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Abstract 
Everyday tasks often require to be completed following a specific set of steps or sequentially. 

Oftentimes, these sequential tasks are abstract, meaning that they are not defined by their specific 

contents, but instead by the higher order rule which can be used to describe them. As an example, 

consider taking a daily commute. When taking a bus, you may track a familiar sequence of 

buildings (three houses, then a library). Additionally, variables like timing and rule could affect 

sequential monitoring such as when a delay occurs, or when there is a route deviation. Despite its 

ubiquity, little is known about the neural underpinnings of this tracking process also known as 

sequential monitoring nor how specific task variables can influence relevant neural responses. 

Previous work in both human and non-human primates has identified brain areas involved in 

sequential tasks. In humans, the rostrolateral prefrontal cortex (RLPFC) exhibits a specific pattern 

of increasing neural activity (i.e., “ramping”) during abstract sequences. Work in non-human 

primates has identified the dorsolateral prefrontal cortex (DLPFC) as a key area for the 

representation of sequential information. Furthermore, the monkey DLPFC contains a sub-region, 

area 46, with homologous functional connectivity to human RLPFC. However, much of this work 

has yet to directly test the representation of abstract sequences.  

The work presented in this thesis aims to test the following predictions: First, that the nonhuman 

primate DLPFC may represent abstract sequence information with parallel dynamics to those 

found in humans. Second, that these dynamics may be modulated by different sequential 

characteristics such as abstract sequential rule or structured timing. To investigate these 

predictions, we conducted functional magnetic resonance imaging (fMRI) in awake monkeys. 

When monkeys performed no-report abstract sequence viewing, we found that left and right area 

46 responded to abstract sequential changes. Interestingly, responses to rule and number changes 



 
 

overlapped in right area 46 and left area 46 exhibited responses to abstract sequence rules with 

changes in ramping activation, similar to that observed in humans.  

To further test what specific characteristics of sequences modulated the response observed in area 

46, animals did variations of the no-response task which contained either only abstract rule, only 

structured timing or neither. Our findings suggest that abstract rule and structured timing in 

combination elicit ramping neural dynamics in area 46. Together, these results indicate that 

monkey DLPFC monitors abstract visual sequential information. Additionally, these ramping 

dynamics are elicited by characteristics such as abstract rule and structured timing. More generally, 

these results show that abstract sequences are represented in functionally homologous regions 

across monkeys and humans.
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1. Chapter 1. General Introduction: Sequential 
representation in the brain 

 

1.1. What are sequences, and what can they tell us about how our brain organizes 

information? 

Information that is serially organized, having a particular set of rules or order surrounds us daily. 

There is, of course, an easier way to refer to these types of stimuli. Commonly referred to as 

sequences, these have been defined as a problem of neuroscience and behavior since at least the 

50’s by Lashley (Lashley, 1951).  Although some of the ideas in this text may now be outdated, it 

is true that understanding the “problem of serial order” as Lashley puts it, would provide great 

insight into the underlying machinations of the brain. Specifically, what can we learn about how 

the brain parses information in our environment from how it processes sequential information? 

Additionally, what is identified as being relevant for sequential stimuli to be considered as such? 

Despite the formal definition of sequences being introduced for well over half a decade at the time 

this text is being written, our knowledge regarding the neural representations of sequences in the 

brain remains limited. 

This chapter aims to lay the groundwork and motivation for the study of sequences in the monkey 

prefrontal cortex. We will review the existing literature on sequential processing, ranging from 

concrete sequences across different sensory modalities, up to abstract sequences. In these sections 

we will elaborate on the behavioral and physiological evidence that suggesting specific brain areas 

are essential for sequential processing. Additionally, we discuss the possible neural dynamics that 

are associated with these cognitive computations. We provide a thorough summary of the current 

literature, while highlighting the existing gaps in our understanding of abstract sequential 
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processing in the brain. In the final segment of this chapter, we will outline the experiments carried 

out to elucidate the brain areas involved in the monkey brain during sequential processing, and the 

neural dynamics present throughout. 

1.1.1. Sequential tasks are prevalent in daily life 

This work aims to understand a very specific sub-set of sequences known as abstract sequences. 

What do we mean by abstract sequences? Let’s consider the example of a specific but very well-

known piece of music, Beethoven’s 5th symphony in C minor. This iconic piece of music can be 

described in a variety of ways. A musical piece contains visual, auditory, and motor components 

after all. However, a particularly outstanding feature of this piece that makes it instantly 

recognizable, is its first fifteen seconds. Specifically, the repeating pattern of three of the same, 

one different (dun dun dun dunnnnnn). This sequence, which can be used to describe the structure 

of these first few seconds of the song is known as an abstract sequence. Abstract sequences are 

defined not by the specific components of the sequence, but instead by the higher order structure 

that can be used to describe them (in this case three of the same, one different). In this case, even 

changing the key of the song, or playing it on a different instrument still makes it distinct and 

recognizable. Therefore, abstract sequential representations are not specific to a particular sensory 

modality, are generalizable, and flexible higher order representations of a sequential structure. In 

the following sections we discuss the literature relevant to sequential tasks and abstract sequences 

with their associated neural dynamics in both humans and non-human primates. 

1.1.2. Sequences and their associated processes are a sub-set of cognitive control 

Cognitive control refers to the capacity of action selection that allows for goal selection, flexible 

modification of this behavior, and completion of these goals (Badre & Nee, 2018). Cognitive 

control tasks often demand that individuals maintain information across multiple levels of rules. 
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These tasks often result in having to maintain internal sub-goals as one pursues a higher order goal. 

A classic example of these tasks are response selection tasks. This task contains multiple nested 

tasks, going from simpler to more complex rules, each requiring different responses depending on 

feature level that had to be attended to (Badre et al., 2009; Badre & D’Esposito, 2007a). Individuals 

are then capable of completing this complex task successfully, keeping track of the nested 

structures to complete the higher order goal. As in these cognitive control tasks, sequential tasks 

often demand similar maintenance of higher order goals as one continues through a sequence of 

steps. 

Similar brain areas have also been identified as being necessary for both cognitive control and 

sequential processing. In humans, it has been shown that the PFC contains a rostral to caudal 

progression, in which more rostral areas respond to increasing levels of abstraction across the 

cognitive hierarchy (Badre & D’Esposito, 2007a). The PFC  has been shown to support cognitive 

control function and goal directed behavior.  (Badre & D’Esposito, 2007a; Badre & Nee, 2018; 

Miller & Cohen, 2001). Generally, frontal areas support more abstract control than caudal areas 

(shown in humans) starting with more caudal areas (PMD, pre-PMD) and going rostrally towards 

mid-DLPFC and RLPFC. Human RLPFC has been implicated to be necessary not just in higher 

levels of abstraction but specifically in tasks that share characteristics of sequential hierarchical 

control (Badre & D’Esposito, 2007a; Badre & Nee, 2018; Desrochers et al., 2016). Therefore, we 

can consider sequential tasks to demand similar cognitive resources as cognitive control, being 

represented as more abstract higher order structures requiring the involvement of the frontal cortex.  

Due to the similarities shared with cognitive control, sequential tasks can be considered to be a 

subset of this cognitive process. As mentioned in the beginning of this section, cognitive control 

tasks often require maintaining and tracking sub-goals that serve a higher order goal. Sequences 
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are distinct from other cognitive control tasks in that they have an order and contain temporal 

dependencies (Desrochers et al., 2016; Ninokura et al., 2004; Schapiro, Rogers, et al., 2013). 

However, sequential tasks being abstract higher order cognitive processes tend to necessitate 

similar brain areas observed to be involved in cognitive control. Some of these brain areas include 

lower level processing regions such as the supplementary motor area SMA, the pre-SMA, and 

motor cortex which are recruited for the completion of motor sequential tasks (Carpenter et al., 

2018; Clower & Alexander, 1998; Dahms et al., 2020; Hoshi et al., 1998). Similar to the 

identification of lower-level task features or simple task demands during cognitive control, these 

brain are implicated in sequences that require the completion of simple motor sequences or very 

specifically defined and learned sequences. Work studying abstract sequences suggests that higher 

order cortical areas such as the pre-frontal cortex and associated sub-regions, may be responsible 

and necessary for the execution and processing of sequential tasks (Averbeck et al., 2006; 

Averbeck & Lee, 2007; Desrochers et al., 2016; L. Wang et al., 2019). Overall, sequential tasks 

require similar brain areas and cognitive demands as cognitive control tasks but are considered to 

be a distinct cognitive process within the umbrella of cognitive control. 

1.2. Sequences can be defined in a variety of ways 

Thus far, we have defined the relationship between cognitive control and sequential tasks and 

begun to discuss the brain areas that are involved in the processing of different types of sequences. 

However, in this initial discussion a variety of sequence types were highlighted. Some of the 

studies mentioned were motor sequential tasks, while others were abstract sequential tasks. As 

implied by these studies, sequential tasks have a variety of elements that distinguish them not only 

from other cognitive processes but also from each other. In the following sections, we will discuss 

these differences. Specifically, we will classify sequences as being either complex sequences or 
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simple sequences and the different ways these have been studied in the literature. Because the 

focus of this thesis is simple abstract sequences, we will provide a brief description of complex 

sequences and their related neural dynamics. Afterwards we will provide a thorough review of the 

literature related to simple abstract sequences and the relationship to the completed sets of 

experiments. 

1.2.1. Complex sequences 

For this thesis, we will define complex sequences as sequences containing a higher order abstract 

rule, demand a behavioral response, have a higher order goal with sub-goals, and require sequential 

monitoring. Complex sequences can be encountered across a variety of sensory modalities 

including visual (Desrochers et al., 2015; Trach et al., 2021), motor (Averbeck et al., 2003, 2006), 

and even olfactory sequences (Allen et al., 2014). Oftentimes these complex sequences will require 

that subjects track a higher order rule in order to complete the sequential task. As an example, a 

complex sequential task in humans required that they respond to a four item sequence of visual 

stimuli based on the sequence color shape shape color, or color color shape shape (Figure 1, 

Desrochers et al., 2015). Stimuli containing both color and shape features (e.g. a blue circle, a red 

square) were serially presented. Individuals were then asked to make a color or shape judgement 

based on the abstract sequence, and not the specific stimulus information. To complete such a task 

it is necessary for subjects to keep track or monitor the higher order sequential structure (color 

color shape shape), and track individual sequence steps producing responses at each one (sub-

goals). This process of tracking and maintaining an internal representation of the higher order 

abstract sequential structure is known as sequential monitoring. Therefore, while complex 

sequences can have a variety of task demands, they are characterized by having abstract higher 

ordered rules and require keeping one’s place through sequential monitoring. 
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Figure 1. Color shape task as illustrated in Desrochers et al., 2015.A. Individuals are asked to make a color or 

shape judgement on each trial. B. Each block starts by indicating the sequence rule, in this case color, color, shape, 

shape. Subjects must keep track of the rule and make a color or shape judgement accordingly depending on the stimuli. 

