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The rise of the Internet has generated and has enabled the collection of massive amounts

of data. However, this modern ubiquity and abundance of data is worth little unless we

can efficiently extract from it useful information and insights. In this thesis, we focus on

the question of data efficiency, that is, optimizing the amount of data needed to accomplish

a statistical task to some given accuracy and confidence guarantees. Drawing on tools

from across probability, statistics and theoretical computer science, we propose optimally

data-efficient algorithms for two basic estimation problems. The problems and their solu-

tions, defined in distinct data-access models, highlight and give techniques to overcome

important data-collection and data-utilization challenges faced by algorithm designers in

the modern era.

The first problem is a classic and fundamental problem in statistics: what is the best

way to estimate the mean of a real-valued distribution from independent samples? Un-

der the minimal and essentially necessary assumption that the distribution has finite (but

unknown) variance, we settle the problem by presenting an estimator with convergence

tight to within a 1 + o(1) multiplicative factor. This contrasts previous works that are either

only tight up to multiplicative constants, or require strong additional assumptions such as

knowledge of the variance, or a bounded 4th moment (kurtosis) assumption. Our estima-

tor construction and analysis gives a generalizable framework, tightly analyzing a sum of

dependent random variables by viewing the sum implicitly as a 2-parameter ψ-estimator,

and constructing bounds using mathematical programming techniques.

The second problem is a coin-flipping problem motivated by crowdsourcing appli-

cations. Given a mixture between two populations of coins, “positive" coins that each

have—unknown and potentially different—bias ≥ 1
2 + ∆ and “negative" coins with bias

≤
1
2 − ∆, we consider the task of estimating the fraction of positive coins to within a given

accuracy through drawing coins from the mixture and flipping them. We give an adaptive

algorithm and a fully-adaptive lower bound with matching sample complexity, simulta-

neously tight in all relevant problem parameters, up to a multiplicative constant. The

fine-grained adaptive flavor of both our algorithm and lower bound contrasts with much

previous work in distributional testing and learning.
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Chapter 1

Introduction

Over the past decades, the Internet has driven the generation and collection of a massive

amount of data, for example, from everyday user activities (e.g. social media, online

shopping), to users providing data under incentives (e.g. crowdsourcing). Buried in all this

data is information and insight hidden in the statistical noise, for example, various statistics

of social networks and internet traffic. Modern data science studies the efficient extraction

of such information from data at a large scale. There are two important and distinct

notions of efficiency: Data efficiency concerns the amount of data required to complete a

statistical task to high accuracy and confidence, or equivalently, given a certain amount

of data, optimize the accuracy and confidence guarantees we can derive from the data.

Computational efficiency, on the other hand, concerns the computational resources (e.g. time

and space) we need to compute the statistical estimators and tests of interest.

In this thesis, we focus on two problems—one classic and foundational problem and one

motivated by modern crowdsourcing settings—where achieving optimal data efficiency

is the main algorithmic challenge, and computational efficiency follows naturally from

the algorithms we design. These two problems highlight the challenges that algorithm

designers face in effectively collecting and utilizing data at a large scale.

The first problem is the fundamental problem of estimating the mean of a real-valued

distribution, under the minimal (and essentially necessary, see later) assumption that the

underlying distribution has a finite but unknown variance. The second problem is an

1
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estimation problem inspired by practical data management applications under the crowd-

sourcing paradigm. The problem is theoretically modelled by a population of coins with

unknown biases, where the only way to gain information about the population is through

picking out and flipping the coins. The goal is to estimate the fraction of coins in the

population with bias > 1
2 . For both of these problems, the main challenge is in optimizing

data efficiency: most of the construction and analysis focuses on the statistical properties

of the algorithms we propose, where the algorithms can be computed in time linear in the

number of samples. In future work, we plan to study variants of the problems where both

data efficiency and computational efficiency are central challenges, for example, in high

dimensional mean estimation.

1.1 Mean Estimation in R

In Chapter 3, we revisit and settle a fundamental problems in statistics: estimating the

mean of a real-valued distribution from independently and identically distributed (i.i.d.)

samples, in the high probability regime, under the minimal (and essentially necessary)

assumption that the distribution has finite but unknown variance. The sample mean

(also known as the empirical mean), despite its ubiquitous use, is known to have sample

complexity that is exponentially sub-optimal in the failure probability δ [15] for heavy-

tailed distributions. We propose an estimator with convergence tight not only in the big-O

sense (namely, up to multiplicative factors), but tight up to only a 1+ o(1) factor. In contrast

to prior works, our estimator does not require prior knowledge of the variance [15], and

works across the entire gamut of distributions with finite variance, including those without

any higher moments [15, 23]. Our estimator is furthermore computable in time linear in

the number of samples.

Parameterized by the sample size n, the failure probability δ, and the variance σ2, our

estimator has additive accuracy within σ · (1 + o(1))
√

2 log 1
δ

n (where the logarithm is the

natural logarithm), which is optimal up to the 1 + o(1) term. This asymptotically matches

the convergence of the sample mean for the Gaussian distribution with the same variance,

as well as the information-theoretic lower bound for estimating the mean of Gaussians.
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The main challenge in this work lies in analyzing our proposed estimator: we need to

derive tight concentration properties, however, our estimator is a sum of dependent terms,

making it difficult to directly and tightly control its moment generating function for the

purposes of deriving a Chernoff bound. To circumvent this obstacle, we view our estimator

as a 2-parameter ψ-estimator, from which we can derive proxies of the estimator that are

sums of independent terms, and reduce the main theorem to proving Chernoff bounds

on these proxies instead. A further obstacle lies in proving tight Chernoff bounds for

our estimator over the entire space of distributions with finite variance. We resolve this

second obstacle by viewing the Chernoff bound analysis as a convex-concave programming

problem (over an infinite dimensional space of distributions), and use convex-concave

programming duality and linear programming duality (see Section 2.4) to make the analysis

finite-dimensional and tractable.

The above estimator construction and analysis approach gives a framework generaliz-

able to other problems.

This work is currently in submission.

1.2 Estimating the Fraction of “Positive" Coins

In Chapter 4, we consider a natural statistical estimation task, motivated by a practical

crowdsourcing application, with an intriguing adaptive flavor. In the problem setting,

there is a universe of coins of two types: “positive" coins each have a (potentially different)

probability of heads that lies in the interval [ 1
2 + ∆, 1], while “negative" coins lie in the

interval [0, 1
2 − ∆], where ∆ ∈ (0, 1

2 ] parameterizes the “quality" of the coins. Our only

access to the coins is by choosing a coin and then flipping it, without access to the true

biases of the coins. An algorithm in this setting may employ arbitrary adaptivity—for

example, flipping three different coins in sequence and then flipping the first coin 5 more

times if and only if the results of the first 3 flips were heads, tails, heads. The challenge is

to estimate the fraction ρ of coins that are of positive type, to within a given additive error

ε, failing with probability at most δ, using as few coin flips (samples) as possible.
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This model arose from a collaboration with colleagues in data science and database sys-

tems, about harnessing paid crowdsourced workers to estimate the “quality" of a database.

Our model is a direct theoretical analog of the following practical problem, where sample

complexity linearly translates into the amount of money that must be paid to workers, and

thus even multiplicative factors crucially affect the usefulness of an algorithm. Given a set

of data and a predicate on the data, the task is to estimate what fraction of the data satisfies

the predicate—for example, estimating the proportion of records in a large database that

contain erroneous data. After automated tools have labeled whatever portion of the data

they are capable of dealing with, the remaining data must be processed via crowdsourc-

ing, an emerging setting that potentially offers sophisticated capabilities but at the cost

of unreliability. Namely, for each data item, one may ask many human users/workers

online whether they think the item satisfies the predicate, with the caveat that the answers

returned could be noisy. Each coin in the theoretical model corresponds to an item in the

database, modelling the noisy response we get when we ask a random human worker

online to evaluate the predicate on the item.

We exhibit an adaptive algorithm and a fully-adaptive lower bound which have sample

complexities that match each other simultaneously in all 4 of the problem parameters

(fraction ρ of positive coins, estimation additive error ε, coin quality parameter ∆ and

failure probability δ), up to multiplicative constants.

A key feature that makes this estimation problem distinct from many others studied

in the literature is the richness of adaptivity available to the algorithm. Achieving a tight

lower bound in this setting requires considering and bounding all possible uses of adap-

tivity available to an algorithm; and achieving an optimal algorithm requires choosing the

appropriate adaptive information flow between different parts of the algorithm. Much of

the previous work in the area of statistical estimation is focused on non-adaptive algo-

rithms and lower bounds; however see [10], and in particular, Sections 4.1 and 4.2 of that

work, for a survey of several distribution testing models that allow for adaptivity. In our

setting there are two distinct kinds of adaptivity that an algorithm can leverage: 1) single-

coin adaptivity, deciding how many times a particular coin should be flipped—a per-coin

stopping rule—in terms of the results of its previous flips, and 2) cross-coin adaptivity,



5

deciding which coin to flip next in terms of the results of previous flips across all coins.

Our final optimal algorithm (Section 4.3) leverages both kinds of adaptivity. In our tight

lower bound analysis (Section 4.5), we overcome the technical obstacles presented by the

richness of adaptivity by giving a reduction (Section 4.5.1) from fully-adaptive algorithms

that leverage both kinds of adaptivity to single-coin adaptive algorithms that process each

coin independently, valid for our specific lower bound instance.

The main algorithmic challenge in this problem is what we call “uncertainty about

uncertainty": we make no assumptions about the quality of the coins beyond the existence

of a gap 2∆ between biases of the coins of different types (centered at 1
2 ). Our algorithm

must return estimates with small bias, and be sample-efficient at the same time, regardless

of the bias of the coins, whether they are all deterministic, or all maximally noisy as allowed

by the ∆ parameter, or some quality in between. While intuitively the hardest settings to

distinguish information theoretically involve coins with biases as close to each other as

possible (and indeed our lower bound relies on mixtures of only 1
2 ±∆ coins), settings with

biases near but not equal to 1
2 ± ∆ introduce “uncertainty about uncertainty" challenges.

We overcome this challenge with an estimator designed using 1D random walk theory.

In addition, to illustrate the difficulty of the “uncertainty about uncertainty" paradigm,

we consider a relaxation of the problem where we have some knowledge of the coin

biases. Assuming (perhaps unrealistically) that we know 1) the conditional distribution

of biases of positive coins, and 2) the same for negative coins, and 3) an initial estimate

of the mixture parameter ρ between the two distributions, then we show that it is easy—

using mathematical programming techniques in Section 4.8.1—to construct an estimation

algorithm with sample complexity that is optimal by construction up to a multiplicative

constant (see Section 4.8.2).

This work appeared in SODA 2021 [37]. We thank Tim Kraska and Yeounoh Chung for

bringing these problems to our attention in the data analytics setting, and for contributing

to the simulation results in this work. We also thank an anonymous reviewer for asking

about the δ dependence in lower bounds, which led to the current tight results.



Chapter 2

Background

In this chapter, we give basic definitions and facts relevant to the results in this thesis.

2.1 Probability

All probability distributions considered in this thesis are defined over R.

We will also use the following standard distributions in our modelling and analyses:

Bernoulli coins The Bernoulli distribution with bias/parameter p is defined such that it

returns a 1 with probability p and returns a 0 otherwise. The Bernoulli distribution is

also called a Bernoulli coin, and a sample from the distribution is also called a coin

flip. A result of 1 corresponds to a heads flip and a 0 corresponds to a tails flip.

Binomials The Binomial distribution Bin(n, p) with parameters n and p, is defined as the

sum of n independent Bernoulli coins with probability p. That is, it is the number

of heads observed by flipping a bias-p coin independently for n times. In the thesis,

we will use the notation Bin(n, k, p) to denote the probability that a Binomial random

variable with parameters n and p returns the value k, namely,
(n

k
)
pk(1 − p)n−k.

Gaussians The standard Gaussian distribution, with mean 0 and variance 1, is defined

with the density function 1
√

2π
e−

x2
2 . The Gaussian distribution with mean µ and

variance σ2 is defined as adding µ to σ times the standard Gaussian.

6
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For a discrete distribution, we define its support to be the elements on which it has

non-zero probability mass.

We will also be concerned with the existence of moments (e.g. mean and variance) of

a distribution. Many distributions, such as the examples above, have well-defined/finite

mean and variance, as well as higher moments. However, distributions on R do not

necessarily have well-defined moments. For example, the Cauchy distribution, whose

probability density function decays at a rate of Θ(1/x2) away from 0, does not have a

well-defined mean. On the other hand, the distribution with density decaying as 1/x3

does have a well-defined mean, but not a well-defined variance. In our work on optimal

mean estimation, we will make the essentially necessary assumption that the underlying

distribution has a finite but unknown variance.

2.2 Concentration Inequalities via the Chernoff Bound

One of the most powerful techniques for analyzing randomness is to quantify concentra-

tion behavior. That is, distributions that are the sum of many independent distributions

(e.g. Gaussians and Binomials) will have most of their probability mass near their expec-

tation. Quantitatively, we would want to upper bound the following tail probabilities:

P(X ≥ E(X) + x) and P(X ≤ E(X) − x) for x > 0.

The standard approach to showing these concentration inequalities is via the Chernoff

bound.

Fact 2.1. For any random variable X over R and every x, we have the following inequalities:

P(X ≥ x) ≤ inf
t>0

E[etX]
etx

P(X ≤ x) ≤ inf
t>0

E[e−tX]
e−tx

The quantity MX(t) = E[etX] is also known as the moment generating function of the random

variable X.

In the thesis, we will both derive custom Chernoff bounds from Fact 2.1, as well as use

standard corollaries such as the following bound for Binomial distributions:
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Fact 2.2. Suppose X← Bin(n, p), and denote µ = np. Then for any κ > 0,

P(X ≥ (1 + κ)µ) ≤
(

eκ

(1 + κ)1+κ

)µ
P(X ≤ (1 − κ)µ) ≤

(
e−κ

(1 − κ)1−κ

)µ

2.3 Sample Complexity Lower Bounds

Proving complexity lower bounds is a main challenge in theoretical computer science.

While many lower bounds for, for example, time complexity remain elusive open problems,

there have been various techniques developed to show sample complexity lower bounds.

In this section, we describe one of the most common, yet effective, ways to show a sample

complexity lower bound: showing an indistinguishability result, which is related to Le

Cam’s two-point method in the statistics literature.

A typical indistinguishability argument for a problem consists of two parts:

1. A reduction, that if we have an algorithm/estimator/test solving the problem at hand,

then the same algorithm can be used to distinguish between two given scenarios.

This reduction is typically straightforward.

2. A sample complexity lower bound for the simpler problem of distinguishing the two

scenarios, that no algorithm taking too few samples can distinguish the scenarios with

high probability. This means that any algorithm succeeding at the original problem

must take at least a certain number of samples.

For concreteness, consider the example problem of estimating the mean of an unknown

Bernoulli coin to within additive error ε, succeeding with probability at least 1 − δ. We

want to show a worst-case sample complexity lower bound of Ω( 1
ε2 log 1

δ ) many coin flips1.

The argument, as above, consists of two parts:

1. Reduction: If we had a mean estimator with additive accuracy ε, failing with prob-

ability at most δ, then we can use it to distinguish the bias 1
2 − ε coin from the 1

2 + ε

coin, also failing with probability at most δ.

1Although a more fine-grained view shows that we in fact need only O( p(1−p)
ε2 log 1

δ ) many coin flips to
estimate the mean of a Bernoulli coin with bias p. The above lower bound takes the worst case over p.
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2. Lower bound: We need to show that any estimator needs at least Ω( 1
ε2 log 1

δ ) coin

flips to distinguish between those two coins.

Before introducing techniques for showing the lower bound, we note that this lower

bound is tight up to multiplicative constants. For example, the sample mean requires only

O( 1
ε2 log 1

δ ) many coin flips, per Hoeffding’s inequality (another standard corollary of the

Chernoff bound approach to tail bounds).

To prove the indistinguishability result, we want to upper bound the total variation

distance between n independent flips of the 1
2 − ε coin and the 1

2 + ε coin, due to the

following fact.

Definition 2.3 (Total variation distance). Given two discrete probability distributions p,q

over a finite set S, the total variation distance dTV(p,q) between p and q is defined as:

dTV(p,q) =
1
2

∑
i∈S

|pi − qi| =
1
2
‖p − q‖1

= sup
A⊆S

p(A) − q(A)

The definition naturally generalizes to arbitrary distributions.

Fact 2.4. Consider a game, where an adversary picks arbitrarily either distribution p or distribution

q, and we want an algorithm which, on input n independent samples from the chosen distribution,

decide whether the samples came from p or q, succeeding with probability at least 1− δ. Then, there

is no algorithmA such that:

P(A returns p | adversary picked p) − P(A returns p | adversary picked q) > dTV(p⊗n,q⊗n)

where p⊗n denotes the n-fold product distribution of p. In particular, this implies that there is no

algorithmA such that both of the following hold:

• P(A returns p | adversary picked p) > 1
2 + 1

2 dTV(p⊗n,q⊗n)

• P(A returns q | adversary picked q) > 1
2 + 1

2 dTV(p⊗n,q⊗n)

So if dTV(p⊗n,q⊗n) < 1− 2δ, there is no algorithm that will succeed in distinguishing between two

distributions with probability ≥ 1 − δ using only n samples.
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The total variation distance between n-fold product distributions can be difficult to

directly and tightly upper bound. In particular, using the union bound typically leads to

weak or even trivial bounds. In these cases, we often bound other statistical distances and

divergences first, and in turn use the proxy to bound the total variation distance.

The KL-divergence, an important information-theoretic notion, enjoys two crucial prop-

erties that are useful for sample complexity lower bound purposes.

Definition 2.5 (KL-divergence). Given two discrete probability distributions p,q over a

finite set S, the KL-divergence DKL(p ||q) between p and q is defined as:

DKL(p ||q) =
∑
i∈S

pi log
pi

qi

The definition naturally generalizes to arbitrary distributions.

Fact 2.6. The KL-divergence is additive for product distributions:

DKL(p1 ⊗ p2 ||q1 ⊗ q2) = DKL(p1 ||q1) + DKL(p2 ||q2)

Furthermore, the KL-divergence satisfies the high probability Pinsker inequality:

dTV(p,q) ≤ 1 −
1
2

e−DKL(p ||q)

With the above fact, we can now complete the example of showing a tight sample

complexity lower bound for estimating the mean of a coin. Let p be the 1
2 − ε bias coin, and

q be the 1
2 + ε bias coin. Then,

DKL(p⊗n
||q⊗n) = nDKL(p ||q) = Θ(nε2)

where the last equality is straightforward calculation.

Thus, for dTV(p⊗n,q⊗n) to be at least 1 − 2δ, n must be at least Ω( 1
ε2 log 1

δ ), for otherwise

the high probability Pinsker inequality would yield a contradiction.

2.4 Duality in Mathematical Programming

Duality theory in mathematical programming plays a central role in our work on optimal

real-valued mean estimation. In particular, we leverage linear programming duality and
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convex-concave programming (min-max optimization) duality. We state these duality

principles in this section.

We start with linear programming duality. Consider the following maximization linear

program P in standard form, over a finite dimensional vector of real-valued variables x:

maximize c · x

subject to Ax ≤ b

where x ≥ 0

where the matrix A and vectors b and c are parameters in the program.

The dual linear program D of P is defined as the following minimization problem over

the vector y, which has length equal to the number of constraints in x, namely the number

of rows in A:

minimize b · y

subject to A>y ≥ c

where y ≥ 0

Similarly, the dual of a minimization problem is defined by the construction of P from

D, and it is trivial to see that duality is an involution, that is, the dual of a dual is the original

primal problem.

By construction, the optimum of D (the minimization problem), opt(D) is always at

least the optimum of P (the maximization problem), opt(P), if both optima exist. This is

known as the weak duality of linear programs, which can be proved as follows. Consider

an arbitrary pair of feasible solutions x and y for P and D respectively, then

c · x = x>c ≤ x>Ay ≤ b>y = b · y

where the first inequality is by the dual constraints and that x ≥ 0, and the second inequality

is by the primal constraints and that y ≥ 0. Typically, for other kinds of optimization

problems, the definition of the dual problem is going to imply weak duality also by

construction, as in the linear programming case.

Much less trivial is the fact that linear programs enjoy strong duality. That is, if the

primal and dual programs both have feasible solutions, then their optima are equal to each

other, captured by the following fact.
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Fact 2.7 (Strong duality for linear programs). Given a primal linear program P that is feasible,

let D be its LP dual. Then D is feasible and opt(P) = opt(D), where opt() maps a linear program to

its optimal objective value.

Therefore, taking the dual of a linear program does not quantitatively change the

optimization problem. However, qualitatively, the dual is an alternative formulation of

the problem, and can give additional insights. It can also enable and simplify analysis, by

reasoning about a different form of the same optimization problem, which we use crucially

in our mean estimation work.

The other duality principle we require for our mean estimation result is on max-min

optimization problems. Consider the following general max-min optimization problem:

max
x∈Sx

min
y∈Sy

f (x, y)

for domains Sx, Sy and objective f : Sx × Sy → R.

The duality notion we consider is simple: swapping the order of maximization and

minimization. Thus, weak duality is just the standard, straightforward max-min inequality:

max
x∈Sx

min
y∈Sy

f (x, y) ≤ min
y∈Sy

max
x∈Sx

f (x, y)

It is easy to check that strong duality, namely when the weak duality inequality is

in fact an equality, does not hold for arbitrary objectives f and domains Sx and Sy. We

are therefore interested in conditions under which strong duality holds. A strong duality

result in this context is known as a minimax theorem. Perhaps the most well-known min-

imax theorem is the original: von Neumann’s minimax theorem. In this thesis, we will

require a generalization of von Neumann’s theorem, which follows from Sion’s minimax

theorem [59].

Fact 2.8. Suppose Sx and Sy are convex sets, at least one of which is compact. Also suppose the

objective function f : Sx × Sy → R is continuous, convex in the first argument (i.e. for all y ∈ Sy,

f (·, y) is convex) and concave in the second argument. Then

sup
x∈Sx

inf
y∈Sy

f (x, y) = inf
y∈Sy

sup
x∈Sx

f (x, y)

For our purposes, it suffices to assume that the maxima and minima exist, that the sup and inf in

the above can be replaced by max and min.



Chapter 3

Optimal Sub-Gaussian Mean

Estimation in R

3.1 Overview

We revisit one of the most fundamental problems in statistics: estimating the mean of a real-

valued distribution, using as few independent samples from it as possible. Our proposed

estimator has convergence that is optimal not only in a big-O sense (i.e. “up to multiplicative

constants”), but tight to a 1 + o(1) factor, under the minimal (and essentially necessary, see

below) assumption of the finiteness of the variance. Previous works, discussed further in

Section 3.2, are either only big-O tight [34, 50, 2], or require additional strong assumptions

such as the variance being known to the estimator [15] or assumptions that allow for

accurate estimates of the variance, such as the kurtosis (fourth moment) being finite [15, 23].

3.1.1 The Model and Main Result

Given a set of i.i.d. samples from a real-valued distribution, the goal is to return, with

extremely high probability, an accurate estimate of the distribution’s mean. Specifically,

given a sample set X of size n consisting of independent draws from a real-value distribution

D, an (ε, δ)-estimator of the mean is a function µ̂ : Rn
→ R such that, except with failure

13
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probability ≤ δ, the estimate µ̂(X) is within ε of the true mean µ(D). Namely,

P(|µ̂(X) − µ(D)| ≤ ε) ≥ 1 − δ (3.1)

The goal is to find the optimal tradeoff between the sample size n, and the error

parameters ε and δ, for the distribution D. Fixing any two of the three parameters and

minimizing the third yields essentially equivalent reformulations of the problem: we can

fix ε, δ and minimize the sample complexity n; we can fix δ,n and minimize error ε; or we can

fix ε,n and minimize the failure probability δ (maximizing the robustness 1 − δ).

Perhaps the most standard and well-behaved setting for mean estimation is when the

distribution D is a Gaussian. The sample mean (the empirical mean) is a provably optimal

estimator in our sense when D is Gaussian: for any ε, δ > 0, the sample mean µ(X) is an

(ε, δ)-estimator when given a sample set of size n = (2 + o(1))
σ2(D)·log 1

δ

ε2 (all logarithms will

be base e); and there is no (ε, δ)-estimator for Gaussians if the constant 2 in the previous

expression for the sample size is changed to any smaller number.

The main result of this paper is an estimator that performs as well, on any distribution

with finite variance, as the sample mean does on a Gaussian, without knowledge of the

distribution or its variance:

Theorem 3.1. Estimator 1, given δ,n > 0, defines a function µ̂ such that with probability at least

1 − δ, given a sample set X of size n, yields an estimate with error

|µ̂(X) − µ(D)| ≤ σ(D) · (1 + o(1))

√
2 log 1

δ

n

Here, the o(1) term tends to 0 as
(

log 1
δ

n , δ
)
→ (0, 0). Furthermore, as evidenced by the Gaussian

case, there is no estimator which, under the same settings, produces an error that improves on our

guarantees by more than a 1 + o(1) multiplicative factor.

We have parameterized the above theorem in terms of fixing the sample size n and the

robustness parameter δ and asking for the minimum error ε; however, because of the simple

functional form of the bounds of Theorem 3.1, we can equivalently rephrase it as saying that,

for any ε, δ, (a reparameterized) Estimator 1 is an (ε, δ) estimator using (2 + o(1))σ(D)2

ε2 log 1
δ

samples; or for any n, ε, Estimator 1 gives an estimate that is δ = exp(− nε2

(2+o(1))·σ2(D) )-robust.
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For each of these formulations, the performance is optimal up to the 1 + o(1) factor, as

evidenced by the well-known Gaussian case, as explained above.

We make the following observations regarding the main (minimal) assumption in

the theorem, namely the finiteness of the variance of the unknown distribution. First,

imposing further assumptions about the finiteness of higher moments will not yield any

improvements to the result, since matching lower bounds are provided by Gaussians, for

which all moments are finite. Second, as shown by Devroye et al. [23], relaxing the finite

variance assumption by only assuming, say, the finiteness of the (1 + β)th moment for some

β < 1 will yield strictly worse sample complexity. In particular, the sample complexity will

have an ε-dependence that is ω(1/ε2). Thus, our result shows that mean estimation can

be performed at a sub-Gaussian rate, with the optimal multiplicative constant of 2 in the

sample complexity, if and only if the variance of the underlying distribution is finite.

We also contrast with previous works that attain optimal sub-Gaussian convergence

but make additional assumptions such as the finiteness of the kurtosis (4th moment) [15, 23].

The gap in assumptions between those works and this work is not only theoretical, but

also of practical consequence: Pareto distributions (power law distributions) are known to

be good models of certain real-world phenomena, and for a shape parameter (i.e. exponent

or Pareto index α) in the range (2, 4], the variance exists, but not the kurtosis.

3.1.2 Our Approach

We briefly describe the main features of our estimator, as a setting for what follows, and to

distinguish it from prior work. At the highest level: in order to return a δ-robust estimate of

the mean, our estimator “throws out the 1
3 log 1

δ most extreme points in the sample set”, and

returns the mean of what remains. More specifically, outliers are thrown out in a weighted

manner, where we throw out a fraction of each data point, with the fraction proportional

to the square of its distance from a median-of-means initial guess for the mean, where the

fraction is capped at 1, and the proportionality constant is chosen so that the total weight

thrown out equals exactly 1
3 log 1

δ . See Estimator 1 for full details, but we stress here that

the estimator is simple to implement—it may be computed in linear time—and therefore

applicable in practice.
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The above description is rather different from the typical M-estimator/ψ-estimator

approach of Catoni [15] and other works in this area. However, as we see in Section 3.3,

our estimator can be reinterpreted as a 2-parameter ψ-estimator, and the proof of our main

result will crucially rely on this reformulation. In Section 3.3.4 we examine the similarities

and differences between our estimator and the Catoni-Giulini estimator [16], which is a

particular instantiation of the approach in [15].

3.1.3 Motivation: 3rd-order corrections of the empirical mean

Perhaps the most non-obvious part of our estimator is throwing out exactly 1
3 log 1

δ many

samples. We motivate this quantity in this section, by considering the special case of

estimating the mean of asymmetric—very biased—Bernoulli distributions, which is in

some sense an extremal case for our setting.

Example 3.2. Consider the mean estimation problem, given n samples from a Bernoulli

distribution supported on 0 and 1, where the probability of drawing 1 equals some param-

eter p. Thus the number of 1s observed is distributed as the Binomial distribution Bin(n, p),

of mean np and variance np(1 − p). The interesting regime for us is when p is very small,

and thus 1 − p ≈ 1, and the Binomial distribution is essentially the Poisson distribution

Poi(np) of mean and variance λ = np. In this setting, the mean estimation problem becomes:

given a sample k from Poi(np), and the parameters n and δ, return an estimate that, except

with failure probability δ, is as close as possible to p (or equivalently np). Given a Poisson

sample k← Poi(np), returning simply k is a natural estimate of np; however, since Poisson

distributions are slightly skewed, it turns out that one should instead return the correction

k − 1
3 log 1

δ .

Explicitly, the Poisson distribution has pmf poi(λ, k) = λke−λ
k! , whose logarithm, using

Stirling’s approximation for the factorial, expanding to 3rd order in k, and dropping lower-

order terms in λ is − (k−λ)2

2λ +
(k−λ)3

6λ2 . The 2nd-order term here corresponds to a Gaussian

centered at k = λ of variance λ, which is a standard approximation for the Poisson dis-

tribution. However, crucially, the 3rd order term, corresponding to the positive skewness

of the Poisson distribution, increases the pmf to the right of k = λ and decreases it by an

essentially symmetric factor to the left.
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Seeking a δ-robust estimation of λ from a single sample of k, we are concerned, essen-

tially, with the interval where the Poisson pmf is greater than δ, or equivalently, where the

log pmf is greater than log δ. The quadratic − (k−λ)2

2λ in the first term of the above approxi-

mation equals log δ when k = λ ±
√

2λ log 1
δ , and this interval is centered at λ. However,

crucially, when we take into account the 3rd-order term, the interval where poi(λ, k) ≥ δ

essentially shifts to become k = 1
3 log 1

δ + λ ±
√

2λ log 1
δ . Thus, given a single sample, one

can δ-robustly estimate the mean of a Poisson distribution similarly well as the Gaussian

of same mean and variance, but only if one returns the sample minus 1
3 log 1

δ .

Thus, the 1
3 log 1

δ term in our estimator arises essentially from a 3rd order correction to

the sample mean, at least in the special case of Bernoulli distributions.

We give another example illustrating our estimator as being a “3rd order correction".

Suppose, for this section only, as in [15], that one knows the variance σ2(D) of the distribu-

tion in question, or has a good estimate of it.

Example 3.3. Given samples x1, . . . , xn from a distribution of mean 0 and variance 1 and

bounded higher moments, suppose our goal is to construct a slight variant of the empirical

mean that will robustly return an estimate that is close to 0, the true mean; we consider

estimates of the form 1
n
∑n

i=1(xi + c(xi)) for some function c : R → R. Explicitly, given a

bound b, we want our estimate to be between ±b, with as high probability as possible. For

simplicity we will consider the positive case, namely, boundingPx1,...,xn( 1
n
∑

i(xi + c(xi)) ≥ b).

With a view towards deriving a Chernoff bound, we rearrange, multiply by an arbitrary

positive constant α, and exponente inside the probability to yield that this probability

equals Px1,...,xn(exp(α
∑

i(xi + c(xi) − b)) ≥ 1); by Markov’s inequality, this probability is at

most Ex1,...,xn(exp(α
∑

i(xi + c(xi) − b))), for our choice of α > 0. We set α = b. Since each xi is

independent, this probability becomes Ex(exp(b(x + c(x) − b)))n.

