition, the eigenvalues of W,W1 are simple, and coincide with

{λ2k}Nk=1, {µ2
k}Nk=1 respectively.

Remark 8.3.2. If µ2
N = 0, then we have the constructed operator W1 has a kernel of

dimension 1; if µ2
N > 0, then we have the constructed operator W1 also has trivial

kernel.

Remark 8.3.3. The proof for this Abstract Borg’s theorem in finite-rank version is

trivial, because the infinite product
∞∏
k=1

( z−µ2
k

z−λ2
k

)
now becomes a finite product

N∏
k=1

( z−µ2
k

z−λ2
k

)
.

Under the setting in Theorem 8.3.1, if we write down the scalar spectral measure

of W,W1 with respect to p:

F (z) =
〈
(W − zI)−1p, p

〉
=

∫
σ(W )

dρ(s)

s− z
,

F1(z) =
〈
(W1 − zI)−1p, p

〉
=

∫
σ(W1)

dρ1(s)

s− z
,

we still have 1 − F = F
F1
, and we have the coefficients of ρ(s) =

N∑
n=1

anδλ2
n
(s), ρ1(s) =

N∑
n=1

bnδµ2
n
(s) has the following representation:

an = (λ2n − µ2
n)
∏
k ̸=n

(λ2n − µ2
k

λ2n − λ2k

)
,

bn = (λ2n − µ2
n)
∏
k ̸=n

(µ2
n − λ2k
µ2
n − µ2

k

)
.

Under this case, we have

∥W−1/2p∥ = 1 ⇔
N∑
k=1

ak
λ2k

= 1 ⇔ µN = 0;

as for the second identity ∥W−1p∥ = ∞ in the trivial kernel condition, it can’t be true
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because
N∑
k=1

ak
λ4
k
is always finite.

8.4 Proof of Generalized Abstract Borg’s Theorem

Proof. First by using the result of Abstract Borg Theorem 8.0.1, we can find a triple

(W,W1, p) on a Hilbert space H̃, such that

(i) W,W1 are self-adjoint compact, positive operators. KerW = {0};

(ii) W −W1 = pp∗;

(iii) p is cyclic with respect to W on H̃;

(iv) {λ2k}∞k=1, {µ2
k}∞k=1 are the simple eigevalues of W,W1 respectively.

Now define operators R̃, R̃1 as R̃ = W 1/2, R̃1 = W
1/2
1 , we have R̃, R̃1 have simple

eigenvalues {λk}∞k=1, {µk}∞k=1 respectively.

Now we define an extended Hilbert space

H = H̃ ⊕ H1 ⊕H2 ⊕ ...H2k−1 ⊕H2k...

Here H2k−1 is a Hilbert space with dimension m(λk) − 1, H2k is a Hilbert space

with dimension m(µk).

And we also extend R̃, R̃1 to two operators R,R1 defined on H. We let

(i) For all k ∈ N, We take R = R1 = λkI on H2k−1;

(ii) For all k ∈ N, we take R = R1 = µkI on H2k.
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From (i) and (ii), we can see

dimKer(R− λkI) = dimH2k−1 + 1 = m(λk);

dimKer(R1 − λkI) = dimH2k−1 = m(λk)− 1;

dimKer(R− µkI) = dimH2k = m(µk);

dimKer(R1 − µkI) = dimH2k + 1 = m(µk) + 1;

Thus (R,R1, p) is a satisfied triple on H.

Now we move on to the uniqueness part. Assume that (W,W1, p), (W
′,W ′

1, p
′) are

two satisfied tuples defined on spaces H,H′ respectively. Then we denote

H0 := Span
{
W np

∣∣n ≥ 0
}
;

Eλk
:= Ker(W − λ2I), Eµk

:= Ker(W − µ2
kI);

E1
λk

:= Ker(W1 − λ2kI), E1
µk

:= Ker(W1 − µ2
kI);

W̃ = W
∣∣
H0

, W̃1 = W1

∣∣
H0

And we define H′
0,Eλk

,Eµk
,E1

λk
,E1

µk
, W̃ ′, W̃ ′

1 similarly.

Then followed by Proposition 6.2.10, we have (W̃ , W̃1, p) and (W̃ ′, W̃ ′
1, p

′) are two

tuples that have simple eigenvalues {λ2k}∞k=1, {µ2
k}∞k=1 respectively, which also satisfy

all requirements given in Theorem 8.0.1, Hence applying Theorem 8.0.1, we have those

two tuples are unitary equivalent, i.e.

W̃ ′ = Ṽ W̃ Ṽ ∗, W̃1 = Ṽ W̃1Ṽ
∗, p′ = Ṽ p

for an unitary Ṽ : H0 → H̃0.
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Now using Proposition 6.2.10 again, we have

H⊖H0 =

( ∞⊕
k=1

E1

λk

)⊕( ∞⊕
k=1

Eµk

)
H′ ⊖H′

0 =

( ∞⊕
k=1

E1

λk

)⊕( ∞⊕
k=1

Eµk

)
.

In addition we have W = W1 on H⊖H0, and W
′ = W ′

1 on H′ ⊖H′
0; i.e. we have

W = W1 = λkI on E1
λk

for all k, W = W1 = µkI on Eµk
for all k

W ′ = W ′
1 = λkI on E1

λk
for all k, W ′ = W ′

1 = µkI on Eµk
for all k

Since dim E1
λk

= dimE1
λk

= m(λk) − 1, dim Eµk
= dimEµk

= m(µk), we can define

ϕ1
k to be an arbitrary unitary operator mapping E1

λk
to E1

λk
; and ϕk to be an arbitrary

unitary operator mapping Eµk
to Eµk

. Then we can extend Ṽ to an unitary V : H → H′

such that

V = Ṽ on H0,

V = ϕ1
k on E1

λk
for all k, V = ϕk on Eµk

for all k.

Then we have

W = VWV ∗, W1 = VW1V
∗, p′ = V p.

Thus the uniqueness part is done.
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Chapter 9

RESULT FOR COMPACTHANKEL OPERATORS

WITH SIMPLE EIGENVALUES

With the Abstract Borg’s Theorem 8.0.1, we are ready to solve the question that

what type of spectral data can uniquely determine a Hankel operator Γ when Γ is

compact with simple singular values.

In section 9.1, we will show that under the self-adjoint case, a compact Hankel

operator with simple singular values will be uniquely determined by two sequences of

real numbers {λn}∞n=1, {µn}∞n=1 satisfying an intertwining relation:

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0 (9.0.1)

In section 9.2, we will show that under the non-self-adjoint case, a compact Hankel

operator with simple singular values will be uniquely determined by two sequences

of complex numbers {λn}∞n=1, {µn}∞n=1, whose modulus part satisfy an intertwining

relation:

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0 (9.0.2)

In section 9.3, we generate the result for finite rank Hankel operators with simple

singular values, under both self-adjoint case and non self-adjoint case.
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9.1 Result for Self-adjoint Compact Hankel Operators with

Simple Eigenvalues

Theorem 9.1.1. Given two sequences of real numbers {λn}∞n=1 and {µn}∞n=1 satisfying

intertwining relations

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0, (9.1.1)

there exists a unique self-adjoint compact Hankel operator Γ such that non-zero eigen-

values of Γ and ΓS are simple, and coincide with {λn}∞n=1 and {µn}∞n=1 respectively.