Because complex sequences tend to recruit higher order cognitive processes, they are similarly 

represented in higher order brain areas. Tasks in humans have identified the PFC as being 

necessary for the completion of complex sequential tasks (L. Wang et al., 2019; Wen et al., 2020), 

and the rostral LPFC such as in the color shape task mentioned in the previous paragraph 

(Desrochers et al., 2015). Complex sequential tasks in monkeys testing the processing of serial 

order across a variety of sequences have identified neural responses related to rank ordering across 
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a variety of prefrontal and fronto-cortical areas including SMA, pre-SMA, supplementary eye field 

(SEF), and dorsal LPFC (Berdyyeva & Olson, 2010; Farooqui et al., 2012). Overall, most complex 

sequential information seems to be represented in the prefrontal cortex and its associated network, 

making these regions key for the understanding of sequential tasks. 

1.2.2. Simple sequences  

Unlike complex sequences, simple sequences may not always demand a behavioral response, do 

not require higher order abstract rule, but may still similarly demand sequential monitoring. Some 

examples of these simple sequences include  oddball tasks (Bodnar et al., n.d.; and reviewed in 

Garrido et al., 2009), statistical sequences (Conway & Christiansen, 2005; Fiser & Aslin, 2002; 

Schapiro, Greogry, et al., 2013; Schapiro, Rogers, et al., 2013; Turk-Browne et al., 2009), and 

tasks containing fixed sequences (Allen et al., 2014; Desrochers et al., 2019; Ninokura et al., 2004; 

Tanji & Shima, 1994). The oddball task can be considered to be the simplest of these sequences. 

Oddball tasks are characterized by a repeating stream of serially presented stimuli, with an eventual 

deviant stimuli presentation termed an “oddball”, making their construction a very simple 

sequence. Statistical learning sequences, while still simple sequences are slightly more complex 

than oddball tasks. In these tasks in that a series of stimuli are serially presented, such that 

individuals must extract regularities from the stream. Within the stream, there are statistical 

probabilities embedded for the stimuli, making the co-occurrence of certain stimuli more likely. 

Finally, tasks with fixed sequences simply require that subjects remember a specific set of stimuli 

in a particular order (ABCD, etc.) and track it through time. Despite the apparent simplicity of 

these sequences these sequences still demand cognitive resources such as attention for the proper 

detection of sequential organization and require monitoring sequential steps. These simple 

sequences elicit neural responses in a variety of sensory and domain general brain areas. This is 
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precisely the case for the mismatch negativity (MMN) response in the oddball task. The MMN 

occurs as a novelty detection response for the stimulus deviation, characterized by a negative 

deflection in activity usually observed in EEG responses (May & Tiitinen, 2010). These MMN 

responses occur in visual oddballs as well (reviewed in Pazo-Alvarez et al., 2003), and can be 

observed in monkeys (Boehnke et al., 2011). In the case of statistical learning sequences, we can 

also observe neural responses across sensory domains (Henin et al., 2021). Neural responses 

related to statistical sequences occur in areas including the hippocampus in humans (Cerreta et al., 

2018; Schapiro, Greogry, et al., 2013; Schlichting et al., 2013) and visual areas such as 

inferotemporal cortex in monkeys (Meyer, Ramachandran, et al., 2014; Meyer, Walker, et al., 

2014; Vergnieux & Vogels, 2020). Similarly, fixed order tasks also elicit neural responses in both 

sensory specific and domain general areas. However, these tasks can also drive neural responses 

in the prefrontal cortex, with cells encoding specific stimuli order in monkeys (Shima et al., 2007). 

In humans, sequence tasks having a fixed order have been shown to elicit similar neural dynamics 

in the rostral LPFC as those observed during more complex sequential tasks (Desrochers et al., 

2019). Findings from these types of simple sequential tasks show that even very simple sequences 

can elicit robust neural responses that indicate the detection of sequential regularities and task 

engagement. 

1.3. The monitoring of abstract sequences 

Whether sequential tasks are simple or complex, to successfully complete them it is necessary to 

engage in sequential monitoring to maintain our place in the sequence. Work studying abstract 

sequences has identified specific brain areas and neural dynamics that are essential for sequential 

monitoring. A specific increasing neural dynamic or ramping is required for sequential monitoring 

in humans. Activity in the human rostral lateral prefrontal cortex (LPFC) continuously increases 
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(“ramps”) throughout sequence position (Figure 2)  and is necessary for sequential monitoring 

(Desrochers et al., 2015, 2019; McKim & Desrochers, 2022a). Few studies have suggested similar 

neural mechanisms associated with sequential tasks in the monkey brain. Work in monkeys have 

identified the LPFC as being involved in abstract sequential tasks. Cells in the monkey LPFC have 

been shown to respond during multi step motor sequence tasks (Averbeck et al., 2003, 2006; 

Averbeck & Lee, 2007). LPFC responses in the monkey brain during motor sequences also 

generalize to novel sequences, indicating an encoding of the higher order sequential structures 

(Bernardi et al., 2020; Xie et al., 2022). Additionally, while the existence of ramping dynamics 

during complex sequences in the monkey LPFC have not been tested it is known that the monkey 

LPFC shows similar neural activity during other cognitive tasks (Ding, 2015). Therefore, 

determining whether ramping underlies sequence monitoring in the monkey brain is essential for 

improved cross-species models and establishing a better understanding of the macaque LPFC and 

its similarities to the human LPFC.  

 

 

Figure 2. Specific ramping dynamics support abstract visual sequence monitoring in humans (from Desrochers 

et al., 2019). 
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1.4. Sequential characteristics 

Abstract sequences require a variety of characteristics to be defined as such. We saw that while 

oddball and statistical tasks can be described as sequences, they are not necessarily abstract. In 

order for a serially presented set of stimuli to be considered an abstract sequence, we believe it 

must contain certain characteristics. First, it must have an abstract rule, allowing the sequences to 

have a generalizable structure that does not depend on individual stimulus identity. Additionally, 

they must have a well-defined beginning and an end, allowing individuals to detect the sequential 

boundary during monitoring. Coupled with rule, a characteristic such as structured timing can 

enable the grouping of sequential information perceptually making the sequence boundaries more 

distinct. In the following sections we discuss the literature that supports rule and timing 

representations in the LPFC, and how these are relevant characteristics for the construction of 

abstract visual sequences. At the end of this section, we describe in detail how we specifically 

defined abstract visual sequences in the following chapters, and how we proceeded to test their 

neural representation and dynamics in the macaque LPFC. 

1.4.1. Rule and what we know of its neural representations in the brain 

The LPFC processes different types of regularities or higher order rule structures. One of these 

types of structures are perceptual or algebraic patterns. Algebraic patterns include repetitions 

(AAAA, BBBB), alternations (ABAB, CDCD), and pairs (AABB, CCDD) across different 

sequences. Importantly, algebraic patterns are independent of the specific constituent items. They 

are well defined (Dehaene et al., 2015; Endress et al., 2009; Marcus et al., 1999, 2007), and elicit 

neural responses unique to the rule structure (J. Saffran et al., 2008; Shima et al., 2007; L. Wang 

et al., 2015). The following experiments use sequences with algebraic patterns for the following 

reasons: 1) Sequential studies in monkeys showed neural responses to algebraic patterns in the 
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LPFC (Averbeck et al., 2006; Shima et al., 2007), 2) Responses to algebraic pattern changes 

require global pattern recognition and do not follow adaptation and prediction error patterns that 

typify oddball tasks (Bekinschtein et al., 2009; Strauss et al., 2015), 3) In contrast to statistical 

learning, studies in humans indicate that neural responses to algebraic patterns require attention 

(Bekinschtein et al., 2009; Chennu et al., 2013). Neurons in the monkey LPFC are selective to 

algebraic patterns and ordinal position in sequential tasks (Averbeck et al., 2003, 2006; Averbeck 

& Lee, 2007). In fMRI and electrophysiology studies LPFC responds differentially to regularities 

or algebraic patterns including repetitions across different sequences, independent of sensory 

modality or specific item (Dehaene et al., 2015). Changes to established algebraic patterns elicit 

activity in the monkey brain suggesting animals actively monitor these sequences (L. Wang et al., 

2015), as such effects disappear with inattention (Bekinschtein et al., 2009; Chennu et al., 2013; 

Musz et al., 2015).The inclusion of these simple sequential structures allow us to create the 

simplest version of a visual sequence possible, while ensuring neural activity when animals attend 

to the higher order structure that does not require a behavioral response. 

1.4.2. Time and what we know of its neural representations in the brain 

Neural activity in the LPFC has been implicated as a neural mechanism associated with multiple 

processes including time and progression towards a goal (Ma et al., 2014; Peters et al., 2005). 

There are a variety of ways in which timing has been studied including dwell-time, event 

anticipation, the timing of specific intervals or even rhythmic timing (reviewed in A. C. Nobre & 

van Ede, 2018). Work across different timing modalities suggests that a wide variety of timing 

associated dynamics may be key modulators of ramping activity in the LPFC. Human studies from 

our lab showed that time modulates sequence-related ramping in rostral LPFC (“dwell time”; 

Desrochers et al., 2019). Populations of neurons can be tuned to specific timing intervals, and 
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timing anticipation of temporal patterns (Coull & Nobre, 2008; Ekman et al., 2017; A. C. Nobre 

& van Ede, 2018). Firing irregularities occur in the LPFC as monkeys get closer to a goal (Tiganj 

et al., 2018). The variables that modulate LPFC activity have also been associated with ramping 

dynamics elsewhere in the brain. Neurons that show ramping dynamics in the PFC and medial FC 

respond to the passage of time (Emmons et al., 2017; J. Kim et al., 2013; Y.-C. Kim et al., 2017; 

Narayanan, 2016; Niki & Watanabe, 1979; J. Wang et al., 2018), and anticipation (Paton & 

Buonomano, 2018; Schall, 2019; Schultz, 2000), both of which likely modulate sequence 

monitoring. Elapsed time modulates neural activity in the monkey LPFC (Niki & Watanabe, 1979) 

and adding temporal sequence to serial reaction time tasks with a spatial sequences results in 

enhanced task performance (Coull & Nobre, 2008; A. C. Nobre & van Ede, 2018; Shin & Ivry, 

2002). Utilizing structured timing will allow us to test whether this characteristic modulates 

responses in LPFC when paired with abstract sequences and in isolation. 

1.4.3. How we define sequences in the following set of experiments 

We define sequence monitoring as an active not implicit process, requiring awareness and attention 

to detect the sequential patterns in the proposed task (REFS). In sum, there is a need to separate 

monitoring from commonly associated processes when determining its neural correlates. 

Specifically, our abstract sequences contain abstract rule and structured timing. Because this work 

does not directly test for the generalizability of how abstract rules overall are processed by the 

DLPFC, we specifically define abstract rule as two of the simplest possible sequences we could 

design. These sequences specifically followed the format of 3 of the same, and one different image 

(AAAB), or four of the same image (AAAA). Additionally, to further distinguish the sequences 

we include structured timing, which allows them to be perceptually grouped by assigning image 

sequences distinct timing categories depending on the sequence type. Afterwards, we isolate each 
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of these sequential characteristics to identify which specifically modulate neural responses related 

to abstract sequential processing. 

1.5. Development of the proposed experiments and significance 

In the following chapters, we will show how we utilized awake behaving monkey fMRI to test the 

representation of abstract sequences in the DLPFC. To achieve this work, it was necessary to first 

develop the methods necessary to do so at the institution. As such, this is the first set awake 

behaving monkey fMRI experiments carried out at Brown University. FMRI provides a whole 

brain view, while minimizing the need for invasive procedures. This type of method is rare, in that 

few other institutions have the resources and expertise to conduct awake monkey fMRI 

experiments, carrying with it a special set of challenges.  