Considering the empirical estimator, where c(xi) = 0, we thus have that the probability

the empirical mean estimate exceeds b is at most the nth power of Ex(exp(bx − b2)), where

this expression can be expanded to 3rd order as

e−b2
(
1 + bE(x) +

1
2

b2E(x2) +
1
6

b3E(x3) + O(x4)
)

As we assumed the data distribution has mean 0 and variance 1, we can simplify the above
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expression to

e−b2
(
1 +

1
2

b2 +
1
6

b3E(x3) + O(b4)
)

Ignoring, for the moment, the 3rd or higher-order terms, this expression is e−b2
(1+ 1

2 b2) ≈

e−b2/2, whose nth power equals e−b2n/2, which is exactly the bound one would expect for

the standard Gaussian case, of the probability that the empirical mean of n samples is more

than b from the true value. However, the 3rd order term is a crucial obstacle here, as the

third moment E(x3) could be of either sign, skewing either the left tail or right tail to have

substantially more mass than in our benchmark of the Gaussian case.

We thus choose a correction function c(xi) so as to cancel out this 3rd-order term and

improve the estimate in this regime: to cancel out the term 1
6 b3E(x3) in the 3rd-order

expansion of our Chernoff bound Ex(exp(b(x − b))), we replace x by x − 1
6 x3b2, yielding a

bound on the failure probability of the nth power of

e−b2
(
1 +

1
2

b2 + O(b4)
)

= e−b2/2+O(b4)

as desired.

For the sake of clarity, we can change variables, letting the leading term of our prob-

ability bound e−b2n/2 equal δ, and thus the correction − 1
6 x3b2 becomes c(x) ≡ − 1

n x3 1
3 log 1

δ ,

meaning the correction amounts essentially to a 3rd moment correction, split n ways and

scaled by the same 1
3 log 1

δ of our main estimator.

We explicitly relate this estimator to Estimator 1 by pointing out that, when none of

the samples xi are “truncated” by Estimator 1 (namely, α̂x2
i ≤ 1 always), then α̂ ≡ log(1/δ)

3nv̂

may be expressed in terms of the empirical variance v̂; taking κ = 0 for simplicity, the

returned estimate will be 1
n
∑

i xi − αx3
i = 1

n
∑

i xi −
1

v̂n x3
i

1
3 log 1

δ , which equals the above-

derived “3rd-order corrected estimator” when the empirical variance is the true variance,

1.

In the above example we showed that Chernoff bounds for the empirical mean deterio-

rate for distributions with large 3rd moments (skew), and that adding a 3rd-order correction

to the empirical mean corrects for this, leaving essentially “Gaussian-like” performance.

These calculations motivate several features of Estimator 1—including the 1
3 log 1

δ param-

eter, and the 3rd-order terms in the expression for µ̂—even though the overall form of
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Estimator 1 is rather different, as it must work in all regimes and not just in the cartoon

asymptotic regime considered in this example.

3.1.4 Key Contributions in Our Construction and Analysis

In addition to settling the fundamental sample complexity question of mean estimation,

we point out that the estimator construction and analysis may also be of independent

interest. In particular, the analysis framework—as described below—is generalizable to

other problem settings and estimator constructions.

Our overall analysis framework may be viewed as a Chernoff bound—showing expo-

nentially small probability of estimation error via bounds on a moment generation function

(expectation of an exponentiated real-valued random variable). However, since we seek

to analyze our estimator to sub-constant accuracy, many standard approaches fail to yield

the required resolution. We point out three crucial components of our approach.

First, our estimator (Estimator 1) is not a sum of independent terms, which is fundamen-

tal to standard Chernoff bound approaches, and thus we instead reformulate our estimator

as a 2-parameter ψ-estimator (see Definition 3.7). This technique rewrites our estimate µ̂ as

the first coordinate of the root (µ̂, α̂) of a system of 2 equationsψµ(µ̂, α̂) = 0 andψα(µ̂, α̂) = 0,

where the functions ψµ(µ̂, α̂) =
∑

i ψµ(xi, µ̂, α̂) and ψα(µ̂, α̂) =
∑

i ψα(xi, µ̂, α̂) are explicitly

sums of a corresponding function applied to each of the n independent data points in the

sample set. Thus we have bought independence at the price of making the estimator an

implicit function, introducing two new variables. One-dimensional estimators of this form

are standard: for example, Catoni’s [15] mean estimator in the case of known variance is

a (1 parameter) ψ-estimator for which he proves finite sample concentration. However,

adding another dimension—α̂, a new implicit variable whose value the estimator will ul-

timately discard—is less standard, without standard analysis techniques, yet significantly

increases the expressive power of such estimators [60]. Our high-level approach is to find

carefully chosen linear combinations of the functions ψµ and ψα, each of which is now a

sum of independent terms, and prove Chernoff bounds about these linear combinations.

Second, even after identifying these linear combinations ofψ functions, the correspond-

ing Chernoff bound analysis is difficult to directly tackle. The Chernoff bound analysis,
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as it turns out, is essentially equivalent to bounding a max-min optimization problem

where the maximization is over the set of real-valued probability measures with mean 0

and variance 1. In other words, the max-min optimization problem can be interpreted as

having uncountably infinitely many variables. In order to drastically simplify the problem

and make it amenable to analysis, we use convex-concave programming and linear pro-

gramming duality techniques to reduce the problem to a pure minimization problem with

a small finite number of variables, which we can analyze tightly.

We believe that the above two ideas—1) reformulating an estimator as a multi-parameter

ψ-estimator, so as to find a proxy of the estimator that is a sum of independent variables, and

2) viewing the corresponding Chernoff bound analysis as an optimization problems and

applying relevant duality techniques—form a general analysis framework which expands

the space of possible estimators that are amenable to tight analysis.

3.2 Related Work

There is a long history of work on real-valued mean estimation in a variety of models.

In the problem setting we adopt, where the sole assumption is on the finiteness of the

second moment, the median-of-means algorithm [34, 50, 2] has long been known to have

sample complexity tight to within constant multiplicative factors, albeit with a sub-optimal

constant. In seminal work, Catoni [15] improved this sample complexity to essentially

optimal (tight up to a 1 + o(1) factor), by focusing on the special cases where the variance of

the underlying distribution is known or the 4th moment is finite and bounded (in which case

the second moment can be accurately estimated). We stress however that the finiteness of

the 4th moment is nonetheless a much stronger assumption than our minimal assumption

on the finiteness of the variance (see the discussion at the end of Section 3.1.1).

Moving beyond the original problem formulation, Devroye et al. [23] drew the distinc-

tion between a single-δ estimator, which takes in the robustness parameter δ as input, versus

a multiple-δ estimator, which does not take any δ as input, but still provides guarantees

across a wide range of δ values. In their work, making the same finite kurtosis assumption



21

as Catoni, they achieved a multiple-δ estimator with essentially optimal sample complex-

ity, for a wide range of δ values. It is thus natural and prudent to ask whether a multiple-δ

estimator can exist for the entire class of distributions with finite variance, for a meaningful

range of δ values. Unfortunately, Devroye et al. [23] showed strong lower bounds answer-

ing the question in the negative. Hence, in this work, our proposed estimator is (and must

be) a single-δ estimator, taking δ as input.

Many applications have arisen from the success of sub-Gaussian mean estimation,

showing how to leverage or extend Catoni-style estimators to new settings, achieving sub-

Gaussian performance on problems such as regression, empirical risk minimization, and

online learning (bandit settings): for example see [48, 8, 16, 9].

A separate but closely related line of work is on high dimensional mean estimation. While

estimators generalizing the “median-of-means” construction were found to have statistical

convergence tight to multiplicative constants, until recently, such estimators took super-

polynomial time to compute [45]. A recent line of work [31, 20, 38], started by Hopkins [31],

thus focuses on the computational aspect, and brought the computation time first down to

polynomial time, with subsequent work bringing it further down to quadratic time using

spectral methods.

A recent comprehensive survey by Lugosi and Mendelson [43] explains much of the

above works in greater detail.

Mean estimation is also well studied in various more restrictive settings, and we high-

light a recent line of work seeking to find optimal convergence under differential privacy

constraints. Kamath et al. [36] studies the differentially private mean estimation prob-

lem in the constant probability regime, and shows strong sample complexity separations

from our unrestricted setting. Duchi, Jordan and Wainright [25, 26] study the problem

under the stricter constraint of local differential privacy. See Kamath et al. [36] for a more

comprehensive literature review on differentially private mean estimation.

Similar in style to our approach of “throwing out the most extreme c log 1
δ samples and

returning the mean of the rest”, Oliveira and Orenstein [51] show that this “trimmed mean”

estimator enjoys similar tight-up-to-constants guarantees as the median-of-means estima-

tor. This approach was significantly expanded by Lugosi and Mendelson to encompass the
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high dimensional case [44], which has the additional feature of being optimally robust (up

to constants) to adversarial contamination in the samples. Recent work by Diakonikolas et

al. [24] improves on this result by giving the first polynomial-time computable estimator

that achieves the same optimal robustness guarantees. Furthermore, in the absence of ad-

versarial contamination, Diakonikolas et al. [24] also simplify the arguments in [31, 20, 38]

for showing a computationally efficient sub-Gaussian mean estimator in high dimensions.

Part of our tight analysis relies on insights from mathematical programming and dual-

ity; see [54] for a detailed discussion of prior works that use such mathematical program-

ming and duality tools to either design or analyze statistical estimators [53, 49, 66, 67, 35, 63].

3.3 Our Mean Estimator

In this section, we present our estimator (Estimator 1), as well as its reformulation as a 2-

parameter ψ-estimator. We then present some perspective and basic structural properties

of the estimator that will serve as a foundation for the analysis to follow.

Estimator 1 The Main Estimator

Inputs:

• n independent samples {xi} from the unknown underlying distribution D (guaranteed
to have finite variance)

• Confidence parameter δ

1. Compute the median-of-means estimate κ: evenly partition the data into log 1
δ groups

and let κ be the median of the set of means of the groups.

2. Find the solution α̂ to the monotonic, piecewise-linear equation
∑

i min(α̂(xi−κ)2, 1) =
1
3 log 1

δ

3. Output: µ̂ = κ + 1
n
∑

i(xi − κ)(1 −min(α̂(xi − κ)2, 1))

3.3.1 Meaning of the Estimator

Consider the expression in Step 3 for the final returned value of the estimator, µ̂ = κ +

1
n
∑

i(xi − κ)(1 − min(α̂(xi − κ)2, 1)). Without the final min expression, the expression κ +
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1
n
∑

i(xi − κ) · 1 computes exactly the sample mean. The factor (1 −min(α̂(xi − κ)2, 1)) may

be thought of as a weight on the ith element, between 0 and 1, where a weight of 1 leaves

that element as is, but a weight towards 0 essentially throws out part of the sample xi and

instead defaults to the median-of-means estimate κ. Thus, rather than either keeping or

discarding each entry, the weight min(α̂(xi − κ)2, 1) specifies what fraction of the ith sample

to discard.

The condition in Step 2 of Estimator 1 picks α so that the total, weighted, number of

discarded samples equals 1
3 log 1

δ . The expression min(α̂(xi−κ)2, 1) specifying what fraction

of each xi to discard says, essentially, that this fraction should be proportional to the square

of the deviation of xi from the mean estimate κ, capped at 1 so that we do not discard “more

than 100% of” any sample xi.

3.3.2 Structural Properties of the Estimator

We point out three basic structural properties of Estimator 1 that both shed light on the

estimator itself, and will be crucial to its analysis.

First, the estimator is “affine invariant” in the sense that, if its input samples {xi}undergo

an affine map x→ ax + b then its output will be mapped correspondingly.

Lemma 3.4. Suppose X is a set of samples in R. Then for any δ > 0 and any scale a > 0 and shift

b,

µ̂(aX + b, δ) = a µ̂(X, δ) + b

where µ̂ denotes the output of Estimator 1.

The above lemma follows trivially from the fact that the median-of-means estimate also

respects shift and scale in the input samples, and that α is chosen in Step 2 of Estimator 1

so that min(α(xi − κ)2, 1) does not depend on the affine parameters a, b.

Second, as is well known, the median-of-means estimate κ of Step 1, while not as

accurate as what we will eventually return, is robust in the sense that, with probability at

least 1 − δ/2, the median-of-means estimate has additive error from the true mean that is

at most O(σ ·
√

log 1
δ

n )—proportional to the eventual guarantees of our estimator, but with

somewhat worse proportionality constant.
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Fact 3.5 ([32]). For any distribution D with mean µ and standard deviation σ, the median-of-means

estimate κ, on input n samples, satisfies

P

|κ − µ| > O

σ
√

log 1
δ

n


 ≤ δ

Third, if we temporarily ignore Step 1, treating κ as a free parameter, we show that

the final output of the estimator, µ̂, varies very little with κ. Combined with the accuracy

guarantees of the median-of-means estimate, the difference in the final estimate between

using the median-of-means as κ versus using the true mean as κ is inconsequential (a o(1)

factor) compared to the total additive error we aim for. Therefore, for the purposes of

analysis, it suffices to assume that κ takes the value of the true mean (though an estimator

could not do this in practice, as the true mean is unknown).

Lemma 3.6. Consider a fixed sample set X of size n, and a confidence parameter δ. Let e(X, δ, κ)

denote Estimator 1 but where Step 1 is omitted and κ is instead considered as an input. Then,

∣∣∣∣∣d e(X, δ, κ)
dκ

∣∣∣∣∣ = O


√

log 1
δ

n


Fact 3.5 shows that, except with δ probability, the median-of-means estimate is within

O
(
σ

√
log 1

δ
n

)
of the true mean, and multiplying this by the Lipschitz constant O

(√
log 1

δ
n

)
from Lemma 3.6 shows that the change in output of Estimator 1, between using the median-

of-means versus setting κ = 0, has magnitude O
(
σ

√
log 1

δ
n

2

)
= o

(
σ

√
log 1

δ
n

)
. This discrepancy

is therefore a o(1) fraction of the additive error guaranteed by Theorem 3.1.

We now prove Lemma 3.6.

Proof. We compute the derivatives with respect to α̂ and κ of the µ̂ (computed in Step

3 of Estimator 1), and the expression on the left hand side of Step 2, which we denote

ν ≡
∑

i min(α̂(xi −κ)2, 1). We note that for terms where min(α̂(xi −κ)2, 1) = 1, all derivatives

are 0, so we adopt the notation “Σ<” to denote summing only over those indices i for which

α̂(xi − κ)2 < 1. Thus we have

dν
dκ

= 2
∑
<

α̂(xi − κ)
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dν
dα̂

=
∑
<

(xi − κ)2

dµ̂
dκ

= 1 +
1
n

∑
<

(−1 + 3α̂(xi − κ)2)

dµ̂
dα̂

= −
1
n

∑
<

(xi − κ)3

Recall that α̂ is defined implicitly so as to make the expression ν = 1
3 log 1

δ ; thus in

Estimator 1, if we change κ at a rate of 1, then α̂ also changes at rate − dν
dκ

/
dν
dα̂ to keep ν

unchanged. Thus, the overall derivative of the estimate with respect to changing κ equals
dµ̂
dκ −

dµ̂
dα̂

dν
dκ

/
dν
dα̂ . We bound this from the derivatives computed above.

To bound dµ̂
dκ , we note that the number of indices not in the sum “

∑
<” is at most

1
3 log 1

δ because each such i contributes 1 to the left hand side of the condition in Step 2 of

Estimator 1 and the right hand side equals 1
3 log 1

δ . Thus the initial terms of dµ̂
dκ are bounded

as 1 + 1
n
∑
<(−1) ≤ 1

3n log 1
δ . The remaining part of dµ̂

dκ , namely 1
n
∑
< 3α̂(xi − κ)2 is 3

n times the

corresponding terms in ν ≤ 1
3 log 1

δ itself, and thus is at most 1
n log 1

δ . Thus dµ̂
dκ = O( 1

n log 1
δ ).

We now bound the remaining term −dµ̂
dα̂

dν
dκ

/
dν
dα̂ . Since for each index i in “

∑
<” we

have |xi − κ| ≤
1
√
α̂

, we may bound dµ̂
dα̂ , involving a 3rd moment term, by the simpler

|
dµ̂
dα̂ | ≤

1
n
∑
< |xi − κ|2/

√
α̂. Combining this, with the other derivatives and the bound α̂ ≤

1
3 log 1

δ

/∑
<(xi − κ)2 from the previous paragraph yields:

∣∣∣∣∣∣dµ̂dα̂
dν
dκ

/
dν
dα̂

∣∣∣∣∣∣ ≤ 2
√
α̂

n

∣∣∣∣∣∣
∑
<(xi − κ)

∑
<(xi − κ)2∑

<(xi − κ)2

∣∣∣∣∣∣ ≤ 2
√

1
3 log 1

δ

n

∣∣∣∣∣∣∣
∑
<(xi − κ)√∑
<(xi − κ)2

∣∣∣∣∣∣∣ ≤
√

4 log 1
δ

3n

where the last inequality is Cauchy-Schwarz applied to the sequence (xi − κ) and the all-1s

sequence. �

The above three structural properties allow us to drastically simplify the analysis: the

affine invariance means it is sufficient to show our estimator works for the special case of

distributions with mean 0 and variance 1; the second and third properties mean that errors

in κ effectively do not matter, and, for distributions with mean 0, it is sufficient to omit Step

1 and instead just analyze the case where κ = 0.

We point out that Estimator 1 when modified to setκ = 0 (independently of the samples)

is no longer affine invariant, nor is its reformulation as a ψ-estimator in Section 3.3.3. The
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structural properties in this section show that, instead of analyzing the actual estimator

(Estimator 1 which is affine invariant), it suffices to analyze this artificially simplified,

although no longer affine invariant, estimator which sets κ = 0, on distributions with

mean 0 and variance 1. Explicitly, in the rest of the paper we will show Proposition 3.10

(Section 3.4), which analyzes the mean-0 variance-1 case of the ψ-estimator defined below

in Definition 3.7; the discussion of this section shows that this proposition implies our main

result, Theorem 3.1.

3.3.3 Representing a Special Case of Estimator 1 as a ψ-Estimator

As discussed in Section 3.1.4, our estimator, even its simplified version with κ = 0, is not

a sum of independent terms, making it difficult to tightly bound its moment generating

function, and hence also difficult to prove its concentration around the true mean using

a Chernoff-style bound. Our solution is to reformulate Estimator 1, with the simplifying

assumption that κ = 0, as a 2-parameter ψ-estimator, as defined in Definition 3.7. This

reformulation defines our estimate µ̂ implicitly in terms of two new functions ψµ and ψα

that are indeed sums of n independent terms, each term depending on a single xi. We will

use this representation crucially for the concentration analysis of the estimator.

Definition 3.7. Consider Estimator 1 but with Step 1 replaced with “κ = 0”. The estimator

can be equivalently expressed as follows:

1. Input: n independent samples X = x1, . . . , xn

2. Solve for the (unique) pair (µ̂, α̂) satisfying ψµ = 0 and ψα = 0, where the functions

are defined as follows:

ψµ(X, µ̂, α̂) =

n∑
i=1

(
µ̂ − xi

(
1 −min

(
α̂x2

i , 1
)))

ψα(X, µ̂, α̂) =

n∑
i=1

(
min

(
α̂x2

i , 1
)
−

1
3n

log
1
δ

)
(Note that α̂ > 0 always)

3. Output: µ̂ from the previous step



27

We will sometimes omit µ̂ from the arguments of ψα since µ̂ is not used in the definition of

the function. We will often refer to the pair (ψµ, ψα) as a 2-element vector ψ.

For convenience in the rest of the paper, we define v̂ ≡ log(1/δ)
3nα̂ , which we refer to as

the “truncated empirical variance”; this is because, if we modify the ψα = 0 condition by

removing the “truncation” of taking the min with 1, then the resulting condition, when

expressed in terms of v̂ =
log(1/δ)

3nα̂ and rearranged, is exactly the condition that v̂ is the

empirical variance: 1
n
∑n

i=1 x2
i . Thus α̂ may be thought of as a proxy for the empirical

variance, as v̂ =
log(1/δ)

3nα̂ equals the empirical variance, except in cases when samples are far

enough from 0 that they are “truncated” by the “min”.

Interestingly, in the case that none of the samples are “truncated”, (and κ = 0), the

overall output of the estimator becomes 1
n
∑

i xi − α̂x3
i = 1

n
∑

i xi −
log(1/δ)

3nv̂ x3
i , namely, µ̂ is

“the empirical mean, corrected by subtracting 1
3n log 1

δ times the ratio of the empirical 3rd

moment over the empirical 2nd moment.”

Proof that Definition 3.7 is equivalent to Estimator 1 when κ is set to 0. Fix a set of samples X =

{xi}. We observe that Estimator 1, with the additional simplifying assumption that κ = 0,

can be represented by the following 2 equations.∑
i

min(α̂ x2
i , 1) =

1
3

log
1
δ

µ̂ =
1
n

∑
i

xi(1 −min(α̂ x2
i , 1))

(3.2)

Estimator 1 solves for α̂ in the first line, and uses this α̂ value to compute the estimate µ̂ in

the second line. The two conditions of Equation 3.2 are equivalent to the two conditions

ψα = 0, ψµ = 0 respectively, and thus the two estimators are equivalent. �

3.3.4 The relation to the Catoni-Giulini estimator

As a side note, in this section we discuss the similarities and significant differences between

our estimator and the Catoni-Giulini estimator [15, 16], which has optimal convergence

assuming knowledge of the variance.
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Definition 3.8. Define (as will be used in this section only) the function T that “truncates”

its input t to a specified range [−r, r], as Tr(t) = min(r,max(−r, t)); and define the influence

function ψ(t) = t − 1
6 t3.

We use Definition 3.8 to re-express the final estimate µ̂ returned in Step 3 of Estimator 1—

where κ is the initial median-of-means estimate and λ̂ =
√

6α̂ =

√
2 log(1/δ)

nv̂ comes from the

α̂ computed in Step 2 of Estimator 1, or equivalently from the truncated empirical variance

v̂ defined from α̂ in Section 3.3.3—as

µ̂ = κ +
1

nλ̂

∑
i

ψ(T√6(λ̂(xi − κ)))

On the other hand, the Catoni-Giulini estimator chooses λ̂ ≈
√

2 log(1/δ)
nσ2 using the true

variance σ2 (see Proposition 2.4 of [15]), and solves for µ̂ in the very similar equation

0 =
1
n

∑
i

ψ(T√2(λ̂(xi − µ̂)))

With this view, the two estimators are similar, albeit with the crucial differences that

1) our α̂ is computed from the data while the Catoni-Giulini α̂ is computed from the true

variance, and 2) we use the truncation constant
√

6 instead of the
√

2 used by Catoni and

Giulini. As Catoni and Giulini noted in [15, 16], the constant
√

2 is the largest “truncation

constant” r for which the function ψ(Tr(t)) is monotonic. Monotonicity of the “influence

function” ψ is a crucial proof technique in [15], responsible for some of the generality of

that paper. Further, the non-monotonicity of our analog of ψ leads our overall estimator to

be non-monotonic in its data: there is an input vector to Estimator 1, that, when some of its

entries are increased, actually leads to a smaller final estimate µ̂, which is counterintuitive.

One may thus ask if the
√

6 in our estimator can be replaced with
√

2, to make the estimator

monotonic. Intriguingly, this ruins its performance, though subtler modifications of our

estimator to make it monotonic may be possible.

We also point out that a variant of our estimator may be expressed as a (2-parameter)

ψ-estimator—with no separate median-of-means preprocessing step needed, in line with

the ψ-estimators of [15, 16]. This ψ-estimator formulation might be of independent interest

given the huge body of work analyzing such estimators, though this formulation is not

used in our analysis (which instead uses the setup of Section 3.3.3).



29

Definition 3.9 (A ψ-estimator variant of Estimator 1). Given n independent samples X =

x1, . . . , xn, solve for (µ̂, λ̂) satisfying the following equations, and return µ̂:

n∑
i=1

T√6(λ̂(xi − µ̂))2 = 2 log
1
δ

and
n∑

i=1

ψ(T√6(λ̂(xi − µ̂))) = 0 (3.3)

From this perspective, Steps 2 and 3 of Estimator 1 may be viewed as a single update

of an iterative algorithm to solve Equation 3.3, starting with the guess µ̂ = κ found by

the median-of-means algorithm. The Lipschitz analysis in Section 3.3.2 (the third property

in Section 3.3.2, see Lemma 3.6) essentially shows that these updates converge extremely

rapidly, which can further be used to show that this concise estimator also satisfies the

guarantees of Theorem 3.1.

3.4 Analyzing our estimator

In this section, we outline the proof of our main theorem, restated as follows.

Theorem 3.1. Estimator 1, given δ,n > 0, and a sample set X of n independent samples from

distribution D, will, with probability at least 1 − δ over the sampling process, yield an estimate µ̂

with error at most |µ̂(X) − µ(D)| ≤ σ(D) · (1 + o(1))
√

2 log 1
δ

n . Here, the o(1) term tends to 0 as(
log 1

δ
n , δ

)
→ (0, 0).

The discussion of the structural properties of Estimator 1 in Section 3.3.2 shows that

it is sufficient to instead show that, for any distribution of mean 0 and variance 1, the

ψ-estimator of Definition 3.7 will return an estimate µ̂ that is close to 0, except with tiny

probability. Recall also that, since the ψ-estimator solves for (µ̂, α̂) such that ψ(X, µ̂, α̂) = 0

(where X is the sample set) and returns µ̂, the claim that the returned estimate will be close

to 0 is equivalent to saying that every (µ̂, α̂) pair with µ̂ far from 0 must violate the equation,

namely ψ(X, µ̂, α̂) , 0. We thus prove the following proposition (Proposition 3.10), to yield

Theorem 3.1. Note that the failure probability in Proposition 3.10 is δ/2 (instead of δ, as

in Theorem 3.1), accounting for an additional δ/2 probability that the median-of-means

estimate in Step 1 of Estimator 1 fails.

Proposition 3.10. There exists a universal constant c > 0 such that, fixing ε′ =
(
1 +

c log log 1
δ

log 1
δ

) √
2 log 1

δ
n ,
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we have that for all distributions D with mean 0 and variance 1, with probability at least 1− δ
2 over

the set of samples X, for all µ̂, α̂ where |µ̂| > ε′ and α̂ > 0, the vector ψ(X, µ̂, α̂) , 0.

Proposition 3.10 asks us to show that, with high probability,ψ(X, µ̂, α̂) is not at the origin

for any choice of |µ̂| > ε′, α̂; instead, as a proof strategy, we choose a finite bounded mesh

of µ̂, α̂ and show that the function ψ(X, µ̂, α̂) is 1) not just nonzero, but far from the origin

on this set, 2) Lipschitz in between mesh elements, and 3) monotonic (in an appropriate

sense) outside the mesh bounds. Step 1), discussed below, contains the most noteworthy

part of the proof, a mathematical programming-inspired bound to help complete a delicate

Chernoff bound argument.

For simplicity, we reparameterize to work with v̂ ≡ log(1/δ)
3nα̂ (the “truncated empirical

variance”) instead of α̂: the mesh we analyze, covering the most delicate region for analysis,

will span the interval v̂ ∈ [0.05, 55.5], namely, where the truncated empirical variance v̂ is

within a constant factor of the true variance of 1. Note that this should not be taken to imply

that v̂ ∈ [0.05, 55.5] with high probability—the truncated empirical variance is not designed

to be a good estimate of the variance, merely as a step in robustly estimating the mean;

and further, accurate estimates of the variance are simply impossible in general without

further assumptions such as bounds on the distribution’s 3rd or 4th moments. We also

want to distinguish our estimator from Catoni’s [15]: Catoni’s estimator relies on having a

high-precision estimate of the variance (to within a 1 + o(1) factor) in order to achieve the

desired performance. By contrast, our estimator is robust against wild inaccuracies of the

(truncated) empirical variance v̂ compared to the true variance of 1. In short, the approach

of our estimator should be viewed as distinct from Catoni’s, since, while Catoni’s estimator

relies on an initial good guess at the variance, ours thrives in the inevitable situations where

v̂ is far from 1.

We return to describing our strategy for analyzing the performance of our estimator.

For each µ̂, v̂ =
log(1/δ)

3nα̂ that we analyze (from the finite mesh): instead of directly showing

that, with ≥ 1− δ
2 probability, ψ(X, µ̂, α̂) is far from the origin in some direction, we instead

linearize this claim; we prove the stronger claim that there exists a specific direction d(v̂)

such that with ≥ 1 − δ
2 probability, ψ(X, µ̂, α̂) is more than 1

log(1/δ) distance from the origin

in direction d (specifically we lower bound the dot product d(v̂) · ψ(µ̂, α̂), while we upper
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bound each coordinate of d inversely with the Lipschitz coefficients of ψ). The crucial

advantage of this reformulation is that, since each of ψµ, ψα is a sum of n terms, that are

each a function of an independent sample xi from D, the dot product d(v̂) ·ψ(X, µ̂, α̂) is thus

also a sum of n independent terms, and thus we finish the proof with a Chernoff bound,

Lemma 3.11. The Chernoff bound argument itself is standard; however, to bound the

resulting expression requires an extremely delicate analysis that we pull out into a separate

4-variable inequality expressed as Lemma 3.14—see the discussion around the lemma

for more details and for motivation of the analysis from a mathematical programming

perspective.

We state the crucial Chernoff bound (Lemma 3.11) and the Lipschitz bounds (Lemma 3.12),

and then use them to prove Proposition 3.10. We prove Lemmas 3.11 and 3.12 in the next

section, along with the statement and proof of the delicate component that is Lemma 3.14.

Lemma 3.11. Consider an arbitrary distribution D with mean 0 and variance 1. There exists a

universal constant c where the following claim is true. Fixing µ̂ = ε′ =
(
1 +

c log log 1
δ

log 1
δ

) √
2 log 1

δ
n ,

then for all δ smaller than some universal constant, and for all v̂ ∈ [0.05, 55.5], there exists a vector

d(v̂) where dµ ≥ 0, and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant, such that

P
X←Dn

d(v̂) · ψ
(
X, µ̂ = ε′, α̂ =

log(1/δ)
3nv̂

)
>

1
log 1

δ

 ≥ 1 −
δ

log4 1
δ

Furthermore, for v̂ = 0.05 we have dµ =

√
3.75 log(1/δ)

n , dα =
√

3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.

Lemma 3.12. Consider an arbitrary set of n samples X. Consider the expressionsψµ(X, µ̂, α̂), ψα(X, α̂),

reparameterized in terms of v̂ ≡ log(1/δ)
3nα̂ in place of α̂. Suppose the equation ψα(X, α̂) = 0 has a

solution in the range v̂ ∈ [0.05, 55.5]. Then the functions
√

log(1/δ)
n ψµ(X, µ̂, α̂) and ψα(X, α̂) are

Lipschitz with respect to v̂ on the entire interval v̂ ∈ [0.05, 55.5], with Lipschitz constant c log 1
δ

for some universal constant c.

We now prove Proposition 3.10, which per our previous discussion, implies our main

result, Theorem 3.1.

Proof of Proposition 3.10. As in Lemma 3.11, we fix ε′ = (1 +
c log log 1

δ

log 1
δ

)
√

2 log 1
δ

n , where c is

some universal constant.
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By symmetry, instead of considering positive and negative µ̂, it suffices to consider the

case µ̂ > ε′ (as opposed to µ̂ < −ε′) and show that this case succeeds with probability at

least 1 − δ
4 .

To prove the claim, we first prove a stronger statement on a restricted domain, that with

probability at least 1 − δ
4 over the randomness of the sample set X, for each v̂ ∈ [0.05, 55.5]

there exists a vector d = (dµ, dα) such that d·ψ(X, ε′, α̂ ≡ log(1/δ)
3nv̂ ) > 0, with dµ ≥ 0 throughout,

and, for v̂ = 0.05 we have dµ =

√
3.75 log(1/δ)

n , dα =
√

3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.

We will first apply Lemma 3.11 to each v̂ in a discrete mesh: let M consist of evenly

spaced points between 0.05 and 55.5 with spacing 1/ log3 1
δ (thus with Θ(log3 1

δ ) many

points).