Moreover, Ker Γ = {0} if and only if both of the following identities hold:

∞∑
j=1

(
1−

µ2
j

λ2j

)
= ∞, (9.1.2)

∞∑
j=1

(
µ2
j

λ2j+1

− 1

)
= ∞. (9.1.3)

Proof. By Theorem 8.0.1, we can find a triple (W,W1, p) on a Hilbert space H with the

relation: W1 = W − pp∗, here W and W1 are positive, compact self-adjoint operators

with simple eigenvalues {λ2k}∞k=1, {µ2
k}∞k=1 respectively. In addition, the triple is unique

determined up to unitary equivalence.

Denote that the eigenvector of W corresponding to λ2k is uk, and the eigenvector of

W1 corresponding to µ2
k is vk;

Wuk = λ2kuk, W1vk = µ2
kvk.

Since

H =
∞⊕
k=1

Span{uk} = KerW1 ⊕
( ∞⊕

k=1

Span{vk}
)
,
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Then we define self-adjoint R and R1 on H by

Ruk := λkuk;

R1vk := µkvk, R1|KerW1
= 0.

Here we have KerR = {0} and KerR1 = KerW1 with dimension at most 1, and

we can express R and R1 by

Rx =
∞∑
k=1

λkPuk
x, R1x =

∞∑
k=1

µkPvkx,

Hence we get the unique square roots of W and W1 according to the given signs of

{λk}∞k=1, {µk}∞k=1.

Now we have the triple (R,R1, p) satisfies the relation (3.1.5), and the contraction

T defined by R1 = T R is asymptotically stable. Hence by Proposition 3.1.3, there

exists an unique self-adjoint Hankel operator Γ such that the triple Γ|(Ker Γ)⊥ , Γ1|(Ker Γ)⊥ ,

u := Γe0 = ΓP
(Ker Γ)⊥

e0 is unitarily equivalent to the triple (R,R1, p). This means that

the non-zero eigenvalues of Γ and Γ1 are simple and coincide with {λk}∞k=1 and {µk}∞k=1

respectively.

As for the uniqueness, assume that (Γ,Γ1, u := Γe0) and (Γ′,Γ′
1, u

′ := Γ′e0) are

two different set of triples satisfied the conditions. Then by Proposition 3.1.3, there

are two different triples (R,R1, p), (R′,R′
1, p) defined on the same Hilbert space such

that (Γ,Γ1, u) unitary equivalent to (R,R1, p), and (Γ′,Γ′
1, u

′) unitary equivalent to

(R′,R′
1, p), where (R,R1) and (R′,R′

1) share the same spectral characteristics.

From the equation

R2 −R2
1 = R′2 −R′2

1 = pp∗,

and the uniqueness in the abstract Borg’s theorem 8.0.1, we have R2 = R′2 = W,R2
1 =

R′2
1 = W1. If R ≠ R′, then there exists a k, such that Ker(R − λI) ̸= Ker(R′ − λI),
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thus dimKer(W − λ2I) ≥ 2, which gives a contradiction.

Similarly we have R1 = R′
1, which indicates the uniqueness of such Hankel operator.

As for the trivial kernel condition, we have mentioned in Proposition 3.1.3 that

Ker Γ = {0} if and only if ∥q∥ = 1 and q /∈ Ran{R}, where q := R−1p.

Here the first condition ∥q∥ = 1 can be rewritten as ∥W−1/2p∥ = 1, and we have

shown in Theorem 8.0.1 that this identity is equivalent to

∞∑
k=1

(
µ2
k

λ2k
− 1

)
= −∞ ⇔

∞∏
k=1

µ2
k

λ2k
= 0

And the second condition q /∈ RanR can be rewritten as ∥W−1p∥ = ∞, again

implied by Theorem 8.0.1 that this identity is equivalent to

∞∑
k=1

(
µ2
k

λ2k+1

− 1

)
= ∞ ⇔

∞∏
k=1

µ2
k

λ2k+1

= ∞.

Remark 9.1.2. With the discussion in subsection 8.2.2, we can also get an equivalent

condition for Ker Γ1/Ker Γ = {0} for the constructed Hankel operator, which is:

∞∏
k=1

µ2
k

λ2k
= 0,

∞∏
k=1

µ2
k

λ2k+1

<∞

9.2 Result for Compact Hankel Operators with Simple Sin-

gular Values as Complex Symmetric Operators

Theorem 9.2.1. Given complex sequences {λn}∞n=1 and {µn}∞n=1, where λk = ske
iθk , µk =

tke
iθ′k , and the modulus part satisfies the following intertwining relation

s1 > t1 > s2 > t2 > ...→ 0, (9.2.1)
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then there exists a unique compact Hankel operator Γ, such that we can find a conju-

gation Ju commutes with |Γ| and preserves u := Γ∗e0 (implied by Lemma 4.0.1) with

ϕ̃, ϕ̃1 defined in (5.1.5), satisfying that non-zero eigenvalues of |Γ̃|ϕ̃, |Γ̃1|ϕ̃1 are simple,

and coincide with {λn}∞n=1 and {µn}∞n=1 respectively.

Moreover, Ker Γ = {0} if and only if both of the following identities hold:

∞∑
j=1

(
1−

t2j
s2j

)
= ∞,

∞∑
j=1

(
s2j
t2j+1

− 1

)
= ∞.

Proof. By Theorem 8.0.1, we can find a triple (W,W1, p) on a Hilbert space H

(unique up to equivalence) satisfying

(i) W1 = W − pp∗, where W,W1 are positive, self-adjoint operators;

(ii) W has trivial kernels, p is a cyclic vector for W ;

(iii) W,W1 have simple nonzero eigenvalues {s2k}∞k=1, {t2k}∞k=1 respectively.

Now denote the eigenvectors of W corresponding to s2k is uk, and eigenvectors of

W1 corresponding to t2k is vk. Since

H =
∞⊕
k=1

Span{uk} = KerW1 ⊕
( ∞⊕

k=1

Span{vk}
)
,

We define positive self-adjoint operators R,R1 on H as

Rx :=
∞∑
k=1

skPuk
x, R1x :=

∞∑
k=1

tkPvkx (9.2.2)

Now we also define a unitary φ and a partial isometry φ1 as

φx :=
∞∑
k=1

eiθkPuk
x, φ1x :=

∞∑
k=1

eiθ
′
kPvkx (9.2.3)
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Easy to see that φ, φ1 commutes with R,R1 respectively, and share the same cor-

responding one-dimensional eigenspaces. Here Rφ,R1φ1 are compact operators with

simple eigenvalues {λn}∞n=1, {µn}∞n=1 respectively.