Awake monkey fMRI requires the development of specialized tools and analysis pipelines. 

Animals must be trained to perform tasks under conditions imitating the MRI facilities, to ensure 

good behavior during experimental data collection sessions. This is in addition to the special 

considerations that must be taken to minimize movement, while also making sure that there is not 

a great amount of discomfort to the animals. Other measures to keep animals engaged, such as 

providing juice during the task, can directly introduce noise into the dataset. Because of this, 

besides the necessary custom analysis pipelines, the addition of regressor that take into 

consideration correlations to movement and reward delivery must be included. Additional 

challenges can also arise from the limited signal to noise ratio, making the use of contrast agent 

imperative (Leite et al., 2002).Finally, it is also necessary to use custom head coils that can be 

placed proximal to the animal’s skull (Figure 3). A detailed account of the methods utilized to 

acquire this data can be found in the methods section of this text. Additional resources detailing 

methods used to acquire this data have been previously published (Leite et al., 2002; Vanduffel et 
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al., 2001; Vanduffel & Farivar, 2014), but we hope to elaborate in the improvement of the methods 

used through this text and future work (Yusif Rodriguez et al., 2022). 

Most information of the functional organization of the DLPFC during sequential and cognitive 

tasks is derived from electrophysiology studies, which are limited to specific cell sub-population 

and sub-region sampling of the LPFC. Behaving monkey fMRI provides the unique benefit of 

observing the sum of activity across multiple PFC sub-regions and other brain areas with similar 

neural responses. This method thus provides the opportunity to delineate activity across multiple 

DLPFC sub-regions during sequential monitoring. To this end, I will employ a no-response 

abstract visual sequence task and task variants that isolate rule, time, and image variables to 

determine the neural mechanisms that underlie sequential monitoring in the DLPFC. The following 

experiments show the work completed to test the hypotheses that sequence monitoring elicits 

ramping in the monkey DLPFC, and that this neural activity is modulated by the variables of rule 

and timing.  

 

Figure 3. Awake behaving monkey fMRI setup and experimental task design. A. Monkeys complete tasks in an 

MRI safe chair seated in the sphinx position. B. A BOLD screen displaying stimuli is at the end of the scanner bore.   
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2. Chapter 2. Monkey dorsolateral prefrontal cortex 
represents abstract visual sequences during a no-report 

task 
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2.2. Abstract 

Monitoring sequential information is an essential component of our daily lives. Many of these 

sequences are abstract, in that they do not depend on the individual stimuli, but do depend on an 

ordered set of rules (e.g., chop then stir when cooking). Despite the ubiquity and utility of abstract 

sequential monitoring, little is known about its neural mechanisms. Human rostrolateral prefrontal 

cortex (RLPFC) exhibits specific increases in neural activity (i.e., “ramping”) during abstract 

sequences. Monkey dorsolateral prefrontal cortex (DLPFC) has been shown to represent sequential 

information in motor (not abstract) sequence tasks, and contains a sub-region, area 46, with 

homologous functional connectivity to human RLPFC. To test the prediction that area 46 may 

represent abstract sequence information, and do so with parallel dynamics to those found in 

humans, we conducted functional magnetic resonance imaging (fMRI) in monkeys. When 

monkeys performed no-report abstract sequence viewing, we found that left and right area 46 

responded to abstract sequential changes. Interestingly, responses to rule and number changes 

overlapped in right area 46 and left area 46 exhibited responses to abstract sequence rules with 

changes in ramping activation, similar to that observed in humans. Together, these results indicate 

that monkey DLPFC monitors abstract visual sequential information, potentially with a preference 

for different dynamics in the two hemispheres. More generally, these results show that abstract 

sequences are represented in functionally homologous regions across monkeys and humans.  
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2.3. Significance Statement 

Daily, we complete sequences that are “abstract” because they depend on an ordered set of rules 

(e.g., chop then stir when cooking) rather than the identity of individual items. Little is known 

about how the brain tracks, or monitors, this abstract sequential information. Based on previous 

human work showing abstract sequence related dynamics in an analogous area, we tested if 

monkey dorsolateral prefrontal cortex (DLPFC), specifically area 46, represents abstract 

sequential information using awake monkey fMRI. We found that area 46 responded to abstract 

sequence changes, with a preference for more general responses on the right and dynamics similar 

to humans on the left. These results suggest that abstract sequences are represented in functionally 

homologous regions across monkeys and humans.  
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2.4. Introduction 

Sequential tasks that require monitoring are prevalent in daily life. For example, taking a bus 

requires tracking familiar sequences of buildings (e.g., three houses then a library), enabling the 

detection of deviations from this sequence (e.g., if there is a detour). Similarly, many cognitive 

processes occur serially, and often demand that we maintain an internal representation of the 

previous steps to complete the next. Even in tasks that are not explicitly sequential, a system for 

tracking transitions between steps, such as when completing a mathematical operation, may be 

essential.  

Sequence monitoring is this active process of tracking the order of subsequent “states” or steps. 

Monitoring is distinct from other well-studied sequence processes, such as explicit memorization, 

or potentially more automatic behaviors, such as a series of motor outputs (e.g., playing the piano) 

or statistical sequence learning (Desrochers et al., 2019) . Such sequential processes likely contain 

monitoring operations within them but are also comprised of other cognitive computations. 

Abstract sequences are sequences that are not dependent on the individual stimuli but can instead 

be described by the rule they follow (e.g., three same, one different or AAAB) (Desrochers et al., 

2022). Therefore, abstract sequence monitoring entails sequences of sensory stimuli that possess 

abstract structure and active monitoring of this structure. While it may be assumed that abstract 

sequence monitoring underlies many aforementioned sequence types (including motor sequences), 

it is rarely studied in isolation and the neural underpinnings of abstract sequence monitoring 

remain largely unknown. 

Multiple modes of evidence in humans indicate that activity in rostrolateral prefrontal cortex 

(RLPFC) is crucial to sequence monitoring (Desrochers et al., 2015, 2019; McKim & Desrochers, 

2022b). Functional magnetic resonance imaging (fMRI) revealed systematic increasing activity 
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(“ramping”) from the beginning to the end of each sequence in human RLPFC. Across studies, 

this activity occurs either bilaterally, or in the left RLPFC. Further, noninvasive transcranial 

magnetic stimulation (TMS) showed that the left RLPFC was necessary for sequential tasks in 

humans. Other studies have also demonstrated the involvement of RLPFC as part of a 

frontoparietal network active during complex sequential tasks (Farooqui et al., 2012; L. Wang et 

al., 2019; Wen et al., 2020). While consistent with the findings discussed above, these studies 

frequently involve other cognitive phenomena, like decision-making, leaving open their specific 

role of sequence monitoring.  

Studies in nonhuman primates also suggest a role of lateral prefrontal cortex in abstract visual 

sequence monitoring. Motor sequence studies show that neurons in the dorsolateral prefrontal 

cortex (DLPFC) are selective for serial position (Averbeck et al., 2006; Barone & Joseph, 1989; 

Berdyyeva & Olson, 2010; Shima et al., 2007) and sequence boundaries (Fujii & Graybiel, 2003), 

and include neural dynamics that could underlie the ramping observed in human BOLD 

activation(Desrochers et al., 2015, 2019; McKim & Desrochers, 2022b). Neurons in the DLPFC 

also show ordinal selectivity during visual object sequences (Naya et al., 2017; Ninokura et al., 

2004; Warden & Miller, 2010). A rich literature also supports the involvement of DLPFC in 

representing non-sequential abstract rules (Eiselt & Nieder, 2013; Hoshi et al., 1998; Wallis et al., 

2001; White & Wise, 1999). Responses in the DLPFC can also selectively represent sequential 

regularities (Vergnieux & Vogels, 2020). Together, these physiological studies suggest that the 

monkey DLPFC is well-positioned to monitor abstract visual sequences. 

We hypothesized that a specific sub-region of monkey DLPFC (area 46) monitors visual abstract 

sequential information. In humans, abstract sequence monitoring has been localized to the RLPFC, 

which is distinct from the rostromedial prefrontal cortex (Burgess et al., 2003; Du et al., 2020; 
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Gilbert et al., 2010; Henssen et al., 2016; Koechlin et al., 2000; Moayedi et al., 2015). While 

rostromedial prefrontal cortex has similar connectivity in monkeys and humans, anatomical 

evidence suggests that monkey area 46 contains the most similar connectivity patterns to human 

RLPFC (Neubert et al., 2014; Sallet et al., 2013), and overlapping high-level visual representations 

(R. Xu et al., 2022). Therefore, we predicted that abstract visual sequence monitoring would be 

supported by monkey area 46, and that similar ramping dynamics, as observed in humans, would 

localize to this same area.  

To directly test these predictions, we conducted event-related fMRI in awake nonhuman primates, 

and used deviations from established abstract visual sequences during a no-report task to index 

abstract sequence monitoring. We found that nonhuman primate DLPFC distinctly represents 

abstract visual sequence information, independent from other task constraints. Additionally, we 

find that these abstract sequences elicit ramping dynamics similar to those observed in humans 

during abstract sequence performance. Intriguingly, deviant responses with differing primary 

dynamics were observed in the two hemispheres: an onset-based signal on the right, and ramping 

on the left. These findings indicate that a specific sub-region of DLPFC preferentially supports 

abstract sequence monitoring in monkeys and may be functionally homologous to humans. 

Further, these results establish an important connection between human and monkey complex 

cognition and the neural substrates that mediate it, providing a foundation for understanding more 

complex behaviors across species in the future. 
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2.5. Materials and Methods 

2.5.1. Subjects 

We tested three adult male rhesus macaques (ages spanning 6-12 years during data collection, 9-

14 kg). All procedures followed the NIH Guide for Care and Use of Laboratory Animals and were 

approved by Institutional Animal Care and Use Committee (IACUC) at Brown University.  

2.5.2. No-Report Abstract Visual Sequence Task 

All visual stimuli used in this study were displayed using an OpenGL-based software system 

developed by Dr. David Sheinberg at Brown University. The experimental task was controlled by 

a QNX real-time operating system using a state machine. Eye position was monitored using video 

eye tracking (Eyelink 1000, SR Research). Stimuli were displayed at the scanner on a 24-inch 

BOLDscreen flat-panel display (Cambridge Systems). The general design of the visual sequence 

paradigm was based on a similar auditory sequence task (L. Wang et al., 2015). 

2.5.2.1. Stimuli 

Each image presentation consisted of fractal stimulus (approximately 8° visual angle) with varying 

colors and features. Fractals were generated using MATLAB for each scanning session using 

custom scripts based on stimuli from (H. F. Kim & Hikosaka, 2013) following the instructions 

outlined in (Miyashita et al., 1991). For each scan session, new, luminance matched, fractal sets 

were generated. All stimuli were presented on a gray background, with a fixation spot that was 

always present on the screen superimposed on the images. To provide behavioral feedback, the 

fixation spot was yellow when the monkey was successfully maintaining fixation and red if the 

monkey was not fixating. Stimuli were displayed for 0.1 to 0.3 s each, depending on the sequence 

type and timing template, detailed as follows. 
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2.5.2.2. Sequence Types  

There are five sequence types in this task (Figure 4): habituation sequences and four deviant 

sequence types. Across these sequence types, there were a total of nine different timing templates 

used. These templates were included to counterbalance for stimulus and sequence duration across 

the sequence types and to provide a greater variety of sequential timings during habituation. The 

inter-sequence interval was jittered to decorrelate across timing templates (mean 2 s, 0.25-8 s). 