By Lemma 3.11 and a union bound over these Θ(log3 1
δ ) points, we have that with

probability at least 1 − δ
Θ(log 1

δ )
(which is at least 1 − δ

4 for δ smaller than some universal

constant) over the set of n samples X, for all v̂ ∈ M, there exists a vector d(v̂) such that

d(v̂) · ψ(X, µ̂ = ε′, α̂ ≡
log(1/δ)

3nv̂ ) > 1/ log 1
δ , where d further satisfies the desired positivity

and boundary conditions, and where both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal

constant. For the rest of the proof, we will only consider sets of samples X satisfying the

above condition.

Now consider an arbitrary v̂′ ∈ [0.05, 55.5] \M and consider the vector ψ evaluated at

α̂′ =
log(1/δ)

3nv̂′ . We wish to extend the dot product inequality to hold also for v̂′. If ψα , 0 then

there is nothing to prove: set dµ = 0 and dα = sign(ψα); otherwise, ψα = 0 means we may

apply Lemma 3.12 to conclude that both
√

log(1/δ)
n ψµ(X, µ̂, α̂′) and ψα(X, µ̂, α̂′) are Lipschitz

with respect to v̂′ on the interval v̂′ ∈ [0.05, 55.5], with Lipschitz constant c log 1
δ for some

universal constant c.

Consider the closest v̂ ∈M to v̂′, which by definition of M is at most 1/ log3 1
δ away. By

assumption on X, there exists a vector d such that d · ψ(X, µ̂ = ε′, α̂ =
log(1/δ)

3nv̂ ) > 1/ log 1
δ ,

with dµ ≥ 0 and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant. Because of the

Lipschitz bounds on ψ, combined with the bounds on the size of the dµ, dα, we conclude

that the Lipschitz constant of the dot product (treating the vector d as fixed) is O(log 1
δ ).

Thus, the large positive dot product at v̂ implies at least a positive dot product nearby at
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v̂′: d · ψ(X, µ̂ = ε′, v̂′) > 1
log 1

δ
− O(log 1

δ ) 1
log3 1

δ

> 0, for sufficiently small δ as given in the

proposition statement.

Having shown the stronger version of the claim for the restriction µ̂ = ε′ and v̂ ∈

[0.05, 55.5] we now extend to the entire domain via three monotonicity arguments. Explic-

itly, assume the set of samples X satisfies the dot product inequality above with the vector

function d(v̂), where d(v̂) satisfies the boundary conditions at v̂ = 0.05 and 55.5 specified in

Lemma 3.11. From this assumption, we will show that ψ , 0 for any positive v̂ =
log(1/δ)

3nα̂ ,

and for any µ̂ ≥ ε′.

First consider v̂ > 55.5 (still fixing µ̂ = ε′). The functionψα =
∑n

i=1

(
min

(
α̂x2

i , 1
)
−

1
3n log 1

δ

)
is an increasing function of α̂, and thus a decreasing function of v̂ ≡ log(1/δ)

3nα̂ . Since for

v̂ = 55.5, the dot product d · ψ > 0 with dµ = 0, dα < 0, the dot product will thus remain

positive for this same choice of d as we increase v̂ from 55.5.

Next, for v̂ < 0.05 (again still fixing µ̂ = ε′), we analogously show that the dot product

of ψ(X, ε′, α̂ ≡ log(1/δ)
3nv̂ ) with the fixed vector d(0.05) will increase as we decrease v̂. The ith

term in the sums definingψµ orψα depends on α̂ (and thus v̂) only in the factor min(α̂x2
i , 1).

Further, there is no dependence unless the first term attains the min, namely |xi| ≤
√

1/α̂,

which in turn is upper bounded by
√

0.15 n
log(1/δ) because of our assumption that v̂ < 0.05.

Thus, the only ith terms in the dot product which have α̂ dependent are simply equal to

dµα̂x3
i + dαα̂x2

i = α̂x2
i (dα + xidµ). By our choice of dµ(0.05) =

√
3.75 log(1/δ)

n and dα(0.05) =
√

3

from Lemma 3.11, the expression (dα+xidµ) ≥
√

3−
√

0.15
√

3.75 is thus always non-negative,

and thus the overall dot product cannot decrease as we send α̂ to∞—equivalently, sending

v̂ to 0—as desired.

We have thus shown that, for all non-negative α̂ =
log(1/δ)

3nv̂ , there is a vector d with

dµ ≥ 0 whose dot product with ψ(X, ε′, α̂) is greater than 0. We complete the proof by

noting that the only dependence on µ̂ in ψ is that ψµ is (trivially) increasing in µ̂. Since

dµ ≥ 0, increasing µ̂ from ε′ will only increase the dot product, and thus the dot product

remains strictly greater than 0, implying that ψ(X, µ̂, α̂) , 0 as desired. �
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3.5 Proofs of Lemmas 3.11 and 3.12

The main purpose of this section is to present and motivate the proof of Lemma 3.11—

since our results are tight across such a wide parameter space, the resulting inequalities are

somewhat subtle. After, we also present the short proof of Lemma 3.12.

Lemma 3.11. Consider an arbitrary distribution D with mean 0 and variance 1. There exists a

universal constant c where the following claim is true. Fixing µ̂ = ε′ =
(
1 +

c log log 1
δ

log 1
δ

) √
2 log 1

δ
n ,

then for all δ smaller than some universal constant, and for all v̂ ∈ [0.05, 55.5], there exists a vector

d(v̂) where dµ ≥ 0, and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant, such that

P
X←Dn

d(v̂) · ψ
(
X, µ̂ = ε′, α̂ =

log(1/δ)
3nv̂

)
>

1
log 1

δ

 ≥ 1 −
δ

log4 1
δ

(3.4)

Furthermore, for v̂ = 0.05 we have dµ =

√
3.75 log(1/δ)

n , dα =
√

3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.

We start the analysis via standard Chernoff bounds on the complement of the probability

in Equation 3.4 via Lemma 3.13, before pausing to discuss how mathematical programming

and duality insights lead to the formulation of the crucial Lemma 3.14; we then complete

the proof.

Lemma 3.13. Consider an arbitrary distribution D with mean 0 and variance 1. For all sufficiently

small δ, for any µ̂, α̂ and vector d = (dµ, dα), we have

P
X←Dn

d · ψ
(
X, µ̂, α̂

)
≤

1
log 1

δ

 ≤ 2
(
e−dµµ̂+dα 1

3n log 1
δ E

x←D
(edµx(1−min(α̂x2,1))−dα min(α̂x2,1))

)n

Proof. We upper-bound the probability by exponentiating the negation of both sides of the

expression inside the probability, and then using Markov’s inequality:

P
X←Dn

d(v̂) · ψ(X, µ̂, α̂) ≤
1

log 1
δ


= P

X←Dn

(
e−d(v̂)·ψ(X,µ̂,α̂)

≥ e
−

1
log 1

δ

)
≤ 2 E

X←Dn

(
e−d(v̂)·ψ(X,µ̂,α̂)

)
by Markov’s inequality; and e

1
log(1/δ) ≤ 2 for sufficiently small δ

= 2 E
x←D

(e−d(v̂)·ψ(x,µ̂,α̂))n by independence
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= 2
(
e−dµµ̂+dα 1

3n log 1
δ E

x←D
(edµx(1−min(α̂x2,1))−dα min(α̂x2,1))

)n
substituting the def. of ψ (3.5)

�

3.5.1 Mathematical Programming and Duality Analysis

In order to show Lemma 3.11, we aim to find bounds on the failure probability that are as

strong as possible. Appealing to Lemma 3.13 that we have just proven, recall that, as in the

standard Chernoff bound methodology, we are still free to choose the parameters dµ, dα,

which we do so as to minimize the resulting bound on the failure probability. Phrased

abstractly, the goal is, for the µ̂, α̂ of Lemma 3.11, to show that, for any distribution D of

mean 0 and variance 1, there is a choice d = (dµ, dα) that makes Equation 3.5 sufficiently

small. Phrased as an optimization problem, our goal is to evaluate (or tightly bound):

max
D

min
d=(dµ,dα)

e−dµµ̂+dα 1
3n log 1

δ E
x←D

(edµx(1−min(α̂x2,1))−dα min(α̂x2,1)) (3.6)

where D ranges over distributions of mean 0 and variance 1.

We will use convex-concave programming and linear programming duality to sig-

nificantly simplify the max-min program in Equation 3.6 before we dive into the part of

analysis that is ad hoc for this problem. We wish to emphasize here again that the steps of 1)

writing an estimator as a multi-parameter ψ-estimator and finding an analogous lemma to

our Lemma 3.11, then 2) using mathematical programming duality to simplify the Chernoff

bound analysis, are a framework generalizable for tightly analyzing other estimators.

For simplicity of exposition, assume that we restrict the support of D to some suf-

ficiently fine-grained finite set, meaning that the maximization in Equation 3.6 is now

finite-dimensional, albeit an arbitrarily large finite number. For each support element x, let

Dx be a variable representing the probability of choosing x under distribution D. The ex-

pectation component of Equation 3.6 may now be expressed as sum that is a linear function

in the variables Dx:

max
D

min
d=(dµ,dα)

e−dµµ̂+dα 1
3n log 1

δ

∑
x

Dx · edµx(1−min(α̂x2,1))−dα min(α̂x2,1) (3.7)
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Using the standard max-min inequality (a form of weak duality in optimization), we

have that Equation 3.7 is upper bounded by swapping the maximization and minimization

(Equation 3.8), meaning that the vector d no longer depends on the distribution D.

min
d=(dµ,dα)

max
D

e−dµµ̂+dα 1
3n log 1

δ

∑
x

Dx · edµx(1−min(α̂x2,1))−dα min(α̂x2,1) (3.8)

Crucially, however, Equation 3.8 is not just an upper bound on Equation 3.7, but is in fact

equal to it, due to Sion’s minimax theorem [59]. To apply Sion’s minimax theorem, it suffices

to check that 1) both d and D are constrained to be in convex sets, at least one of which is

compact, 2) the objective is convex in d and 3) concave in the variables Dx. For the first

condition, we note that the set of distributions on a finite domain is compact. The objective

is convex in d since the objective is the sum of exponentials that are each linear in d. And

the objective is concave in Dx because it is in fact a linear function of D.

The guarantee of Sion’s minimax theorem means that we may work with Equation 3.8

instead of Equation 3.7 without sacrificing tightness in our analysis. This justifies why we

are free to choose d = (dµ, dα) in Lemma 3.11 that does not depend on the distribution D.

To further simplify the problem in Equation 3.8, we note again that both the objective

and the constraints on D are linear in the variables Dx, meaning that the inner maximization

is in fact a linear program. We can then apply linear programming (strong) duality to yield

the following equivalent optimization (Equation 3.9). We note that, as above, for the

purposes of upper bounding Equation 3.6, it suffices to only use weak duality. Strong

duality however guarantees that this step does not introduce slack into the analysis.

The three variables V,M,S in the inner minimization below are the dual variables

corresponding to the three constraints on distribution D originally: that D has variance 1,

mean 0, and total probability mass 1.

min
d=(dµ,dα)

min
V,M,S

V + S

for all x: Vx2 + Mx + S ≥ e−dµµ̂+dα 1
3n log 1

δ+dµx(1−min(α̂x2,1))−dα min(α̂x2,1)
(3.9)

We have thus reduced the infinite-dimensional optimization problem of Equation 3.6

to the five-dimensional problem of Equation 3.9 (or six dimensions, if we include the

universal quantification for x ∈ R), a significant simplification. We bound Equation 3.9 by

explicitly choosing values for d = (dµ, dα),V,M,S as functions of α̂,n, log 1
δ , and showing
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that they jointly satisfy the constraint of Equation 3.9, for all x. We factor out the terms in

the exponential that do not depend on x; we make the variable substitutions y ≡
√
α̂x and

v̂ ≡ log(1/δ)
3nα̂ to replace dependence on α̂,n, log 1

δ with dependence on the single variable v̂;

taking the log of both sides (and swapping sides) yields an expression that is recognizable

in the following lemma, where the multipliers of 1, y, y2 respectively on the right hand side

are essentially our choices of S,M,V:

Lemma 3.14. For all v̂ ∈ [0.05, 55.5], there exist a > 0 and b such that

∀y ∈ R : ay
(
1 −min

(
y2, 1

))
− b ·min

(
y2, 1

)
≤ log

(
1 + ay + y2v̂(−3 +

a
√

6
√

v̂
− b)

)
where a ∈ [C,C′] and b ∈ [−C′,C′] for positive constants C,C′. Further, for v̂ = 0.05, the pair

a = 0.75, b =
√

3 works.

We emphasize that the application of Lemma 3.14 in the proof of Lemma 3.11 below

is straightforward, though finding the particular form of Lemma 3.14 is not. Further, one

would not seek a result of the form of Lemma 3.14 without the guarantees of this section,

derived via duality and mathematical programming, showing that “results of the form of

Lemma 3.14 encompass the full power of the Chernoff bounds of Equation 3.5.” See the

end of Section 3.5.2 for the proof of Lemma 3.14.

3.5.2 Proof of Lemma 3.11

We now prove Lemma 3.11 by combining the Chernoff bound analysis of Lemma 3.13 with

the inequality from Lemma 3.14. We point out that the proof below is direct, without any

reference to duality or mathematical programming; however, the discussion of Section 3.5.1

was crucial to discovering the right formulation for Lemma 3.14. We prove Lemma 3.14 at

the end of the section.

Lemma 3.11. Consider an arbitrary distribution D with mean 0 and variance 1. There exists a

universal constant c where the following claim is true. Fixing µ̂ = ε′ =
(
1 +

c log log 1
δ

log 1
δ

) √
2 log 1

δ
n ,

then for all δ smaller than some universal constant, and for all v̂ ∈ [0.05, 55.5], there exists a vector

d(v̂) where dµ ≥ 0, and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant, such that

P
X←Dn

d(v̂) · ψ
(
X, µ̂ = ε′, α̂ =

log(1/δ)
3nv̂

)
>

1
log 1

δ

 ≥ 1 −
δ

log4 1
δ
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Furthermore, for v̂ = 0.05 we have dµ =

√
3.75 log(1/δ)

n , dα =
√

3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.

Proof. Start with the bound on the probability of failure given by Lemma 3.13:

2
(
e−dµµ̂+dα 1

3n log 1
δ E

x←D
(edµx(1−min(α̂x2,1))−dα min(α̂x2,1))

)n

For v̂ ∈ [0.05, 55.5) we bound the exponential inside the expectation via the exponential

of Lemma 3.14; we also use Lemma 3.14 to choose dµ, dα for us (the v̂ = 55.5 case is

covered at the end). Namely, in Lemma 3.14 use v̂ as given, substitute x
√
α̂ ≡ y (where

α̂ ≡
log(1/δ)

3nv̂ as always), and choose dµ ≡ a
√
α̂, and dα ≡ b—in particular, for v̂ = 0.05 this

gives dµ(0.05) = 0.75
√
α̂ = 0.75

√
log(1/δ)

3nv̂ =

√
3.75 log(1/δ)

n . Thus the failure probability is

bounded by

2

e−dµµ̂+dα 1
3n log 1

δ E
x←D

y=x
√
α̂

(
1 + ay + y2v̂

(
−3 +

a
√

6
√

v̂
− b

))
n

= 2

e−dµµ̂+dα 1
3n log 1

δ

1 +
log 1

δ

3n

−3 + 3dµ

√
2n

log(1/δ)
− dα





n

(mean 0, variance 1)

≤ 2

e
−dµµ̂+dα 1

3n log 1
δ+

log 1
δ

3n

(
−3+3dµ

√
2n

log(1/δ)−dα
)n

since 1 + z ≤ ez for any z

≤ 2e
−dµ

√
2n

log(1/δ) c log log 1
δ−log 1

δ substituting µ̂ = ε′ =

1 +
c log log 1

δ

log 1
δ


√

2 log 1
δ

n

≤
δ

log4 1
δ

where the last inequality holds for large enough c, since dµ
√

n
log(1/δ) = a

√
3v̂

is greater than

some positive constant.

We prove the v̂ = 55.5 case now. We choose dµ = 0 and dα = −4, substituting into the

bound of Equation 3.5 to yield

2
(
e−

4
3n log 1

δ E
x←D

(e4 min(α̂x2,1))
)n
≤ 2δ4/3 E

x←D
(1 + 54α̂x2)n for y ∈ [0, 1], e4y

≤ 1 + 54y

= 2δ4/3(1 + 55.5α̂)n since D has variance 1
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≤ 2δ4/3en·54 log(1/δ)
3·55.5n 1 + z ≤ ez; substituting def. of α̂

= 2δ4/3δ−
54

3·55.5 ≤ 2δ1.009

which is bounded as desired for small enough δ. �

We now prove Lemma 3.14.

Lemma 3.14. For all v̂ ∈ [0.05, 55.5], there exist a > 0 and b such that

∀y ∈ R : ay
(
1 −min

(
y2, 1

))
− b ·min

(
y2, 1

)
≤ log

(
1 + ay + y2v̂(−3 +

a
√

6
√

v̂
− b)

)
(3.10)

where a ∈ [C,C′] and b ∈ [−C′,C′] for positive constants C,C′. Further, for v̂ = 0.05, the pair

a = 0.75, b =
√

3 works.

Proof. We first prove the special case of 1) v̂ = 0.05, before moving to the general case of

2) v̂ ∈ (0.05, 55.5]. We note that our choice of a(v̂), b(v̂) is not continuous in v̂ at 0.05, but

the usage of the lemma does not require any continuity. We choose a, b at the edge case

v̂ = 0.05 for convenience.

1) For v̂ = 0.05, we choose a = 0.75, b =
√

3. This special case of Equation 3.10 simplifies

to:

∀y ∈ R : 0.75y
(
1 −min

(
y2, 1

))
−

√

3 ·min
(
y2, 1

)
≤ log

(
1 + 0.75y + 0.174y2

)
(where 0.174 is a lower bound on v̂(−3 + a

√
6
√

v̂
− b) ). This is a 1-dimensional bound and

can be easily analyzed in many ways. For the range y ∈ [−1, 1] : the right hand side is at

least log(1 + 0.75y), which in this range is at least .75y − .75y2, which is easily shown to

be greater than the polynomial expression that the left hand side reduces to in this range,

0.75y−
√

3y2
−0.75y3. For the remaining range, y < [−1, 1], the left hand side is the constant

−
√

3, and it is easy to check that the quadratic in the argument of the right hand side,

1 + 0.75y + 0.174y2, always exceeds e−
√

3.

2) To show Equation 3.10 for the rest of the range of v̂ ∈ (0.05, 55.5], we choose a to be

the positive root of the quadratic equation
√

v̂(a2
− 12) +

√
6a = 0 and let b = 3 − a2/2—we

will see the motivation for this choice shortly. For now, note that the definition of a implies

a ≤
√

12, for otherwise
√

v̂(a2
− 12) +

√
6a would be greater than 0.
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Our proof will analyze the sign of the derivative with respect to y of the difference

between the right and left hand sides of Equation 3.10. For the critical region |y| ≤ 1 this

derivative equals:

a + 2yv̂(−3 + a
√

6
√

v̂
− b)

1 + ay + y2v̂(−3 + a
√

6
√

v̂
− b)
− a + 3ay2 + 2by (3.11)

The crucial step is to choose a to be the positive root of the quadratic equation
√

v̂(a2
−

12) +
√

6a = 0 and let b = 3 − a2/2, after which Equation 3.11 miraculously factors as

1
3a2 ·

y(y + 2
a )(y + 2

a −
a
3 )2

y2 + ( 4
a −

a
3 )y + ( 4

a2 −
1
3 )

From this expression for the derivative, it is straightforward to read off its sign. The

discriminant of the quadratic in the denominator is 1
9 (a2
−12) > 0, meaning the denominator

is always positive. The squared term in the numerator cannot affect the overall sign. Thus

the sign of the derivative equals the sign of y(y + 2
a ), meaning that the difference between

the right and left side of Equation 3.10 is monotonically increasing for y > 0, and unimodal

for y < 0, having non-positive derivative for y ∈ [ 2
a , 0] and nonnegative derivative for

smaller y. Thus to show the inequality holds for all y ∈ [−1, 1] it suffices to check it at y = 0

and y = −1.

The y = 0 case is trivial as both sides of Equation 3.10 equal 0.

For y = −1, Equation 3.10, after expressing both
√

v̂ and b in terms of a becomes

a2

2
− 3 ≤ log

(
−2 + a −

36
a2 − 12

)
(3.12)

For a ∈ [0,
√

12), the inverse of the rational expression inside the log is bounded by its

linear approximation,
√

12−a
√

12
. Calling this a new variable z =

√
12−a
√

12
, which is between 0 and

1, Equation 3.12 becomes the claim that 6(1 − z)2
− 3 ≤ − log z, which is easily verified for

z ∈ (0, 1].

Lastly, we show Equation 3.10 for |y| > 1. Reexpressing b and
√

v̂ in terms of a, the left

hand side of the inequality is the constant value −b = −3 + a2

2 (independent of y), while the

right hand side is log(1 + ay + 3a2

12−a2 y2). Analyzing the quadratic inside the log shows that

the right hand side has a minimum of a2

12 , attained at y = − 12−a2

6a .
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When the location of this minimum, y = − 12−a2

6a , is inside the interval [−1, 1], then

because this quadratic is monotonic to either side of the minimum, the fact that we have

already proven Equation 3.10 for y = ±1 implies the inequality holds for all y further from

0.

The remaining case is when the minimum is not in [−1, 1], namely, − 12−a2

6a < −1,

meaning a < 1.59; since a is monotonic in v̂, a is at least its value when v̂ = 0.05, namely

a ≥ 1.003. Equation 3.10 thus reduces to showing that, for a ∈ [1.003, 1.59] we have
a2

2 −3 ≤ log a2

12 , which is trivially implied, substituting z = a2

12 , by the inequality 6z−3 ≤ log z

for z ∈ [0.083, 0.22], yielding the claim. �

3.5.3 Proof of Lemma 3.12

Lemma 3.12. Consider an arbitrary set of n samples X. Consider the expressionsψµ(X, µ̂, α̂), ψα(X, α̂),

reparameterized in terms of v̂ ≡ log(1/δ)
3nα̂ in place of α̂. Suppose the equation ψα(X, α̂) = 0 has a

solution in the range v̂ ∈ [0.05, 55.5]. Then the functions
√

log(1/δ)
n ψµ(X, µ̂, α̂) and ψα(X, α̂) are

Lipschitz with respect to v̂ on the entire interval v̂ ∈ [0.05, 55.5], with Lipschitz constant c log 1
δ

for some universal constant c.

Proof. Consider the v̂ derivative ofψα(X, µ̂, α̂ ≡ log(1/δ)
3nv̂ ) =

∑n
i=1

(
min

( log(1/δ)
3nv̂ x2

i , 1
)
−

1
3n log 1

δ

)
.

The v̂ derivative of min
( log(1/δ)

3nv̂ x2
i , 1

)
is either − log(1/δ)

3nv̂2 x2
i = − 1

v̂ α̂x2
i or 0, depending on which

term in the min is the smallest, and in either case has magnitude at most 1
v̂ min(α̂x2

i , 1).

Thus the overall v̂ derivative of ψα(X, µ̂, α̂) has magnitude at most 1
v̂
∑

i min(α̂x2
i , 1). Since,

we are guaranteed that
∑n

i=1 min
(
α̂x2

i , 1
)

= 1
3 log 1

δ for some v̂ ∈ [0.05, 55.5], we thus have

that the derivative is within a constant factor of this across the entire range, as desired.

Similarly, consider the v̂ derivative of ψµ(X, µ̂, α̂) =
∑n

i=1

(
µ̂ − xi

(
1 −min

(
α̂x2

i , 1
)))

. The

ith term of this is the v̂ derivative of min(α̂x3
i , xi), which is either −1

v̂ α̂x3
i or 0 depending

on whether xi ≤
√

1/α̂, and thus the magnitude of this derivative may be bounded by
1

v̂
√
α̂

∑n
i=1 min

(
α̂x2

i , 1
)
. Since

∑n
i=1 min

(
α̂x2

i , 1
)

is bounded by a constant times log 1
δ (as in the

last paragraph), and 1
v̂
√
α̂

is bounded by a constant times 1
√

v̂α̂
=

√
3n

log(1/δ) , the magnitude of

the derivative of
√

log(1/δ)
n ψµ(X, µ̂, α̂) is bounded by a constant times log 1

δ , as desired. �



Chapter 4

Uncertainty about Uncertainty:

Optimal Adaptive Algorithms for

Estimating Mixtures of Unknown

Coins

4.1 Overview

We consider a natural statistical estimation task, motivated by a practical setting, with an

intriguing adaptive flavor. We provide a new adaptive algorithm and a matching fully

adaptive lower bound, tight up to multiplicative constants.

In our problem setting, there is a universe of coins of two types: positive coins each

have a (potentially different) probability of heads that lies in the interval [ 1
2 + ∆, 1], while

negative coins lie in the interval [0, 1
2 − ∆], where ∆ ∈ (0, 1

2 ] parameterizes the “quality" of

the coins. Our only access to the coins is by choosing a coin and then flipping it, without

access to the true biases of the coins. An algorithm in this setting may employ arbitrary

adaptivity—for example, flipping three different coins in sequence and then flipping the

first coin 5 more times if and only if the results of the first 3 flips were heads, tails, heads.

The challenge is to estimate the fraction ρ of coins that are of positive type, to within a given

42
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additive error ε, using as few coin flips (samples) as possible. We assume because of the

symmetry of the problem (between positive and negative coins) that ρ ≤ 1
2 .

This model arose from a collaboration with colleagues in data science and database sys-

tems, about harnessing paid crowdsourced workers to estimate the “quality" of a database.

Our model is a direct theoretical analog of the following practical problem, where sample

complexity linearly translates into the amount of money that must be paid to workers, and

thus even multiplicative factors crucially affect the usefulness of an algorithm. Given a set

of data and a predicate on the data, the task is to estimate what fraction of the data satisfies

the predicate—for example, estimating the proportion of records in a large database that

contain erroneous data. After automated tools have labeled whatever portion of the data

they are capable of dealing with, the remaining data must be processed via crowdsourc-

ing, an emerging setting that potentially offers sophisticated capabilities but at the cost

of unreliability. Namely, for each data item, one may ask many human users/workers

online whether they think the item satisfies the predicate, with the caveat that the answers

returned could be noisy. In the case that the workers have no ability to distinguish the

predicate, we cannot hope to succeed; however, if the histograms of detection probabilities

for positive versus negative data have a gap between them (the gap is 2∆ in the model

above), then the challenge is to estimate ρ as accurately as possible, from a limited budget

of queries to workers [21].

A key feature that makes this estimation problem distinct from many others studied

in the literature is the richness of adaptivity available to the algorithm. Achieving a tight

lower bound in this setting requires considering and bounding all possible uses of adap-

tivity available to an algorithm; and achieving an optimal algorithm requires choosing the

appropriate adaptive information flow between different parts of the algorithm. Much of

the previous work in the area of statistical estimation is focused on non-adaptive algo-

rithms and lower bounds; however see [10], and in particular, Sections 4.1 and 4.2 of that

work, for a survey of several distribution testing models that allow for adaptivity. In our

setting there are two distinct kinds of adaptivity that an algorithm can leverage: 1) single-

coin adaptivity, deciding how many times a particular coin should be flipped—a per-coin

stopping rule—in terms of the results of its previous flips, and 2) cross-coin adaptivity,
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deciding which coin to flip next in terms of the results of previous flips across all coins.

Our final optimal algorithm (Section 4.3) leverages both kinds of adaptivity. In our tight

lower bound analysis (Section 4.5), we overcome the technical obstacles presented by the

richness of adaptivity by giving a reduction (Section 4.5.1) from fully-adaptive algorithms

that leverage both kinds of adaptivity to single-coin adaptive algorithms that process each

coin independently, valid for our specific lower bound instance. We discuss the approaches

and challenges of our lower bound in more detail in Section 4.1.1.

The main algorithmic challenge in this problem is what we call “uncertainty about un-

certainty": we make no assumptions about the quality of the coins beyond the existence of

a gap 2∆ between biases of the coins of different types (centered at 1
2 ). If we relaxed the

problem, and assumed (perhaps unrealistically) that we know 1) the conditional distribu-

tion of biases of positive coins, and 2) the same for negative coins, and 3) an initial estimate

of the mixture parameter ρ between the two distributions, then we show that it is easy—

using mathematical programming techniques in Section 4.8.1—to construct an estimation

algorithm with sample complexity that is optimal by construction up to a multiplicative

constant (see Section 4.8.2). On the other hand, our algorithm for the original setting has

to return estimates with small bias, and be sample efficient at the same time, regardless of

the bias of the coins, be they all deterministic, or all maximally noisy as allowed by the ∆

parameter, or some quality in between. While intuitively the hardest settings to distinguish

information theoretically involve coins with biases as close to each other as possible (and

indeed our lower bound relies on mixtures of only 1
2 ± ∆ coins), settings with biases near

but not equal to 1
2 ±∆ introduce “uncertainty about uncertainty" challenges. The two kinds

of adaptivity available to the algorithm allow us to meet these challenges by trading off,

optimally, between 1) investigating a single coin to reduce uncertainty about its bias, and

2) apportioning resources between different coins to reduce uncertainty about the ground

truth fraction ρ, which is the objective of the problem.

4.1.1 Our Approaches and Results

To motivate the new algorithms of this paper, we start by describing the straightforward

analysis of perhaps the most natural approach to the problem, which is non-adaptive,
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based on subsampling.

Example 4.1. Recall that it takes Ω( 1
∆2 ) samples to distinguish a coin of bias 1

2 − ∆ from a

coin of bias 1
2 + ∆. We can therefore imagine an algorithm that chooses a random subset

of the coins, and flips each coin Ω( 1
∆2 ) many times. Asking for Θ( 1

∆2 log 1
ε ) flips from each

coin guarantees that all but ε fraction of the coins in the subset will be accurately classified.

Given an accurate classification of m randomly chosen coins, we use the fraction of these

that appear positive as an estimate on the overall mixture parameter ρ. Estimating ρ to

within error ε requires m = O( ρ
ε2 ) randomly chosen coins. Overall, taking Θ( 1

∆2 log 1
ε )

samples from each of m = Θ( ρ
ε2 ) coins uses Θ( ρ

ε2∆2 log 1
ε ) samples.

As we will see, the above straightforward algorithm is potentially wasteful in samples

by up to a log 1
ε factor, since it makes Θ( 1

∆2 log 1
ε ) flips for every single coin, yet—since

Ω( 1
∆2 ) samples suffices to label a coin with constant accuracy—each sample beyond the first

Θ( 1
∆2 ) samples from a single coin gives increasing certainty yet diminishing information-

per-coin. If we can save on this log 1
ε factor without sacrificing impractical constants, then

our approach leads to significant practical savings in samples, and thus monetary cost—in

regimes, such as crowdsourcing, where gathering data is by far the most expensive part of

the estimation process.

Algorithmic Construction

We give two algorithmic constructions. Algorithm 3, which we call the Triangular Walk

algorithm, is single-coin adaptive, and is theoretically almost-tight in sample complexity.

Second, Algorithm 6 has the optimal sample complexity, by combining the Triangular Walk

algorithm with a new (and surprisingly) non-adaptive component (Algorithm 4).

The Triangular Walk algorithm (Algorithm 3) is designed for the specific practical param-

eter regime where ρ is small: in our earlier crowdsourcing example, practitioners typically

preprocess data items by using automated techniques and heuristics to classify a majority

of the items, before leaving to crowdsourced workers a small number of items that cannot

be automatically classified. These automated filtering techniques usually flag significantly

more “negative" items than “positive" items as “unclassifiable automatically", resulting in a
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small fraction ρ of positive items among the ones selected for crowdsourced human classi-

fication. The intuition behind our approach, then, is to try to abandon sampling (frequent)

negative coins as soon as possible, after Θ( 1
∆2 ) samples, while being willing to investigate

(infrequent) positive coins up to depth Θ( 1
∆2 log 1

ε ). Thus we disproportionately bias our

investment of resources towards the rare and valuable regime. Using techniques from

random walk theory, we design a linear estimator based on this behavior (Algorithm 2),

whose expectation across many coins yields a robust estimator, Algorithm 3, as shown in

Theorem 4.2 (restated and proved in Section 4.2).