Now we define a conjugation Jp on H. Since H = Span{Rnp|n ≥ 0}, we define Jp

by

JpR
np = Rnp for all n.

This is the same as defining Jp by

Jppk = pk for all k,

where

pk = P
∣∣
Ker(W−λ2

kI)
p.

In addition, we can check that φ, φ1 are Jp-symmetric. In fact, for all k we have

Jpφpk = Jpe
iθkpk = e−iθkJppk = φ∗Jppk.

Thus Jpφ = φ∗Jp on H, and a similar result holds for φ1.

Now all the assumptions in Proposition 5.2.4 are satisfied, and we apply the tuple

(R,R1, p, φ, φ1, Jp) to Proposition 5.2.4. Thus there exists a unique Hankel Γ, such that

we can find a conjugation Ju commuting with |Γ̃|, |Γ̃1| and preserves u := Γ∗e0, satisfy-

ing that the tuple (|Γ̃|, |Γ̃1|, J̃u, ϕ̃, ϕ̃1, u) and (R,R1, Jp, φ, φ1, p) are unitary equivalent.

This implies that |Γ̃|ϕ̃, |Γ̃1|ϕ̃1 are compact, and has simple non-zero eigenvalues as

{λn}∞n=1 and {µn}∞n=1 respectively. And we finish the proof of existence part.

Now we move on to uniqueness. Suppose that there are two different Hankel Γ,Γ′

that satisfies all requirements in Proposition 9.2.1. We will show that Γ,Γ′ have the
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same Hankel coefficients {γk}∞k=1, hence they are the same.

Denote their corresponding tuples to be (|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1) and (|Γ̃′|, |Γ̃′
1|, u′, ϕ̃′, ϕ̃′

1).

We have

|Γ̃|2 − |Γ̃1|2 = uu∗, |Γ̃′|2 − |Γ̃′
1|2 = u′(u′)∗.

Here |Γ̃|, |Γ̃′| have simple eigenvalues {sk}∞k=1, and |Γ̃1|, |Γ̃′
1| have simple eigenvalues

{tk}∞k=1. Then by the uniqueness in Theorem 8.0.1, those two triples (|Γ̃|, |Γ̃1|, u) and

(|Γ̃′|, |Γ̃′
1|, u′) are unitary equivalent. That is, there exists a unitary Ṽ : ℓ2 → ℓ2 such

that

|Γ̃| = Ṽ|Γ̃′|Ṽ∗, |Γ̃1| = Ṽ|Γ̃′
1|Ṽ∗, u = Ṽu′ (9.2.4)

We will show that

ϕ̃ = Ṽϕ̃′V∗, ϕ̃1 = Ṽϕ̃′
1Ṽ∗. (9.2.5)

In fact, if we denote the eigenvectors of |Γ̃| corresponding to {sk}∞k=1 as {uk}∞k=1,

i.e.

|Γ̃|uk = skuk holds for all k.

Then since |Γ̃| commutes with ϕ̃, we have {uk}∞k=1 are also eigenvectors for ϕ̃:

ϕ̃uk = eiθkuk holds for all k.

Now from |Γ̃| = Ṽ|Γ̃′|Ṽ∗, we have Ṽ∗uk is an eigenvector for |Γ̃′|. In fact,

|Γ̃′|Ṽ∗uk = Ṽ∗|Γ̃|uk = skṼ∗uk
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Since |Γ̃′| commutes with ϕ̃′. we have {Ṽ∗uk}∞k=1 are eigenvectors for ϕ̃′:

ϕ̃′Ṽ∗uk = eiθkV∗uk holds for all k.

Thus for all k we have

Ṽϕ̃′Ṽ∗uk = eiθk ṼṼ∗uk = eiθkuk = ϕ̃uk.

This proves that Ṽϕ̃′Ṽ∗ = ϕ̃. For a similar reason, we have Ṽϕ̃′
1Ṽ∗ = ϕ̃1. Thus

tuple (|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1) and (|Γ̃′|, |Γ̃′
1|, u′, ϕ̃′, ϕ̃′

1) are unitary equivalent.

Now we apply Proposition 5.1.4, we have the Hankel coefficients of Γ can be repre-

sented by:

γk = ⟨(S∗)ku, v⟩, (9.2.6)

where S∗ = |Γ̃1|ϕ̃∗
1ϕ̃|Γ̃|−1, and v = |Γ̃|−1ϕ̃∗u (see equation 5.1.8).

Since the two tuples for Γ,Γ1, (|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1) and (|Γ̃′|, |Γ̃′
1|, u′, ϕ̃′, ϕ̃′

1) are unitary

equivalent. Thus by (9.2.6), Γ,Γ′ have the same Hankel coefficients, thus they are the

same.

As for the trivial kernel condition, we have Ker Γ = {0} is equivalent to ∥q∥ = 1

and q /∈ RanR. Again, with the construction of (W,W1, p, φ, φ1) in the existence part,

∥q∥ = 1 and q /∈ RanR are equivalent to:

∥q∥ = 1 ⇔ ∥φ∗R−1p∥ = 1 ⇔ ∥W−1/2p∥ = 1

q /∈ RanR ⇔ ∥R−1q∥ = ∞ ⇔ ∥R−2p∥ = ∥W−1p∥ = ∞

Thus by Theorem 8.0.1, Ker Γ = {0} if and only if

∞∑
j=1

(
1−

t2j
s2j

)
= ∞,

∞∑
j=1

(
s2j
t2j+1

− 1

)
= ∞.
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Remark 9.2.2. Note that we use notation (R,R1) in section 8.1, meaning that R,R1

are self-adjoint. While in section 8.2 we use notation (R,R1) implying that R,R1 are

also positive. In other words, in the self-adjoint case if we write the polar decomposition

form of R,R1:

R = Rφ, R1 = R1φ1,

then σ(φ) = σp(φ) ⊆ {±1}, σ(φ1) = σp(φ1) ⊆ {0,±1} and also dimKerφ1 ≤ 1.

Remark 9.2.3. In the definition of unitary φ and partial isometry φ1 (see (9.2.3)), we

can also write φ = f(R), φ1 = f1(R1) for some unimodular measurable functions f, f1.

Here f, f1 has the following expression:

f(x) =
∞∑
k=1

1{x=sk}e
iθk + 1R/{sk}∞k=1

, (9.2.7)

f1(x) =
∞∑
k=1

1{x=tk}e
iθ′k + 1R/{tk}∞k=1

. (9.2.8)

Remark 9.2.4. With the discussion in subsection 8.2.2, we can also get an equivalent

condition for Ker Γ1/Ker Γ = {0} for the constructed Hankel operator, which is:

∞∏
k=1

t2k
s2k

= 0,
∞∏
k=1

t2k
s2k+1

<∞.