Habituation Sequences  

Habituation sequences were composed of images drawn from a pool of four possible fractals. We 

will refer to the habituation image pool as [A, B, C, D]. Sequences were composed from these 

images in one of two possible rules: three the same, one different (e.g., AAAB, DDDC) and four 

the same (e.g., AAAA, CCCC). All sequences contained four images and followed one of three 

possible general timings based on the total duration of the sequence: short (1.1 s), medium (1.7 s), 

and long (2.3 s). Each total sequence duration, in turn, had two possible timing templates within 

it, one with longer stimulus durations and one with shorter stimulus durations: short 0.1 s and 0.2 

s, medium 0.1 s and 0.3 s, long 0.2 s and 0.3 s. Inter-stimulus intervals were arranged to evenly 

space the four stimulus presentations within the total sequence duration. 

Deviant Sequences 

Deviant sequences were composed of images drawn from a different pool of three possible fractals. 

We will refer to the deviant image pool as [E, F, G]. All deviant images were displayed for 0.2 s, 

regardless of deviant type. Across deviant types, the total sequence durations were matched to the 

short, medium, and long habituation timing templates. There were four deviant types, detailed as 

follows: 
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New Items, Same Rule (NISR): These deviants use images that come from the deviant pool of 

images, but do not differ from the habituation rule. For example, if the habituation rule was three 

the same, one different then NISR sequences would follow the same rule with new images (e.g., 

GGGF and FFFE) Alternatively, if the habituation rule was four same, an example NISR would 

be EEEE. All sequences were four items and had a total duration of 1.7 s. 

Rule deviants: These deviants do not follow the same rule as habituation, but instead follow the 

alternate rule. If the habituation rule was three the same, one different, example deviants would 

follow the four the same rule, e.g., EEEE and GGGG. All deviants contained four images and had 

a total sequence duration of 1.7 s, the same as medium habituation sequences. 

Number Deviants: These deviants follow the same rule as habituation but contain a different 

number of images (either two or six). If the habituation rule was three the same, one different, 

example deviants would be EG and FFFFFE. Two-item deviants had a total sequence duration of 

1.1 s, the same as short habituation sequences, and six-item deviants had a total sequence duration 

of 2.3 s, the same as long habituation sequences. 

Double Deviants: These deviants combine Rule and Number deviant types. If the habituation rule 

was three the same, one different, example deviants would be EE and GGGGGG. The timing was 

the same as number deviants. 

2.5.2.3. Block Structure  

Each block contained 30 sequences and lasted approximately 112 s on average. Habituation blocks 

contained equal numbers of the six possible timing templates (two of each: short, medium, and 

long). Habituation sequences were presented in pseudo-random order such that a sequence could 

not begin with the same fractal as the final fractal of the previous sequence. Deviant blocks were 
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composed of 24 habituation sequences and six deviant sequences. All deviant sequences within a 

block were of the same sequence type. The six deviant sequences were pseudo-randomly 

interspersed throughout the block such that deviant sequences did not occur in the first 6 sequences 

of the block (to avoid block initiation confounds), and deviant sequences were not presented 

consecutively to each other. If deviant sequences contained a variable number of items (i.e., 

number deviants and double deviants), then an equal number of two- and six-item sequences were 

included within a single block. The 24 habituation sequences within deviant blocks were presented 

in the same manner as in habituation blocks (i.e., evenly distributed timing templates and avoiding 

between-sequence fractal image repeats). 

2.5.2.4. Run Structure 

Each run was composed of five blocks, interleaved with 14 s fixation blocks (Figure 4). The first 

block of each run contained only habituation sequences. The four subsequent blocks were one of 

each of the four possible deviant types, with their order counterbalanced across runs. The same 

habituation rule was used for the entirety of a single run. Runs lasted approximately 10.5 min. The 

sequence rule (three same, one different or four same) used for each run was counterbalanced 

across each scanning session so as to have an equal number of runs for each rule. Monkeys 

typically completed 4-8 runs of this task (among other tasks not reported on here) in a single 

scanning session (one day). 

Runs were initiated according to the monkey’s fixation behavior to ensure that the monkey was 

not moving and engaged in the task before acquiring functional images. During this pre-scan 

period, a fixation spot was presented. Once the monkey successfully acquired this fixation spot 

and received approximately four liquid rewards (12 – 16 s), functional image acquisition and the 

first habituation block were initiated. 
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2.5.2.5. Reward 

The timing of liquid rewards was not contingent upon sequential events, only on the monkey 

maintaining fixation. Rewards were delivered on a graduated schedule such that the longer the 

monkey maintained fixation, the more frequent rewards were administered (Leite et al., 2002). The 

first reward was given after 4 s of continuous fixation. After two consecutive rewards of the same 

fixation duration, the fixation duration required to obtain reward was decreased by 0.5 s. The 

minimum duration between rewards that the monkey could obtain was 0.5 s. Fixation had to be 

maintained within a small window (typically 3° of visual angle) around the fixation spot to not 

break fixation. The only exception was a brief time window (0.32 s) provided for blinks. If the 

monkey’s eyes left the fixation window and returned within that time window, it would not trigger 

a fixation break. If fixation was broken, the reward schedule would restart at the maximum 4 s 

duration required to obtain reward. 

2.5.3. FMRI Data Acquisition 

Monkeys were trained to sit in the “sphynx” position in a custom MR-safe primate chair (Applied 

Prototype, Franklin, MA or custom-made by Brown University). The monkey’s head was 

restrained from moving via a plastic “post” (PEEK, Applied Prototype, Franklin, MA) affixed to 

the monkeys’ head and the primate chair. Monkeys were habituated to contrast agent injection 

procedures, recorded MRI sounds, wearing earplugs (Mack's Soft Moldable Silicone Putty Ear 

Plugs, Kid’s size), and transportation to the scanner prior to MRI scanning sessions. Monkeys were 

trained on the behavioral task with different images that were never used during scanning. 

Prior to each scanning session, monkeys were intravenously injected with a contrast agent: 

monocrystalline iron oxide nanoparticle (MION, Feraheme (ferumoxytol), AMAG 

Pharmaceuticals, Inc., Waltham, MA, 30 mg per mL or BioPal Molday ION, Biophysics Assay 
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Lab Inc., Worcester, MA, 30 mg per mL). MION to improves the contrast-to-noise ratio ~3-fold 

(Leite et al., 2002; Vanduffel et al., 2001) and enhances spatial selectivity of MR signal changes 

(Zhao et al., 2006). MION was injected, approximately 30-60 min before scanning, into the 

saphenous vein below the knee (7 mg/kg), then flushed with a volume of sterile saline 

approximately double the volume of the MION injected. No additional MION was added during 

scanning, as MION has a long blood half-life (15.3 +/- 3.5 hr) (Leite et al., 2002).  

A Siemens 3T PRISMA MRI system with a custom six-channel surface coil (ScanMed, Omaha, 

NE) at the Brown University MRI Research Facility was used for whole-brain imaging. 

Anatomical scans consisted of a T1-MPRAGE (repetition time, TR,  2700 ms; echo time, TE, 3.16 

ms; flip angle, 9°; 208 sagittal slices; 0.5 x 0.5 x 0.5 mm), a T2 anatomical (TR, 3200 ms; TE 410 

ms; variable flip angle; 192 interleaved transversal slices; 0.4 x 0.4 x 0.4 mm), and an additional 

high resolution T2 anatomical (TR, 8020 ms; TE 44 ms; flip angle, 122°; 30 interleaved transversal 

slices; 0.4 x 0.4 x 1.2 mm). Functional images were acquired using a fat-saturated gradient-

echoplanar sequence (TR, 1.8 s; TE, 15 ms; flip angle, 80°; 40 interleaved axial slices; 1.1 x 1.1 x 

1.1 mm). 

The target sample size (number of runs per monkey) was calculated using pilot data from a 

previous version of this task not included in the current data set. A region of interest was 

constructed from a cluster of deviant > NISR activation and the number of runs calculated for a 

significant effect in this region (using the beta values of the onset GLM, see below) at 80% power 

and alpha = 0.05 (G-Power). Guided by this power analysis and similar studies (L. Wang et al., 

2015), we estimated a total of 200 runs across the three animals would be necessary.   
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2.5.4. FMRI Data Analysis 

The majority of the following analyses were performed in Matlab using SPM 12 (http://www.fil. 

Ion.ucl.ac.uk/spm). Prior to analysis, data were preprocessed using the following steps: reorienting 

(to ensure proper assignment of the x,y,z planes), motion correction (realignment), normalization, 

and spatial smoothing (2 mm isotropic Gaussian kernel separately for gray matter and white 

matter). All steps were performed on individual runs separately. The T1-MPRAGE anatomical 

image was skull stripped using FSL BET brain extraction tool (http://www.fmrib.ox.ac.uk/fsl/) to 

facilitate normalization. All images were normalized to the 112-RM SL macaque atlas (McLaren 

et al., 2009). 

Runs were included for analysis only if they met the following criteria: the monkey had to be 

performing well and a sufficient number of acquisition volumes within the run had to pass data 

quality checks. The monkey’s performance was evaluated by calculating the percentage of time 

within a run that fixation was maintained. Runs were excluded if the monkey was fixating < 80% 

of the time (similar criteria as in (Leite et al., 2002; Vanduffel et al., 2001; L. Wang et al., 2015). 

Approximately 20% of runs were excluded due to poor fixation: 10% from monkey J, 3% from 

monkey W and 7% from monkey B. To evaluate data quality, we used the ART toolbox (Artifact 

Detection Tools, https://www.nitrc.org/projects/artifact_detect) to detect outlier volumes. Any 

volumes that had motion greater than one voxel (1.1 mm) in any direction were excluded. Any run 

with greater than 12% of volumes excluded was excluded from analysis (0% runs excluded for 

monkey J, 0.5% of runs excluded for monkey W, and 15% of runs excluded for monkey B). Runs 

with poor image quality due to artifact or banding to pre-process or analyze were also excluded. 

These accounted for 2% of the data for monkey J, 5% for monkey W, and 0.5% for monkey B. 

After applying these criteria, a total of 232 runs (average of 340 volumes per run for all animals, 

http://www.fmrib.ox.ac.uk/fsl/
https://www.nitrc.org/projects/artifact_detect
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93 sessions in total across animals) were included for analysis from 3 monkeys: monkey W: 97 

runs (32 sessions); monkey J: 65 runs (32 sessions), and monkey B: 70 runs (32 sessions). 