Theorem 4.2. Given coins where a ρ fraction of the coins have bias ≥ 1
2 +∆, and 1−ρ fraction have

bias ≤ 1
2 − ∆, then running Algorithm 3 on t = Θ( ρ

ε2 log 1
δ ) randomly chosen coins will estimate ρ

to within an additive error of ±ε, with probability at least 1−δ, with an expected sample complexity

of O( ρ
ε2∆2 (1 + ρ log 1

ε ) log 1
δ ).

The analysis of Algorithm 3 uses only standard concentration inequalities, and thus the

big-O notation for the sample complexity does not hide large constants. As further evidence

of the good practical performance of Algorithm 3, Section 4.7 shows simulation-based

experimental results, run on settings with practical problem parameters for crowdsourcing

applications. These results demonstrate the advantages of our algorithm as compared with

the straightforward majority vote algorithm as well as the state-of-the-art algorithm [21]

(which does not enjoy any theoretical guarantees).

As for our second, optimal, algorithmic construction (Algorithm 6 in Section 4.3),

we combine the adaptive techniques from the Triangular Walk algorithm with a non-

adaptive estimation component. More concretely, in the regimes where Algorithm 3 is not

optimal, Algorithm 6 uses Algorithm 3 to first give a 2-approximation of ρ, before using

this information to non-adaptively estimate ρ much more accurately, while keeping the

variance of the estimate small, to control the sample complexity. The theoretical guarantees

of Algorithm 6 are shown in Theorem 4.3 (restated and proved in Section 4.3).

Theorem 4.3 (Informal). Given coins where a ρ fraction of the coins have bias ≥ 1
2 + ∆, and 1− ρ

fraction have bias ≤ 1
2 − ∆, then for large enough constant c, running Algorithm 6 on a budget of

B ≥ c ρ
∆2ε2 coin flips will estimate ρ to within an additive error of ±ε, with probability at least 2/3. If
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the algorithm is repeated Θ(log 1
δ ) times, and the median estimate is returned, then the probability

of failure is at most δ.

Lower Bounds and Discussion

Complementary to our algorithm, we show a matching lower bound of Ω( ρ
ε2∆2 log 1

δ ) sam-

ples for a success probability of 1 − δ for the problem. Crucially, our bounds match across

choices of all four parameters, ρ, ε,∆, δ. To show the lower bound, we use the following

setup: consider a scenario where all positive coins have bias exactly 1
2 + ∆ and all negative

coins have bias exactly 1
2 − ∆.

The overall intuition for our lower bound is that, for each coin, even flipping it enough

to learn whether it is a positive or negative coin will tell us little about whether the true

fraction of positive coins is ρ versus ρ+ε, and thus the flow of information to our algorithm

is at most a slow trickle. To capture this intuition, we aim to decompose the analysis into

a sum of coin-by-coin bounds; however, the key challenge is the cross-coin adaptivity that is

available to the algorithm.

To demonstrate the challenge of tightly analyzing cross-coin adaptivity, consider the

following natural attempt at a lower bound.

1. Consider flipping a fair coin S to choose between a universe with ρ fraction of positive

coins, versus ρ + ε fraction.

2. The aim is to bound the amount of mutual information that the entire transcript of

an adaptive coin-flipping algorithm can have with the coin S.

3. Suppose this mutual information can be bounded by the mutual information of the

sub-transcript of the ith coin with S, summed over all i.

4. Thus consider and bound the amount of mutual information between the sub-

transcript of just coin i alone, with S; and sum these bounds over all coins at the

end.

While one would intuitively expect the bounds of Step 4 to be small for each single coin,

cross-coin adaptivity allows for each single-coin sub-transcript to encode a lot of mutual
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information via its length, which may be adaptively chosen by the algorithm in light of

information gathered across all other coins. The amount of mutual information about S

in a sub-transcript may be linear in the number of times other coins have been flipped,

implying that summing up such mutual information across all coins would yield a bound

that uselessly grows quadratically with the number of flips, instead of linearly.

Our approach: We show that no fully-adaptive algorithm can distinguish the following

two scenarios with probability at least 1 − δ, using o( ρ
ε2∆2 log 1

δ ) samples: 1) when a ρ

fraction of the coins are positive, and 2) when a ρ+ ε fraction of the coins are positive. This

is formalized as the following theorem (Theorem 4.4), and proved in Section 4.5.

Theorem 4.4. For ρ ∈ [0, 1
2 ) and ε ∈ (0, 1 − 2ρ], the following two situations are impossible to

distinguish with at least 1 − δ probability using an expected o( ρ
ε2∆2 log 1

δ ) samples: A) ρ fraction of

the coins have probability 1
2 + ∆ of landing heads and 1 − ρ fraction of the coins have probability

1
2 −∆ of landing heads, versus B) ρ+ ε fraction of the coins have probability 1

2 + ∆ of landing heads

and 1 − (ρ + ε) fraction of the coins have probability 1
2 − ∆ of landing heads. This impossibility

crucially includes fully-adaptive algorithms.

In Section 4.5.1, we capture rather generally via Lemmas 4.19 and 4.20 the above intu-

itive decomposition of a many-coin adaptive algorithm into its single-coin contributions,

but via a careful simulation argument that precludes the kind of information leakage be-

tween coins that we described above. More explicitly, instead of decomposing a single

transcript into many (possibly correlated) sub-transcripts, we relate an n-coin transcript

to n separate runs of the algorithm (each on freshly drawn random coins), where in the ith

run, coin i is authentically sampled (from either the ρ scenario or the ρ+ ε scenario), while

all the remaining coins are simulated by the algorithm. Crucially, since the remaining

simulated coins do not depend on the “real" scenario, no cross-coin adaptivity can leak any

information about the real world to coin i, beyond the information gained from flipping

coin i itself.

Furthermore, Lemmas 4.19 and 4.20 apply to a broad variety of problem settings, where

the population of random variables can be arbitrary and not necessarily Bernoulli coins.

We believe these lemmas are of independent interest beyond this work, and can be a useful
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tool for proving lower bounds for other problem settings, for example a Gaussian variant of

the current problem, where instead of being input a noisy yes/no answer on the positivity

of an item, we instead receive a numerical Gaussian-distributed score with mean, say, > 1

for positive items and < 0 for negative items.

Given the decomposition lemmas (Lemmas 4.19 and 4.20), completing the lower bound

analysis for the current problem requires upper bounding the squared Hellinger distance

between running any single-coin adaptive algorithm on the two coin populations described

earlier, with slightly different positive-to-negative mixture ratios. This forms the bulk (and

technical parts) of the proof of Theorem 4.4.

Non-adaptive bounds: As motivation for the algorithmic results of this paper, it is reason-

able to ask, given Theorem 4.4’s lower bound of Ω( ρ
ε2∆2 log 1

δ ) on the number of samples

for our problem, is it possible that a non-adaptive algorithm can approach this performance,

or is the adaptive flavor of Algorithms 3 or 6 required? We briefly describe how the

framework of the “natural attempt" (the numbered list above) in fact yields a lower bound

for non-adaptive algorithms that is a log 1
ρ factor higher than that of Theorem 4.4, namely

Ω( ρ
ε2∆2 log 1

ρ ), when ρ ≥ ε2

Given a random variable S that uniformly chooses between scenarios “ρ" and “ρ + ε"

respectively, and a sample of size n from a coin that has bias 1
2 + ∆ with probability ρ or

ρ + ε respectively, and bias 1
2 −∆ otherwise, what is the mutual information between the n

observed flips (from a single coin) and the scenario variable S? A non-adaptive algorithm

must fix the number of queries n independent of the observed outcomes from the coins,

where the information about S is the sum received from sampling each coin. Thus the

optimal such algorithm chooses n that maximizes the mutual information per sample.

Estimates of this mutual information in the relevant cases are not too difficult, as this is the

mutual information between a univariate distribution that is the mixture of two binomials,

with a fair coin that determines the mixture probabilities. In terms of ∆, and ρ ≥ ε2, some

calculation shows that the optimal value of n is Θ( 1
∆2 log 1

ρ ), which yields the above-claimed

non-adaptive lower bound on sample complexity of Ω( ρ
ε2∆2 log 1

ρ ). See Section 4.9 for the

complete calculations.

For the constant-ρ (and constant probability) regime, this lower bound is in fact tight.
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Upper Bound Lower Bound

Adaptive O( ρ
ε2∆2 log 1

δ ) (Algorithm 6) Ω( ρ
ε2∆2 log 1

δ ) (Section 4.5)

Non-adaptive
O( ρ

ε2∆2 log 1
ε log 1

δ ) (Trivial, Example 4.1)
O( 1

ε2∆2 log 1
δ ) (Algorithm 4 for ρ = Θ(1) )

Ω( ρ
ε2∆2 log 1

ρ ) (For ρ ≥ ε2 and constant δ)

Table 4.1: Sample Complexity Upper and Lower Bounds

A major component of our final algorithm, Algorithm 4, when run on a single constant

quality (∆ = Ω(1) ) coin with the parameter f = f0(p) as defined in Definition 4.12, is a

non-adaptive unbiased estimator for the indicator function of the positivity of the coin,

with small variance and constant sample complexity. For a low quality coin (∆ = o(1) ), we

can simulate a flip of a constant quality coin by taking the majority result of Θ(1/∆2) low

quality coin flips. Returning the mean of O( 1
ε2 ) repetitions of Algorithm 4 on different coins

yields an ε-accurate estimate of ρ. The total sample complexity is O( 1
ε2∆2 ), which matches

the non-adaptive lower bound in the constant-ρ regime.

In summary, we have the adaptive and non-adaptive bounds in Table 4.1. As shown in

Table 4.1, the non-adaptive bounds match each other and the adaptive bounds only in the

regime where ρ = Θ(1) (and in the trivial ε = Θ(1) regime). In the non-constant ρ regime,

the non-adaptive lower bound is asymptotically larger than the adaptive lower bound,

demonstrating the need for adaptivity in the design of our final optimal algorithm.

Practical Considerations

The keen-eyed reader might notice that the algorithmic results in Theorems 4.2 and 4.3

both depend on the unknown ground truth ρ, so thus these bounds are not immediately

invokable by a user. We present two approaches to address this issue.

The first approach is to note that Algorithm 3 can be interpreted as an anytime algorithm:

it can produce an estimate at any point in its execution. As more coins are used in

Algorithm 3, the estimate simply gains accuracy. Section 4.2.1 discusses this approach in

more detail, and our experiments in Section 4.7 are also run using the same approach.

Because of its simplicity, we recommend this method in practice.
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A complication arising from this approach is the fact the sample complexity bound

of Theorem 4.2 is an expected sample complexity bound. Thus there are potential issues

introduced by abruptly stopping the algorithm after a fixed budget of samples, which might

inadvertently introduce bias to the estimate. Section 4.2.1 also shows how to analyze and

address this issue.

The second, theoretically more interesting approach is to fix a total budget of allowable

coin flips, and have the algorithm “discover" the optimal achievable accuracy ε just from

interacting with the different coins. Our presentation and analysis of Algorithm 6, in

Section 4.3, follows this approach. We point out that Algorithm 3 can also be made to have

this theoretical guarantee, as demonstrated by the invocation of Algorithm 3 in Algorithm 6.

Designing Optimal Estimators when Coin Biases are Known

By contrast with the above results that analyze the “uncertainty about uncertainty" regime

with unknown populations of coins, we shed light on the algorithmic challenges of that

regime by providing a tight analysis in the case where knowledge about the populations of

coins can be leveraged by the algorithm. In particular, we give a bootstrapping approach

which takes some initial guess of ρ along with knowledge of the coin population, and

produces an optimal-by-construction estimator that can be used improve on the initial

estimate. Explicitly, consider the regime where we know 1) the distribution of coin biases

conditioned on being a positive coin, 2) analogously for negative coins and 3) also ρ itself,

for bootstrapping purposes even though in practice we would only have a guess. Suppose

further that we are given 4) the constraint that we will invest at most nmax flips on a single

coin, controlling both the sample complexity but also the computational complexity we

can afford to computer the optimal estimator. In Section 4.8.1, we use quadratic and linear

programming techniques to find a single-coin adaptive algorithm, taking the form of a

linear estimator, with the minimum variance possible subject to the constraint that, even if

our knowledge of ρ is wrong, the estimator is still unbiased. This construction yields the

following theorem.

Theorem 4.5. Suppose we are given 1) the distribution of coin biases conditioned on being a positive

coin, 2) the analogous distribution for negative coins and 3) the mixture parameter ρ (which, again,
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is a circular assumption but useful for a bootstrapping approach). Suppose further that we are given

4) the parameter nmax, which controls the maximum depth of the triangular walk.

Then, following the method described in Section 4.8.1, we can find the linear estimator for ρ that

minimizes variance, subject to a) the expected output of the estimator on input a random positive

coin is 1 and b) the analogous expected output for a random negative coin is 0.

Moreover, if the objective of the linear program in Figure 4.4 is U, then the expected sample

complexity of the constructed linear estimator is O( 1
Uε2 log 1

δ ), which will estimate ρ to within an

additive error of ε with probability at least 1 − δ.

We further show in Section 4.8.2 that this linear estimator construction is in fact optimal

in sample complexity, up to constant multiplicative factors, in the regime of constant

probability success and subject to the same constraint that each coin can only be flipped at

most nmax times. The following theorem captures the exact guarantees.

Theorem 4.6. Suppose we are given the 4 pieces of data as in Theorem 4.5 above.

The linear estimator produced from solving the linear program in Figure 4.4, as described in

Theorem 4.5, has total expected sample complexity that is within a constant factor of any optimal

fully-adaptive algorithm with ≥ 2
3 probability of success, subject to the same constraint that no coin

is flipped more than nmax many times.

The proof of this theorem—like our main lower bound of Theorem 4.4—also relies on

Lemma 4.19 to relate fully-adaptive algorithms to single-coin-adaptive algorithms; and

constant-factor tightness comes from the fact that the linear programs minimizing the

variance of a linear estimator versus maximizing squared Hellinger distance are within a

constant factor of each other.

4.1.2 Related Work

A related line of work considers the scenario where all positive coins have identical bias

(not necessarily greater than 1/2), and negative coins also have identical bias (strictly less

than the positive coins’ bias), with the ultimate goal of identifying any single coin that is

positive (or “heavy" in the terminology of these works). The problem has been studied

and solved optimally in the context where the biases and positive-negative proportions are
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known [18], and also when none of this information is known [46, 33]. Such problems may

be seen as a special case of bandit problems.

Another related line of work concerns the learning of distributions of (e.g. coin) param-

eters over a population, which arises in various scientific domains [41, 42, 47, 52, 22, 4]. In

particular, the works of Lord [41], and Kong et al. [61, 64] consider a model similar to ours,

with the crucial difference that each coin is sampled a fixed number t many times—instead

of allowing adaptive sampling as in the current work—with the objective of learning the

distribution of biases of the coins in the universe.

Since an earlier version of this paper was posted on arXiv, more recent work by Brennan

et al. [7] considers a generalization of our setting, but because of different motivation and

parameterization, both their upper and lower bounds are not directly comparable with

ours.

Our problem also sits in the context of estimation and learning tasks with noisy or

uncalibrated queries. The noiseless version of our problem would be when ∆ = 1
2 and thus

1
2 ± ∆ equals either 0 or 1. That is, all coins are either deterministically heads or determin-

istically tails, and thus estimating the mixture parameter ρ is equivalent to estimating the

parameter of a single coin with bias ρ, which has a standard analysis. Prior works have

considered noisy versions of well-studied computational problems, such as (approximate)

sorting and maximum selection under noisy access to pairwise comparisons [29, 27] and

maximum selection under access to uncalibrated numerical scores that are consistent with

some global ranking [65].

Furthermore, our problem can be interpreted as a special case of the “testing collec-

tions of distributions" model introduced by Levi, Ron and Rubinfeld [39, 40], modulo the

distinction between testing and parameter estimation. In their model, a collection of m

distributions (D1, . . . ,Dm) (over the same domain) is given to the tester, and the task is to

test whether the collection satisfies a particular property, where a property in this case is

defined as a subset of m-tuples of distributions. In the query access model, one is allowed to

name an index i ∈ {1, . . . ,m} and get a fresh sample from the distribution Di. Our problem

can be analogously phrased in this model, where the distributions are over the domain

{0, 1}, and the property in question is whether the fraction ρ of distributions in the collection
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having bias ≥ 1/2 is greater than some threshold τ.

We highlight other distribution testing models that allow for adaptive sampling access.

For example, in testing contexts, conditional sampling oracles have been considered [17,

11, 14, 13, 28, 1], where a subset of the domain is given as input to the oracle, which in turn

outputs a sample from the underlying unknown distribution conditioned on the subset.

Evaluation oracles have also been considered [55, 3, 30, 12], where the testing algorithm

has access to an oracle that evaluates the probability mass function or the cumulative

mass function of the underlying distribution. See the survey by Canonne [10] for detailed

comparisons between the different standard and specialized access models, along with a

discussion of recent results.

Adaptive lower bounds of problems related to testing monotonicity of high-dimensional

Boolean functions have a somewhat similar setup to ours, where binary decisions adap-

tively descend a decision tree according to probabilities that depend both on the algorithm

and its (unknown) input that it seeks to categorize [5, 19]. Lower bounds in these works

rely on showing that the probabilities of reaching any leaf in the decision tree under the two

scenarios that they seek to distinguish are either exponentially small or within a constant

factor of each other. This proof technique is powerful yet does not work in our setting,

as many adaptive algorithms have high-probability outcomes that yield non-negligible

insight into which of the two scenarios we are in. By contrast, our proof technique involves

showing that, while such “insightful" outcomes may be realized with high probability, in

these cases we must pay a correspondingly high sample complexity cost somewhere else

in the adaptive tree.

A crucial part of our lower bound proof, Lemma 4.20, involves carefully “decompos-

ing" fully-adaptive (multi-coin) algorithms into their single-coin components. Work by

Braverman et al. [6] gives a data processing inequality in the context of communication

lower bounds, whose proof uses similar ideas to how we prove Lemma 4.20.

As described at the beginning of the introduction, results of this work have practical

applications in crowdsourcing algorithms in the context of data science and beyond. Theo-

retical studies with similar aims to our own have been undertaken on handling potentially

noisy answers from crowdsourced workers due to lack of expertise [58, 56], (including this
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work); in practice it is also crucial to understand how to incentivize workers to answer

truthfully [57]. Our work also addresses directly the practical problem proposed by Chung

et al. [21], to issue queries to potentially unreliable crowdsourced workers in order to es-

timate the fraction of records containing “wrong" data within a database; here adaptive

queries are a natural capability of the model.

4.2 The Triangular Walk Algorithm

In this section, we present the Triangular Walk algorithm (Algorithm 3) for the problem, in

the regime where both ρ and the coin biases are unknown. This is an important subroutine

of our main, optimal algorithm; and the Triangular Walk algorithm itself can be used as an

estimator in its own right. We demonstrate later in Section 4.7, with simulation results, that

this algorithm offers practical advantages over the straightforward majority vote estimator

mentioned in the introduction, as well as the state-of-the-art method used in practice.

The Triangular Walk algorithm leverages only single-coin adaptivity, and makes no use

of cross-coin adaptivity. At the heart of our algorithm is an estimator (Algorithm 2) that

works coin-by-coin, in the regime ∆ ≥ 1
4 ; subsequently we show how to use this estimator

to solve the general problem, with an arbitrary (but known) ∆.

We describe an asymmetric estimator (Algorithm 2) that, given sampling access to a

single coin of bias p, returns a real number whose expectation is in [1 ± ε
2 ] if p ≥ 3

4 , and

whose expectation is in [± ε2 ] if p ≤ 1
4 . The estimator is asymmetric in the sense that it will

quickly “give up on" coins with p ≤ 1
4 , taking only a constant number of samples from

them in expectation, while it will more deeply investigate the rare and interesting case of

p ≥ 3
4 . Below, c will be a constant that emerges from the analysis, where c log 1

ε coin flips

suffice to yield an empirical fraction of heads within poly(ε) of the ground truth, p.

Our overall algorithm robustly combines estimates from running Algorithm 2 on many

coins via the standard median-of-means technique. To deal with the general case when ∆

might be much smaller than 1
4 , we “simulate a 1

4 -quality coin" by running Algorithm 2 not

on individual flips, but rather on the majority vote of blocks of Θ( 1
∆2 ) flips; this majority

vote will convert a coin of bias ≤ 1
2 − ∆ to a simulated coin of bias ≤ 1

4 , and symmetrically,
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Algorithm 2 Single-coin estimate

Given: a coin of bias p, error parameter ε

1. Let n← 0 (representing the total number of coin flips so far)
2. Let k← 0 (representing the total number of observed heads so far)
3. Repeat:

(a) Flip the coin, and increment n← n + 1
(b) If heads, increment k← k + 1
(c) If 2k ≤ n, return 0 and halt (majority of flips are tails, evidence that p is small)
(d) If n = c log 1

ε , return min(4, n
2k−n ) and halt (enough flips for concentration)

Algorithm 3 Triangular walk algorithm

Given: t coins, quality parameter ∆, error parameter ε, and failure probability δ

1. For each coin: simulate a new “virtual" coin by computing the majority of Θ( 1
∆2 ) flips

each time a “virtual" flip is requested; run Algorithm 2 on each virtual coin, using,
inputting ε unchanged, and record the returned estimates.

2. Partition the returned estimates into Θ(log 1
δ ) groups and compute the mean of each

group.

3. Return the median of the Θ(log 1
δ ) means, or 0 if any of the groups in step 2 are empty.

convert a coin of bias ≥ 1
2 + ∆ to a simulated coin of bias ≥ 3

4 .

Theorem 4.2. Given coins where a ρ fraction of the coins have bias ≥ 1
2 +∆, and 1−ρ fraction have

bias ≤ 1
2 − ∆, then running Algorithm 3 on t = Θ( ρ

ε2 log 1
δ ) randomly chosen coins will estimate ρ

to within an additive error of ±ε, with probability at least 1−δ, with an expected sample complexity

of O( ρ
ε2∆2 (1 + ρ log 1

ε ) log 1
δ ).

The rest of this section concerns the (relatively straightforward) proof of Theorem 4.2,

via an analysis of Algorithms 2 and 3; Section 4.4 instead formulates a more general

algorithmic framework that adds some perspective to Algorithm 2, and whose abstractions

will be crucial to the lower bound analysis in Section 4.5.

Intuition and analysis of Algorithm 2: Recall that Algorithm 2 is designed to work for

coins of constant noise-quality ∆, namely, coins have bias either ≤ 1
4 or ≥ 3

4 , and nothing

in between. Algorithm 2 halts under two conditions: either the majority of observed flips

have been tails—Step 3(c)—or our budget of coin flips (for that coin) is exhausted—Step

3(d). The first stopping condition is designed to make it more likely to halt early for
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negative coins (coins with bias p ≤ 1
4 ), even though all coins may have a significant chance

of halting early. Importantly, the chance of Algorithm 2 halting early depends on the coin’s

bias p, which is a priori unknown. The output coefficients in Step 3(d) are designed so that

the expected output, given any negative coin (of bias ≤ 1
4 ), is close to 0, and similarly close

to 1 given a positive coin (of bias≥ 3
4 ). Furthermore, the output coefficients are all bounded

by a constant, which gives a constant bound on the variance of the estimate.

Lemma 4.7 captures the guarantees we need from Algorithm 2 in order to analyze the

triangular walk algorithm, Algorithm 3.

Lemma 4.7. If Algorithm 2 is run with a sufficiently large universal constant c, then the following

statements hold.

1. Given an arbitrary negative coin (having bias p ≤ 1
4 ), the output of Algorithm 2 has expecta-

tion in [± ε2 ] and variance upper bounded by ε2. Furthermore, the expected sample complexity

in this case is upper bounded by a constant.

2. Given an arbitrary positive coin (having bias p ≥ 3
4 ), the output of Algorithm 2 has expectation

in [1± ε
2 ] and variance upper bounded by a constant. The expected sample complexity in this

case is (trivially) upper bounded by c log 1
ε .

The overall expected sample complexity, when the fraction of positive coins is ρ, is O(1 + ρ log 1
ε ).

Proof. Consider running Algorithm 2 on a coin of bias p, and let nmax = c log 1
ε be the

number of coin flips after which the algorithm always halts in Step 3(d). Consider running

Algorithm 2 on a sequence of nmax flips of the coin (even if the algorithm may halt early

before exhausting the sequence of flips). If the sequence is majority-tails, then the algorithm

must halt early via Step 3(c) at some point, and thus return 0.

For a negative coin, namely with bias p ≤ 1
4 , the chance of observing majority-heads

after c log 1
ε coin flips is εO(c), and we choose c so that this probability is O(ε2), so that (given

that estimates returned by Algorithm 2 are always bounded by 4), for negative coins, the

expected estimate of Algorithm 2 is in [0, ε2 ] and the variance is at most ε2.

By contrast, for a positive coin, with bias p ≥ 3
4 , the fraction of observed heads after

c log 1
ε flips will concentrate around p ≥ 3

4 . The challenge is to choose nonzero output
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coefficients in Step 3(d) of Algorithm 2 that will average out to 1 in expectation, despite the

fact that many of these sequences of coin flips will lead Algorithm 2 to terminate early in

Step 3(c) and output 0. Moreover, as mentioned earlier, the proportion of sequences that

will halt early depends on p itself, which is a priori unknown.

The key idea, from standard results on random walks, is that, conditioned on k out of nmax

flips landing heads, the probability of reaching nmax flips—without ever halting in Step

3(c) by having a temporary majority of tails—is independent of p, and is in fact expressed by

the formula 2k−nmax
nmax

. Conditioned on k out of nmax flips being heads, whether Algorithm 2

halts early depends only on the permutation of the coin flips, and each such permutation

of k heads out of nmax flips is equally likely. We thus apply the following standard random

walk result to derive the aforementioned formula—where heads is interpreted as a +1 step

in a 1-D random walk, tails is interpreted as a −1 step, and observing k out of n heads is

analogous to reaching position v = 2k − n in the random walk.

Fact 4.8 (The Ballot Theorem). Consider a 1-D walk that starts at the origin, and moves one step

in either the positive or negative direction at each time. The number of paths from the origin that

end at v at time nmax, which do not revisit the origin, is a |v|
nmax

fraction of the total number of paths

from the origin to v at time nmax.

Algorithm 2, in Step 3(d), returns min(4, nmax
2k−nmax

), which equals nmax
2k−nmax

when k ≥ 5
8 nmax.

In light of Fact 4.8, in Algorithm 2, conditioned on k ≥ 5
8 nmax out of nmax coin flips being

heads, the nonzero coefficient nmax
2k−nmax

will be output in Step 3(d) with probability 2k−nmax
nmax

,

and thus the conditional expected output is exactly 1. For p ≥ 3
4 , the probability of k ≥ 5

8 nmax

flips being heads is 1− εO(c) by our choice of nmax. The expected output of Algorithm 2 will

therefore be within ε/2 of 1 for a sufficiently large choice of the constant c.

The variance of Algorithm 2 given a positive coin is clearly upper bounded by a

constant, simply because the output coefficients are bounded by 4.

We lastly analyze the expected sample complexity of Algorithm 2, run on negative and

positive coins. For positive coins, we can simply upper bound the sample complexity by

nmax = Θ(log 1
ε ), which is tight if the coin has bias p = 1. For negative coins, even ignoring

the halting conditions, the probability of getting > n
2 heads after n coin flips decreases
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exponentially in n. Since the algorithm halts if it ever observes majority-tails, proceeding

for many flips becomes exponentially unlikely. Thus the expected number of flips of the

algorithm is bounded by a constant in the case of a negative coin. �

Analyzing Algorithm 3: We conclude by proving Theorem 4.2, which analyzes Algo-

rithm 3.

Proof of Theorem 4.2. For this proof, we assume that ρ = Ω(ε2). Otherwise, the case is

handled in Step 3 of Algorithm 3, which returns the valid estimate of 0.

At a high-level, Algorithm 3 runs Algorithm 2 repeatedly on independently chosen

coins.

Observe that in Step 1 of Algorithm 3, for each coin we simulate a new “virtual" coin,

by using the majority vote of Θ(1/∆2) coin flips to compute each requested coin flip. By

Chernoff bounds, if each given coin has bias either p ≤ 1
2 − ∆ or p ≥ 1

2 + ∆, then the

corresponding virtual coin will have bias p ≤ 1
4 and p ≥ 3

4 respectively. Therefore, by

Lemma 4.7, the output of Step 1 for each coin is a random variable with expectation in

[ρ ± ε
2 ]. As for the variance of the output, we do the following calculation. Let X0 denote

the random variable that is the output of Algorithm 2 when given a random negative coin,

and similarly X1 for a random positive coin. The output of Algorithm 2, which we call Y,

is thus distributed as X1 with ρ probability and as X0 with 1 − ρ probability. The variance

of Y is

Var[Y] = ρVar[X1] + (1 − ρ) Var[X0] + Var
i←Bernoulli(ρ)

[E[Xi]]

≤ O(ρ) + (1 − ρ)ε2 + ρ(E[X1])2 + (1 − ρ)(E[X0])2

≤ O(ρ) + ε2 + O(ρ) + O(ε2)

= O(ρ)

Steps 2 and 3 of Algorithm 3 are the median-of-means method for estimating the mean

of a (real-valued) random variable. Using t = Θ( ρ
ε2 log 1

δ ) coins, each of the Θ(log 1
δ ) groups

will have Θ( ρ
ε2 ) coins and hence outputs from Algorithm 2. By Chebyshev’s inequality,

with constant probability, the sample mean of each group’s estimates will be within O(
√
ε2

ρ )
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standard deviations of the expected output of Algorithm 2. The estimation error is therefore

equal to O(ε), with a multiplicative constant that can be made arbitrarily small by adjusting

the constant in the choice of the number of coins t. Step 3 computes the median of Θ(log 1
δ )

such sample means, which boosts the success probability from constant to 1−δ, via standard

uses of Chernoff bounds.

Lastly, the total expected sample complexity is the product of 1) the choice of t in the

theorem statement, 2) Θ(1/∆2) which is the number of coin flips used for each majority vote

in Step 1, and 3) the sample complexity of Algorithm 2 as stated in Lemma 4.7, yielding

O( ρ
ε2∆2 (1 + ρ log 1

ε ) log 1
δ ). �

While Theorem 4.2 gives ε as input to Algorithm 3 and then asks how many coins

are needed to achieve this ε error, it will be useful as a preliminary step of our optimal

Algorithm 6 to consider the performance of Algorithm 3 where these two roles for ε are

decoupled. Explicitly, how many coins or samples does it take for Algorithm 3 to achieve

error ε1, when Algorithm 3 is given ε2 as input? We will use this result in the regime where

the failure probability for Algorithm 3 should be a constant, and thus for simplicity we

omit δ from the following statement.

Corollary 4.9. Given coins where a ρ fraction of the coins have bias ≥ 1
2 + ∆, and 1 − ρ fraction

have bias ≤ 1
2 − ∆, then, for parameters ε1, ε2 > 0, running Algorithm 3 on t = Θ( ρ

ε2
1
) randomly

chosen coins with parameter ε = ε2 will estimate ρ to within an additive error of ±ε1, with failure

probability at most 0.1+O(t·poly(ε2)), with an expected sample complexity of O( ρ

ε2
1∆2 (1+ρ log 1

ε2
)).

Note that the degree of the polynomial term (in ε2) in the failure probability can be made arbitrarily

high, by choosing a large constant c in Step 3(d) of Algorithm 2.

Proof. (Sketch) The proof is essentially the same as that of Theorem 4.2.

The crucial difference is that, instead of interpreting the ε parameter of Algorithm 3

as an (additive) error parameter for the produced estimate, we interpret ε (which we

parameterize as ε2 in the corollary statement) as a “coin misclassification probability". We

explain this in more detail.