9.3 Result for Finite Rank Hankel Operators with Simple Sin-

gular Values

Using the finite rank version of Abstract Borg’s Theorem 8.3.1 given in section 8.3,

we can also find out the spectral data that can uniquely determine a finite rank Hankel

operator Γ with simple singular values.
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The following result is for the self-adjoint case.

Theorem 9.3.1. Given two sequences of real numbers {λk}Nk=1, {µk}Nk=1, satisfying the

following intertwining relation

|λ1| > |µ1| > ... > |λN | > |µN | ≥ 0,

there exists a unique self-adjoint finite-rank Hankel operator Γ with simple singular

values, such that the non-zero eigenvalues of Γ
∣∣
(Ker Γ)⊥

and Γ1

∣∣
(Ker Γ)⊥

are simple, and

coincide with {λk}Nk=1, {µk}Nk=1 respectively.

In addition, for the finite-rank case, we have that the constructed Γ must have a

infinite dimensional kernel. And Ker Γ1/Ker Γ = {0} if and only if µN > 0.

The following result is for the non self-adjoint case.

Theorem 9.3.2. Given complex sequences {λn}Nn=1 and {µn}Nn=1, where the modulus

part sk := |λk|, tk := |µk| satisfy the intertwining relation

s1 > t1 > s2 > t2 > ... > sN > tN ≥ 0,

then there exists a unique compact Hankel operator Γ with simple singular values, such

that we can find a conjugation Ju commutes with |Γ| and preserves u := Γ∗e0 (implied

by Lemma 4.0.1) with ϕ̃, ϕ̃1 defined in (5.1.5), satisfying that non-zero eigenvalues of

|Γ̃|ϕ̃, |Γ̃1|ϕ̃1 are simple, and coincide with {λn}∞n=1 and {µn}∞n=1 respectively.

Moreover, the constructed Hankel operator Γ must have an infinite dimensional

kernel Γ, and Ker Γ1/Ker Γ = {0} if and only if µN = 0.

The proof to these two theorems are very much similar to the ones for Theorem

9.1.1 and Theorem 9.2.1, so we omit them.
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9.4 Conclusion

In this chapter, we further translate the spectral data of two operators that can

uniquely determine a compact Hankel operator with simple singular values.

(i) If the Hankel operator Γ is self-adjoint, Theorem 9.1.1 indicates that Γ will be

uniquely determined by two sequences of real numbers {λn}∞n=1 ,{µn}∞n=1, satisfying an

intertwining relations

|λ1| > |µ1| > |λ2| > |µ2| > .... > |λn| > |µn| > ...→ 0. (9.4.1)

If we write the Borel transform of Γ2 with respect to u:

(
(Γ2 − zI)−1u, u

)
=

∫
dρ(s)

s− z
,

then the coefficients of the scalar spectral measure ρ(s) =
∑
k≥1

akδλ2
k
(s) is uniquely

determined with the expression in (8.1.9).

(ii) For the case when Hankel operator is not self-adjoint, Theorem 9.2.1 implies that

Γ can be uniquely determined by two sequences of complex numbers {λn}∞n=1,{µn}∞n=1,

whose modulus part satisfy an intertwining relation (9.2.1).

|λ1| > |µ1| > |λ2| > ...→ 0.

In other words, with the constructed conjugation J̃Γ which commutes with |Γ̃|, |Γ̃1|

and preserves u := Γ∗e0, and the induced unitary ϕ̃ and partial isometry ϕ̃1 given in

(5.1.5). We have the non-zero eigenvalues of the two operators |Γ̃|ϕ̃, |Γ̃1|ϕ̃1 are simple,

and coincide with {λn}∞n=1 and {µn}∞n=1 respectively.

For this second case, we can also say that the Hankel operator Γ can be uniquely

determined by three factors:

(a) A discrete measure ρ(s), which is the scalar spectral measure of |Γ|2 with respect
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to u = Γ∗e0: (
(|Γ|2 − zI)−1u, u

)
=

∫
dρ(s)

s− z
.

The coefficients of this scalar measure is uniquely determined by the modulus part

of sequences {λn}∞n=1 and {µn}∞n=1.

(b) A unimodular measurable function f : R → C (with the expression in (9.2.7))

, which is determined by the phase part of complex sequences {λn}∞n=1. This

function induces an unitary operator f(|Γ̃|) commutes with |Γ| and share the same

eigenvectors with |Γ̃|.

(c) A unimodular measurable function f1 : R → C (with the expression in (9.2.8)) ,

which is determined by the phase part of complex sequences {µn}∞n=1. This function

induces an operator f1(|Γ̃1|) commutes with |Γ̃1| and share the same eigenvectors

with |Γ̃1|.

Notice that for both situations, we require the cyclicity of vector p to guarantee the

asymptotic stability of a contraction T := R1φ1φ
∗R in the description of Proposition

3.1.3 and Proposition 5.2.3. Thus the geometric multiplicities of singular values of

constructed Γ must be no more than 1.
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Chapter 10

RESULT FOR COMPACTHANKEL OPERATORS

WITH NON-SIMPLE EIGENVALUES

In this chapter, we will further discuss the spectral data we need that can uniquely

determine a compact Hankel operator with non-simple singular values. The main re-

sult in this chapter is given in Theorem 10.1.5, saying that a compact Hankel operator

with non-simple singular values can be uniquely determined by two sequences of posi-

tive real numbers {λk}∞k=1, {µk}∞k=1, and two sequences of positive discrete probability

measure {ρ̃k}∞k=1, {ρ̃1k}∞k=1. Here the two sequences of real numbers satisfy the following

intertwining relation:

λ1 > µ1 > λ2 > µ2 > ....→ 0,

In section 10.1, we recall the setting in previous chapter and do some preparation

work. And in section 10.2, we prove the main result (Theorem 10.1.5) in this chapter.

10.1 Preparation Work and Main Result

10.1.1 The setting of Tuple from Previous Chapters

We first recall the setting of tuple (R,R1, p, φ, φ1, Jp) defined in chapter 5:
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(i) R,R1 are two positive, self-adjoint compact operator defined on a Hilbert space

H. In addition we have KerR = {0};

(ii) R2 −R2
1 = pp∗ for a vector p with ∥R−1p∥ ≤ 1;

(iii) Jp is a conjugation commutes with R,R1 and preserves p, implied by Lemma 4.0.1

and Lemma 5.1.1;

(iv) φ is a Jp-symmetric unitary operator, which commutes with R;

(v) φ1 is a Jp-symmetric partial isometry with Kerφ1 = KerR1, which commutes

with R1. In addition, we have φ1|
(KerR1)⊥

is unitary (See Remark 5.2.1);

(vi) The contraction T defined as T := φ1R1R
−1φ∗ is asymptotically stable.