2.5.4.1. Models 

Within-subject statistical models were constructed under the assumptions of the general linear 

model (GLM) in SPM 12 for each pseudo-subject bin. For all models, data were binned into 

approximately 10-run pseudo-subject bins. Each bin contained data from only one monkey. Runs 

were pseudo-randomly assigned to bins to balance the number of runs which followed each of the 

two sequential rules (three same one different or four same) and the distribution of runs from 

earlier and later scanning sessions. Condition regressors were all convolved with a gamma function 

(shape parameter = 1.55, scale parameter = 0.022727) to model the MION hemodynamic response 

function (Vanduffel & Farivar, 2014). The first six sequences in a run and reward times were 

included as nuisance conditions. Additional nuisance regressors were included for the six motion 

estimate parameters (translation and rotation), outlier volumes, and image variability (standard 

deviation of within run image movement variability, calculated using the ART toolbox). Outlier 

volumes were determined using the ART toolbox (standard global mean; global signal detection 

outlier detection threshold = 4.5; motion threshold = 1.1mm; scan to scan motion and global signal 

change for outlier detection) and one additional regressor with a “1” at only that volume was 

included for each volume to be “scrubbed”. 

Regressors were estimated using a bin-specific fixed-effects model. Whole-brain estimates of bin-

specific effects were entered into second-level analyses that treated bin as a random effect. One-

sample t-tests (contrast value vs zero, p < 0.005) were used to assess significance. These effects 

were corrected for multiple comparisons when examining whole-brain group voxelwise effects 

using extent thresholds at the cluster level to yield false discovery rate (FDR) error correction (p 
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< 0.05). Group contrasts were rendered on an inflated MNI canonical brain using Caret (Van Essen 

et al., 2001). Prior to selecting GLM’s we used the model assessment, comparison, and selection 

toolbox (MACS, https://github.com/JoramSoch/MACS, (Soch & Allefeld, 2018) to determine 

models that would be the best fit. Three GLMs were applied to the data as follows: 

Onsets Model: To assess the univariate effects of deviant sequences, we constructed a model using 

instantaneous stimulus onset regressors for the first item in each sequence with the following nine 

condition regressors for different sequence types: short, medium, and long habituation sequence 

timing templates; NISR; rule deviants; two- and six-item number deviants; and two- and six-item 

rule and number deviants.  

Parametric Last Item versus Unique Ramp Model: To directly test whether variance could be better 

accounted for by a phasic response at the last item in the sequence or ramping activation, we 

constructed a pair of models to allow last item and ramp regressors to compete for variance within 

the same model. Onset regressors were constructed with an instantaneous stimulus onset regressor 

at each position in the sequence with the same nine condition regressors for the different sequence 

types as in the Onsets Model: short, medium, and long habituation sequence timing templates; 

NISR; rule deviants; two- and six-item number deviants; and two- and six-item rule and number 

deviants. Including an onset at each position effectively modeled sustained activation throughout 

the sequence and enabled the inclusion of the following parametric regressors. The last item 

parametric was added as ones at the first sequence positions and an arbitrarily larger value (6) at 

the last item. The ramp parametric was entered as the sequence position (1-4, 1-2, or 1-6) for each 

sequence. Parametric regressors were implemented hierarchically in the GLM. Therefore, variance 

explained by the last parametric regressor (in this case, ramping), is above and beyond what could 

be explained by the onsets or last item regressors. 

https://github.com/JoramSoch/MACS
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Parametric Ramp versus Unique Last Item Model: This second model of the pair sought to identify 

variance uniquely explained by the last item regressor, above and beyond variance explained by 

the onsets or ramping regressors. All other aspects of the model were the same as the unique ramp 

model above. 

2.5.4.2. ROI Analyses 

The primary bilateral regions of interest were constructed from the coordinates of a seed region 

centered in macaque monkey area 46d. These coordinates were determined, using diffusion 

weighted and functional MRI, to be most similar to the lateral portion of human area 10 (Gilbert 

et al., 2010; Sallet et al., 2013). Human lateral area 10 overlaps with areas of ramping activation 

observed in human RLPFC in previous studies (Desrochers et al., 2015, 2019; McKim & 

Desrochers, 2022b). A 5 mm sphere was created around the center coordinate for the seed region 

in macaque Montreal Neurological Institute (MNI) space. The sphere was then transformed into 

112RM-SL space using RheMap (Sirmpilatze & Klink, 2020, resulting in a sphere centered at xyz 

= 12.7, 32.6, 22.5  in 112RM-SL space. For identification of brain areas we also utilized the NIMH 

Macaque Template (NMT v02, Macaque Atlas, Jung et al., 2021; Seidlitz et al., 2018). 

Additional ROIs were constructed with the explicit purpose of comparing nearby regions in 

DLPFC that were significant clusters of activation last item versus ramping models. Specifically, 

the significant left DLPFC cluster of activation for Unique Ramp, Rule Deviants > NISR in the 

unique ramp model (center xyz = -12.2, 36, 23) and the significant left DLPFC cluster of activation 

for Unique Last, Rule Deviants > NISR in the unique last item model (center xyz = -12.3, 42.9, 

21.8) were taken for comparison. 

To compare activation within and across ROIs in a manner that controlled for variance, we 

extracted t-values from the condition of interest over baseline using the Marsbar toolbox (Jean-
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Baptiste Poline, 2002). T-values (one for each pseudo-subject bin, n = 22 bins) were entered into 

RM-ANOVAs with the identity of the monkey entered as a covariate.  

2.6. Results 

Three monkeys (macaca mulatta) performed no-report abstract sequence viewing while 

undergoing awake fMRI scanning. The monkeys were trained to fixate on a central spot while 

viewing a stream of fractal images arranged into four-item visual sequences (based on Wang, et 

al., Figure 4). This task did not require responses, only fixation, and thus was termed “no-report”. 

The task was performed in runs (~10 min each), that each contained five blocks. For each run, the 

first block habituated animals to one of two possible sequential rules AAAB, or AAAA (A and B 

represent different images drawn from a pool of four possible images; 30 sequences in total per 

block). Habituation sequences each had one of six possible timing templates to balance stimulus 

and sequence durations across sequence types. Each subsequent block contained rare deviants (6 

of the 30 sequence repetitions per block) of one of the following four possible types: new images 

following the same rule, number deviants (2 or 6 items), rule deviants (e.g., AAAA), or double 

deviants. All deviant images were drawn from a separate three-image pool. The five total blocks 

were interleaved with 16 s fixation blocks. To encourage animals to maintain fixation throughout, 

reward was administered on a graduated schedule not correlated with sequence presentation: the 

longer they maintained fixation, the shorter the duration between rewards. Reward was thus 

decorrelated from the four-item visual sequences. A total of 232 runs were analyzed (97 monkey 

W, 65 monkey J, 70 monkey B). Monkeys performed the task well and fixated for 95% of the time 

in included runs (see Methods for those excluded). 
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Figure 4. No-report abstract sequence viewing task. A. Schematic representation of human rostrolateral prefrontal 

cortex (RLPFC; left) and monkey dorsolateral prefrontal cortex (DLPFC; right) depicting the main questions that were 

the focus of this study: Does monkey DLPFC monitor abstract sequences, as shown by responses to deviant 

sequences? and does monkey DLPFC exhibit ramping activation, as found in human RLPFC during sequence 

monitoring? B. Monkeys only fixate throughout runs. Scanning is performed in the “sphynx” position. C. Example 

partial habituation block for sequence rule three same, one different (AAAB). D. Example stimulus pools (top) show 
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a set of images that would be used in a single scanning session. New images are used each session. Six possible timing 

templates for habituation sequences (bottom, left) and deviant sequences (bottom, right) illustrated with gray 

rectangles indicating single images. Total sequence durations are listed for each template type. E. Examples of the 

five sequence types if the sequence rule in use is three same, one different. F. Example run, with each bar indicating 

one multi-image sequence: four images in habituation, new items same rule (NISR), and rule deviants; two or six 

images in number and double deviants. The first block contains only habituation sequences and subsequent blocks 

contain only one of the four deviant types. Sequence blocks alternate with fixation blocks. Blue water droplets 

schematize reward delivery, which is decoupled from sequence viewing and delivered on a graduated schedule based 

on the duration the monkey has maintained fixation. 

2.6.1. Monkey DLPFC represents changes in abstract visual sequences 

Our first goal was to test whether area 46 differentially responds when there is a change in the 

abstract visual sequence. Because this task is no-report, we examined this question using neural 

responses (BOLD) to deviant sequences. Previous work has shown that such deviant responses 

disappear with inattention and are robust in brain areas processing sequence related information 

(Bekinschtein et al., 2009; Dehaene et al., 2015). These results suggest that deviant neural 

responses indicate that individuals are attending to the sequences, even in the absence of a report. 

Therefore, we used neural responses to rare deviant sequences to indicate awareness of changes to 

an established abstract sequence, as is in similar auditory tasks (Uhrig et al., 2014; L. Wang et al., 

2015). To specifically query the responses to abstract sequence changes, we could not simply 

compare habituated sequences to deviant sequences, as the deviant sequences were composed from 

a different pool of images than the habituation sequences, and any differences observed between 

habituation and deviant sequences could have resulted from differences in image identity. 

Therefore, to specifically examine changes in abstract sequence structure, we compared new items 

of the same rule (NISR) to number deviants and rule deviants. All images in this comparison were 
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drawn from the same pool of (deviant) images. Double deviants were not included in analyses 

because of the inability to dissociate between changes due to rule and number. 

We first constructed an unbiased region of interest (ROI) for monkey area 46 in each hemisphere 

to compare activity between rule and number deviants and NISR. Monkey area 46 has many 

potential functional subdivisions (Borra et al., 2011, 2019; Gerbella et al., 2010, 2013; Saleem et 

al., 2014); therefore, we created a 5 mm sphere centered on a seed region identified as having the 

most similar connectivity with human RLPFC in monkey diffusion and functional MRI (Sallet et 

al., 2013, center xyz = 12.7, 32.6, 22.5 in area 46d, see Methods). The resulting sphere spanned a 

small region of area 46 that encompassed 46d, 46f, and 46v (NIMH Macaque Template, NMT 

v2.0 Macaque Atlas, Jung et al., 2021; Seidlitz et al., 2018). Because sequence related activity in 

human RLPFC was observed in both hemispheres, we used identical spheres (mirrored 

coordinates) in the left and right hemispheres (referred to as L46 and R46, respectively) 

throughout. To compare activity between rule and number deviants and NISR in these ROIs, we 

created a model that included separate regressors for each habituation timing and deviant type, 

modeled as zero-duration onsets. Statistical testing was performed on ~10 run bins (n = 22), each 

consisting of data from a single monkey (see Methods). We compared t-values from the contrast 

of each condition over baseline (e.g., Rule Deviants > Baseline vs. NISR > Baseline) to account 

for potential differences in variance across conditions. This type of comparison was used to 

examine ROI activity throughout, and we refer to comparisons by the conditions of interest 

(without listing the contrast over baseline, e.g., Rule Deviants > NISR). All statistical tests on 

ROIs were performed on binned data and included a covariate for monkey identity (n = 3). While 

we report the effect of monkey in the following analyses, the main focus of the study was not on 

individual differences, and our discussion focuses on condition effects. 
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We found that R46 represented abstract sequence changes, showing greater deviant activation 

across both deviant types (Figure 5;Table 1). Responses were reliably greater for rule deviants 

compared to NISR (sequence type: F(1, 19) = 4.6, p = 0.046, ηp2 = 0.19) and marginally greater 

for number deviants compared to NISR (sequence type: F(1, 19) = 3.9, p = 0.062, ηp2 = 0.17). Even 

though deviant responses compared to NISR in L46 did not reach statistical significance (Table 

1), there were no reliable differences between responses in R46 and L46 (Table 2). These results 

suggest that a specific region of monkey DLPFC, area 46, monitors abstract visual sequence 

structure. 