As shown in the proof of Theorem 4.2, with nmax = Θ(log(1/ε2)), the probability that

Algorithm 2 produces a non-0 estimate for a negative coin is poly(ε2). As for a positive
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coin, based on the analysis using Fact 4.8, the probability that nmax flips of a positive coin

resulting in fewer than k = 5
8 nmax heads is also poly(ε2). Conditioned on such failure not

happening, the expected value of Algorithm 2 on a positive coin is exactly 1.

Therefore, we can interpret Algorithm 3 as follows. Taking a union bound over the

probabilities of the aforementioned failure modes, there is at most O(t ·poly(ε2)) probability

that any of the t coins are “misclassified". Conditioned on that not happening, Algorithm 2

is just a (meta-)Bernoulli coin that flips positive with probability ρ and negative with

probability 1−ρ, in expectation. Explicitly, assuming (as happens with probability 1−O(t ·

poly(ε2)) that none of the t coins are “misclassified"), each negative coin will yield an output

of exactly 0, and each positive coin will yield an output of expectation exactly 1 and constant

variance. Thus, given that aρ fraction of coins from the underlying distribution are positive,

the output will be exactly ρ in expectation (except with O(t · poly(ε2)) misclassification

probability) and has O(ρ) variance. By Chebyshev’s inequality, the mean output over

t = Θ( ρ
ε2

1
) coins will be within ±ε1, except with probability 0.1 (choosing the multiplicative

constant in the definition of t appropriately), as desired.

The variance of Algorithm 2 has already been bounded by O(ρ) as in Theorem 4.2, and

so the performance of Algorithm 3 can be analyzed by a straightforward application of

Chebyshev’s inequality, yielding the accuracy part of the corollary statement, as well as

the 0.1 probability term in the failure probability. �

4.2.1 Implementing Algorithm 3

Later in Section 4.7, we give experimental results to demonstrate the performance of Algo-

rithm 3 in practice. Here we address other concerns regarding the practical implementation

and use of the algorithm.

The first concern is the fact that ρ, the ground truth that we are trying to estimate,

appears in the sample complexity bound. We note that, once we fix an error parameter

ε and the constant c in Algorithm 2, the overall algorithm of Algorithm 3 is an anytime

algorithm: it can produce an estimate given any number of samples/coin flips, and the

estimate simply gets more accurate (until it is as small as ε) as it gets a larger sample size.

Crucially, the algorithm execution does not depend on the value of ρ itself. Thus, the fact
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that ρ appears in the sample complexity has no bearing on the execution on the algorithm.

In Section 4.3, we present our final algorithm (Algorithm 6) in a form where, given a budget

B of coin flips, the algorithm “discovers" the correct ε based on the unknown answer ρ and

the tight sample complexity formula. Algorithm 3 can enjoy the same guarantee following

its invocation in Algorithm 6. The key insight is that, instead of fixing an ε for Algorithm 2,

we use the budget B to derive a cutoff for the maximum number of flips we invest in a

single coin.

The second issue is on the practical parameter regime of the noise parameter ∆. In

this work, we study the asymptotics of the sample complexity as ∆ → 0, but in practice,

the quality of yes/no questions being asked will have at least constant correlation with

the truth. To run our algorithms, then, we would ignore Step 1 of Algorithm 3, namely

simulating “virtual" coins from real coins, and use real coin flips directly in Algorithm 2.

The third practical concern is on the non-zero output coefficients in Algorithm 2, in

Step 3(d). In the algorithm and its subsequent analysis, we gave coefficients with a simple

form of min(4, n
2k−n ), which allowed for a straightforward analysis with Chernoff bounds.

However, these output coefficients may not be the best possible, recalling that the objective

of these coefficients is to make sure that the expected output of any underlying coin of

bias p ≥ 3
4 is as close to 1 as possible. A simple observation is that the expected output

of Algorithm 2 is in fact a smooth polynomial in p with coefficients determined by the

output coefficients in the algorithm. Therefore, in practice, once we fix the constant c

(or the entire quantity c log 1
ε ) in the algorithm description (Step 3(d) again), we can run

a local search/gradient-based method to find output coefficients that make the expected

output polynomial as close to 1 as possible, with initial coefficients being the ones given

in Algorithm 2. These new output coefficients are reusable in practice as long as the noise

parameter ∆ in practice is not lower than the ∆ for which the output coefficients were

generated.

The fourth and last concern we address here is related to the first concern and the “any-

time algorithm" implementation of Algorithm 3. The concentration results were phrased

in terms of the number of coins that need to be sampled, namely the number of times Al-

gorithm 2 is called by Algorithm 3. Each run of Algorithm 2 then flips each coin an a priori
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unknown number of times to produce estimates. Since the sample complexity of a single

triangular walk (Algorithm 2) is random, the concentration results only give an expected

overall sample complexity for the algorithm. On the other hand, in practice one may wish

to impose a fixed budget for sample complexity and simply use the entire budget. Such an

approach introduces the issue that the triangular walk started last will probably not have

finished by the time the budget is exhausted. How then can we aggregate the estimates

obtained from the completed triangular walks without introducing bias in subtle ways?

Here we show the surprising result that the most natural algorithm does in fact work

as is: that is, we take the average estimate of all the completed walks, ignoring the in-

complete walk in progress. As an example, to demonstrate that this success is unintuitive

and nontrivial, if we instead separately run two executions of Algorithm 3 with separate

budgets, and averaged the estimates of all completed walks across both executions, this

average would be biased; but if we computed the average of those walks completed under

each budget, separately, then—by the main result of this section—each average would be

unbiased, and we could average these averages together to yield an unbiased estimator.

To show that this “budgeted estimator" is unbiased, we view it as the following two-

stage estimator: 1) We estimate without bias the distribution over states (n, k) that the

triangular walk (Algorithm 2) terminates at, when given a randomly chosen coin from the

universe, namely the numbers {αn,k(ρh+
n,k + (1 − ρ)h−n,k)} (using notation defined in Defini-

tion 4.14). 2) We simply take the dot product of this distribution with the corresponding

output values {vn,k} (as defined in Algorithm 2).

In order to perform step 1), that is to estimate the distribution of termination over the

states, we use the estimator i(n,k)/
∑

m, j i(m, j) where i(n,k) is the number of observed walks that

terminated at (n, k), ignoring incomplete walks. The following proposition shows that the

estimation in step 1) is unbiased, from which it follows that the entire estimator is indeed

also unbiased.

Proposition 4.10. Given a budget T > 0, and suppose we repeatedly run an adaptive algorithm

A on a single coin until we have flipped the coin T times in total. Given a set of outcomes for the

algorithm A, indexed by k ∈ {1, . . . ,K}, let pk be a probability distribution over outcomes, and let

tk denote the number of coin flips taken to reach this outcome. When an outcome using t coin flips
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is drawn, if t is less than or equal to the remaining budget, then t is subtracted from the remaining

budget; and otherwise the most recent outcome is discarded as “over budget" and the algorithm

terminates. Let ik be the number of times that outcome k is drawn. Then ik/
∑

j i j is an unbiased

estimator of pk.

Proof. Given the coin budget T, the possible sequences of samples can be classified into

the following cases. Either 1) the sequence ends exactly at time T, or 2) the sequence ends

with a time interval of length tm for some m, which in turn ends after time T. For a vector

i, whose kth index denotes the number of times outcome k occurs, the dot product with

vector t counts the total number of coin flips used by this sequence. Thus, if i · t = T, then

the probability of i occurring equals(
i1 + · · · + iK

i1; · · · ; iK

)
pi1

1 · · · p
iK
K

This expression captures all cases where we use exactly our budget T. In the remaining

cases, there is a final (discarded) outcome m that goes “over budget". In this case, i · t ∈

[T − tm + 1,T − 1], and the probability of observing i and discarding m equals(
i1 + · · · + iK

i1; · · · ; iK

)
pi1

1 · · · p
iK
K · pm

Therefore, the expectation of ik/
∑

j i j can be written as∑
vector i
s.t. i·t=T

(
i1 + · · · + iK

i1; · · · ; iK

)
pi1

1 · · · p
iK
K ·

ik
i1 + · · · + iK

+
∑

m

∑
vector i

s.t. i·t∈[T−tm+1,T−1]

(
i1 + · · · + iK

i1; · · · ; iK

)
pi1

1 · · · p
iK
K · pm ·

ik
i1 + · · · + iK

Now observe that(
i1 + · · · + iK

i1; · · · ; iK

)
ik

i1 + · · · + iK
=

(
i1 + · · · + (ik − 1) + · · · + iK

i1; · · · ; ik − 1; · · · ; iK

)
meaning that, letting the vector i′ equal the vector i with its kth entry decreased by 1, the

expectation can be rewritten and simplified as

pk


∑

i′
s.t. i′·t=T′

(
i′1 + · · · + i′K

i′1; · · · ; i′K

)
p

i′1
1 · · · p

i′K
K +

∑
m

∑
i′

s.t. i′·t∈[T′−tm+1,T′−1]

(
i′1 + · · · + i′K

i′1; · · · ; i′K

)
p

i′1
1 · · · p

i′K
K · pm


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where T′ = T − tk. The term inside the square brackets sums to 1, as we observed at the

beginning of the proof, but substituting T′ for T. Thus the expectation is pk, as desired. �

4.3 The Main Algorithm

Here we present our main algorithm, Algorithm 6, analyzed in Theorem 4.3, which uses

O( ρ
ε2∆2 log 1

δ ) samples, matching the fully-adaptive lower bound we prove in Section 4.5.

Algorithm 6 uses the Triangular Walk estimator as a subroutine and has a hybrid flavor,

combining both (single-coin) adaptive and non-adaptive techniques, where the algorithm

is increasingly adaptive for smaller values of ρ. Crucially, in the adaptive component of

Algorithm 6, we use the Triangular Walk estimator to provide a 2-approximation to ρ, and

a variant of the algorithm to “filter" out most negative coins such that we get a constant

ratio of positive vs negative coins, to reduce variance. The coins “surviving" the filter are

then fed into a new, non-adaptive algorithm (Algorithm 4) that we call “refined sampling",

which like Algorithm 2 flips different coins a different number of times, yet the number of

flips is chosen non-adaptively; the information from different coins is combined in a subtle

way.

As a general motivation, consider taking t coins, flipping them n times each, and trying

to estimate the fraction of positive coins. For a slightly different setting that may have

cleaner intuition, consider having sample access to many univariate Gaussian distributions

of bounded variance, some of which have mean ≤ 0 and some of which have mean ≥ 1,

where the goal is to estimate the fraction of “positive" Gaussians with as few samples

as possible. If we take n samples from a given distribution, then testing whether the

sample mean is > 1
2 lets us correctly determine its identity with probability 1 − exp(−n),

incentivizing us to choose a large n. However, for a fixed budget on the total number of

samples across all distributions, choosing many samples per distribution means we can

only sample from a limited number of distributions, introducing sampling errors across

distributions (as opposed to within each distribution), and thus introducing a variance into

our estimate inversely proportional to the number of coins sampled, and thus O(n/T) for a

total budget of T. This is the classic bias-variance tradeoff, where larger n induces a better
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bias but worse variance.

While in many settings, one might try to find an optimal n that balances these two

concerns, the right answer here is instead to combine the two approaches: sample some

distributions many times, to get a low-bias signal, and also sample many distributions a few

times, to get a low-variance signal; and combine these two signals with care. Explicitly, the

coefficients in Step 3 of Algorithm 4 are carefully chosen so that their contributions “tele-

scope" in expectation between distributions sampled different numbers of times, allowing,

essentially, all the high-variance terms to cancel out without worsening the bias.

We first present the non-adaptive component (Algorithm 4) of Algorithm 6 for esti-

mating smooth functions f on the underlying coin bias p, which has constant expected

sample complexity, with zero bias, at the cost of O(1) variance instead of O(ρ) variance as

in Algorithm 3. This will be combined with a single-coin adaptive “filtering" component

such that only an O(ρ) fraction of coins will be used in running Algorithm 4, giving an

overall O(ρ) variance in Algorithm 6.

Think of the function f as being analogous to the output coefficient n
2k−n of Algorithm 2—

correcting for a probabilistic filtering mechanism, such that the expected output of f for

those coins that survive filtering will be essentially 0 for negative coins (p ≤ 1
4 ), 1 for

positive coins (p ≥ 3
4 ), and smoothly transitions between 0 and 1 in between. See later in

Definition 4.12 for the precise instantiation of f (p) we need.

Let Bin(n, p, k) denote the probability that a Binomial distribution with n trials and bias

p outputs k.

Algorithm 4 Refined Sampling

Input: sample access to a coin of bias p; target function f : [0, 1]→ R

1. Choose a number of coin flips n that is a power of 2, choosing 2i with probability
√

8−1
√

8
(2i)−1.5, where

√
8−1
√

8
is the normalizing constant so that the probabilities sum to

1.

2. Flip the coin n times, and let k be the number of observed heads.

3. Return n1.5
√

8
√

8−1

(
f ( k

n ) −
∑n/2

i=0 f ( i
n/2 ) ·

(n/2
i
)(n/2

k−i
)
/
(n

k
))

The sum in Step 3 of the algorithm is omitted if the power of 2 chosen for the number of

coin flips is n = 1, in which case
(n/2

i
)

would be undefined. We now describe the properties
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of Algorithm 4 in Lemma 4.11.

Lemma 4.11. Given a coin of bias p, and given a function f : [0, 1] → R that is bounded by a

universal constant, and has 2nd derivative bounded by a universal constant, then Algorithm 4 will

return an estimate of f (p) that has bias 0, variance O(1), and uses O(1) samples in expectation.

Proof. The expected number of coin flips taken by Algorithm 4 is the sum of a fixed

geometric series, and is thus O(1) as desired.

We bound the variance of the algorithm by showing that, for each depth n, the values

returned in Step 3 will have magnitude O(n0.5). Consider the sum in the second term of the

expression of Step 3. The expression
(n/2

i
)(n/2

k−i
)
/
(n

k
)

can be interpreted as: given a sequence

of n coin tosses of which k were heads, if a random subsequence of length n/2 is chosen,

what is the probability that i heads are chosen. This distribution has expectation k
2 , and

variance < n. Since f has second derivative bounded by a constant, the difference of f

from f ( k
n ) is upper and lower bounded by quadratics centered at k

n . Thus the difference

between f ( k
n ) and the expected value of f ( i

n/2 ) when i is drawn from the distribution with

pmf
(n/2

i
)(n/2

k−i
)
/
(n

k
)

is bounded by a constant times the variance of the random variable i
n/2 ,

namely O( 1
n ). Therefore, when multiplied by n1.5

√
8−1

, the output of Step 3 will be bounded by

O(n0.5) as desired. Since in Step 1, n is chosen with probability
√

8−1
n1.5 , the contribution to the

variance from a particular n is at most
√

8−1
n1.5 O(n0.5)2 = O(n−0.5); summing this bound over

all n that are powers of 2 yields a constant, O(1), variance, since geometric series converge.

To analyze the expectation of the values returned in Step 3 of Algorithm 4, we show

that it telescopes across the different depths n. Namely, consider the expected contribution

just of the second (sum) term at level n, −
∑n

k=0 Bin(n, p, k)
∑n/2

i=0 f
(

i
n/2

)
·
(n/2

i
)(n/2

k−i
)
/
(n

k
)
. The

coefficient in this expression of a given f ( i
n/2 ) equals −

∑n
k=0 Bin(n, p, k)

(n/2
i
)(n/2

k−i
)
/
(n

k
)
; from

the discussion at the start of the proof, the kth term of this sum can be reinterpreted as the

probability that, in n tosses of a coin of bias p, we have k heads total, and i heads among

the first n/2 tosses; summed over all k this is clearly just the probability that i heads will be

observed among n/2 tosses, namely Bin( n
2 , p, i). Thus the expected value of the sum term of

Step 3 at level n is −
∑n/2

i=0 Bin( n
2 , p, i) f ( i

n/2 ), which is exactly the negation of the expectation

of the first term of Step 3, at level n/2. (The multiplier n1.5
√

8
√

8−1
in Step 3 is exactly canceled

out by the probability of choosing n in Step 1.)
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Thus the expected output of the algorithm, considering only contributions up to some

depth n = 2i, collapses to just the expectation of the first term of Step 3 at the deepest level,

n. This expected output is thus
∑n

k=0 f ( k
n ) · Bin(n, p, k), namely the expected value of f ( k

n )

when k is drawn from a binomial distribution with n trials and bias p. Since the binomial

distribution Bin(n, p, ·) has expectation pn and variance < n, and since f has 2nd derivative

bounded by a constant, we have that this expectation converges to f (p) for large n; namely,

| f (p) −
∑n

k=0 f ( k
n ) · Bin(n, p, k)| = O( 1

n ). Thus, as n goes to infinity, we see that the expected

output of Algorithm 4 converges to f (p), as claimed. �

We now give a new non-adaptive algorithm, Algorithm 5, in order to motivate the

choice of f (p) that we use for Algorithm 4 within Algorithm 5. Algorithm 5 will be a major

component of our final algorithm, Algorithm 6.

Algorithm 5 Optimal Algorithm given an estimate ρ̂

Given: A total budget B of coin flips, quality parameter ∆, and an estimate ρ̂ that is within
a factor of 2 of ρ

1. Run the following on t = Θ(∆2B) randomly drawn coins. For each coin: simulate a
new “virtual" coin by computing the majority of Θ( 1

∆2 ) flips each time a “virtual" flip
is requested, so that each virtual coin will have probability either p ≤ 1

4 or p ≥ 3
4 .

(a) For each virtual coin, flip it at most d = Θ(log 1
ρ̂ ) times but stop if at any point

the majority of flips are tails.

(b) If the previous step did not stop early, then run Algorithm 4 for the function
fd(p) of Definition 4.12.

2. Return 1
t times the sum of all the values output by Algorithm 4 in Step 3(b).

As mentioned above, the choice of f (p) is a correction for the filtering mechanism.

Concretely, in Algorithm 5, Step 2(a) will stop early on negative coins with probability that

is increasingly high for smaller ρ, significantly reducing the number of coin flips; and in

Step 2(b) we exactly compensate for this (a priori) unknown early stopping probability by

running the unbiased Algorithm 4 on an appropriately chosen function fd(p) that is exactly

the inverse of this early stopping probability, for positive coins, and 0 for negative coins:

Definition 4.12. Given a depth d, let fd(p) : [0, 1]→ R be defined to equal 0 for p ≤ 1
4 ; and

for p ≥ 3
4 , let fd(p) equal 1 divided by the probability that a sequence of d flips of a coin of
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bias p never has a majority-tails initial sequence; for 1
4 < p < 3

4 , let fd(p) be chosen so as to

smoothly connect the regions p ≤ 1
4 and p ≥ 3

4 so that fd(p) has second derivative bounded

by a universal constant (independent of d).

With this choice of f (p), we state and prove Proposition 4.13, which gives the soundness

and sample complexity bounds for Algorithm 5.

Proposition 4.13. On input 1) a budget B = O( ρ
ε2∆2 ) of coin flips, 2) the quality parameter ∆ and

3) a 2-approximation ρ̂ of ρ, Algorithm 5 returns an estimate of ρ that has additive error at most ε

with probability at least 0.99, using at most B coin flips.

Proof. We first show the expected output of Algorithm 5 equals ρ. For each positive coin,

Step 1 transforms it into a “virtual" coin of probability p ≥ 3
4 ; this coin will “survive"

Step 1(a) with probability exactly 1/ fd(p), by definition of fd(p) in Definition 4.12. Thus

Algorithm 4 will return an estimate of fd(p), with bias 0. Multiplying through by the

survival probability 1/ fd(p), and by the probability ρ that a positive coin will be drawn, we

see that, over t coins, the expected contribution to the estimate from Step 2 of the positive

coins will be ρ. For each negative coin, by definition fd(p) = 0, so the expected contribution

from these coins, added over all ≤ t of them, and scaled by 1
t in Step 2, will be 0.

To bound the variance of the output of Step 2, we note that at most a 2ρ fraction of

the coins reach Step 1(b): a ρ fraction of the coins are positive; meanwhile, negative coins,

where p ≤ 1
4 , have exp(−d) probability of surviving Step 1(a), which can be made ≤ ρ since

d = Θ(log 1
ρ̂ ). Thus the output returned in Step 2 is 1

t times the sum of t independent trials

of a process that, with probability ≤ 2ρ outputs a random variable whose expected squared

magnitude is bounded by a constant (by Lemma 4.11). For t = Θ( ρ
ε2 ), the expected squared

magnitude—and hence the variance—of the output of the algorithm is thus bounded by

O( tρ
t2 ) = O(ε2). Thus by Chebyshev’s inequality, Step 2 will return an estimate accurate to

within O(ε), with constant probability.

Lastly, we need to verify that Step 1 will exceed the coin flip budget only with small

constant probability. It suffices, using a Markov’s inequality argument, to bound the

expected number of coin flips used in the steps. We consider the number of (“virtual")

flips from Step 1(a), and also Step 1(b), and then multiply by Θ( 1
∆2 ) as described in Step 1.
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For a negative coin, the expected number of flips until a majority-tails initial sequence is

observed in Step 1(a) is constant by standard random walk analysis, leading to an O(∆2B)

term; for positive coins, there are on average O(ρ∆2B) of them, so we could afford to flip

each O( 1
ρ ) times, but Step 1(a) uses only at most d = Θ(log 1

ρ̂ ) flips. Step 1(b) is run on an

expected ≤ 2ρ fraction of the coins, as explained above; and by Lemma 4.11, Algorithm 4

takes O(1) expected samples, for a total bound of O(ρ∆2B) virtual flips from Step 1(b).

(Algorithm 4 could thus afford to take up to O( 1
ρ ) samples on average, so, interestingly,

there is a lot of slack here.)

Thus in total we use O(∆2B) = O( ρ
ε2 ) virtual flips, each requiring Θ(1/∆2) real flips,

corresponding to expected sample complexity of O(B) = O( ρ
ε2∆2 ). �

Having analyzed Algorithm 5, we can now present our final optimal algorithm, stated

as Algorithm 6. The theoretical guarantees are given in Theorem 4.3, restated and proved

below.

We stress again that, in our presentation of Algorithm 6, the error parameter ε (of

Theorem 4.3) is not known, since it depends on the budget B and the unknown ground

truth ρ, yet the returned estimate will have this optimal ε accuracy regardless. This is

achieved by Algorithm 6’s calls to Algorithm 3 and Algorithm 5, which collectively cover

all regimes of how ρ and ε relate to each other, yielding optimal error guarantees in each

case.

Theorem 4.3. Given coins where a ρ fraction of the coins have bias ≥ 1
2 + ∆, and 1 − ρ fraction

have bias ≤ 1
2 − ∆, then running Algorithm 6 on a budget of B coin flips will estimate ρ to within

an additive error of ±ε, with probability at least 2/3, where ε is implicitly defined by the relation

B = Θ( ρ
∆2ε2 ) based on the unknown ground truth ρ. If the algorithm is repeated Θ(log 1

δ ) times,

and the median estimate is returned, then the probability of failure is at most δ.

Proof. Given the fixed total sample complexity budget of B coin flips, and fixing the un-

known ground truth ρ, the target additive error parameter ε is defined by the sample

complexity equation B = Θ( ρ
ε2∆2 ). There are two cases, either log 1

ε ≤ c/ρ for some suffi-

ciently small universal constant c (in which case we show that, with high probability, Step

1 will output a correct answer and then halt), or the inequality is in the opposite direction
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Algorithm 6 Optimal Algorithm

Given: A total budget B of coin flips and quality parameter ∆

1. Use Algorithm 3 in Section 4.2 on O(∆2B) many coins (a small fraction of B), using an
“ε" that is Θ(1/(∆2B)), and a constant δ. Let ρ̂ be the returned estimate of ρ.

(a) If Algorithm 3 ever tries to use more than B/4 coin flips total, then terminate
Algorithm 3 and move onto the next step.

(b) Otherwise, return the estimate produced by Algorithm 3.

2. Use Algorithm 3 on Θ(
√

∆2B) freshly drawn coins, using again an “ε" that is
Θ(1/(∆2B)), and a constant δ. The returned estimate ρ̂ will be a 2-approximation
to ρ. If in this step, Algorithm 3 tries to use more than B/4 coin flips, terminate and
fail, which happens only with small constant probability.

3. Run Algorithm 5 on input B/2, ∆, and ρ̂, and return its answer.

4. (If a sub-constant failure probability δ is desired, then repeat the entire algorithm
Θ(log 1

δ ) times and return the median of the outputs, ignoring invocations that failed.)

(in which case, with high probability, either Step 1 still produces a correct answer and halts,

or Steps 2 and 3 will output a correct answer).

In the case where log 1
ε ≤ c/ρ, we use Corollary 4.9 with parameters ε1 = ε and

ε2 = Θ( 1
∆2B ) = Θ( 1

t ): Algorithm 3 will have error ±ε, except with failure probability

0.1 + O(t · poly(ε2)) = 0.1 + O(t · poly( 1
t )), where, as noted in Corollary 4.9, we may make

the polynomial superlinear to make this failure probability 0.1 + o(1). Further, the expected

sample complexity is O( ρ

ε2
1∆2 ) = O(B) in the case where log 1

ε ≤ c/ρ, so by Markov’s inequal-

ity, for appropriate constants we can ensure that Algorithm 3 uses ≤ B/4 samples with high

constant probability. Thus in this case, the algorithm will correctly terminate in Step 1(b)

with high probability.

Next, we analyze the case where log 1
ε ≥ c/ρ. By Corollary 4.9, as above, if Step 1(b)

is reached then its answer will be ε-accurate except with some small constant probability.

Otherwise, since Steps 2 and 3 are statistically independent of Step 1, we can just analyze

these steps for the case log 1
ε ≥ c/ρ, ignoring what happened in Step 1.

We first claim that Step 2 will return a 2-approximation ρ̂ of ρ with high constant

probability. As before, we use Corollary 4.9 with ε2 = ε; since (from the algorithm and

the parameters of the theorem) this step uses t = Θ(
√

∆2B) = Θ(
√
ρ
ε ) coins, solving the
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equation t = Θ( ρ
ε2

1
) of the Corollary yields ε1 = Θ(

√
ε
√
ρ) = O(

√
ε). Since we are in the

regime where log 1
ε ≥ c/ρ, we have that ε1 = O(

√
ε) ≤ O(e−c/ρ) � ρ/2 for sufficiently

small ρ, meaning that we will approximate ρ to within ±ρ/2, giving us a 2-approximation.

The failure probability is 0.1 + o(1) as above. From Corollary 4.9, the expected sample

complexity, in our case log 1
ε ≥ c/ρ will be O( ρ

ε2
1∆2ρ log 1

ε2
); substituting in the definitions of

ε1, ε2 yields O(ρ
3/2

ε∆2 log 1
ε ). Since ρ = O(1) and log 1

ε = o( 1
ε ) this expected sample complexity

is thus O( ρ
ε2∆2 ) = O(B) and Markov’s inequality implies the algorithm exceeds its sample

bound in Step 2 with an arbitrarily small constant probability.

We conclude by invoking Proposition 4.13 to show that the estimate returned in Step 3 by

Algorithm 5 is accurate to within additive error ε except with small constant probability. �

4.4 Characterizing Single-Coin Algorithms

As a crucial first step towards the lower bounds of Section 4.5 that analyze how information

from many different coins may interact, in this section we describe a unified framework

for characterizing (adaptive) algorithms that flip only a single coin. Section 4.5.1 will

then show a general structural result describing how any adaptive multi-coin algorithm

may be broken into single-coin subroutines that may then be analyzed in light of the

characterization of this section.

The most general form of an adaptive single-coin algorithm is a decision tree, where

each node is a coin flip, and has two outgoing edges denoting the outcome of the coin flip,

heads or tails; the current node captures the outcome of the entire sequence of coin flips so

far, and thus for each node, a generic algorithm specifies a probability of halting, versus

continuing from that node.

Via a (standard) symmetrization argument, instead of considering the state of the

algorithm to be an arbitrary sequence of coin flips, we instead aggregate this information

into a pair (n, k) representing the number of coin flips, and the number of heads observed

so far. In outline, one may prove by induction on the number of coin flips n that any

such decision tree may be “symmetrized" so that its stopping probability at each node

(n′ ≤ n, k) depends only on n′ and k, while preserving, for any underlying coin bias p,
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the total probability of hitting the set of decision tree nodes that represent observing k

total heads out of n′ flips. The inductive step relies on the fundamental property that,

conditioned on observing exactly k heads out of n′ coin flips, the distribution over all such

sequences of coin flips is independent of the coin bias p, and depends only on the stopping

probabilities along each of the
(n

k
)

paths in the decision tree. This is a direct generalization

of the analogous observation in the triangular walk algorithm section (Section 4.2), and is

analyzed in slightly different form in Equation 4.1 below.

We thus consider single-coin algorithms as random walks (Algorithm 7) on the structure

of the Pascal Triangle, in which the states are represented by pairs (n, k), where n is the total

number of flips of the coin so far, and k ≤ n is the number of “heads" responses. At each

state (n, k), the algorithm terminates with some probability γn,k, else the algorithm may

request a further coin flip and continue the walk. The collection of parameters γn,k we call

a stopping rule, and specifies that algorithm’s behavior.

Algorithm 7 Triangular Walk

Input: a coin of bias p

1. Initialize state (n, k) to (0, 0).

2. Repeat until termination:

(a) With probability γn,k, terminate and output (n, k).

(b) Otherwise, sample one more coin flip. Increment n, and increment k by the
result of the flip (0 or 1).

This formulation of single-coin algorithms, which we call a triangular walk, reveals

structure that will be useful to the rest of the analysis of this paper. In particular, since the

overall objective of running an adaptive coin-flipping algorithm is to recover information

about the bias p of the coin (while minimizing expected sample complexity), it is fortuitous

(as we will see) that the outcome of such an algorithm depends on p in an unexpectedly

transparent way. This is given in Definition 4.14.

Definition 4.14. Given a stopping rule {γn,k}, we define coefficients {αn,k}, {βn,k}, and {ηn,k},

so that, for any p ∈ [0, 1], the triangular walk with stopping rule {γn,k} on a coin of bias p,

the coefficients have the semantics: αn,kpk(1− p)n−k represents the probability that the walk

terminates at (n, k), with all such probabilities summing to 1; βn,kpk(1 − p)n−k represents the
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probability that the triangular walk encounters (n, k), whether or not it terminates there,

and ηn,kpk(1− p)n−k is the probability that the triangular walk encounters (n, k) but does not

terminate there. Each of these reparameterizations of the stopping rule may be derived

from {γn,k} using the following relations.

β0,0 = 1 (4.1)

βn+1,k+1 = βn,k+1 · (1 − γn,k+1) + βn,k · (1 − γn,k)

αn,k = βn,k · γn,k

ηn,k = βn,k − αn,k ( = βn,k · (1 − γn,k) ).

Consider the original setting, where one has a universe of (different) coins; one might

repeatedly run a single-coin algorithm on coins drawn from the universe, and somehow

combine their outputs into a final answer. There are many conceivable ways of aggregating

the outputs of single-coin algorithms into an estimate, and the lower bounds of Section 4.5

consider them all. However, a particularly natural and powerful approach is to construct a

linear estimator, namely to have the single-coin algorithm output a real number coefficient

vn,k at each termination node, with the overall algorithm estimating the expected output

of the single-coin algorithm, across the coins in the universe. Algorithm 3 works this way,

using the median-of-means method (instead of taking the sample mean) to estimate the

expected output of Algorithm 2. Such linear estimators are surprisingly flexible, and are

known to be optimal in certain classes of estimation tasks [63].

4.5 Fully-Adaptive Lower Bounds

We show in this section that Algorithm 6 is optimal in all four problem parametersρ, ε, ∆ and

δ, even when compared to all fully-adaptive algorithms that are adaptive across different

coins. In particular, we show the following indistinguishability result (Theorem 4.4).