We again use the definition H0 := Span{Rnp|n ≥ 0}. Then in Proposition 6.2.2,

we have shown that there exists an intertwining real sequence

λ1 > µ1 > λ2 > µ2 > ....→ 0, (10.1.1)

such that R|H0
, R1|H0

have {λk}∞k=1. {µk}∞k=1 as their non-zero eigenvalues respectively.

Afterwards, Proposition 6.2.10 gives the complete structure of the eigenspaces of

R,R1. From Lemma 6.2.8 we know that R,R1 doesn’t have any eigenvalues other than

{λk}∞k=1, {µk}∞k=1 and 0. Using the same notation Eλk
, E1

λk
, Eµk

, E1
µk

defined in (6.2.7),

then we have

(i)

H⊥
0 =

( ∞⊕
k=1

E1

λk

)⊕( ∞⊕
k=1

Eµk

)

(ii)

Eλk
= E1

λk
⊕ Span{pk}, E1

µk
= Eµk

⊕ Span{p1k},

134



where pk, p
1
k are defined in (6.2.9).

Furthermore, if we take the canonical choice of φ, φ1 given in Lemma 6.3.2:

φ1|E1
λk

= I, φ|
Eµk

= I,

then by Proposition 7.6.3, the asymptotic stability of T implies that:

(i) pk is *-cyclic for φ restricted in Eλk
;

(ii) p1k is *-cyclic for φ1 restricted in E1
µk
.

Remark 10.1.1. (i) We should notice that all Eλk
, E1

λk
, Eµk

, E1
µk

are eigenspaces of com-

pact operators, so they must have finite dimensions.

(ii) From the asymptotic stability assumption, we have for all k

Eλk
= Span

{
φnpk|n ∈ Z

}
.

Here we denote φn = (φ∗)−n for a negative n.

Actually, we can show that Eλk
= Span

{
φnpk||n| ≤ Nk, n ∈ Z

}
holds for a finite

Nk.

In fact, if we define Ei = Span
{
φnpk||n| ≤ i, n ∈ Z

}
, then E1 ⊆ E2 ⊆ ... is an

increasing sequence. Since dimEλk
< ∞, thus the sequence must stay at a constant

subspace from a certain Ei.

10.1.2 Behavior of φ, φ1 on the Eigenspaces

Now for the given pk ∈ Eλk
and the unitary operator φ

∣∣
Eλk

, we consider all functions

f(z) defined on T with the following form:

f(z) =
N∑

n=−N

anz
n N is finite , an ∈ C.
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Denote the set that consists of all such f to be S. For all f ∈ S, we have

f → ⟨pk, f(φ)pk⟩ (10.1.2)

is a linear functional on S. According to Stone Weierstrass Theorem, P (T) (the set of

polynomials on T with complex coefficients) is dense in C(T) ( the set of continuous

functions on T), thus S is also dense in C(T). And (10.1.2) can be extended to all

f ∈ C(T).

Now applying Riesz Representation Theorem, we can find a complex Borel measure

on T (We have σ(φ) ⊆ T since φ is unitary), denoted as ρk, such that

∫
T
f(s)dρk(s) = ⟨pk, f(φ)pk⟩. (10.1.3)

This measure ρk is also known as the scalar spectral measure of φ|
Eλk

with respect

to pk.

In addition, the Borel transform of φ|
Eλk

with respect to pk is given by

Fk(z) = ⟨(φ− zI)−1pk, pk⟩ =
∫
T

dρk(s)

s− z
.

Proposition 10.1.2. The unitary operator φ
∣∣
Eλk

and the scalar spectral measure ρk(s)

in (10.1.3) satisfies the following properties:

(i) ρk(s) =
N∑
i=1

aiδβi
(s) for some ai > 0, |βi| = 1;

(ii) φ
∣∣
Eλk

=
N∑
i=1

βiPKer(φ|Eλk
−βiI)

(iii) dimKer(φ|Eλk
− βiI) = 1 holds for all i. Hence N = dimEλk

;

(iv)
N∑
i=1

ai = ρk(T) = ∥pk∥2. For each i, we have

ai = ∥P
Ker(φ|

Eλk

−βiI)
pk∥2
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Proof of Proposition 10.1.2. First notice that φ
∣∣
Eλk

is unitary and finite rank, thus by

the spectral theorem for compact normal operators (See [37]), we can write

φ
∣∣
Eλk

=
N∑
i=1

βiPi. (10.1.4)

Here {βi}Ni=1 are all eigenvalues of φ
∣∣
Eλk

. and Pi is the projection operator onto

Ker(φ
∣∣
Eλk

− βiI). Since φ
∣∣
Eλk

is unitary, we have all βi has module 1.

Then the scalar spectral measure ρk(s) can be written as

ρk(s) =
N∑
i=1

aiδβi
(s)

for some ai ∈ C.

Now we write pk =
N∑
i=1

pki, where pki ∈ Ker(φ
∣∣
Eλk

− βiI). We will show that

pki ̸= 0, dimKer(φ
∣∣
Eλk

− βiI) = 1.

In fact, from (10.1.4), we can write φ∗
∣∣
Eλk

as

φ∗∣∣
Eλk

=
N∑
i=1

βiPi. (10.1.5)

If pki = 0, then we have

Span
{
φnpk, (φ

∗)npk
}
⊥ Ker(φ

∣∣
Eλk

− βiI),

which contradicts to the *-cyclicity of pk.

On the other hand, we know from the representation of φ, φ∗ in (10.1.4) and
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(10.1.5), we know that the intersection

Span
{
φnpk, (φ

∗)npk
}
∩Ker(φ

∣∣
Eλk

− βiI)

is at most a one-dimensional space. Thus if dimKer(φ|Eλk
− βiI) ≥ 2 for some i, it

will also contradict to the *-cyclicity of pk. Hence we finish the proof of (iii).

Now for (iv), we apply a sequence of polynomials {fn} that converges to 1{x=βi} to

(10.1.3), then we get

ai = ⟨pk, PKer(φ|
Eλk

−βiI)
pk⟩ = ∥pki∥2 > 0.

Thus we have

ρk(T) =
N∑
i=1

ai =
N∑
i=1

∥pki∥2 = ∥pk∥2.

We can also get this identity by simply setting f = 1 into (10.1.3)

Remark 10.1.3. Note that equation (10.1.4) implies that φ
∣∣
Eλk

is diagonalizable. Thus

for each eigenvalue βi, the algebraic multiplicity of βi equals to the geometric multiplic-

ity of βi. This is not necessarily true for a general compact operator, where algebraic

multiplicity is usually bigger than the geometric multiplicity.

Remark 10.1.4. Denoting N = dimEλk
, we can show that

Span
{
φnpk

∣∣0 ≤ n ≤ N − 1
}
= Eλk

,

which is stronger than the condition in Proposition 7.6.3.