 

Figure 5. Area 46 represents abstract visual sequences. T-values for the condition of interest > baseline are shown. 

The locations of area 46 regions of interest (ROIs), L46 and R46, are outlined in black on coronal sections (y = 33).  

A. Rule deviants compared to new items, same rule (NISR) in L46. B. Number deviants compared to NISR in L46. 

C. Rule deviants compared to NISR in R46 showed a reliable difference. D. Number deviants compared to NISR in 

R46 showed a marginal difference. Comparisons in L46 showed similar trends as in R46. Error bars are 95% 

confidence intervals (1.96 x standard error of the within-bin mean). 
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Table 1. Repeated measures ANOVAs comparing rule and number deviants to NISR in L46 and R46. 

   L46   R 46  
Factor dfs F p ηp2 F p ηp2 
Rule Deviants > NISR 
Sequence Type 1, 19 0.39 0.54 0.02 4.6 0.046 0.19 
Monkey 2, 19 3.55 0.049 0.27 1.4 0.28 0.13 
Monkey x Sequence Type 2, 19 1.15 0.34 0.11 2.9 0.078 0.24 
Number Deviants > NISR 
Sequence Type 1, 19 0.51 0.48 0.03 3.9 0.062 0.17 
Monkey 2, 19 3.8 0.041 0.29 0.76 0.48 0.074 
Monkey x Sequence Type 2, 19 0.098 0.91 0.01 5.15 0.016 0.35 
Habituation > NISR 
Sequence Type 1, 19 0.0053 0.94 0.0003 1.6233 0.33 0. 051 
Monkey 2, 19 4.35 0.028 0.31 3.37 0.48 0.26 
Monkey x Sequence Type 2, 19 0.45 0.64 0.05 1.6 0.22 0.15 

 

Table 2. Repeated measures ANOVAs comparing deviant responses in L46 and R46. 

  Rule Deviants >  
NISR 

Number Deviants > 
NISR 

Factor dfs F p ηp2 F p ηp2 
R46 > L46 
Sequence Type 1, 40 3.6 0.07 0.08 0.85 0.36 0.02 
Monkey 2, 40 4.15 0.02 0.17 1.14 0.33 0.05 
Brain Area 1,40 0.005 0.94 0.0001 0.67 0.42 0.016 
Monkey x Sequence Type 2, 40 0.54 0.6 0.026 2.88 0.07 0.13 
Brain Area x Sequence Type 1,40 0.51 0.48 0.012 2.7 0.11 0.06 

 

As a control, we also examined conditions where the pool of images differed, but the abstract 

sequential structure did not. If area 46 was responding specifically to a change in the abstract 

sequential structure, then a change in the images should not change its activation level. We 

examined the difference in contrast t-values between NISR and habituation trials with comparable 

stimulus durations (“medium” timing, as in Figure 4D). We did not find any significant 

differences between these conditions in either R46 or L46 (Table 1), indicating that changes in 

activation in area 46 were specific to changes in abstract sequential structure. 
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Results from area 46 ROIs were supported by whole-brain contrasts examining responses to 

number and rule deviants. Contrasts of Rule Deviants > NISR and Number Deviants > NISR both 

showed significant clusters of activation in right area 46 (Figure 6, Table 3, Extended Data 

Figure 3-1). Other significant clusters of activation were located in areas such as the caudate 

nucleus, high-level auditory cortex (rostromedial belt region), and dorsal premotor cortex, areas 

also observed in a similar auditory sequence task (L. Wang et al., 2015). Further, deviant responses 

in earlier sensory areas (e.g., V2) may be analogous to responses in auditory cortex previously 

observed. Though we could not address the question of sensory generality within the current 

experiment, these results raise the intriguing possibility that these previously indicated areas could 

be sensory-modality general in their responses to abstract sequential structure. 

 

Figure 6. Whole-brain deviant activity shows area 46 represents both rule and number deviants. A. Voxel wise 

contrast of Rule Deviants > NISR false discovery rate (FDR) error cluster corrected for multiple comparisons (FDRc 

< 0.05, height p < 0.005 unc., extent = 130) are shown. Individual monkey data shown in Extended Data Figure 3-
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1A. B. Voxelwise contrast of Number Deviants > NISR (FDRc < 0.05, height p < 0.005 unc., extent = 132). Individual 

monkey data shown in Extended Data Figure 3-1B. C. Overlap of Rule Deviants > NISR and Number Deviants > 

NISR contrasts showed significant, unique conjunction (violet outlined in black) only in the DLPFC. D. Voxelwise 

contrast of Rule Deviants > Number Deviants showing no significant clusters of activation in area 46 (FDRc < 0.05, 

height p < 0.005 unc., extent = 102). E. As in (C) for Number Deviants > Rule Deviants (FDRc < 0.05, height p < 

0.005 unc., extent = 111). Black outline on inflated brains indicates location of L46 or R46 (depending on the 

hemisphere shown) for reference. Lateral Sulcus (LS), Dorsal Lateral Pre-frontal Cortex (DLPFC), Ventral Lateral 

Pre-frontal Cortex (VLPFC), Secondary Visual Cortex (V2), Orbital Prefrontal Area (12o). 

Table 3. Rule and number deviants compared to NISR contrast activation coordinates. Area labels as in the NIMH 

NMT v02 Macaque Atlas. 

 

To determine if the observed responses to number and rule deviants were similar in area 46, we 

directly examined whether these responses generalized across deviant types. The t-values in R46 

were not different between rule and number deviants (sequence type: F(1,19) = 0.0011, p = 0.92, 

Contrast Location  Extent 
(voxels) 

x y z Peak 
t-val 

Rule Deviant > NISR       
Dorsolateral Prefrontal Cortex (46d)   282 10.5 34.5 21.5 4.24 
   14 36 26 3.88 
       
Medial Prefrontal Cortex (10mr)  195 0 47.5 17 5.96 
Dorsal Pre-motor Cortex(6DR)   13 21 25  
Motor Cortex (F1)  213 -11 16.5 32 5.58 
Caudate Nucleus (cd)  130 14.5 13 8 3.88 
  138 -14.5  11.5 7.5 4.09 
Lateral Sulcus/Auditory Cortex 
(RM) 

 282 -21 13.5 9 5.59 

Secondary Visual Cortex (V2)  207 8.5 -15 21 4.34 
Cerebellum       

Number Deviants > NISR       
Dorsolateral Prefrontal Cortex (Area 
46d) 

 168 9 35 21.5 6.44 

Orbital Prefrontal Area (12o)  162 -16 32 9.5 5.13 
Secondary Visual Cortex (V2)  132 4.5 -16.5 18.5 4.96 
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ηp2 = 0.11, monkey: F(2, 19) = 2.5, p = 0.11, ηp2 = 0.21; monkey x sequence type: F(2, 19) = 1.15, 

p = 0.34, ηp2 = 0.11). Next, we performed a conjunction analysis to determine the areas of 

activation that overlapped in the Rule Deviants > NISR and Number Deviants > NISR contrasts. 

We found that the only cluster of significant overlap between the deviant contrasts was in right 

area 46 (Figure 6C). In support of this finding, whole-brain direct contrasts of rule and number 

deviants showed significant activation clusters in VLPFC, insula, and pre-motor cortex, but no 

significant clusters in area 46 (Figure 6D, E). In summary, these results suggest that abstract visual 

sequential structure is monitored in area 46, and that this monitoring is both unique to area 46 and 

general across different kinds of deviations. 

2.6.2. Ramping activation reflects sequence monitoring in monkey DLPFC 

We next tested the prediction that area 46 would display similar dynamics to those observed in 

humans during abstract sequences. Specifically, previous experiments in humans showed that 

BOLD activity increased (“ramped”) from the beginning to the end of sequences in the RLPFC 

(Desrochers et al., 2015, 2019; McKim & Desrochers, 2022b). Given the similarity in connectivity 

between monkey area 46 and human RLPFC, we hypothesized that changes in abstract sequence 

structure would also produce changes in ramping activation in area 46 if abstract sequence 

monitoring underlies this dynamic.  

To test if ramping dynamics were present in area 46 during this task, we first designed a model to 

isolate these dynamics. This model included regressors for the three dominant potential dynamics 

(Figure 7A, Extended Data Figures 4-1 and 4-2, see also Materials and Methods). First, 

instantaneous onsets were included for each image presentation, effectively modeling sustained 

activation throughout each sequence. Then, two parametric regressors were included: last item 

change and ramping. The ramping regressor parallels the analysis that revealed ramping in human 
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RLPFC: it increases linearly from the first to the last item in the sequence, and resets at each new 

sequence. The last item change regressor is low at the first three positions of each sequence, and 

high at the last item in the sequence. This regressor was designed to account for the fact that 

differences in the rule that the sequence followed would occur at the last item (e.g., the difference 

between AAAA and AAAB occurs at the fourth item), and a dynamic associated with this change 

could have variance mistakenly assigned to a ramping regressor.  

These parametric regressors were orthogonalized in a stepwise fashion and only absorbed 

variance above and beyond variance accounted for by the onset regressor. The last regressor, 

therefore, contained “unique” variance. A pair of models, one with unique variance assigned to 

ramp and one with it assigned to last item, were created to examine these dynamics. The 

correlation between the resulting regressors was, as expected, low. For example, in one bin of 

this parametric model with the unique variance assigned to ramp, the average correlation 

coefficient between last item change and ramp regressors was 0.00005 (± 0.0001 standard 

deviation). While there are likely nearly infinite variations of dynamics possible that lie across a 

spectrum between the last item change and ramping (e.g., exponential), our purpose in designing 

these models was not to explore the space of all possible dynamics, but to test for ramping 

dynamics in area 46. 

We found ramping dynamics in monkey area 46 related to abstract sequence monitoring. When 

comparing t-values of contrasts between deviants and baseline using the same spherical area 46 

ROIs described above, we observed significant, unique variance ascribed to ramping activation in 

L46 during rule deviants compared to NISR (sequence type: F(1, 19) = 5.03, p = 0.037, ηp2 = 0.21; 

Table 4; Figure 7B). Unique ramping activation showed a numerical trend in the same direction 

for number deviants compared to NISR in L46, but it did not reach statistical significance (Table 
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4). Activity in L46 was not reliably different between the two deviant types (sequence type: F(1,19) 

= 2.06, p = 0.17, ηp2 = 0.098, monkey: F(2, 19) = 0.57, p = 0.64, ηp2 = 0.06; monkey x sequence 

type: F(2, 19) = 2.01, p = 0. 16, ηp2 = 0.17). In R46, changes in unique ramping activation during 

rule and number deviants were not significant (Table 4). Despite apparent differences between 

L46 and R46, unique ramping was not reliably different between these ROIs (Table 5). These 

results suggest that area 46 shows ramping dynamics for sequential rule changes. Interestingly, 

ramping may be preferentially present in L46, suggesting that while both hemispheres detect 

abstract sequence deviations, they may do so with different dynamics. Further, these results 

suggest similar sequential monitoring processes may be present across species in analogous areas.  