Theorem 4.4. For ρ ∈ [0, 1
2 ) and ε ∈ (0, 1 − 2ρ], the following two situations are impossible to

distinguish with at least 1 − δ probability using an expected o( ρ
ε2∆2 log 1

δ ) samples: A) ρ fraction of

the coins have probability 1
2 + ∆ of landing heads and 1 − ρ fraction of the coins have probability

1
2 −∆ of landing heads, versus B) ρ+ ε fraction of the coins have probability 1

2 + ∆ of landing heads
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and 1 − (ρ + ε) fraction of the coins have probability 1
2 − ∆ of landing heads. This impossibility

crucially includes fully-adaptive algorithms.

With the algorithmic result of Theorem 4.3, this lower bound is therefore tight to within

a constant factor. We note that the restrictions ρ < 1
2 and ε ≤ 1− 2ρ reflect the symmetry of

the problem, where the pair ρ, ρ+ε is exactly as hard to distinguish as the pair 1−ρ−ε, 1−ρ,

yielding analogous results for the symmetric parameter regime.

Example 4.15. Even in the constant failure probability regime, the Ω( ρ
ε2∆2 ) lower bound

requires significant analysis, forming the bulk of the remainder of this paper, but two

special cases have direct proofs. When ∆ = Θ(1) we can prove a Ω( ρ
ε2 ) lower bound

without the ∆ dependence: consider the case where all coins are unbiased and perfect,

meaning that the only source of randomness is from the mixture of coins, which is itself

a Bernoulli distribution of bias either ρ or ρ + ε. We quote the standard fact that, in order

to estimate a Bernoulli coin flip of bias ρ to up to additive ε, we need Ω( ρ
ε2 ) samples to

succeed with constant probability; this can be proven by a standard (squared) Hellinger

distance argument. On the other hand, it is also straightforward to prove a 1
∆2 lower bound

(covering the regime where ρ and ε are constant): consider the easiest regime for ρ and

ε, where ρ = 0 and ε = 1; thus coins either all have 1
2 + ∆ bias or all have 1

2 − ∆ bias.

To distinguish whether we have access to positive coins or negative coins requires Ω( 1
∆2 )

samples.

In order to show Theorem 4.4, we use the Hellinger distance and KL-divergence be-

tween probability distributions as proxies for bounding the total variation distance.

Definition 4.16 (Hellinger Distance). Given two discrete distributions P and Q, the Hellinger

distance H(P,Q) between them is

1
√

2

√∑
i

(
√

pi −
√

qi)2 =

√
1 −

∑
i

√
piqi

Definition 4.17 (KL-divergence). Given two discrete distributions P and Q, the KL-divergence

DKL(P||Q) between them is ∑
i

pi log
pi

qi
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The following facts capture how the Hellinger distance and KL-divergence can be used

to show sample complexity lower bounds.

Fact 4.18 (Chapter 2.4, [62]). For any two distributions P and Q over the same domain, we have

`1(P,Q) ≤
√

2H(P,Q)

and furthermore, for any event E,

P(E) + Q(Ē) ≥
1
2

e−DKL(P||Q)

The second inequality is also known as the high-probability Pinsker inequality.

Recall from the introduction that, the main challenge in proving a general lower bound

for our problem lies in analyzing the two kinds of adaptivity that algorithms may employ

that were both absent in the special cases of Example 4.15. Explicitly, when taking samples

from a given coin, we can choose whether to ask for another sample based on A) previous

results of this coin, and also B) previous results of all the other coins. This first kind of

adaptivity, “single-coin adaptivity", is crucially used in the algorithms presented in the

rest of the paper (e.g. the “shape" of the stopping rule for our triangular-walk algorithms);

in Proposition 4.22 we analyze the best possible performance of such triangular stopping

rules. The most interesting part of the proof of Theorem 4.4 consists of showing that the

second kind of adaptivity (cross-coin adaptivity) cannot help in the lower bound setting,

which we analyze via general Hellinger distance/KL-divergence inequalities (Lemmas 4.19

and 4.20) in Section 4.5.1.

4.5.1 Reduction to Single-Coin Adaptive Algorithms

In this section, we give two related but distinct reductions to single-coin adaptive algo-

rithms. The first is a general decomposition (“direct sum") inequality that decomposes

the squared Hellinger distance of running a fully-adaptive algorithm on two different coin

populations into the sum of squared Hellinger distances of running single-coin adaptive

algorithms on the two coin populations. This inequality will lead to a constant probabil-

ity sample complexity lower bound. The second inequality instead decomposes the KL
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divergence into (a constant times) a sum of squared Hellinger distances, however with an

additional slight restriction that the two coin populations being considered must be very

close to each other. The upside to using this second inequality is that, an upper bound

on the KL divergence combined with the high probability Pinsker inequality allows us to

obtain a high probability sample complexity lower bound, which in particular is tight in all

parameters of the problem, up to a multiplicative constant.

Both of the following inequalities are applicable to populations of variables beyond

Bernoulli coins. We believe that the general inequalities are of independent interest to

the community, since they would be applicable and useful for proving lower bounds on

a variety of scenarios involving, for example, a Gaussian variant of the current problem,

where instead of getting yes/no answers on the positivity of an item, one gets a real-valued

score which correlates with the positivity of the item.

We phrase both lemmas as upper bounds on distances between distributions of the

transcript of an algorithm, which when combined with the data processing inequality

immediately yields upper bounds on distances between distributions of the algorithm’s

output. See, for example, the very end of the proof of Theorem 4.4.

Lemma 4.19. Consider a problem setting where there is a collection of random variables, and

an adaptive algorithm can draw variables from the collection and draw independent samples from

the drawn variables. Now consider an arbitrary algorithm that iteratively samples from random

variables drawn from the collection, choosing each subsequent variable to sample in an arbitrary

adaptive manner based on the results of previous sample outcomes. Suppose the algorithm terminates

almost surely. Consider two arbitrary collections of random variables, denoted by distributions A

andB over the set of possible random variables. Let H2
full be the squared Hellinger distance between

the transcript of a single run of the algorithm where 1) the random variables are drawn fromA versus

where 2) the random variables are drawn from B. Furthermore, let H2
i be the squared Hellinger

distance between the two scenarios, but instead of running the algorithm as is, we only use random

variable i (as drawn either fromA or B depending on the scenario) and simulate all other random

variables as independent random variables that are themselves drawn from the mixture distribution
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A

2 + B

2 . Then

H2
full ≤

∑
variable i

H2
i

Proof. It suffices to prove the result for deterministic algorithms, since squared Hellinger

distance is linear with respect to mixtures of distributions with distinct outcomes, and a

randomized algorithm is simply a mixture of deterministic algorithms which also records

which of the algorithms the random coins picked. Furthermore, the following proof is

phrased in terms of the special case where the collection of random variables are Bernoulli

coins (which is the setting considered in this paper). Barring measure-theoretic formaliza-

tion issues that we do not discuss, the proof generalizes directly to populations of arbitrary

random variables.

A deterministic fully-adaptive algorithm is a decision tree, where each node is labeled

by the identity of the coin the algorithm chooses to flip next conditioned on reaching this

node, and each edge out of a node is labeled by a heads or tails result for this coin. We can

view a run of the algorithm as follows: 1) first draw all the random coins from eitherA or

B depending on the scenario, and then 2) flip these coins according to this fully-adaptive

algorithm—we view choosing the coins fromA or B as happening at the beginning since

all these samples are free and only the coin flips themselves are counted. After step 1,

fixing the bias of each coin, the probability of ending up at the ith leaf of the decision tree

is simply the probability (over coin flips) that every edge along the path from the root to

that leaf is followed. Note that each edge is a probabilistic event depending on only one

coin. Therefore, this probability can be factored into a product of probabilities, one term

for each of the coins. For example, suppose the path to leaf i involves coin j returning 5

heads in a row, then getting some particular sequence from flipping some other coins, then

coin j returning another 2 heads followed by 3 tails. Then, if coin j has bias p j, it contributes

p5+2
j (1 − p j)3 to the probability product.

We denote by qAj,i the expected contribution of coin j to the probability product for leaf

i, over the randomness of A on the bias of coin j. In the previous example, qAj,i would be

equal to Ep←A[p7(1 − p)3]. We similarly define qBj,i. Explicitly, for leaf i and coin j, qAj,i is the

expectation (over p drawn from A) of p to the exponent of the number of “heads" edges

on the path from the root to node i in the decision tree, times (1 − p) to the exponent of the
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number of “tails" edges on this path.

Using this notation, the probability of the algorithm reaching leaf i, when the coins

are sampled from distribution A, would be
∏

coin j qAj,i , since each coin is sampled from A

independently; let
∏

coin j qBj,i be the respective probability for sampling from B.

Since the total probability of reaching all leaves i must equal 1, this expression yields

the immediate corollary, that for any distributionA over [0, 1],∑
leaf i

∏
coin j

qAj,i = 1 (4.2)

We can now express the squared Hellinger distance with this notation. For any two

distributions a and b, 1 minus their squared Hellinger distance can be rewritten as
∑

i
√

aibi.

In our context, the summation is over leaves i, and thus the squared Hellinger distance

between the two scenarios in question is

H2
full = 1 −

∑
leaf i

√∏
coin j

qAj,i
∏

coin j

qBj,i (4.3)

Since qAj,i and qBj,i are both non-negative, we simplify the summand as

√∏
coin j

qAj,i
∏

coin j

qBj,i

=

∏
coin j

qAj,i + qBj,i
2



∏

coin j

2
√

qAj,iq
B

j,i

qAj,i + qBj,i


≥

∏
coin j

qAj,i + qBj,i
2


1 −

∑
coin j

1 −
2
√

qAj,iq
B

j,i

qAj,i + qBj,i




(4.4)

where the inequality holds because each
2
√

qAj,i q
B

j,i

qAj,i+qBj,i
is less than or equal to 1 by the AM-GM

inequality (and at least 0), and therefore we can apply the union bound by treating each

term as a probability—namely, for any x j ∈ [0, 1] we have
∏

j x j ≥ 1 −
∑

j(1 − x j).

Observe that our definition of q, being an expectation, is thus linear in the distribution

in its superscript, and thus 1
2 (qAj,i + qBj,i) = q

A

2 +B2
j,i , and therefore the right hand side of the

inequality can be rewritten as
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∏
coin j

q
A

2 +B2
j,i


1 −

∑
coin j

1 −

√
qAj,iq

B

j,i

q
A

2 +B2
j,i


 (4.5)

Thus the sum of Equation 4.5 over all leaves is at most 1 − H2
full. We simplify the

summation by changing the summation variable in Equation 4.5 from j to k, and distributing

the initial product so as to form three additive terms (the “ j , k" in the bounds of the last

product below is because the j = k term gets canceled by the denominator from the last

term in Equation 4.5): ∑
leaf i

∏
coin j

q
A

2 +B2
j,i

 − ∑
coin k

∑
leaf i

∏
coin j

q
A

2 +B2
j,i


−

∑
coin k

∑
leaf i

 ∏
coin j , k

q
A

2 +B2
j,i

 √
qAk,iq

B

k,i


We know by Equation 4.2 that

(∑
leaf i

∏
coin j q

A

2 +B2
j,i

)
= 1, and so the sum can be written

as

1 −
∑

coin k

1 −
∑
leaf i

 ∏
coin j , k

q
A

2 +B2
j,i

 √
qAk,iq

B

k,i


which by definition of Hk is equal to 1 −

∑
coin k H2

k : by Equation 4.3, 1 minus the squared

Hellinger distance between the view of the algorithm when the kth coin is from A versus

fromB, where all remaining coins are drawn from the mixture A2 +B2 equals
∑

leaf i

(∏
coin j , k q

A

2 +B2
j,i

) √
qAk,iq

B

k,i.

Summarizing, we have shown that 1 − H2
full ≥ 1 −

∑
coin k H2

k , from which the lemma

statement follows. �

We now give the KL-divergence decomposition lemma (Lemma 4.20) which will yield

a tight high probability sample complexity lower bound, but makes a further assumption

than Lemma 4.19 that the two coin populations are close to each other. As a note, the

definition of H2
i is slightly different in this lemma from the definition in Lemma 4.19, and

is not a typographical mistake.

Lemma 4.20. Consider an arbitrary algorithm that iteratively flips coins from a collection of coins,

choosing each subsequent coin to flip in an arbitrary adaptive manner based on the results of previous

flips. Suppose the algorithm terminates almost surely. Consider two arbitrary mixtures of coins,
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denoted by distributionsA and B over the coin bias [0, 1]. Let Dfull be the KL-divergence between

the transcript of a single run of the algorithm where 1) the coins are drawn from the mixture

ρA+ (1−ρ)B versus where 2) the coins are drawn from (ρ+ ε)A+ (1−ρ− ε)B, where ρ ∈ [0, 1
2 ),

ε ∈ (0, 1 − 2ρ] and ε < ρ. Furthermore, let H2
i be the squared Hellinger distance between the two

scenarios, but instead of running the algorithm as is, we only use coin i (as drawn either from the

ρ-fraction mixture or the (ρ+ ε)-fraction mixture depending on the scenario) and simulate all other

coins as independent coins drawn from the ρ-fraction mixture. Then

Dfull = O

∑
coin i

H2
i


The proof of Lemma 4.20 is similar to that of Lemma 4.19 by viewing algorithms as

decision trees, with the crucial difference that, rather than using the AM-GM inequality,

Lemma 4.20 instead bounds the KL-divergence via a quadratic bound log(1 + x) ≥ x − x2,

valid for x ∈ [− 1
2 , 1].

Proof. (For the following proof, the set-up up to and including Equation 4.6 is essentially

the same as that in the proof of Lemma 4.19, analogously, up to and including Equation 4.2.

For completeness, we include the context for the specific notation we use in this proof.)

It suffices to prove the result for deterministic algorithms, since both squared Hellinger

distance and KL-divergence are linear with respect to mixtures of distributions with distinct

outcomes, and a randomized algorithm is simply a mixture of deterministic algorithms

which also records which of the algorithms the random coins picked.

A deterministic fully-adaptive algorithm is a decision tree, where each node is labeled

by the identity of the coin the algorithm chooses to flip next conditioned on reaching this

node, and each edge out of a node is labeled by a heads or tails result for this coin. We

can view a run of the algorithm as follows: 1) first draw all the random coins from either

ρA + (1 − ρ)B or (ρ + ε)A + (1 − ρ − ε)B depending on the scenario, and then 2) flip these

coins according to this fully-adaptive algorithm. After step 1, fixing the bias of each coin,

the probability of ending up at the ith leaf of the decision tree is simply the probability (over

coin flips) that every edge along the path from the root to that leaf is followed. Note that

each edge is a probabilistic event depending on only one coin. Therefore, this probability

can be factored into a product of probabilities, one term for each of the coins. For example,
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suppose the path to leaf i involves coin j returning 5 heads in a row, then getting some

particular sequence from flipping some other coins, then coin j returning another 2 heads

followed by 3 tails. Then, if coin j has bias p j, it contributes p5+2
j (1 − p j)3 to the probability

product.

We denote by qAj,i the expected contribution of coin j to the probability product for leaf

i, over the randomness of A on the bias of coin j. In the previous example, qAj,i would be

equal to Ep←A[p7(1 − p)3]. We similarly define qBj,i. Explicitly, for leaf i and coin j, qAj,i is the

expectation (over p drawn from A) of p to the exponent of the number of “heads" edges

on the path from the root to node i in the decision tree, times (1 − p) to the exponent of the

number of “tails" edges on this path.

To simplify notation, we also denote by qρj,i as the above probability product for coin j

and leaf i when coin j is drawn from the ρ-mixture, namely ρA + (1 − ρ)B. Note that, by

definition, qρj,i = ρqAj,i + (1 − ρ)qBj,i. We use analogous notation for the (ρ + ε)-mixture.

Using this notation, the probability of the algorithm reaching leaf i, when the coins

are sampled from distribution A, would be
∏

coin j qAj,i , since each coin is sampled from A

independently, with
∏

coin j qBj,i being the respective probability for sampling from B. The

observation holds similarly for coin distribution that are the ρ-mixture or (ρ + ε)-mixture

ofA and B.

Since the total probability of reaching all leaves i must equal 1, this expression yields

the immediate corollary, that for any collection of distributions C j over [0, 1] indexed by

coin j (imagine C j each being one ofA, B, the ρ-mixture of the two or the (ρ + ε)-mixture

of the two) ∑
leaf i

∏
coin j

q
C j

j,i = 1 (4.6)

We can now express the KL-divergence with the above notation.

Dfull = −
∑
leaf i

∏
coin j

qρj,i

 log


∏

coin k qρ+ε
k,i∏

coin k qρk,i


= −

∑
leaf i

∏
coin j

qρj,i

 ∑
coin k

log

1 + ε
qAk,i − qBk,i

ρqAk,i + (1 − ρ)qBk,i


where the second line follows from the definition of qρk,i = ρqAk,i + (1−ρ)qBk,i. Further observe

that the multiplier to ε in the second line is upper bounded by 1/ρ in magnitude. Since
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Taylor’s theorem gives that log(1 + x) = x −Θ(x2) for x ≤ 1, we have when ε/ρ ≤ 1, that

Dfull = −
∑
leaf i

∏
coin j

qρj,i

 ∑
coin k

εqAk,i − qBk,i
qρk,i

−Θ(ε2)
(qAk,i − qBk,i)

2

(qρk,i)
2


We can further simplify the expression by observing that for any fixed coin k,

∑
leaf i

∏
coin j

qρj,i

 qAk,i
qρk,i

=
∑
leaf i

 ∏
coin j , k

qρj,i

 qAk,i = 1

where the second equality is by Equation 4.6. This observation holds also when we replace

the mixtureAwith the mixture B. Therefore, we have

∑
leaf i

∏
coin j

qρj,i

 ∑
coin k

ε
qAk,i − qBk,i

qρk,i
= 0

meaning that

Dfull = Θ(ε2)
∑
leaf i

∏
coin j

qρj,i

 ∑
coin k

(qAk,i − qBk,i)
2

(qρk,i)
2

=
∑

coin k

Θ(ε2)
∑
leaf i

∏
coin j

qρj,i

 (qAk,i − qBk,i)
2

(qρk,i)
2

It remains to show that the right hand side is bounded by
∑

coin k H2
k , where, as in the

lemma statement, H2
k is the squared Hellinger distance between a single run of the algorithm

when coin k is drawn either from the ρ-mixture ofA and B or the (ρ + ε)-mixture, and all

other coins are simulated and simply drawn from the ρ-mixture. To see this, we write out

what H2
k is, using the definition of squared Hellinger distance:

H2
k =

∑
leaf i


√

qρk,i
∏

coin j , k

qρj,i −
√

qρ+ε
k,i

∏
coin j , k

qρj,i


2

=
∑
leaf i

 ∏
coin j , k

qρj,i

 (√qρk,i −
√

qρ+ε
k,i

)2

=
∑
leaf i

 ∏
coin j , k

qρj,i

 qρk,i

1 −

√√√
qρ+ε

k,i

qρk,i


2

=
∑
leaf i

 ∏
coin j , k

qρj,i

 qρk,i

1 −

√√√
1 + ε

qAk,i − qBk,i
ρqAk,i + (1 − ρ)qBk,i


2
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where the last line is again by definition that qρk,i = ρqAk,i + (1 − ρ)qBk,i. By reasoning we used

above, as long as ε < ρ, we have this expression being equal to

H2
k =

∑
leaf i

 ∏
coin j , k

qρj,i

 qρk,i

Θ(ε)
qAk,i − qBk,i

ρqAk,i + (1 − ρ)qBk,i


2

= Θ(ε2)
∑
leaf i

 ∏
coin j , k

qρj,i

 qρk,i
(qAk,i − qBk,i)

2

(qρk,i)
2

= Θ(ε2)
∑
leaf i

∏
coin j

qρj,i

 (qAk,i − qBk,i)
2

(qρk,i)
2

which is exactly the term in the sum over coin k for Dfull, showing the lemma. �

For the lower bound proof at hand, we show Corollary 4.21 in the next subsection,

which upper bounds the squared Hellinger distance for single-coin adaptive algorithms by

a quantity that is proportional to the expected number of samples taken by the algorithm.

Corollary 4.21. Consider an arbitrary single-coin adaptive algorithm. Let H2 be the squared

Hellinger distance between a single run of the algorithm where 1) a coin with bias 1
2 + ∆ is used

with probability ρ and a coin with bias 1
2 − ∆ is used otherwise, versus a run of the algorithm

where 2) a coin with bias 1
2 + ∆ is used with probability ρ + ε and a coin with bias 1

2 − ∆ is used

otherwise. Furthermore, let Eρ[n] and Eρ+ ε
2
[n] be the expected number of coin flips during a run

of the algorithm where we use a 1
2 + ∆ coin with probability ρ and ρ + ε

2 respectively, and a 1
2 − ∆

coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller than some universal absolute constant, then

max
[

H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)
Using Corollary 4.21 and Lemma 4.20, we now complete the proof of the main high

probability indistinguishability result (Theorem 4.4) for fully-adaptive algorithms. We

note again that Lemma 4.19, which is applicable to more general coin populations with

fewer restrictions than Lemma 4.20, can be used to derive a constant probability sample

complexity lower bound with essentially the same proof as follows, with the exception that

we would use the Hellinger distance inequality in Fact 4.18 instead of the high-probability

Pinsker inequality.
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Proof of Theorem 4.4. Letting A of be a population of coins that all have 1
2 + ∆ probability,

with B a population of coins that all have 1
2 − ∆ probability, our goal is to show the

indistinguishability of ρA + (1 − ρ)B from (ρ + ε)A + (1 − ρ − ε)B. We apply Lemma 4.20

and use the lemma’s conclusion, that Dfull = O
(∑

coin i H2
i

)
.

Next, for each i, the quantity H2
i of Lemma 4.20 describes the squared Hellinger distance

between an induced single-coin algorithm run on a single coin from scenario A versus B

respectively (with the remaining coins being simulated, from scenario A with a ρ-fraction

mixture). We thus bound H2
i from Corollary 4.21. As in the corollary, let Ei,ρ[n] denote the

expected number of samples from coin i when running the induced algorithm (for coin i)

on a mixture that uses a 1
2 + ∆ coin with probability ρ and a 1

2 − ∆ coin otherwise. Thus

Corollary 4.21 yields that H2
i = O( ε

2∆2

ρ ) · Ei,ρ[n]. Summing, combined with the result from

Lemma 4.20 above, yields

Dfull ≤ O
(
ε2∆2

ρ

)
·

∑
coin i

Ei,ρ[n]

Crucially, the sum (over choice of coin i) of the expected number of flips Ei,ρ[n] (when

running the algorithm induced for coin i) can be viewed in a different way: the ith term

is exactly the expected number of times that coin i is flipped when running the overall

algorithm where every coin is drawn from the ρ-fraction mixture in scenario A. Namely,

this sum counts the total expected number of coin flips (across all coins i), for the algorithm

run in the setting where all coins are drawn from the ρ-fraction mixture. Thus, for an

algorithm that uses o( ρ
ε2∆2 log 1

δ ) flips in expectation, we conclude that

Dfull ≤ O
(
ε2∆2

ρ

)
· o

( ρ

ε2∆2 log
1
δ

)
= o

(
log

1
δ

)
We conclude by using the high-probability Pinsker inequality. In the notation of the

inequality, given an algorithm that attempts to classify whether it is in scenario A or B, let

P,Q respectively be the distributions of its output in scenarios A,B respectively; let E be the

event that the algorithm outputs “scenario B". Then the probability that the algorithm is

wrong is P(E) + Q(Ē). By the high-probability Pinsker inequality this failure probability is

at least 1
2 e−DKL(P||Q)

≥
1
2 e−Dfull ≥

1
2 e−o(log 1

δ ) = 1
2δ

o(1)
� δ as desired, where the first inequality

is the data processing inequality for KL-divergence. �
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4.5.2 Upper Bounding the Squared Hellinger Distance for Single-Coin Adap-

tive Algorithms

In this section, we prove Corollary 4.21, though significant technical details are deferred to

Section 4.6. Explicitly, we analyze a simplified scenario in Proposition 4.22, after discussing

why each of the simplifying assumptions does not give up generality, and cannot affect the

key “squared Hellinger distance per sample" quantity by more than a constant factor.

1. Consider a single-coin algorithm. We restrict our attention to algorithms that only

stop once they have seen a number of coin flips that is exactly a power of 2. Any

stopping rule S that potentially stops in between powers of 2 could be converted

into an almost-equivalent rule S′ by collecting coin flips up to the next power of

2 and discarding them as necessary so as to simulate S: this will sacrifice at most

a factor of 2 in sample complexity, and can only increase our Hellinger distance

(since discarding data is a form of “data processing" and thus we may apply the data

processing inequality). Thus the new S′ will have “squared Hellinger distance per

sample" at least half that of S.

2. By standard symmetrization arguments, a single-coin algorithm can always be im-

plemented such that decisions only depend on the number of flips for a coin as well as

the number of observed “heads", as opposed to the explicit sequence of heads/tails obser-

vations. Thus we restrict our attention to stopping rules in the sense of Algorithm 7,

specified in full generality by a triangle of stopping coefficients {γn,k}.

3. There is in some sense a “phase change" once an algorithm has received Ω( 1
∆2 ) samples

from a single coin: after this point, the algorithm might have good information about

whether the coin is of type 1
2 + ∆ versus type 1

2 − ∆, and might productively make

subtle adaptive decisions after this point. We restrict our analysis to the regime where

no coin is flipped more than 10−8/∆2 times: formally, we show an impossibility result

in the following stronger setting, where we assume that whenever a single coin is

flipped 10−8/∆2 times, then the coin’s true bias (either 1
2 + ∆ or 1

2 − ∆) is immediately

revealed to the algorithm. Thus any coin flips beyond 10−8/∆2 that an algorithm

desires can instead be simulated at no cost.
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Formally, an impossibility result in this setting with “advice" (Proposition 4.22) im-

plies the analogous result in the original setting (Corollary 4.21) by the data process-

ing inequality for Hellinger distance (since Hellinger distance is an f -divergence):

simulating additional coin flips in terms of “advice" is itself “data processing", and

thus can only decrease the Hellinger distance. Thus the setting without advice has

smaller-or-equal Hellinger distance, and uses greater-or-equal number of samples,

and hence the bound on their ratio in Proposition 4.22 implies the corresponding

bound in Corollary 4.21.

Proposition 4.22. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that

are powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops if it reaches

10−8/∆2 coin flips. Suppose that given a coin, after a random walk on the Pascal triangle according

to the stopping rule, the position (n, k) that the walk ended at is always revealed, and furthermore,

if n = 10−8/∆2, then the bias of the coin is also revealed. Let H2 be the squared Hellinger distance

between a single run of the above process where 1) a coin with bias 1
2 + ∆ is used with probability

ρ and a coin with bias 1
2 − ∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with

probability ρ+ ε and a coin with bias 1
2 −∆ is used otherwise. Furthermore, let Eρ[n] and Eρ+ ε

2
[n]

be the expected number of coin flips during a run of the algorithm where we use a 1
2 + ∆ coin with

probability ρ and ρ+ ε
2 respectively, and a 1

2 −∆ coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller

than some universal absolute constant, then

max
[

H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)
It remains to prove Proposition 4.22. For the rest of the section, we shall use the notation

h+
n,k = ( 1

2 + ∆)k( 1
2 −∆)n−k and h−n,k = ( 1

2 −∆)k( 1
2 + ∆)n−k for convenience. The proofs for upper

bounding H2

Eρ[n] and H2

Eρ+ ε2
[n] are essentially the same, and here we give the high-level outline

of the proof for bounding the latter, with calculations and details in Section 4.6.

The first step in the proof is the following lemma that writes out the squared Hellinger

distance induced by a given stopping rule {γn,k}, whose proof can be found in Section 4.10.

The expression in Lemma 4.23 avoids square roots and in other ways simplifies aspects

of the squared Hellinger distance by estimating terms to within a constant factor, which

is folded into a multiplicative “big-Θ" term at the start of the expression. The two lines
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in the expression below capture the different forms of the Hellinger distance for stopping

before the last row versus at the last row—recall that we prove impossibility under the

stronger model where, upon reaching the last row the algorithm receives the true bias of

the coin (as “advice"). Thus the squared Hellinger distance coefficients from elements of

the last row are typically much larger than for other rows, capturing the cases when this

advice is valuable. Recall from Definition 4.14 that {αn,k} is defined from the stopping

rule {γn,k}, so that when multiplied by h+
n,k or h−n,k respectively, it equals the probability of

encountering (n, k) without necessarily stopping there, in the cases of positive and negative

bias respectively.

Lemma 4.23. Consider the two probability distributions in Proposition 4.22 over locations (n, k)

in the Pascal triangle of depth 10−8/∆2 and bias p ∈ { 12 ± ∆}, generated by the given stopping rule

{γn,k} in the two cases 1) a coin with bias 1
2 + ∆ is used with probability ρ and a coin with bias 1

2 −∆

is used otherwise versus 2) a coin with bias 1
2 + ∆ is used with probability ρ+ ε and a coin with bias

1
2 −∆ is used otherwise. If ε/ρ is smaller than some universal constant, then the squared Hellinger

distance between these two distributions can be written as

Θ(ε2)
[ ∑

n< 10−8

∆2 ,k∈[0..n]

αn,k((ρ +
ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)
(h+

n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2

+
∑

n= 10−8

∆2 ,k∈[0..n]

αn,k((ρ +
ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)

h+
n,k
ρ + h−n,k

ρh+
n,k + (1 − ρ)h−n,k

]

Intuitively, Lemma 4.23 breaks up the squared Hellinger distance into its contributions

from each location (n, k) in the triangle, with the coefficient αn,k depending on the stopping

rule (proportional to the algorithm’s probability of stopping at location (n, k) ), and the

remaining portion of the expression depending only on n, k,∆, ρ, with the ε dependence

already factored out in the initial Θ(ε2) term.

The rest of the analysis uses the above tools to upper bound the squared Hellinger

distance per sample. We defer the concrete details and calculations of the proof of Propo-

sition 4.22 to the next section, Section 4.6. The high level idea of the analysis is to split the

expression of Lemma 4.23 for the total squared Hellinger distance per sample into three
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components, with the contribution from each location (n, k) assigned to either 1) the last

row n = 10−8

∆2 , 2) a “high discrepancy region" where h+
n,k/h

−

n,k ≥ 1/ρ0.1 which is towards

the right of the triangle, potentially contributing large amounts to the squared Hellinger

distance and 3) a “central" region that is the rest of the triangle. The last row, because of

the nature of “advice", clearly needs its own analysis. As for the rest of the triangle, we

divide it into the “central" and “high discrepancy" regions, and bound their contributions

to the squared Hellinger distance per sample using different strategies. For the central

region, the key insight is that the squared Hellinger distance term is bounded by a well-

behaved quadratic function in that region. On the other hand, for the high discrepancy

region, the key observation is that the region is defined such that it is a large number of

standard deviations away from where a non-stopping random walk on the Pascal triangle

should concentrate, and thus it is very unlikely for the algorithm to enter that region. We

take additional care to show that, for any stopping rule used by any algorithm, it cannot

sufficiently skew the distribution of where the walk ends up—for example, while the dis-

tribution might skew to the right if the algorithm stops whenever it enters the “left" side

of the triangle, we show that this cannot significantly save on expected sample complexity

nor substantially increase the squared Hellinger distance per sample. The analysis for the

high discrepancy region makes crucial use of our simplifying assumption that the stopping

rule only stops at powers of 2 coin flips, letting us analyze large sequences of coin flips at a

time, where we may take advantage of the tight concentration of the Binomial distribution

over sufficiently many coin flips to bound the effect of any skewing-towards-the-right that

can be introduced by the stopping rule.

Propositions 4.33, 4.26 and 4.24 in Section 4.6 assert that for each of the respective

regions, their contribution to the squared Hellinger distance, divided by the expected

sample complexity, is at most O(ε2∆2/ρ). Summing up the three terms is an upper bound

on the total squared Hellinger distance per expected sample of O(ε2∆2/ρ), completing the

proof of Proposition 4.22.
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4.6 Proof of Proposition 4.22

This section proves Proposition 4.22, which upper bounds the squared Hellinger distance

per sample for any single-coin algorithm of (without loss of generality) a particular form

stated in the proposition. We state the proposition again for the reader’s convenience, as

well as Lemma 4.23 that is introduced in Section 4.5.2, which simplifies the expression of

the squared Hellinger distance by sacrificing a constant factor.