In fact, this can immediately be resulted from the fact that the projection of pk on
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each eigenspace Ker(φ
∣∣
Eλk

− βiI) is non-zero, and the Vandermonde matrix

Mij =


1 1 ... 1

β1 β2 ... βN

...

βN−1
1 βN−1

2 ... βN−1
N


has non-zero determinant

|
(
Mij

)
1≤i,j≤N

| =
∏
i<j

(
βj − βi

)
.

Now similarly for p1k and φ1

∣∣
E1

µk

, we can define the scalar spectrum measure ρ1k on

T by:

∫
T
f(s)dρ1k(s) = ⟨p1k, f(φ1)p

1
k⟩,

and the Borel transform of φ1|E1
µk

with respect to p1k

F 1
k (z) = ⟨(φ1 − zI)−1p1k, p

1
k⟩ =

∫
T

dρ1k(s)

s− z
.

Similar to the proof in Proposition 10.1.2, ρ1k(s) is also a positive discrete measure,

which concentrate on finitely many points on T. And we also have

ρ1k(T) = ∥p1k∥2.

We can see that the total measure of ρk(s), ρ
1
k(s) equal to ∥pk∥2, ∥p1k∥2, which is

not independent on the intertwining sequence {λk}∞k=1, {µk}∞k=1. Hence if we normalize

ρk, ρ
1
k by changing pk, p

1
k to pk

∥pk∥
,
p1k
p1k

respectively, that is, we denote ρ̃k, ρ̃
1
k to be the
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scalar spectral measure of φ|
Eλk

, φ1|E1
µk

with respect to pk
∥pk∥

,
p1k

∥p1k∥
respectively:

∫
T
f(s)dρ̃k(s) = ⟨ pk

∥pk∥
, f(φ)

pk
∥pk∥

⟩,
∫
T
f(s)dρ̃1k(s) = ⟨ p1k

∥p1k∥
, f(φ1)

p1k
∥p1k∥

⟩,

then we have ρ̃k(T) = ρ̃1k(T) = 1.

In this section, we will show that a Hankel operator can be uniquely determined by

the choice of {λk}∞k=1, {µk}∞k=1, {ρ̃k}∞k=1, {ρ̃1k}∞k=1; i.e. we can take {λk}∞k=1, {µk}∞k=1,

{ρ̃k}∞k=1, {ρ̃1k}∞k=1 as the spectral data of a compact Γ.

Theorem 10.1.5. Given an intertwining sequence

λ1 > µ1 > λ2 > µ2 > ....→ 0,

and two sequences of normalized measure on T, denoted as {ρ̃k}∞k=1, {ρ̃1k}∞k=1, satisfy

(i) ρ̃k(T) = 1, ρ̃1k(T) = 1;

(ii) ρk, ρ
1
k are positive discrete measure concentrated on finitely many points on T.

then there exists a unique Hankel operator Γ, such that

(a) |Γ̃|, |Γ̃1| are compact, and have no other non-zero eigenvalues than {λk}∞k=1, {µk}∞k=1.

Furthermore, if denoting

E1
λk

:= Ker(|Γ̃1| − λkI), Eλk
:= Ker(|Γ̃| − λkI);

E1
µk

:= Ker(|Γ̃1| − µkI), Eµk
:= Ker(|Γ̃| − µI),

then we have

E1
λk

⊕ span{vk1} = Eλk
, Eµk

⊕ span{vk2} ⊆ E1
µk

for some vectors vk1 , v
k
2 .
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(b) Under the canonical choice of tuple ⟨J̃u, ϕ̃, ϕ̃1⟩ (See (5.1.5) and Lemma 6.3.2), i.e.

ϕ̃|
Eµk

= I, ϕ̃1|E1
λk

= I,

we have the spectral measure of ϕ̃|
Eλk

with respect to vk1 , and the spectral measure

of ϕ̃1|E1
µk

with respect to vk2 , are just scalar multiplication of ρ̃k, ρ̃
1
k respectively.

We will prove this proposition in next section.

10.2 Proof of Theorem 10.1.5

10.2.1 Proof of Existence

Proof. According to Proposition 5.2.4, to prove the existence of such Hankel Γ, it’s

sufficient to construct a tuple (R,R1, p, φ, φ1) that satisfies the same property stated

in (a),(b).

First by applying The abstract Borg’s theorem 8.0.1, there exists an unique (up to

unitary equivalence) triple (W,W1, p) defined on a Hilbert space H0, such that W,W1

are positive compact operators, KerW = {0} satisfying

(i) W = W1 + pp∗;

(ii) W,W1 have simple non-zero eigenvalues as {λ2k}∞k=1, {µ2
k}∞k=1 respectively.

Thus if we denoting the eigenvectors of W,W1 as

Wxk = λ2kxk, W1yk = µ2
kyk;

Then we can construct two operators R̃, R̃1 on H0 defined as

R̃xk := λkxk, R̃1yk = µkyk.
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Here we can express the norm of pk, p
1
k in terms of {λ2k}∞k=1, {µ2

k}∞k=1, which are

defined as

pk := P
Ker(R−λkI)

p, p1k := P
Ker(R1−µk)

p.

In fact, if we denote µ, µ1 as the scalar spectral measure of R2, R2
1 with respect to

p, and g(z), g1(z) to be the Cauchy transform of R2, R2
1 with respect to p. That is,

∫
R
f(s)dµ(s) = ⟨p, f(R2)p⟩ holds for all f ∈ C(R) (10.2.1)

g(z) = ⟨(R2 − zI)−1p, p⟩ =
∫
dµ(s)

s− z
(10.2.2)

∫
R
f(s)dµ1(s) = ⟨p, f(R2

1)p⟩ holds for all f ∈ C(R) (10.2.3)

g1(z) = ⟨(R2
1 − zI)−1p, p⟩ =

∫
dµ1(s)

s− z
(10.2.4)

Then we have 1− g = g
g1

from Proposition 8.1.1, and we can write

µ(z) =
∑
k

akδλ2
k
(z), µ1(z) =

∑
k

bkδµ2
k
(z) + b0δ0(z).

According to Lemma 8.1.9 and Proposition 8.2.9, the coefficients {ak}∞k=1, {bk}∞k=1

has the following representation:

ak = (λ2k − µ2
k)
∏
i ̸=k

(λ2k − µ2
i

λ2k − λ2i

)
; (10.2.5)

bn = (λ2n − µ2
n)
∏
k ̸=n

(
µ2
n − λ2k
µ2
n − µ2

k

)
(10.2.6)
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b0 =


0 if

∑
n

an
λ2
n
< 1, or

∑
n

an
λ2
n
= 1 and

∑
n

an
λ4
n
= ∞.(∑

n

an
λ4
n

)−1
if
∑
n

an
λ2
n
= 1 and

∑
n

an
λ4
n
<∞.