 

Figure 7. Area 46 shows ramping activity for deviations to an established sequence rule. Parametric models and 

T-values for the condition of interest > baseline shown. Coronal brain slices (y = 33) show locations of area 46 ROIs, 

L46 and R46, outlined in black. A. Example of regressors used to model parametric ramp and parametric last item. 

Example regressors through the orthogonalization process shown in Extended Data Figures 4-1 and 4-2. B. Unique 

ramping during rule deviants compared to NISR in L46 showed a reliable difference. C. Unique ramping during 

number deviants compared to NISR in L46. D. Unique ramp number deviants compared to NISR in R46. E. Unique 

ramping during number deviants compared to NISR in R46. Comparisons that were not reliably different showed 

similar trends. Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 
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Table 4. Repeated measures ANOVAs comparing unique ramping activity during rule and number deviants to NISR 

in L46 and R46. 

   L46   R 46  
Factor dfs F p ηp2 F p ηp2 
Unique Ramp, Rule Deviants > NISR 
Sequence Type 1, 19 5.03 0.037 0.21 0.01 0.91 0.00075 
Monkey 2, 19 0.82 0.45 0.08 0.64 0.54 0.63 
Monkey x Sequence Type 2, 19 0.23 0.8 0.0235 0.81 0.46 0.08 
Unique Ramp, Number Deviants > NISR 
Sequence Type 1, 19 0.42 0.52 0.02 0.03 0.86 0.0016 
Monkey 2, 19 2.39 0.12 0.2 0.24 0.45 0.08 
Monkey x Sequence Type 2, 19 5.15 0.63 0.047 5.15 0.84 0.0235 

 

Table 5. Repeated measures ANOVAs comparing unique ramping deviant responses in L46 and R46.  

  Unique Ramp, Rule 
Deviants > NISR 

Unique Ramp, Number 
Deviants > NISR 

Factor dfs F p ηp2 F p ηp2 
R46 > L46 
Sequence Type 1, 40 0.38 0.54 0.009 2.4 0.13 0.06 
Monkey 2, 40 1.62 0.21 0.07 1.5 0.24 0.07 
Brain Area 1, 40 0.02 0.89 0.0005 1.5 0.25 0.03 
Monkey x Sequence Type 2, 40 0.64 0.53 0.03 0.12 0.89 0.006 
Brain Area x Sequence Type 1, 40 0.14 0.71 0.003 2.7 0.11 0.06 

 

Because variance due to changes at the last item of the sequence could be misattributed to ramping 

regressors, we directly compared activity in area 46 that could be accounted for by ramping and 

last item change regressors. In this control analysis, we found that activity was significantly greater 

for unique ramping than unique last item change during rule deviants in L46 (regressor type: F(1, 

19) = 9.53, p = 0.006, ηp2 = 0.33;  Table 6; Figure 8A). Number deviants in L46 and both deviants 

in R46 showed similar numerical trends for unique ramping accounting for greater variance than 

last item change but did not reach statistical significance (Figure 5B-D; Table 6). These results 
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suggest that area 46 dynamics during abstract sequence monitoring are best accounted for by a 

ramping function, rather than a last item change. 

 

Figure 8. Area 46 shows greater unique ramping than unique last item activity during abstract sequence 

deviants. T-values for the condition of interest > baseline shown. A. Unique ramp compared to unique last item during 

rule deviants in L46 showed a reliable difference. B. Unique ramp compared to unique last item during number 

deviants in L46. C. Unique ramp compared to unique last item during rule deviants in R46. D. Unique ramp compared 

to unique last item during number deviants in R46. Comparisons that were not reliably different showed similar trends. 

Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 

Table 6. Repeated measures ANOVAs comparing unique ramping activity to unique last item activity during rule and 

number deviants to NISR in L46 and R46. 

   L46   R 46  
Factor dfs F p ηp2 F p ηp2 
Unique Ramp, Rule Deviants > Unique Last Item, Rule Deviants 
Regressor Type 1, 19 9.53 0.006 0.33 0.008 0.93 0.0004 
Monkey 2, 19 1.02 0.38 0.97 0.72 0.5 0.07 
Monkey x Regressor Type 2, 19 0.37 0.7 0.38 0.09 0.91 0.01 
Unique Ramp, Number Deviants > Unique Last Item, Number Deviants 
Regressor Type 1, 19 0.196 0.66 0.01 0.07 0.8 0.0036 
Monkey 2, 19 2.08 0.15 0.18 1.47 0.25 0.13 
Monkey x Regressor Type 2, 19 1.26 0.31 0.12 0.15 0.86 0.015 
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ROI results were supported by whole-brain contrasts that examined ramping and last item 

dynamics. Unique ramping was present in left area 46 during rule deviants compared to NISR 

(Figure 9A, Table 7, Extended Data Figure 3-1C). Other clusters of activation were present in 

the visual cortex and superior temporal gyrus that were similar to those observed for ramping 

activation in humans (Desrochers et al., 2015, 2019). As expected from the ROI analyses, the 

number deviant ramping contrast had significant whole brain clusters in areas such as visual cortex 

and putamen but no significant clusters in area 46 (Figure 9B, Table 7). The localization of 

significant unique last item clusters was different than ramping. Specifically, a more anterior 

region of ventral area 46 (46v), in contrast to more posterior and dorsal area 46 (46d) observed for 

unique ramping, showed significant activation for unique last item change in rule deviants 

compared to NISR (Figure 10A, Table 8). Other significant clusters of activation for last item 

change included the somatosensory cortex and central orbitofrontal cortex (area 13m). We also 

contrasted unique last item variance in number deviants compared to NISR, and observed 

activation in areas such as anterior cingulate gyrus, insula and visual cortices but no surviving 

clusters in area 46 (Figure 10B, Table 8). These results suggest that subregions of area 46 within 

the same hemisphere may reflect separable aspects of changes in sequential structure. 
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Figure 9. Area 46 shows unique ramping during abstract sequence deviants. A. Unique Ramp, Rule Deviants > 

NISR (FDRc p < 0.05, height p < 0.005 unc., ext. 82). Individual monkey data shown in Extended Data Figure 3-

1C. B. Unique Ramp, Number Deviants > NISR (FDRc p < 0.05, height p < 0.005 unc., ext. 89). Black outline on 

inflated brains indicates location of L46 or R46 (depending on the hemisphere shown) for reference. Medial Prefrontal 

Cortex (A32) Dorsal Lateral Pre-frontal Cortex (DLPFC), Primary Visual Cortex (V1), Insular Cortex (Ins), Anterior 

Lateral Belt Region of the Auditory Cortex (AL), Anterior Intraparietal Area (AIP).   

Table 7. Unique ramp rule and number deviants compared to NISR contrast activation coordinates.  

Contrast Location  Extent 
(voxels) 

x y z Peak 
t-val 

Unique Ramp, Rule Deviants > NISR       
Primary Motor Cortex (F1)  153 11 13.5 29.5 6.48 
Caudal Dorsal Pre-Motor Cortex 
(PMdc) 

 
89 12 18 34.5 6.17 

Dorsal Dorsal Lateral Prefrontal 
Cortex (46d) 

 
130 -12.5 36 23 5.34 

Intraparietal Area (IPa)  121 16 18.5 2 5.33 
Rostral Area 12 (12r)  128 -15 29 14.5 5.19 
Caudate Nucleus (Cd)  385 -10.5 19 23 5.15 
Caudal Pre-Motor Cortex (PMdc)  113 -18.5 20 30 5 
Secondary Visual Cortex (V2)  82 28 -7.5 14.5 4.67 
Primary Visual Cortex (V1)  101 -20.5 -11 27 4.66 
Body of the Fornix (bfx)  120 -1.5 12.5 22.5 4.49 
Somatosensory Parietal Cortex (1,2)  120 -13 7.5 33.5 4.4 
Primary Motor Cortex (M1)  97 -3.5 14.5 38 4.3 
Medial Septum (ms)  82 -1 18.5 13 4.18 
Secondary/Primary Visual Cortex 
(V2/V1) 

 
129 9 -11 19 4.16 
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Figure 10. DLPFC does not show significant responses to unique last items during abstract sequence deviants. 

A. Unique Last Item, Rule Deviants > NISR (FDRc < 0.05, height p < 0.005 unc., extent = 148). B. Unique Last Item, 

Number Deviants > NISR (FDRc < 0.05, height p < 0.005 unc., extent = 82). Black outline on inflated brains indicates 

location of L46 or R46 (depending on the hemisphere shown) for reference. Ventral Dorsal Lateral Prefrontal Cortex 

(vDLPFC), Medial Superior Temporal Cortex (MST), Superior Temporal Sulcus Dorsal Bank (TPO), Orbital Medial 

Prefrontal Cortex, Fundus of the Dorsal Lateral Prefrontal Cortex (46f).   

Intraparietal Area (IPa)  97 18.5 7.5 16 4.01 
Globus Pallidus (MGPi)  250 -6.5 13 8 3.99 
Pre-genual Cortex (24a)  101 -2 38.5 17 3.96 

 Unique Ramp, Number Deviants > NISR       
Visual Area 3 (V3)  163 7.5 -12.5 26.5 6.42 
Anterior Lateral Belt Region (AL)  130 28 17 12.5 6.35 
Agranular and Dysgranular Insula 
(Ia/Id)  

 
103 21 19 10.5 5.62 

Putamen (Pu)  127 7 24.5 10.5 5.5 
Caudate Nucleus (Cd)  772 -5.5 20 18 5.29 
Primary Visual Cortex (V1)  132 9 -11.5 19 5.16 
Cerebellum  250 7 -15.5 12 4.85 
Somatosensory Parietal Cortex (1,2)  89 -4.5 4 35 4.72 
Cerebellum  138 4 -18 5.5 4.67 
Anterior Intraparietal Area (AIP)  123 18.5 10.5 25.5 4.65 
Somatosensory Parietal Cortex (1,2)  115 -21 13 32.5 4.5 
Caudal Dorsal Pre-Motor Cortex 
(PMdc) 

 
324 -10.5 20 28 4.45 

Ventral Tegmental Area (VTA)  282 -4 4 3 4.37 
Posterior Cingulate Gyrus (23c)  100 -7.5 5.5 30.5 4.07 
Somatosensory Parietal Cortex (1,2)  152 -12.5 6.5 35 4.01 
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Table 8. Unique last item rule and number deviants compared to NISR contrast activation coordinates. 