Proposition 4.22. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that

are powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops if it reaches

10−8/∆2 coin flips. Suppose that given a coin, after a random walk on the Pascal triangle according

to the stopping rule, the position (n, k) that the walk ended at is always revealed, and furthermore,

if n = 10−8/∆2, then the bias of the coin is also revealed. Let H2 be the squared Hellinger distance

between a single run of the above process where 1) a coin with bias 1
2 + ∆ is used with probability

ρ and a coin with bias 1
2 − ∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with

probability ρ+ ε and a coin with bias 1
2 −∆ is used otherwise. Furthermore, let Eρ[n] and Eρ+ ε

2
[n]

be the expected number of coin flips during a run of the algorithm where we use a 1
2 + ∆ coin with

probability ρ and ρ+ ε
2 respectively, and a 1

2 −∆ coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller

than some universal absolute constant, then

max
[

H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)

As mentioned in Section 4.5.2, the proofs for bounding H2

Eρ[n] and H2

Eρ+ ε2
[n] are essentially

identical, so here we present the proof only for the latter.

Lemma 4.23. Consider the two probability distributions in Proposition 4.22 over locations (n, k)

in the Pascal triangle of depth 10−8/∆2 and bias p ∈ { 12 ± ∆}, generated by the given stopping rule

{γn,k} in the two cases of 1) a coin with bias 1
2 + ∆ is used with probability ρ and a coin with bias

1
2 − ∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with probability ρ + ε and a coin

with bias 1
2 − ∆ is used otherwise. If ε/ρ is smaller than some universal constant, then the squared
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Hellinger distance between these two distributions can be written as

Θ(ε2)
[ ∑

n< 10−8

∆2 ,k∈[0..n]

αn,k((ρ +
ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)
(h+

n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2

+
∑

n= 10−8

∆2 ,k∈[0..n]

αn,k((ρ +
ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)

h+
n,k
ρ + h−n,k

ρh+
n,k + (1 − ρ)h−n,k

]

We perform separate analyses on three regions of the Pascal triangle: 1) the last row

n = 10−8

∆2 , 2) a “high discrepancy region" where h+
n,k/h

−

n,k ≥ 1/ρ0.1 which is towards the right

of the triangle, potentially contributing large amounts to the squared Hellinger distance

and 3) a “central" region that is the rest of the triangle. We shall show that each region

contributes small squared Hellinger distance per sample, and thus their sum bounds the

total squared Hellinger distance per sample, completing the proof of Proposition 4.22.

We present the three analyses in the order of central region (Section 4.6.1), high dis-

crepancy region (Section 4.6.2) and the last row (Section 4.6.3).

4.6.1 “Central" Region

For the purposes of this section, define bn,k,ρ+ ε
2

to equal ((ρ + ε
2 )h+

n,k + (1 − ρ − ε
2 )h−n,k), so

that αn,kbn,k,ρ+ ε
2

is the probability of reaching and stopping at location (n, k) under a ρ + ε
2

mixture of the two coin types. Further, let Rn,k,ρ be defined to equal
(h+

n,k−h−n,k)2

(ρh+
n,k+(1−ρ)h−n,k)2 , which

is the contribution of location (n, k) to the squared Hellinger distance per unit of probability

mass that stops there.

By Lemma 4.23, the contribution to the squared Hellinger distance from the central

region of the triangle is bounded by the sum, over this region, of ε2αn,kbn,k,ρ+ ε
2
Rn,k,ρ.

Proposition 4.24. For an arbitrary stopping rule, the contribution of the central region to the

squared Hellinger distance, divided by the (total) expected sample complexity Eρ+ ε
2
[n] of the walk

using a ρ + ε
2 mixture of 1

2 ± ∆ coins, is at most O(ε2∆2/ρ). Explicitly, with notation for b and R

defined in the previous paragraphs, we have

ε2
∑

n< 10−8

∆2 ,k s.t.
h+
n,k

h−n,k
< 1
ρ0.1

αn,kbn,k,ρ+ ε
2
Rn,k,ρ = O

(
ε2∆2

ρ

)
Eρ+ ε

2
[n]
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Proof. We upper bound this quantity here by instead 1) replacing Rn,k,ρ by a similar quantity

R̂n,k,ρ that is an upper bound on R in the central region, and 2) summing over the entire

triangle instead of just the central region. Let R̂n,k,ρ = 2
(
min

(
h+

n,k
h−n,k
, 1
ρ0.1

)
− 1

)2
. This bounds R

in the region where h+
n,k/h

−

n,k ≤ 1/ρ0.1: in this regime, R̂ =
2(h+

n,k−h−n,k)2

(h−n,k)2 . The numerator of R is

at most 1
2 of the numerator of R̂, and the denominator of R is at least 1

2 of the denominator

of R̂.

Thus we instead prove the related fact that

ε2
∑

n≤ 10−8

∆2 , k∈[0..n]

αn,kbn,k,ρ+ ε
2
R̂n,k,ρ = O

(
ε2∆2

ρ

)
Eρ+ ε

2
[n] (4.7)

We prove this by induction on a row i, where we define Ai
n,k to be the stopping proba-

bilities (corresponding to the product αn,kbn,k,ρ+ ε
2
) for the variant of the given stopping rule

where we force the rule to stop at row i if it reaches this row; analogously define Ei
ρ+ ε

2
[n] to

be the expected number of samples taken by this rule. We consider how both the left hand

side and Ei
ρ+ ε

2
[n] change as we increase i by 1, and show that the ratio of their change is

O
(
ε2∆2

ρ

)
.

See Lemma 4.25 for a proof of this fact. The proof of the lemma rely on the concrete

definitions of bn,k,ρ+ ε
2

and Rn,k,ρ, and so both the lemma statement and the proof write out

the expressions for purposes of calculations.

As a proof sketch of the ground covered by Lemma 4.25: if for some location (i, k) some

amount of probability mass m continues down to row i + 1 instead of stopping here, then

the expected number of samples increases by exactly m. Meanwhile, this probability mass

m will end up split between locations (i+1, k) and (i+1, k+1), where for a coin of bias p (that

will be 1
2 ±∆), we will have m(1− p) mass going left and mp mass going right, contributing

to Ai+1
i+1,k and Ai+1

i+1,k+1 entries respectively. The change in the left hand side of Equation 4.7

induced by sending mass m down to level i + 1 is thus expressed as a linear combination

of 3 evaluations of the function R̂n,k,ρ. Since R̂n,k,ρ is essentially a quadratic function of the

ratio
h+

n,k
h−n,k

, this linear combination evaluates to the difference between a quadratic evaluated

at 1 point, versus the weighted average of the quadratic at 2 surrounding points, and is

bounded by m ·O( ∆2

ρ0.2 ) essentially because of the second derivative of the quadratic in the

central region.
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Lemma 4.25. For any (n, k),

ε2ηn,k

((ρ +
ε
2

)h+
n+1,k+1 + (1 − ρ −

ε
2

)h−n+1,k+1) × 2

min

h+
n+1,k+1

h−n+1,k+1
,

1
ρ0.1

 − 1

2

+ ((ρ +
ε
2

)h+
n+1,k + (1 − ρ −

ε
2

)h−n+1,k) × 2

min

h+
n+1,k

h−n+1,k
,

1
ρ0.1

 − 1

2
≤ ε2ηn,k((ρ +

ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)

2
min

h+
n,k

h−n,k
,

1
ρ0.1

 − 1

2

+ O
(

∆2

ρ0.2

)
Proof. It suffices to show that the left hand side of the inequality is upper bounded by the

right hand side, substituting in both options for the minimum. For the 1/ρ0.1 case, since both

summands on the left hand side are upper bounded by the 1/ρ0.1 case of their expressions,

the inequality follows trivially and in fact without the excess term of O(∆2/ρ0.2).

We now prove the other case, for which it is sufficient to show that

ε2ηn,k

((ρ +
ε
2

)h+
n+1,k+1 + (1 − ρ −

ε
2

)h−n+1,k+1) × 2

h+
n+1,k+1

h−n+1,k+1
− 1

2

+ ((ρ +
ε
2

)h+
n+1,k + (1 − ρ −

ε
2

)h−n+1,k) × 2

h+
n+1,k

h−n+1,k
− 1

2
≤ ε2ηn,k((ρ +

ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)

2
h+

n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
when h+

n,k/h
−

n,k ≤ 1/ρ0.1.

In turn, we can break this inequality into a conjunction of two inequalities, that

h+
n+1,k+1

h+
n+1,k+1

h−n+1,k+1
− 1

2

+ h+
n+1,k

h+
n+1,k

h−n+1,k
− 1

2

≤ h+
n,k


h+

n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
and

h−n+1,k+1

h+
n+1,k+1

h−n+1,k+1
− 1

2

+ h−n+1,k

h+
n+1,k

h−n+1,k
− 1

2

≤ h−n,k


h+

n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
again assuming that h+

n,k/h
−

n,k ≤ 1/ρ0.1.

For the first inequality, observe that

h+
n+1,k+1

h−n+1,k+1
=

1
2 + ∆

1
2 − ∆

h+
n,k

h−n,k
and

h+
n+1,k

h−n+1,k
=

1
2 − ∆

1
2 + ∆

h+
n,k

h−n,k
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and also h+
n+1,k+1 = h+

n,k( 1
2 + ∆) and h+

n+1,k = h+
n,k( 1

2 −∆). We therefore factor out and drop the

h+
n,k on both sides, simplify, and reduce to showing that

(1
2

+ ∆
)  1

2 + ∆

1
2 − ∆

h+
n,k

h−n,k
− 1

2

+
(1
2
− ∆

)  1
2 − ∆

1
2 + ∆

h+
n,k

h−n,k
− 1

2

≤

h+
n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
The left hand side is(1

2
+ ∆

)  1
2 + ∆

1
2 − ∆

h+
n,k

h−n,k
− 1

2

+
(1
2
− ∆

)  1
2 − ∆

1
2 + ∆

h+
n,k

h−n,k
− 1

2

=

h+
n,k

h−n,k

2  ( 1
2 + ∆)3

( 1
2 − ∆)2

+
( 1

2 − ∆)3

( 1
2 + ∆)2

 − 2
h+

n,k

h−n,k

 ( 1
2 + ∆)2

1
2 − ∆

+
( 1

2 − ∆)2

1
2 + ∆

 + 1

=

h+
n,k

h−n,k

2

(1 + O(∆2)) − 2
h+

n,k

h−n,k

 ( 1
2 + ∆)2

1
2 − ∆

+
( 1

2 − ∆)2

1
2 + ∆

 + 1

≤

h+
n,k

h−n,k

2

(1 + O(∆2)) − 2
h+

n,k

h−n,k
+ 1

=

h+
n,k

h−n,k
− 1

2

+ O(∆2)

h+
n,k

h−n,k

2

≤

h+
n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
where the last inequality holds again because we have h+

n,k/h
−

n,k ≤ 1/ρ0.1 by our case analysis.

For the second inequality, via similar reasoning as above, we only need to show that

(1
2
− ∆

)  1
2 + ∆

1
2 − ∆

h+
n,k

h−n,k
− 1

2

+
(1
2

+ ∆
)  1

2 − ∆

1
2 + ∆

h+
n,k

h−n,k
− 1

2

≤

h+
n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
The left hand side is(1

2
− ∆

)  1
2 + ∆

1
2 − ∆

h+
n,k

h−n,k
− 1

2

+
(1
2

+ ∆
)  1

2 − ∆

1
2 + ∆

h+
n,k

h−n,k
− 1

2

=

h+
n,k

h−n,k

2  ( 1
2 + ∆)2

1
2 − ∆

+
( 1

2 − ∆)2

1
2 + ∆

 − 2
h+

n,k

h−n,k

(1
2

+ ∆ +
1
2
− ∆

)
+ 1

≤

h+
n,k

h−n,k

2

(1 + O(∆2)) − 2
h+

n,k

h−n,k
+ 1

=

h+
n,k

h−n,k
− 1

2

+ O(∆2)

h+
n,k

h−n,k

2
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≤

h+
n,k

h−n,k
− 1

2

+ O
(

∆2

ρ0.2

)
with reasoning as in the previous inequality, thus completing the proof of the lemma. �

4.6.2 “High Discrepancy" Region

Proposition 4.26. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that are

powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops after 10−8/∆2 coin

flips. Let

H2
disc = Θ(ε2)

∑
n< 10−8

∆2 ,k s.t.
h+
n,k

h−n,k
≥

1
ρ0.1

αn,k

(
(ρ +

ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k

) (h+
n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2

be the contribution to the squared Hellinger distance by the “high discrepancy" region. Furthermore,

again let Eρ+ ε
2
[n] be the expected number of coin flips on this random walk, where we use a 1

2 + ∆

coin with probability ρ + ε
2 (instead of ρ or ρ + ε), and a 1

2 − ∆ coin otherwise. If all of ρ, ε, ∆ and

ε/ρ are smaller than some universal absolute constant, then

H2
disc

Eρ+ ε
2
[n]

= O
(
ε2∆2

ρ

)
The key observation for this section is that the “high discrepancy" region is in fact

at least Ω(log 1
ρ ) standard deviations away from where a random walk on the triangle

(without a stopping rule) would concentrate; and thus it is very unlikely for the random

walk to enter the region. However, the existence of a stopping rule could potentially skew

the distribution of the random walk on each row towards the “high discrepancy" side of the

triangle, while saving on sample complexity by stopping early whenever the walk enters

the other side of the triangle. In this section, we essentially show that this cannot happen.

The analysis in this section relies on our assumption that the stopping rule only stops

at rows that are powers of 2 (unlike the analysis of the previous section). Intuitively, if

the random walk ends up very far to the right, then there must be a single region of

rows [2i..2i+1] where, without any stopping rule on intermediate rows to guide it, the walk

still somehow makes unlikely progress to the right. More explicitly, if the distribution of
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reaching-and-not-stopping-at row 2i+1 is skewed significantly far to the right of the distribu-

tion of reaching-and-not-stopping-at row 2i (despite the intervening process being strictly

a binomially distributed random walk), then the only way this could have occurred is if

an overwhelming fraction of the probability mass reaching row 2i+1 stops there. Namely,

if probability mass m emerges below row 2i+1 and skewed far to the right, the potential

Hellinger distance gains this induces will be more than counterbalanced by the huge ad-

dition to sample complexity induced by the overwhelming (relative to m) probability of

stopping at row 2i+1.

We utilize the following fact, essentially a consequence of a Binomial distribution being

upper bounded by a corresponding Gaussian.

Fact 4.27. Let Bin(n, p, k) denote the probability that a Binomial distribution with n trials and bias

p has value k. If ∆ is sufficiently small, then there exists some absolute constant C such that for all

n ≥ 1, and for both 1
2 + ∆ and 1

2 − ∆ substituted in the expression “ 1
2 ± ∆" below,∑

k∈[0..n]

e
(k−( 1

2±∆)n)2

n Bin(n,
1
2
± ∆, k) ≤ C

The sum of the pointwise products of the Binomial pmf and the inverse Gaussian can

instead be re-expressed as the evaluation of a convolution between corresponding functions

evaluated at a single point. We express this straightforward corollary below, and use it

crucially in this section and the next.

Fact 4.28. Consider the sequences f +
n,k(m) = e

(k−( 1
2 +∆)n−m)2

n for m ∈ Z, and f−n,k(m) = e
(k−( 1

2−∆)n−m)2

n

for m ∈ Z. Let Bin(n, p) be the pmf of the Binomial distribution with n trials and bias p. If ∆ is

sufficiently small, then there exists some absolute constant C such that for all n ≥ 1 and all k,

( f +
n,k ∗ Bin(n,

1
2

+ ∆))(k) ≤ C

and

( f−n,k ∗ Bin(n,
1
2
− ∆))(k) ≤ C

To start lower bounding the expected sample complexity of the random walk, we start

with the following two lemmas stating that if there is probability c of reaching a right tail

on a particular power-of-2 row, then there must be a tail on the previous power-of-2 row
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that the walk has high probability reaching. These are formalized as Lemma 4.29 and 4.30

for 1
2 + ∆ coins and 1

2 − ∆ coins respectively. The crux of the arguments are (weighted)

averaging arguments based on Fact 4.28.

Lemma 4.29. Consider an arbitrary stopping rule {γn,k} that is non-zero only for n that are powers

of 2. For a coin with bias 1
2 +∆, suppose at row 2 j there is some position k ∈ [( 1

2 +∆)2 j..2 j] such that

the total probability mass of the random walk reaching positions ≥ k at row 2 j is at least c. Then,

there must be some position k′ ∈ [0..2 j−1] at row 2 j−1 such that the probability of reaching positions

≥ k′ at that row is at least c
C · f +

2 j−1,k
(k′) = c

C · e
(k−( 1

2 +∆)2 j−1
−k′)2

2 j−1 , where the constant C and the function

f +
n,k are defined in Fact 4.28.

Proof. Let us denote by D↓n the vector (over k ∈ [0..n]) of probabilities that the random walk

using a coin of bias 1
2 + ∆ reaches but does not stop at the location (n, k). Similarly, let us

denote by Dn the vector (over k′ ∈ [0..n]) of probabilities that the random walk using a 1
2 +∆

coin reaches the location (n, k) (and can either stop at or leave the location).

Consider the vector I that is 1 for all coordinates ≤ 0, and 0 otherwise. Then for any

vector v, (v ∗ I)(k) =
∑

i≤k v(k), using “∗" to denote convolution.

Assume for the sake of contradiction that the statement is false, namely that for all

k′ ∈ [0..2 j−1], (D2 j−1 ∗ I)(k′) < c
C · f

+
2 j−1,k

(k′). Then, since D↓
2 j−1 ≤ D2 j−1 pointwise, we have for all

k′ ∈ [0..2 j−1], (D↓
2 j−1 ∗ I)(k

′) < c
C · f

+
2 j−1,k

(k′). Observe that D↓
2 j−1 ∗ I is constant for all coordinates

≤ 0, and that f +
2 j−1,k

is a decreasing function in the same region if k ∈ [( 1
2 + ∆)2 j..2 j] (as in the

lemma assumption), and therefore D↓
2 j−1 ∗ I < f +

2 j−1,k
also for that region since the inequality

holds at coordinate 0. As for coordinates > 2 j, D↓
2 j−1 ∗ I is 0, whilst f +

2 j−1,k
is strictly positive.

It follows that the inequality also holds for coordinates > 2 j, and thus it holds everywhere.

From this, using the commutativity of convolution, we have

D2 j ∗ I =
(
D↓

2 j−1 ∗ Bin(2 j−1,
1
2

+ ∆)
)
∗ I

= (D↓
2 j−1 ∗ I) ∗ Bin(2 j−1,

1
2

+ ∆)

< f +
2 j−1,k ∗ Bin(2 j−1,

1
2

+ ∆)

which holds pointwise, in particular at coordinate k. However, (D2 j∗I)(k) = c by assumption,

but f +
2 j−1,k

∗ Bin(2 j−1, 1
2 + ∆)(k) ≤ c by Fact 4.28, which is a contradiction. �
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Lemma 4.30. Consider an arbitrary stopping rule {γn,k} that is non-zero only for n that are powers

of 2. For a coin with bias 1
2 −∆, suppose at row 2 j there is some position k ∈ [( 1

2 −∆)2 j..2 j] such that

the total probability mass of the random walk reaching positions ≥ k at row 2 j is at least c. Then,

there must be some position k′ ∈ [0..2 j−1] at row 2 j−1 such that the probability of reaching positions

≥ k′ at that row is at least c
C · f−

2 j−1,k
(k′) = c

C · e
(k−( 1

2−∆)2 j−1
−k′)2

2 j−1 , where the constant C and the function

f−n,k are defined in Fact 4.28.

Proof. The proof is completely analogous to that of Lemma 4.29. �

In order to conclude the sample complexity lower bound corresponding to a particular

row, we need the following lemma saying that, if we repeatedly apply Lemma 4.29 (or

Lemma 4.30), then some row 2 j will have a large probability of stopping at that row, which

will contribute a large amount to the overall sample complexity. Further, when 2 j is smaller

(corresponding to fewer samples taken before stopping), the probability bound induced

by the following lemma will be correspondingly higher, so that the product of the row and

its stopping probability (i.e., a lower bound on total sample complexity) will be high for

the j produced by the lemma.

Lemma 4.31. Consider an arbitrary sequence of numbers {g j} j∈[0..J] such that
∑

j g j = K. Let

r j be chosen arbitrarily such that r j ≥
1
C eg2

j /2
j
, where C is the constant in Fact 4.28 and let

π j =
∏J

i= j ri. Furthermore suppose that K2
≥ 100 log(2C) · 2J. Then there exists j ∈ [0..J] such

that π j2 j−J
≥ e0.01K2/2J

.

Proof. Taking logarithms and rearranging, we see that it suffices to show the existence of j

such that ( j − J − 1) log(2C) +
∑J

i= j

g2
j

2 j ≥ 0.01 K2

2J .

The sequence K
5 · 0.8

J− j for j ∈ [0..J] sums up to less than K. Since
∑

j g j = K, there must

exist a j such that g j ≥
K
5 0.8J− j. Therefore,

g2
j

2 j ≥
K2

25
0.64J− j

2 j = K2

25
1.28J− j

2J .

It suffices to show that K2

25
1.28J− j

2J ≥ 0.01 K2

2J + (J − j + 1) log(2C). It is easy to check that

a sufficient condition is K2/2J
≥ 100 log(2C), as assumed in the lemma statement; thus we

conclude the above inequality for all j ∈ [0..J]. �

Now we use Lemmas 4.29, 4.30 and 4.31 to prove the sample complexity lower bound

corresponding to a particular row (Lemma 4.32). Afterwards we shall combine these

bounds across all possible power-of-2 rows to prove Proposition 4.26.



99

Lemma 4.32. Consider an arbitrary stopping rule {γn,k} that is non-zero only for n that are powers

of 2. For a mixture coin that has bias 1
2 + ∆ with probability ρ + ε

2 and bias 1
2 − ∆ otherwise,

suppose at row 2J+1 there is some position k ∈ [( 1
2 + ∆)2J+1..2J+1] such that the probability mass of

the random walk reaching positions ≥ k at row 2J+1 is c. If k ≥ ( 1
2 + ∆)2J+1 +

√
100 log(2C)2

J
2 + 1,

then the expected sample complexity of a single random walk using the above mixture coin is at least

2J−1
· c · e0.01(k−( 1

2 +∆)2J+1)2/2J
.

We point out that the restriction on k (that it lies at least a constant number of standard

deviations to the right of its mean) includes the entire high discrepancy region, as analyzed

in this section, and further includes all of the larger yet analogous region for the analysis

of the last row in the next section.

Proof of Lemma 4.32. The probability of the random walk reaching positions ≥ k at row 2J+1

using a mixture coin is the sum of ρ+ ε
2 times such probability of the random walk using a

1
2 +∆ coin and 1−ρ− ε

2 times such probability of the random walk using a 1
2 −∆ coin. Since

the total probability of this walk reaching positions≥ k equals c, at least half this probability

must come from one of the two coin types. Explicitly, at least one of the following two

statements has to be true: 1) the probability that the random walk using a coin with 1
2 + ∆

bias reaches positions ≥ k at row 2J+1 is at least c/(2ρ + ε), or 2) the same probability but

using a 1
2 − ∆ coin instead is at least c/(2 − 2ρ − ε).

For case 1, we repeatedly apply Lemma 4.29 to generate a sequence of {k j} from j = J

backwards (and kJ+1 = k), until k j∗ < ( 1
2 + ∆)2 j∗ or j∗ = 0. By induction, the probability of

reaching positions ≥ k j at row 2 j is at least c
2ρ+ε ·

∏J
i= j

1
C e

(ki+1−( 1
2 +∆)2i)−ki)

2

2i . We would now apply

Lemma 4.31 with gi = ki+1 − ki − ( 1
2 + ∆)2i for i ≥ j∗, and gi = 0 for i < j∗, noting that K in

that lemma that we get is K =
∑J

i= j∗ ki+1 − ki − ( 1
2 + ∆)2i

≥ kJ+1 − k j∗ −
∑J

i= j∗(
1
2 + ∆)2i > kJ+1(=

k)− ( 1
2 +∆)2J+1

−1 since k j∗ < ( 1
2 +∆)2 j∗ if j∗ > 0 and k0 ≤ 1 when j∗ = 0. Since we assumed in

the lemma statement that k ≥ ( 1
2 +∆)2J+1 +

√
100 log(2C)2

J
2 +1, we have K2/2J

≥ 100 log(2C).

Therefore, as a result of applying Lemma 4.31, we know that there exists j such that

2 j−J
J∏

i= j

1
C

e
(ki+1−( 1

2 +∆)2i)−ki)
2

2i ≥ e0.01(k−( 1
2 +∆)2J+1)2/2J

Thus in case 1, we multiply the left hand side by c/(2ρ + ε)2J to give a lower bound
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on the expected sample complexity of the random walk, using a 1
2 + ∆ coin. We thus use

the above inequality to conclude a lower bound of 2J c
2ρ+εe0.01(k−( 1

2 +∆)2J+1)2/2J
for the expected

sample complexity conditioned on a 1
2 +∆ coin. Since the mixture coin has probability ρ+ ε

2

of being a 1
2 + ∆ coin, the lemma statement follows.

The proof for case 2 is completely analogous, using Lemma 4.30 instead of Lemma 4.29,

and noting that k − ( 1
2 − ∆)2J+1

≥ k − ( 1
2 + ∆)2J+1

≥ 0. �

Equipped with Lemma 4.32, we prove Proposition 4.26.

Proof of Proposition 4.26. The general strategy is to show using Lemma 4.32 that, for each

row (from 1 to 10−8/∆2), if there is some probability cJ for the random walk to reaching the

high discrepancy region, then: 1) the total expected sample complexity must be large, and

2) by Lemma 4.23, if there is probability cJ of reaching the high discrepancy region at row

2J, then the contribution to the squared Hellinger distance by the high discrepancy region

at row 2J is upper bounded by Θ(cJε2/ρ2). Thus the squared Hellinger distance per sample

complexity for the high discrepancy region of each row is small, and our bounds are in fact

strong enough for us to simply take a union bound over the rows and lose by no more than

a constant factor. We now formalize the above argument.

Consider the rows 2J+1 for J ∈ [−1..(log2
10−8

∆2 ) − 1]. Recall that the high discrepancy

region consists of coordinates k ∈ [0..2J+1] such that h+
2J+1,k

/h−
2J+1,k

≥ 1/ρ0.1. Observe that

h+
2J+1,k

h−
2J+1,k

=
(1 + 2∆

1 − 2∆

)2k−2J+1

and therefore the high discrepancy region consists of k such that 2k−2J+1
≥

.1 log 1
ρ

log 1+2∆
1−2∆

, implying

that

k ≥ 2J +
.1 log 1

ρ

log 1+2∆
1−2∆

≥
1
2

2J+1 +
.099 log 1

ρ

4∆

Furthermore, since J ≤ (log2
10−8

∆2 ) − 1, we have 2J
≤

0.01
2∆2 , which for sufficiently small ρ and

∆ (both smaller than some absolute constant, with no requirements on how they depend

on each other) means that
.099 log 1

ρ

4∆ ≥ ∆2J+1 +
√

100 log(2C)2
J
2 + 1. Thus the coordinates k in

the high discrepancy region always satisfy the precondition of Lemma 4.32.
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Now note that for sufficiently small ρ (smaller than some absolute constant),

(
k −

(1
2

+ ∆
)

2J+1
)2
≥

 .098 log 1
ρ

4∆


2

≥

10−8(log 1
ρ )2

∆2

Therefore, if the probability of the random walk using a random coin reaches the high

discrepancy region at row 2J+1 is cJ+1, then by Lemma 4.32, the total expected sample

complexity of the random walk must be at least 2J−1
· cJ+1 · e

0.01
10−8(log 1

ρ )2

∆2 ·2J .

We can now upper bound the ratio between the high discrepancy region contribution

to the squared Hellinger distance and the total expected sample complexity of the random

walk by∑
J∈[−1..(log2

10−8

∆2 )−1]
Θ

(
ε2

ρ2

)
cJ+1

Eρ+ ε
2
[n]

= Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

cJ+1

Eρ+ ε
2
[n]

≤ Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

cJ+1

2J−1 · cJ+1 · e
0.01

10−8(log 1
ρ )2

∆2 ·2J

= Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

ρ0.02·log 1
ρ ·

10−8

2∆2 ·2J

2J−1

≤ Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

2−
10−8

2·∆2 ·2J ρ0.02·log 1
ρ

2J−1
since for sufficiently small ρ, we have ρ0.02·log 1

ρ <
1
2

= Θ

ε2∆2ρ0.02 log 1
ρ

ρ2

 as the sum is bounded by O(ρ0.02·log 1
ρ∆2)

= O
(
ε2∆2

ρ

)
�

4.6.3 The Last Row

We lastly analyze the squared Hellinger distance contribution from the last row of the

triangle.
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Proposition 4.33. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that are

powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops after 10−8/∆2 coin

flips. Let

H2
last = Θ(ε2)

∑
n= 10−8

∆2 ,k∈[0..n]

αn,k

(
(ρ +

ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k

) h+
n,k
ρ + h−n,k

ρh+
n,k + (1 − ρ)h−n,k

be the contribution of the squared Hellinger distance from the last row of the triangle, namely row

10−8/∆2. Furthermore, again let Eρ+ ε
2
[n] be the expected number of coin flips on this random walk,

where we use a 1
2 + ∆ coin with probability ρ+ ε

2 (instead of ρ or ρ+ ε), and a 1
2 −∆ coin otherwise.

If all of ρ, ε, ∆ and ε/ρ are smaller than some universal absolute constant, then

H2
last

Eρ+ ε
2
[n]

= O
(
ε2∆2

ρ

)
The squared Hellinger distance contribution from the last row has a different form from

the rest of the triangle, and can be large even outside the previously “high discrepancy"

region. While the term (
h+

n,k
ρ + h−n,k)/(ρh+

n,k + (1 − ρ)h−n,k) is still upper bounded by 1/ρ2

everywhere, it may be as large as Θ(1/ρ) even in when h+
n,k/h

−

n,k = Θ(1). The intuition for

this section is again that despite having a stopping rule that may have subtle effects on the

distribution, it is impossible to skew the distribution of the random walk so much that it

appears mostly in the “high discrepancy" side of the triangle. We shall use Lemma 4.32

again along with a case analysis and a weighted averaging argument to show sample

complexity lower bounds, which lets us upper bound the squared Hellinger distance

contribution per expected sample, as required.

Proof. We separate the last row again into a “high discrepancy" region and a “central"

region, but with a different criterion: whether

h+
n,k
ρ + h−n,k

ρh+
n,k + (1 − ρ)h−n,k

≥
C
ρ

where C is the constant specified in Fact 4.28. The criterion can be equivalently stated as

whether h+
n,k/h

−

n,k ≥ r for some r = Θ(1).

For the “central" region, suppose there is probability cn,k of reaching position (n, k) in

that region for the random walk that uses a ρ + ε
2 mixture random coin. Consider an
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alternate form of the squared Hellinger distance contribution that is within a constant

factor of that presented in the proposition statement, assuming that ε/ρ is small:

Θ(ε2)
∑

n= 10−8

∆2 ,k∈[0..n]

αn,k

h+
n,k

ρ
+ h−n,k


This approximation holds since ρh+

n,k + (1− ρ)h−n,k and (ρ+ ε
2 )h+

n,k + (1− ρ− ε
2 )h−n,k are within

constant factors of each other. Note that cn,k = αn,k((ρ+ ε
2 )h+

n,k + (1−ρ− ε
2 )h−n,k), and so when

h+
n,k/h

−

n,k ≤ r = Θ(1), we have both αn,kh+
n,k = O(c) and αn,kh−n,k = O(c). Thus the squared

Hellinger contribution of this location is upper bounded by O(cε2/ρ), yet the total sample

complexity is lower bounded by Ω(cn) = Ω(c/∆2), giving a fraction that is O(ε2∆2/ρ).