(10.2.7)

Here according to the proof in section 8.2,

∑
n

an
λ2n

= 1, ⇔ ∥W−1/2p∥ = 1, ⇔
∞∑
j=1

(
1−

µ2
j

λ2j

)
= ∞,

∑
n

an
λ4n

= ∞, ⇔ ∥W−1p∥ = ∞, ⇔
∞∑
j=1

(
µ2
j

λ2j+1

− 1

)
= ∞

Now we apply a sequence of polynomials {fn} which converges to 1{x=λ2
k} into

(10.2.1), then we will have

ak = ⟨p, P
Ker(R2−λ2

kI)
p⟩ = ∥pk∥2,

thus

∥pk∥ =
√
ak =

√√√√(λ2k − µ2
k)
∏
i ̸=k

(λ2k − µ2
i

λ2k − λ2i

)
. (10.2.8)

Similarly we have

∥p1k∥ =
√
bk =

√√√√(λ2k − µ2
k)
∏
i ̸=k

(µ2
k − λ2i
µ2
k − µ2

i

)
. (10.2.9)

Now denoting p̃k = pk
∥pk∥

, p̃1k =
p1k

∥p1k∥
, we want to construct a sequence of orthogonal

Hilbert space H1,H2, .....H2k which are all orthogonal to H0, and two sequences of

unitary operators {φk}∞k=1, {φ1
k}∞k=1 such that

(i) φk : H2k−1 ⊕ span{pk} → H2k−1 ⊕ span{pk} has ρ̃k as its spectral measure with

respect to p̃k;
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(ii) φ1
k : H2k⊕span{p1k} → H2k⊕span{p1k} has ρ̃1k as its spectral measure with respect

to p̃1k;

We first need to determine the dimension of each Hk. This can be easily seen from

Proposition 10.1.2. If ρ̃k concentrates on m + 1 discrete points on T, then we have

dimH2k−1 = m. And a similar result holds for ρ̃1k and H2k.

Then we choose an orthogonal basis for H2k−1⊕ span{pk}, denoted as p̃k, e1, ..., em.

We construct the unitary φk such that

Span{p̃k, φj
kp̃k
∣∣1 ≤ j ≤ i} = Span{p̃k, e1, ..., ei} holds for all 1 ≤ i ≤ m

Notice that the inner product between any two of p̃k, φkp̃k, ....φ
m
k p̃k can be uniquely

determined by ρ̃k(s). In fact,

⟨(φk)
ip̃k, (φk)

j p̃k⟩ = ⟨p̃k, (φk)
j−ip̃k) =

∫
T
sj−idρ̃k(s) for all integers i, j. (10.2.10)

Thus if we write φkp̃k = β10p̃k + β11e1, we have β10 = ⟨φkp̃k, p̃k⟩, and we take β11 =√
1− β2

10. Since in Remark 10.1.4, we have stated that p̃k, φkp̃k, ....φ
m
k p̃k are linearly

independent, thus β11 ̸= 0.

Similarly, if we write φi
kp̃k = βi0p̃k + ... + βiiei. Then the coefficients βi0, ..., βi(i−1)

will be uniquely determined by the inner product between φi
kp̃k and p̃k, φkp̃k, ..., φ

i−1
k p̃k.

And then we take βii =

√
1−

i−1∑
j=0

β2
ij. Proposition 10.1.2 guarantees that βii = 0.

So now we have defined φip̃k (1 ≤ i ≤ m) in terms of basis p̃k, e1, ..., em. Since

Span{p̃k, φj
kp̃k
∣∣1 ≤ j ≤ m} = Span{p̃k, e1, ..., em}, we have φk well-defined on H2k−1 ⊕

span{pk}.

Similarly, we find an orthogonal basis on H2k, and then calculate the coordinates

of (φ1
k)

ip̃1k in terms of this set of basis and p̃1k, where 1 ≤ i ≤ dimH2k.
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Now we denote

H := H0 ⊕H1 ⊕H2...,

We extend R̃, R̃1 to R,R1 defined from H to H:

R|H0
= R̃, R|H2k−1

= λkI, R|H2k
= µkI;

R1|H0
= R̃1, R1|H2k−1

= λkI, R1|H2k
= µkI.

Now we define an unitary φ : H → H as:

φ|H2k−1⊕span{pk}
= φk, φ|H2k

= I for all k;

and a partial isometry φ1 : H → H as:

φ1|H2k⊕span{p1k}
= φ1

k, φ1|H2k−1
= I for all k; φ1|H0∩KerR1

= 0.

Thus we have constructed a tuple (R,R1, p, φ, φ1) on H. To determine the conju-

gation Jp on H, we can define Jp on H0 by:

Jpp = p, Jp(R
np) = Rnp for all n.

The value of Jp|H2k−1⊕span{pk}
can be defined by

Jppk = pk, Jp(φ
npk) = (φ∗)npk, Jp((φ

∗)npk) = φnpk for all n.

Similarly the value of Jp|H2k⊕span{p1k}
can be defined by

Jpp
1
k = p1k, Jp(φ

n
1p

1
k) = (φ∗

1)
np1k, Jp((φ

∗
1)

np1k) = φn
1p

1
k for all n
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So now we have defined a tuple (R,R1, p, Jp, φ, φ1), such that the contraction

T := R1φ1φ
∗R−1 is asymptotically stable implied by Proposition 7.6.3. Thus by Propo-

sition 5.2.4, we can find a Hankel operator Γ, such that there exists a conjugation Ju

commuting with |Γ|, |Γ1| and preserves Γ∗e0, and the tuple (|Γ̃|, |Γ̃1|, u, ϕ̃, ϕ̃1, J̃u) given

in (5.1.5) is unitarily equivalent to (R,R1, p, Jp, φ, φ1, Jp), and Γ satisfies properties

(a),(b) given in Proposition 10.1.5.

10.2.2 Proof of Uniqueness

Proof. According to Proposition 5.2.4, we only need to show the uniqueness of tuple

(R,R1, p, φ, φ1) (the unique choice of Jp is given in Remark 7.6.6).

Suppose that there are two tuples (R,R1, p, φ, φ1) and (R′, R′
1, p

′, φ′, φ′
1) that both

satisfy the condition (a),(b) in Proposition 10.1.5 (Here φ, φ1.φ
′, φ′

1 are all the canonical

choices for their equivalent classes). We will show that they are unitary equivalent.

We also reuse the definition inside the proof of Theorem 8.0.4. That is,

H0 := Span
{
Rnp

∣∣n ≥ 0
}
;

Eλk
:= Ker(R− λkI), Eµk

:= Ker(R− µkI);

E1
λk

:= Ker(R1 − λkI), E1
µk

:= Ker(R− µkI);

R̃ = R
∣∣
H0

, R̃1 = R1

∣∣
H0

H′
0 := Span

{
(R′)np′

∣∣n ≥ 0
}
;

Eλk
:= Ker(R′ − λkI), Eµk

:= Ker(R′ − µkI);

E1
λk

:= Ker(R′
1 − λkI), E1

µk
:= Ker(R′

1 − µkI);

R̃′ = R′∣∣
H′

0

, R̃′
1 = R′

1

∣∣
H′

0
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And we also define the projection vector pk, p
1
k as

pk := PH0∩Ker(R−λkI)
p, p1k := PH0∩Ker(R1−µkI)

p,

p′k, (p
1
k)

′ are defined similarly.