For the “central" region, recall that it consists of the locations where
h+

n,k
ρ + h−n,k

ρh+
n,k + (1 − ρ)h−n,k

(4.8)

ranges from C
ρ to 1

ρ2 . We separate this region into O(log 1
ρ ) buckets delimited by consecutive

powers of 2.

Suppose there is probability cdisc of the ρ + ε
2 mixture coin random walk entering the

“high discrepancy" region in the last row. Note that the geometric sequence 1, 0.8, 0.64, . . .

converges to 5, and therefore the sequence { cdisc
5 0.8i

}i sums to cdisc. If we took only the

first O(log 1
ρ ) many terms, they sum to strictly less than cdisc. By a standard averaging

argument, there must exist a bucket such that the probability of reaching locations in that

bucket i is greater than cdisc
5 0.8i. Note that the values (Equation 4.8) inside bucket i range

from C ·2i/ρ to 2 ·C ·2i/ρ. It is possible to calculate that the locations k within bucket i satisfy

k ≥ n
2 + 1

16
i log C

∆ , where n again is 10−8/∆2. For a sufficiently small ∆, this lower bound in

location is at least ( 1
2 + ∆)n +

√
100 log(2C) · n + 1, and therefore we can apply Lemma 4.32.

Furthermore, the locations are also at least (i · 10−2 log C)/∆ away from ( 1
2 + ∆)n, and so

Lemma 4.32 guarantees a sample complexity of at least Θ(1/∆2)× cdisc
5 0.8i

×e0.01((i·10−2 log C)/∆)2
·∆2
×108
≥

Θ(1/∆2) × cdisc
5 0.8i

× e100(i log C)2
≥ Ω(2icdisc/∆2), where the last inequality is true because the

large exponential term has a logarithm that is quadratic in i and with a base that is a lot

greater than 1/0.8.

The squared Hellinger distance contribution from the “high discrepancy" region in

the last row is upper bounded by O(cdiscε22i/ρ), and we have shown a sample complexity
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lower bound of Ω(2icdisc/∆2). We therefore conclude a fraction of O(ε2∆2/ρ) for the squared

Hellinger distance per expected sample, for contributions from the “high discrepancy"

region in the last row.

Summarizing, both the “high discrepancy" and “central" region contribute no more

than O(ε2∆2/ρ) times Eρ+ ε
2
[n] to H2

last. Therefore, the proposition follows from summing

the two contributions. �

4.7 Experimental Results

We give simulation results to demonstrate the practical efficacy of our proposed algorithm.

In our experimental setups, we compare the convergence rates of 1) our algorithm (“T-

WALK (15)" on the plots), 2) the natural majority vote method mentioned in the Introduction

(“VOTING" on the plots) and 3) the “SWITCH" method proposed in previous work by

Chung et al. [21] which has been observed to perform well in practice, but does not have

a theoretical analysis. For our algorithm, we choose the maximum number of flips for

a single coin to be 15 (= c log 1
ε ) in Algorithm 2. We also make the assumption that the

noise parameter satisfies ∆ ≥ 0.3, meaning that we can use Algorithm 2 directly instead

of using Algorithm 3 to simulate virtual coins before feeding them into Algorithm 2. To

further improve the practical performance of Algorithm 2, we ran a local search method

to improve on the non-zero output coefficients in Step 3(d) of Algorithm 2, using the

assumption that ∆ ≥ 0.3. Concretely, recall that we output a non-zero coefficient when the

maximum number of coin flips (15) has occurred and the majority of coin flips has been

heads. Thus for k ∈ {8, . . . , 15}, we output 8: 0, 9: 6.913, 10: 5.032, 11: 2.101, 12: 0.636, 13:

1.965, 14: 1.016, 15: 1.009. We note again that these coefficients are reusable in practice, as

long as the ∆ ≥ 0.3 assumption can be made.

Figure 4.1 presents the experimental results, for “coin quality" ∆ = 0.3 or 0.4, and

ground truth fraction of positive coins ρ taking representative values 0.005, 0.01, 0.03, or

0.1. For each plot, the x-axis corresponds to the number of coin flips, with all algorithms

eventually converging to the ground truth for enough coin flips. Standard deviation bars

are computed over 10 runs of each different setting. The estimates, given a strict budget of
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Figure 4.1: Experimental Results

coin flips as given by the x-coordinate, are computed according to Section 4.2.1.

In all cases, our algorithm (plotted in yellow) performs close to the ground truth

(horizontal black line), while the alternative algorithms take longer to converge, or have

high variance, as depicted by the error bars. In particular, as discussed in the introduction,

our adaptive methods have the most potential for improvement in the more challenging

and more practical regime where ρ is small (top few plots), and where ∆ is smaller (left

column).
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4.8 Algorithm for Known Conditional Distributions of Coins

We now present our algorithms for the scenario where we know 1) the conditional distri-

bution h+ of the biases of positive coins, 2) analogously the distribution h− for the negative

coins, as well as, for now circularly 3) the mixture parameter ρ itself. In practice, of course,

we would only have an estimate ρ for the mixture parameter itself, with the goal being to

refine the estimate. Assuming for the sake of analysis that our knowledge of the two con-

ditional distributions as well as the mixture parameter are perfect (even if in practice they

are only guesses), we derive a simple method based on linear and quadratic programming

tools for computing the triangular walk linear estimator (an instantiation of Algorithm 7

in Section 4.4) with the minimum variance subject to the constraints that 1) the estimator has

expected output exactly 0 when given a randomly chosen negative coin, and 2) expected

output exactly 1 for a randomly chosen positive coin. That is, we enforce that the estimator

is unbiased no matter what the true mixture parameter is, but we optimize its variance

given our (assumed to be perfect) knowledge of the mixture parameter.

This method is practically relevant as a bootstrapping approach. If our estimates of

the conditional distributions and mixture parameter are indeed close to the ground truth,

then it is easy to show bounds on the decrease in the estimator’s performance as our

estimates deviate from the truth. As such, we focus on the analysis of the method when

our knowledge of the parameters are assumed to be perfect. The sample complexity of our

algorithm is given in Theorem 4.5.

To complement the above upper bound result, we show that the linear estimator con-

structed from perfect knowledge of the relevant parameters is essentially an optimal esti-

mator (Theorem 4.6) up to constant factors in sample complexity, under those exact same

parameters. This gives strong evidence for the unique algorithmic challenges presented by

the “uncertainty about uncertainty" regime of our problem, as discussed at the beginning

of the paper.
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4.8.1 A Quadratic+Linear Programming Approach

In this section we shall use extensively the notations αn,k, βn,k and γn,k defined in Defini-

tion 4.14.

We now give an overview on the steps required to derive the minimum variance un-

biased estimator (in the form of Algorithm 7), as described at the beginning of the section.

First, we assume that we are given a fixed stopping rule, and derive output coefficients for

the corresponding linear estimator that has minimum variance. We formulate a quadratic

program (Figure 4.8.1) with the output coefficients {vn,k} as the variables, fixing αn,k as

constants. The quadratic program can be solved analytically, which allows us to derive for

{vn,k} closed form expressions that makes an unbiased estimator with minimum variance

assuming the given stopping rule, as well as perfect knowledge of the conditional distri-

bution of biases and the mixture parameter. Furthermore, the objective value (a function

in αn,k) of the quadratic program turns out (Lemma 4.34) to be the reciprocal of a linear

function in terms of αn,k. With this representation of the objective, then, we can use the

structural observations in Section 4.4 to formulate a linear program that solves for the opti-

mum stopping rule given the conditional distributions of biases (conditional on a positive

coin, or a negative coin) and mixture parameter. In practice, the linear program is first

solved to give the stopping rule, then the output coefficients can be calculated from the

first step in the analysis.

Having the above overview in mind, we describe the details of the derivation. To

simplify notation, let h−n,k be shorthand for Ep←h−
(
pk(1 − p)n−k

)
(a generalization of the

notation from Section 4.5), and similarly for h+
n,k. Thus αn,kh−n,k is the probability that if we

randomly choose a negative coin, executing the triangular walk with that coin will stop at

state (n, k). Similarly, αn,kh+
n,k is the analogous probability using a randomly chosen positive

coin instead.

The quadratic program mentioned above is given in Figure 4.8.1. We use variables

{ṽn,k}, constraining them such that the expected output over a randomly chosen positive

coin (from distribution h+) has value 1 greater than that over a randomly chosen negative

coin (from distribution h−). Under this constraint, we minimize the second moment of the

output when items are drawn from the mixture ρh+ + (1 − ρ)h−. Any optimal solution to
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minimize
∑

n,k αn,k

(
ρh+

n,k + (1 − ρ)h−n,k
)

ṽ2
n,k

subject to
∑

n,k αn,kh+
n,kṽn,k = 1 +

∑
n,k αn,kh−n,kṽn,k

Figure 4.2: A QP formulation for computing the output coefficients in terms of the stopping
rule

this optimization will choose the variables {ṽn,k} such that the expected output of an item

drawn from the universe is 0, implying that
∑

n,k αn,kh+
n,kṽn,k = 1−ρ and

∑
n,k αn,kh−n,kṽn,k = −ρ

Therefore, we can compute {vn,k} using {ṽn,k} by setting vn,k = ṽn,k + ρ. As a consequence,∑
n,k αn,kh+

n,kvn,k = 1 and
∑

n,k αn,kh−n,kvn,k = 0, satisfying the unbiasedness requirement as

desired.

The quadratic program in Figure 4.8.1 can be solved analytically using Langrange

multipliers. We give the results as Lemma 4.34, and defer the calculations to Section 4.10.

Lemma 4.34. For the quadratic program in Figure 4.8.1, the optimal assignments to {ṽn,k} are

ṽn,k =

h+
n,k−h−n,k

ρh+
n,k+(1−ρ)h−n,k∑

m, j αm, j
(h+

m, j−h−m, j)
2

ρh+
m, j+(1−ρ)h−m, j

(and we choose vn,k = ṽn,k + ρ), giving an objective value of

1∑
n,k αn,k

(h+
n,k−h−n,k)2

ρh+
n,k+(1−ρ)h−n,k

As mentioned at the beginning of the section, the optimal objective value of the

quadratic program, namely the minimum variance achievable given a stopping rule, is

the reciprocal of a linear function in {αn,k}. Note that the total sample complexity of the

linear estimator, if we use the median-of-means method to estimate its expectation, is

proportional to product of the variance of the linear estimator and the expected sample

complexity of one run of the random walk. Therefore, if we fix the expected sample

complexity of one run to be n0, we can in fact optimize the total sample complexity by min-

imizing the variance over all possible stopping rules with the expected sample complexity

of n0. Observe that the reciprocal of the variance, divided by n0, is simply the reciprocal of

the total sample complexity of the stopping rule, that we would therefore like to maximize.

Moreover, such function is a linear function in {αn,k}. Thus, we can write the optimization
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maximize 1
n0

∑
n,k

(h+
n,k−h−n,k)2

ρh+
n,k+(1−ρ)h−n,k

αn,k

subject to β0,0 = 1
βn+1,k+1 = βn,k+1 − αn,k+1 + βn,k − αn,k
αn,k ≤ βn,k
αnmax,k = 1 for all k (Max depth constraint)∑

n,k n · αn,k(ρh+
n,k + (1 − ρ)h−n,k) ≤ n0 (Bounding expected sample complexity)

where αn,k, βn,k ≥ 0

Figure 4.3: An LP formulation for finding the best stopping rule given an expected sample
complexity

problem as the linear program in Figure 4.3, by taking the objective to maximize the re-

ciprocal of the quadratic program solution, divided by n0. The program includes (slightly

adapted versions of) the recurrence relations introduced in Equation 4.1 as constraints.

Moreover, in order to control the sample complexity of the algorithm, the program also

contains constraints enforcing that 1) the expected number of responses solicited for a ran-

dom item is bounded by n0 and 2) the maximum depth of the triangle is bounded by some

parameter nmax. In addition to the interpretation as the maximum amount of resources

we would ever invest on a single coin/item, the maximum depth constraint can also be

interpreted as a computational constraint on how much time we can spend on computing

the description of the linear estimator.

Since, ultimately, we wish to optimize over all possible values in n0, such a linear

program formulation (in Figure 4.3) cannot be used directly. However, consider the fol-

lowing rewriting of the program. We can always divide the {αn,k, βn,k} variables by n0

and not change the meaning of the program, if we rescale the constraints and objective

correspondingly. This modification has the following effects: it 1) changes the n0 in the

objective and the fifth constraint into 1, 2) preserves the second and third constraints as

well as the non-negativity constraints and 3) changes the first and fourth constraints into

“variable = 1/n0". The first and fourth constraints are now the only components in the new

program that depend on n0, and since we ultimately wish to optimize over all possible n0,

we can replace these constraints with the weaker constraint that they all equal to each other

without specifying what they are equal to. This results in the linear program in Figure 4.4,

which by the above reasoning is equivalent to optimizing the total sample complexity for
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maximize
∑

n,k
(h+

n,k−h−n,k)2

ρh+
n,k+(1−ρ)h−n,k

αn,k

subject to βn+1,k+1 = βn,k+1 − αn,k+1 + βn,k − αn,k
αn,k ≤ βn,k
αnmax,k = β0,0 for all k (Max depth constraint)∑

n,k n · αn,k(ρh+
n,k + (1 − ρ)h−n,k) ≤ 1

where αn,k, βn,k ≥ 0

Figure 4.4: An LP formulation for finding the best stopping rule independent of the
expected sample complexity for a single coin

a stopping rule.

To obtain the optimal stopping rule {γn,k}, we solve the linear program in Figure 4.4,

rescale every variable such that β0,0 = 1, and calculate γn,k = αn,k/βn,k. If the solution to the

linear program (in Figure 4.4) is 1/S, then the expected sample complexity is O( S
ε2 log 1

δ ) to

estimate ρ to within an additive ε with probability at least 1 − δ. This can be achieved by

taking the median-of-means of O(log 1
δ ) groups of samples of size O(S/ε2), each of which

has a constant probability concentration to within additive ε by Chebyshev’s inequality.

Summarizing the above gives the following theorem.

Theorem 4.5. Suppose we are given 1) the distribution of coin biases conditioned on being a positive

coin, 2) the analogous distribution for negative coins and 3) the mixture parameter ρ (which, again,

is a circular assumption but useful for a bootstrapping approach). Suppose further that we are given

4) the parameter nmax, which controls the maximum depth of the triangular walk.

Then, following the method described earlier in this section, we can find the linear estimator

for ρ that minimizes variance, subject to a) the expected output of the estimator on input a random

positive coin is 1 and b) the analogous expected output for a random negative coin is 0.

Moreover, if the objective of the linear program in Figure 4.4 is 1/S, then the expected sample

complexity of the constructed linear estimator is O( S
ε2 log 1

δ ), which will estimate ρ to within an

additive error of ε with probability at least 1 − δ.

4.8.2 Optimality of such linear estimators

In this section, we show that in fact, the linear estimators produced by the linear program

in Figure 4.3 are optimal compared with any single-coin adaptive but possibly non-linear
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estimators, subject to the same maximum depth constraints.

Our approach for lower bounding the sample complexity is to fix the distributions

h+ and h− of positive and negative coin biases respectively, and show that with a small

number of samples, it is impossible to distinguish the case between A) a ρ and (1 − ρ)

mixture of positive and negative coins and B) a (ρ + ε) and (1 − ρ − ε) mixture. To show

indistinguishability, we again use the notion of Hellinger distance. Since each stopping

rule induces different distribution on the Pascal triangle, under randomly chosen coins

from each of the A and B scenarios, we will upper bound the (squared) Hellinger distance

between the scenarios.

Lemma 4.35 shows that the squared Hellinger distance is in fact a linear function in

{αn,k} and furthermore, in the regime where ε� ρ, is within a constant factor of the objective

in the linear program in Figure 4.4. The coincidence will allow us to show matching lower

bounds.

Lemma 4.35. Consider an arbitrary stopping rule {γn,k} giving coefficients {αn,k}. If ε/ρ is smaller

than some universal constant, then the squared Hellinger distance between 1) a coin randomly

chosen as in case A (described in the paragraphs above) inducing a distribution on the Pascal

triangle given the stopping rule and 2) a coin randomly chosen as in case B instead, is

Θ(ε2)
∑
n,k

(h+
n,k − h−n,k)2

ρh+
n,k + (1 − ρ)h−n,k

αn,k

We defer the proof and calculations to Section 4.10, but it is completely analogous to

that of Lemma 4.23.

With Lemma 4.35, we now prove Theorem 4.6.

Theorem 4.6. As in Theorem 4.5, suppose we are given 1) the distribution of coin biases conditioned

on being a positive coin, 2) the analogous distribution for negative coins, 3) the mixture parameter

ρ, as well as the parameter nmax, which controls the maximum depth of the triangular walk.

The linear estimator produced from solving the linear program in Figure 4.4, as described in

Theorem 4.5, has total expected sample complexity that is within a constant factor of any optimal

single-coin adaptive algorithm with ≥ 2
3 probability of success, subject to the same maximum depth

constraint.



112

Combining with a corollary of Lemma 4.19, restricted to fully-adaptive algorithms that invests

at most nmax flips on any single coin, this shows that our linear estimator in fact has sample

complexity within a constant factor of any fully-adaptive algorithm satisfying the maximum depth

constraint for every single coin.

Proof. Given an arbitrary stopping rule, if it induces a squared Hellinger distance of H2

between the two cases with a single random walk, then we can lower bound the number

of random walks needed in the single-coin adaptive algorithm in order to solve the dis-

tinguishing task with constant probability of success, by Θ(1/H2), using the subaddivity

of squared Hellinger distance, and that the total Hellinger distance needs to be at least

constant to solve the distinguishing task. Thus, if n0 is the expected number of coin flips

for a random walk, the overall expected sample complexity is lower bounded by Ω(n0/H2).

Since we need to find a lower bound that applies to all single-coin adaptive algorithms,

we need to find the smallest n0/H2 over all the possible stopping rules (subject to the same

max-depth constraint), or equivalently, maximize H2/n0 (which can alternatively be inter-

preted as the squared Hellinger distance per expected sample). Lemma 4.35 tells us that

we can replace H2 with the expression in the lemma and lose no more than multiplicative

constants. Thus, if we fix n0, finding the best lower bound up to multiplicative constants is

equivalent to solving the optimization problem that is exactly the one in Figure 4.3, except

for an extra factor of Θ(ε2) in the objective. We again wish to maximize the H2/n0 over

all possible choices of n0 as well, and therefore, following the same reasoning as before,

we arrive at the linear program that is essentially the one in Figure 4.4, again except for

the factor of Θ(ε2) in the objective. This linear program has no n0 dependency, and has

objective that is Θ(ε2) times that of the one in Figure 4.4, which is the reciprocal of the

(expected) total sample complexity of the optimal linear estimator produced as described

in Section 4.8.1. Summarizing, if the solution to the linear program in Figure 4.4 is 1/S, then

the maximum H2/n0 over all possible stopping rules would be within a constant factor of

ε2/S, giving a lower bound of Ω(S/ε2) on the expected sample complexity (under case A)

for a constant probability of success in the task of distinguishing between case A and case

B. This lower bound matches the upper bound of O(S/ε2) on the total sample complexity

of the linear estimator we produce according to Theorem 4.5.
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As given in the theorem statement, combining this result with a corollary of Lemma 4.19

shows that our linear estimator is in fact competitive to within a constant factor in sample

complexity with fully-adaptive algorithms that invest at most nmax flips on any single coin.

�

4.9 Non-Adaptive Lower Bound

Here we give the remaining calculations for the non-adaptive lower bound of O( ρ
ε2∆2 log 1

ρ ).

Recall that, to show a non-adaptive lower-bound, consider a random variable S that

uniformly chooses between scenarios “ρ" and “ρ + ε" respectively, where coins will have

bias 1
2 + ∆ with probability ρ or ρ+ ε respectively depending on the outcome of S, and bias

1
2 −∆ otherwise. We will show that the mutual information between n flips of a single coin

and the scenario variable S is at most O(n ε2∆2

ρ log(1/ρ) ), and thus that, even when combining

information from several coins, at least Ω( ρ
ε2∆2 log 1

ρ ) samples are needed to distinguish the

two scenarios with constant probability.

Let Bin(n, p, k) denote the probability that a Binomial distribution with n trials and bias

p has value k.

The mutual information is exactly represented as

1
2
∑n

k=0(ρBin(n, 1
2 + ∆, k) + (1 − ρ)Bin(n, 1

2 − ∆, k)) log
(ρBin(n, 12 +∆,k)+(1−ρ)Bin(n, 12−∆,k))

((ρ+ ε
2 )Bin(n, 12 +∆,k)+(1−ρ− ε2 )Bin(n, 12−∆,k))

+ ((ρ + ε)Bin(n, 1
2 + ∆, k) + (1 − ρ − ε)Bin(n, 1

2 − ∆, k)) log
((ρ+ε)Bin(n, 12 +∆,k)+(1−ρ−ε)Bin(n, 12−∆,k))
((ρ+ ε

2 )Bin(n, 12 +∆,k)+(1−ρ− ε2 )Bin(n, 12−∆,k))

Claim is that, for x, y ≥ 0, we have x log x
(x+y)/2 + y log y

(x+y)/2 ≤
(x−y)2

x+y .

Letting x be ρBin(n, 1
2 +∆, k) + (1−ρ)Bin(n, 1

2 −∆, k) and y be the ρ+ εmixture analogue,

the mutual information is less than or equal to:

ε2

4

n∑
k=0

(Bin(n, 1
2 + ∆, k) − Bin(n, 1

2 − ∆, k))2

((ρ + ε
2 )Bin(n, 1

2 + ∆, k) + (1 − ρ − ε
2 )Bin(n, 1

2 − ∆, k))

≤ ε2
n∑

k=0

(Bin(n, 1
2 + ∆, k) − Bin(n, 1

2 − ∆, k))2

(ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 − ∆, k))

Since (x − y)2
≤ 2(x2 + y2), and 1

x+y ≤ min{1x ,
1
y }, we also have

n∑
k=0

(Bin(n, 1
2 + ∆, k) − Bin(n, 1

2 − ∆, k))2

(ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 − ∆, k))
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≤ 2
n∑

k=0

Bin(n, 1
2 + ∆, k)2 + Bin(n, 1

2 − ∆, k)2

(ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 − ∆, k))

≤ 2 min

 n∑
k=0

Bin(n, 1
2 + ∆, k)2

ρBin(n, 1
2 + ∆, k))

,
n∑

k=0

Bin(n, 1
2 + ∆, k)2

Bin(n, 1
2 − ∆, k))

 + 2
n∑

k=0

Bin(n, 1
2 − ∆, k)2

Bin(n, 1
2 − ∆, k))

= 2 min
{

1
ρ
,

(
1 + 12∆2

1 − 4∆2

)n}
+ 2

For ∆ bounded below by any universal positive constant, this last expression is O(min{ 1ρ , e
O(∆2n)

}).

Since the components of the minimum are 1) equal for n = O( 1
∆2 log 1

ρ ) and 2) constant and

convex in n respectively, we can bound the minimum by a linear function that goes through

this intersection point: for n ≥ 1
∆2 the minimum is bounded by O(n ∆2

ρ log 1
ρ

). Multiplying

by ε2 gets a bound on the mutual information, and dividing by n gets a bound on mutual

information per sample of O( ε2∆2

ρ log 1
ρ

).

For the remaining regime of n ≤ 1
∆2 :

n∑
k=0

(Bin(n, 1
2 + ∆, k) − Bin(n, 1

2 − ∆, k))2

ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 − ∆, k)
≤

n∑
k=0

(Bin(n, 1
2 + ∆, k) − Bin(n, 1

2 − ∆, k))2

Bin(n, 1
2 − ∆, k)

=

(
1 + 12∆2

1 − 4∆2

)n

−1

This last expression is O(∆2n) for n ≤ 1
∆2 , and thus we can bound the mutual information

per sample by O(ε2∆2) here.

Combining the two bounds, we conclude the mutual information per sample is at most

O( ε2∆2

ρ log 1
ρ

) for all n, and thus its inverse, O(
ρ log 1

ρ

ε2∆2 ) lower-bounds the number of non-adaptive

samples needed for our task.

4.10 Remaining Proofs/Calculations of Results

Lemma 4.23. Consider the two probability distributions in Proposition 4.22 over locations (n, k)

in the Pascal triangle of depth 10−8/∆2 and bias p ∈ { 12 ± ∆}, generated by the given stopping rule

{γn,k} in the two cases of 1) a coin with bias 1
2 + ∆ is used with probability ρ and a coin with bias

1
2 − ∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with probability ρ + ε and a coin

with bias 1
2 − ∆ is used otherwise. If ε/ρ is smaller than some universal constant, then the squared
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Hellinger distance between these two distributions can be written as

Θ(ε2)
[ ∑

n< 10−8

∆2 ,k∈[0..n]

αn,k((ρ +
ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)
(h+

n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2

∑
n= 10−8

∆2 ,k∈[0..n]

αn,k((ρ +
ε
2

)h+
n,k + (1 − ρ −

ε
2

)h−n,k)

h+
n,k
ρ + h−n,k

ρh+
n,k + (1 − ρ)h−n,k

]

Proof. For n < 10−8/∆2, the probability of that the location (n, k) is revealed, for the two

distributions we consider in Proposition 4.22, are αn,k(ρh+
n,k + (1−ρ)h−n,k) and αn,k((ρ+ε)h+

n,k +

(1−ρ−ε)h−n,k) respectively. Thus, the contribution by these locations to the squared Hellinger

distance is proportional to:∑
n,k

(
√
αn,k(ρh+

n,k + (1 − ρ)h−n,k) −
√
αn,k((ρ + ε)h+

n,k + (1 − ρ − ε)h−n,k))2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1 −

√√
(ρ + ε)h+

n,k + (1 − ρ − ε)h−n,k
ρh+

n,k + (1 − ρ)h−n,k


2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1 −

√√
1 + ε

h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k


2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1 −

1 +
1
2
ε

h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k

+ Θ


ε h+

n,k − h−n,k
ρh+

n,k + (1 − ρ)h−n,k

2



2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1
2
ε

h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k

+ Θ


ε h+

n,k − h−n,k
ρh+

n,k + (1 − ρ)h−n,k

2


2

Note that the multiplier to ε is upper bounded by 1/ρ, and therefore if ε/ρ is sufficiently

small, we have the last line being equal to

∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

Θ ε h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k

2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k) Θ

ε2
(h+

n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2


= Θ(ε2)

∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

(h+
n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2
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Finally, note that is ε/ρ is a small constant, then ρ and 1 − ρ are respectively within a small

constant factor of ρ + ε
2 and 1 − ρ − ε

2 , meaning that (ρh+
n,k + (1 − ρ)h−n,k) is within a constant

factor of ((ρ + ε
2 )h+

n,k + (1 − ρ − ε
2 )h−n,k).

For n = 10−8/∆2, the probability that ((n, k), 1
2 + ∆) is revealed is αn,k ρ h+

n,k and αn,k(ρ +

ε)h+
n,k for the two scenarios respectively. A similar calculation above gives a squared

Hellinger distance contribution of

Θ(ε2)αn,k

(
ρ +

ε
2

) h+
n,k

ρ

As for the contribution from the revealing of ((n, k), 1
2 − ∆, the respective probabilities are

αn,k (1 − ρ) h−n,k and αn,k(1 − ρ − ε)h−n,k, and similar calculations give a squared Hellinger

distance contribution of

Θ(ε2)αn,k h−n,k

which with algebraic manipulation and approximations as in the n < 10−8/∆2 case com-

pletes the proof of the lemma. �

Lemma 4.34. For the quadratic program in Figure 4.8.1, the optimal assignments to {ṽn,k} are

ṽn,k =

h+
n,k−h−n,k

ρh+
n,k+(1−ρ)h−n,k∑

m, j αm, j
(h+

m, j−h−m, j)
2

ρh+
m, j+(1−ρ)h−m, j

(and we choose vn,k = ṽn,k + ρ), giving an objective value of

1∑
n,k αn,k

(h+
n,k−h−n,k)2

ρh+
n,k+(1−ρ)h−n,k

Proof. We use the method of Lagrangian multiplier to find the optimal assignment to {ṽn,k}.

The Lagrangian of the program is

L =
∑
m, j

αm, j(ρh+
m, j + (1 − ρ)h−m, j)ṽ

2
m, j + λ


∑

m, j

αm, j(h+
m, j − h−m, j)ṽm, j

 − 1


where λ is the Lagrange multiplier.



117

We need to find assignments to {ṽn,k} and λ such that ∇{ṽn,k},λL = 0. Computing the

partial derivatives gives the following system of equations:

2αn,k(ρh+
n,k + (1 − ρ)h−n,k)ṽn,k + λαn,k(h+

n,k − h−n,k) = 0 for all n, k (4.9)∑
m, j

αm, j(h+
m, j − h−m, j)ṽm, jd = 1 (4.10)

Rearranging Equation 4.9 gives

ṽn,k =
−λ(h+

n,k − h−n,k)

2(ρh+
n,k + (1 − ρ)h−n,k)

(4.11)

and substituting this into Equation 4.10 gives

−λ
∑
m, j

αm, j(h+
m, j − h−m, j)

2

2(ρh+
m, j + (1 − ρ)h−m, j)

= 1

which lets us solve for λ

λ = −1/
∑
m, j

αm, j(h+
m, j − h−m, j)

2

2(ρh+
m, j + (1 − ρ)h−m, j)

which when substituted back into Equation 4.11 gives

ṽn,k =

h+
n,k−h−n,k

ρh+
n,k+(1−ρ)h−n,k∑

m, j
αm, j(h+

m, j−h−m, j)
2

ρh+
m, j+(1−ρ)h−m, j

as desired.

The optimal value of the program can be calculated by substituting the assignment to

the objective function. �

Lemma 4.35. Consider an arbitrary stopping rule {γn,k} giving coefficients {αn,k}. The squared

Hellinger distance between 1) a random coin drawn in case A inducing a distribution on the Pascal

triangle given the stopping rule and 2) a random coin drawn in case B instead, is

Θ(ε2)
∑
n,k

(h+
n,k − h−n,k)2

ρh+
n,k + (1 − ρ)h−n,k

αn,k

assuming that ε/ρ is smaller than some universal constant.
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Proof. In scenario 1, the distribution induced by a random coin on the Pascal triangle is

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

and similarly for scenario 2,

αn,k((ρ + ε)h+
n,k + (1 − ρ − ε)h−n,k)

The squared Hellinger distance is therefore proportional to∑
n,k

(
√
αn,k(ρh+

n,k + (1 − ρ)h−n,k) −
√
αn,k((ρ + ε)h+

n,k + (1 − ρ − ε)h−n,k))2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1 −

√√
(ρ + ε)h+

n,k + (1 − ρ − ε)h−n,k
ρh+

n,k + (1 − ρ)h−n,k


2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1 −

√√
1 + ε

h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k


2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1 −

1 +
1
2
ε

h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k

+ Θ


ε h+

n,k − h−n,k
ρh+

n,k + (1 − ρ)h−n,k

2



2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

1
2
ε

h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k

+ Θ


ε h+

n,k − h−n,k
ρh+

n,k + (1 − ρ)h−n,k

2


2

Note that the multiplier to ε is upper bounded by 1/ρ, and therefore if ε/ρ is sufficiently

small, we have the last line being equal to

∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k)

Θ ε h+
n,k − h−n,k

ρh+
n,k + (1 − ρ)h−n,k

2

=
∑
n,k

αn,k(ρh+
n,k + (1 − ρ)h−n,k) Θ

ε2
(h+

n,k − h−n,k)2

(ρh+
n,k + (1 − ρ)h−n,k)2


= Θ(ε2)

∑
n,k

(h+
n,k − h−n,k)2

ρh+
n,k + (1 − ρ)h−n,k

αn,k

�
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