Now by Theorem 8.0.1, there exists a unitary equivalence between the tuple (R
∣∣
H0
, R1

∣∣
H0
, p)

and (R′
∣∣
H′

0
, R′

1

∣∣
H0
, p′):

R̃′ = Ṽ R̃Ṽ ∗, R̃′
1 = Ṽ R̃1Ṽ

∗, p′ = Ṽ p

We can easily see that

p′k = Ṽ pk, (p1k)
′ = Ṽ (p1k),

holds for all k.

Now also recall that in the proof of Generalized Borg’s Theorem 8.0.4, that we

extend Ṽ to a unitary V : H → H′ by defining an arbitrary unitary ϕk on Eµk
and

an arbitrary unitary ϕ1
k on E1

λk
. and then construct the unitary equivalence between

(R,R1, p) and (R′, R′
1, p

′). Now for the proof of this theorem, we build up the unitary

equivalence between (φ, φ1) and (φ′, φ′
1) by carefully choosing ϕk and ϕ1

k.

We know that pk is a *-cyclic vector for φ
∣∣
Eλk

on Eλk
. Denote N = dim Eλk

. In

Proposition 10.1.2, we have shown that φ
∣∣
Eλk

have N different eigenvalues on T, and

the projection of pk on each eigenspace is non-zero. Denoting that the eigenvalues to be

β1, ..., βN , and the projection of pk onto the corresponding eigenspace to be p
k1
, ..., p

kN
.

Now we consider p′k and the unitary φ′
∣∣
Eλk

. Since the scalar spectral measure

for two different tuples are the same, we have φ′
∣∣
Eλk

also have simple eigenvalues as

β1, ..., βN . In addition, the projection of p′k onto the corresponding eigenspaces, defined

as p′
k1
, ..., p′

kN
, have the same norm as p

k1
, ..., p

kN
respectively.
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Thus we define a unitary ϕk : Eλk
→ Eλk

by:

ϕkpk1 = p′
k1
, ..., ϕkpkN = p′

kN
. (10.2.11)

We can show that ϕk(φ
npk) = (φ′)np′k for all n. In fact,

ϕk(φ
npk) = ϕk

(
βn
1 pk1 + ...+ βn

NpkN
)

= βn
1 p

′
k1

+ ...βn
Np

′
kN

= (φ′)np′k (10.2.12)

Since in Remark 10.1.4, we have shown that Span{φnpk
∣∣0 ≤ n ≤ N − 1} = Eλk

.

We can also use (10.2.12) for the definition of ϕk. Easy to see that for this ϕk, we have

ϕkpk = p′k and ϕk maps Eλk
to Eλk

.

Similarly we define ϕ1
k be a unitary operator mapping E1

µk
to E1

µk
, such that

ϕ1
k(φ

n
1p

1
k) = (φ′

1)
n(p1k)

′

holds for all n ∈ N.

Now we can define a unitary V : H → H′ by:

V = Ṽ on H0,

V = ϕk on E1
λk
, V = ϕ1

k on Eµk
.

We show that φ′ = V φV ∗ (the other equality φ′
1 = V φ1V

∗ can be shown similarly).

For ∀x ∈ Eµk
, we have

V φx = V x = ϕ1
kx, φ′V x = φ′ϕ1

kx = ϕ1
kx.

Here φx = x and φ′(ϕ1
kx) = ϕ1

kx follows from φ
∣∣
Eµk

= I and φ′
∣∣
Eµk

= I. Thus

V φ = φ′V on Eµk
.

Now we show V φ = φ′V is also true on Eλk
. For vector (φnpk), using (10.2.12), we
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have

φ′V (φnpk) = φ′(φ′)np1k = (φ′)n+1p1k

V φ(φnpk) = V (φn+1pk) = (φ′)n+1p1k

Since Eλk
= Span{φnpk

∣∣n ≥ 0} given by Remark 10.1.4, we have V φ = φ′V is true on

Eλk
, hence holds on the whole space H.

Similarly, we can show that φ′
1 = V φ1V

∗ also holds on H. Thus we build up the

unitary equivalence between (R,R1, p, φ, φ1) and (R′, R′
1, p

′, φ′, φ′
1). And the proof of

uniqueness is done.

10.3 Result for Finite Rank Hankel Operators with Multiple

Singular Values

In this section, we will discuss the spectral data that can uniquely determine a

finite rank Hankel operators with multiple singular values.

Recall that Proposition 6.2.11, given finite rank operators R,R1, we have shown

that on a subspace H0 := Span{Rnp|n ≥ 0}, there exists an intertwining sequence

λ1 > µ1 > ... > λN > µN ≥ 0,

such that R
∣∣
H0
, R1

∣∣
H0

has simple eigenvalues as {λk}Nk=1, {µk}Nk=1 respectively.

Condition 1: µN > 0, then from a similar proof to Proposition 7.6.3, we can show

that for 1 ≤ k ≤ N , pk is a *-cyclic vector for Eλk
, and p1k is a *-cyclic vector for E1

µk
.

Hence for 1 ≤ k ≤ N , we can define the scalar spectral measure ρk, ρ
1
k on T by

⟨(φ− zI)−1pk, pk⟩ =
∫
T

dρk(s)

s− z
, ⟨(φ1 − zI)−1p1k, p

1
k⟩ =

∫
T

dρ1k(s)

s− z
.

By normalizing {ρk}Nk=1, {ρ1k}Nk=1 as probability measure {ρ̃k}Nk=1, {ρ̃1k}Nk=1, we can also
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prove that {ρ̃k}Nk=1, {ρ̃1k}Nk=1 are discrete measure, and concentrated on finitely many

points on T. We can show that the four sequences {λk}Nk=1, {µk}Nk=1, {ρ̃k}Nk=1, {ρ̃1k}Nk=1

will uniquely determine a finite rank Hankel operator.

Condition 2: µN = 0, then we have dimE1
µN

= 1 and EµN
is trivial. Under this

case, we have φ1

∣∣
E1

µN

= 0, and

(i) For 1 ≤ k ≤ N , pk is a *-cyclic vector for Eλk
;

(ii) For 1 ≤ k ≤ N − 1, p1k is a *-cyclic vector for E1
µk
.

We can show that the four sequences {λk}Nk=1, {µk}Nk=1, {ρ̃k}Nk=1, {ρ̃1k}N−1
k=1 will uniquely

determine a finite rank Hankel operator.

The proof to both conditions are typically similar to the proof for theorem 10.1.5,

so we omit it.
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