Contrast Location  Extent 
(voxels) 

x y z Peak 
t-val 

Unique Last Item, Rule Deviants > NISR       
Ventral Dorsal Lateral Prefrontal Cortex 
(46v) 

 
148 -12 43 22 5.23 

Granular Insula (Ig)  170 19 11 20 5.06 
Medial Area 11 (11m)  156 3.5 41 17.5 4.93 
Ventral Intraparietal Area/White Matter 
(VIP/WM) 

 
360 8.5 -1 22.5 4.1 

Unique Last Item, Number Deviants > NISR       
Area TFO (TFO)  121 -14 4 1.5 5.75 
Caudate Nucleus  82 1 29.5 16.5 5.32 
Primary Visual Cortex (V1)  247 -8.5 -18.5 12 5.13 
Area 13 (13m)  184 4 38 18.5 4.92 
Cerebellum  90 12.5 -12.5 5 4.89 
Granular Insula (Ig)  117 17.5 16 15.5 4.36 
Temporal Parietooccipital Associated 
Area (TPO) 

 
 88 21.5 14 7.5 4.32 

Caudomedial Belt Region (CM)  116 -15 2.5 22 4.19 
Anterior Cingulate Gyrus (24a)  85 -2 28.5 20.5 4.14 
Posterior Cingulate Gyrus (29)  151 7 0.5 20.5 4.03 

 

To determine if clusters of activation for unique ramping and unique last item were separable in 

the frontal cortex, we directly compared the amount of variance assigned to each cluster for both 

dynamics. One possibility is that, due to thresholding at the whole-brain level, there was similar 

activation for each dynamic across areas 46d and 46v, but that the peak, and thus the location of 

the thresholded cluster, differed slightly in location. To address this possibility, we created two 

ROIs from the clusters of significant activation in Unique Ramp, Rule Deviants > NISR contrast 
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(area 46d, center xyz = -12.2, 36, 23.8 mm), and Unique Last Item, Rule Deviants > NISR contrast 

(area 46v, center xyz = -12.3, 42.9, 21.8 mm). We found a significant interaction between ROI and 

model in rule deviants compared to NISR (Figure 11; regressor type: F(1, 40) = 0.13, p= 0.71, ηp2 

= 0.003; monkey: F(2, 40) = 2.23, p = 0.12, ηp2= 0.1; brain area: F(1, 40) = 0.09, p = 0.77, ηp2 = 

0.002; monkey x regressor type: F(2, 40) = 0.33, p = 0.72, ηp2 =0.016; brain area x sequence type: 

F(1, 40) = 29.3, p < 0.001, ηp2 = 0.42), indicating that responses in the ramping and last item 

clusters were reliably different. As expected from the whole-brain contrasts, there was no 

significant interaction for number deviants compared to NISR (not shown; F(1, 40) = 0.796, p = 

0.38, ηp2 = 0.02). These results show that these nearby clusters in dorsal and ventral area 46 are 

separable in their dynamics. 

 

 

Figure 11. Nearby regions of DLPFC show significantly different dynamics. ROIs constructed from significant 

areas of activation in unique ramping (46d, dDLPFC) and unique last item (46v, vDLPFC) contrasts shown on coronal 

sections. T-values for the condition of interest > baseline shown. Models show a double dissociation in left area 46 

during rule deviants. Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 
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2.7. Discussion 

In this study, we examined if and how monkey DLPFC (area 46) monitors abstract sequential 

information. We tested two main hypotheses: First, that evidence of abstract sequence monitoring 

would occur in the area of monkey DLPFC analogous to human RLPFC previously shown to be 

critical for abstract sequential tasks (Desrochers et al., 2015, 2019; McKim & Desrochers, 2022b); 

and, second, that ramping dynamics would be associated with abstract sequence monitoring and 

show changes when abstract sequential structure changed. These hypotheses were tested in a no-

report sequence viewing task that allowed the isolation of dynamics associated with sequence 

monitoring from other potential confounds such as motor preparation. We found evidence to 

support both hypotheses. Right area 46 responded to abstract sequence changes in both rule and 

number. Interestingly, left area 46 also responded to changes in abstract sequential rules, but with 

ramping dynamics that were similar to those observed in humans and separable from an increase 

only at the last item. These results suggest that a specific subregion of monkey DLPFC is 

specialized for monitoring general visual abstract sequential information and is a point of critical 

potential functional homology between human and monkey PFC during higher-level cognitive 

function. 

The activation patterns found, with ramping dynamics primarily on the left and onset-based on the 

right, are consistent with prior findings. Though not explicitly tested, in humans ramping was 

observed preferentially on the left during abstract sequential tasks (Desrochers et al., 2015, 2019), 

Experiment 1) in contrast to bilateral ramping activation observed in tasks where sequences were 

based on stimulus identity (i.e., ordered visual items; (Desrochers et al., 2019), Experiment 2; 

(McKim & Desrochers, 2022b). These human results are also consistent with the long-standing 

literature that emphasizes abstract cognitive functions in the left hemisphere of humans (e.g., 
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(Badre & D’Esposito, 2007b; Bunge et al., 2009; Wendelken et al., 2012), with the most famous 

such example being language (Broca, 1861; Milner, 1971; Petrides, 2013). Ramping activity has 

been observed in human frontal cortex during sequential language information processing (i.e., 

sentence comprehension) with electrocorticography (ECoG) (Fedorenko et al., 2016). While 

generally consistent with prior work, future studies of the distinct left and right hemisphere 

activation dynamics will be needed to determine their underlying drivers and their potential 

cognitive import. In particular, the present findings suggest that neural dynamics underlying 

DLPFC sequence monitoring may be distinct to each hemisphere. The monkey fMRI findings 

described here can provide a guide for such recordings. In sum, our results raise the possibility that 

the representation in and contribution of DLPFC to abstract sequence monitoring is lateralized in 

monkeys, and provide a road map to future studies. 

An advantage of fMRI is the whole brain view that is not afforded by typical electrophysiological 

techniques in macaques. This view leads to potential insights about functional organization of 

brain areas without the limitations of a recording chamber (Milham et al., 2022). For example, in 

recent literature, fMRI has enabled the mapping of projections to and from the PFC with a level 

of specificity and across distances not previously possible on this scale (R. Xu et al., 2022). This 

work found an overlap in topographically organized high-level visual maps from the dorsal and 

ventral streams in primate lateral prefrontal cortex. These results raise the possibility that the 

localization of abstract visual sequence monitoring in DLPFC results from its position near the 

apex of highly organized visuo-spatial maps. The overarching organization of more cognitive 

processes in monkey frontal cortex has remained more elusive (Hutchison & Everling, 2014; 

Neubert et al., 2014, 2014; Saleem et al., 2014), and the results presented here represent a critical 

step forward in understanding their topography. 
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We observed similarities and differences to a previous study using a similar auditory task (L. Wang 

et al., 2015) that may reflect the modality employed and the capacity for generalization. Areas of 

the brain that responded to deviant sequences in both the current visual and prior auditory studies 

may be modality general. These areas included premotor cortex, caudate nucleus, and the auditory 

cortex rostromedial belt. In contrast, brain areas that uniquely responded to deviants in the auditory 

or this visual task may be modality specific for abstract sequence changes. For example, deviant 

responses in ventral LPFC and superior temporal sulcus were unique to the auditory study. In this 

visual task, deviant responses in DLPFC, visual cortex, and mPFC were observed that were not 

observed in the auditory task. Though we cannot draw strong conclusions without direct 

comparison between the modalities, these results suggest that networks of brain areas that partially 

overlap may constitute abstract sequence tracking across modalities. One further important 

difference in the studies is that in the auditory study, there was a lack of overlap between areas 

that respond to rule and number deviants in the monkey (in contrast to the human). Here, we 

observed overlap in these responses in area 46, suggesting a higher level of visual integration in 

the monkey. The question of sensory domain generality and integration remains open to further 

investigation. 

The results observed here in this no-report abstract sequence viewing task in monkeys are similar 

to those observed in humans during sequential tasks in important ways. First, ramping activation 

was observed in similar regions in the frontal cortex in the monkey (area 46) and human (RLPFC). 

Other similar areas included visual cortex, putamen, and pre-motor cortex (Desrochers et al., 2015, 

2019; McKim & Desrochers, 2022b). Though the current experiment was only designed to detect 

the presence of ramping in relation to abstract sequences, by analogy, the function may be similar 

in the lateral prefrontal cortex across species. Ramping activity has been ascribed to many possible 
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functions across species, including accumulating evidence (Darriba & Waszak, 2018; de Lange et 

al., 2010; Krueger et al., 2017; Lin et al., 2020), keeping time (Berdyyeva & Olson, 2011; Cueva 

et al., 2020; A. Nobre et al., 2007), reward anticipation (Chiew et al., 2016; Falcone et al., 2019; 

Horst & Laubach, 2013; McKim & Desrochers, 2022b; Roesch & Olson, 2007) and monitoring 

sequence position (Desrochers et al., 2015, 2019). These possibilities are not mutually exclusive, 

as recent evidence in humans suggests that reward anticipation and sequence information may be 

present simultaneously in this signal (McKim & Desrochers, 2022b). The current experiment 

identified ramping in the DLPFC as being sequence related, but did not examine other potential 

influences and therefore remains an open avenue of future inquiry. Similarly, other brain areas that 

display ramping activation remain open for investigation. 

Though this study bears resemblance to a field of literature using statistical learning paradigms, 

the majority of those studies use tasks that rely on the identity of the stimuli themselves. 

Importantly, this study is distinct from most statistical learning studies because the identity of the 

stimulus alone cannot predict the following item (i.e., knowing the current fractal is the green one 

does not determine the next stimulus without also having sequential rule information). A subset of 

work in the infant learning literature examines statistical learning that is not dependent on stimulus 

identity (i.e., “artificial grammar”), but mostly auditory tasks were used (e.g., (J. R. Saffran et al., 

1996)). To our knowledge, only one behavioral study examined violations to a visual (and 

auditory) artificial grammar where sequences of different lengths are constructed according to set 

transition probabilities (Milne et al., 2018). While the findings were important because violations 

were detected similarly in monkeys and humans, there were no neural data presented. Further, 

while transition probabilities created the sequences, there was not a set “rule” by which they were 
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constructed. Therefore, the present study is unique in examining neural responses to abstract visual 

sequences. 

This study contained the following limitations. First, the timing of the stimuli in the current design 

did not allow examination of dynamics of individual sequence items, only across the sequence as 

a whole. In a single experiment, it was not feasible to separate each sequential item by the time 

required to model each separately in an event-related design. Therefore, future work will aim to 

examine the dynamics of individual sequential items in greater detail. Second, while the no-report 

task allowed the elimination of motor preparatory confounds, it did not allow for direct correlation 

with behavioral performance. Although the observed signals will potentially also underlie tasks 

that require responses, this assertion remains to be tested and the present study is an important 

foundation for further experiments. Third, we have focused here on the DLPFC because although 

its importance in cognitive processes in monkeys has been established, its response to visual 

abstract sequences and potential correspondence to dynamics in humans remained unknown. The 

DLPFC is part of a network of areas active in this task, and although they are outside the scope of 

the current experiment, they remain an important avenue of future research. 

In summary, we provide evidence that a specific subregion of monkey DLPFC monitors abstract 

visual sequences and generalizes across different sequence violations (number and rule). Further, 

sequence related ramping dynamics were also observed in DLPFC. Importantly, this region is 

possibly analogous to human RLPFC, where necessary sequence-related ramping signals have 

been identified in the past. These results suggest functional homology across the species as to 

where and how more general abstract visual sequential information is represented in the brain. 

These findings, in turn, inform future models of how abstract sequential information is represented 

during more complex behaviors across species.  
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2.8. Extended Data 

 

Figure 3-1. Overlaid individual monkey contrasts for monkeys W, J, and B. Three second level contrasts, one for 

each monkey, were created using only data bins that contained runs from each animal (W = 9, J = 6, B = 7 bins each). 

As described in Materials and Methods, each bin contained approximately 10 runs. A liberal height threshold of p < 

0.05 was chosen for illustrative purposes before applying and extent (extents listed for each monkey by contrast) and 

false discovery rate (FDR) error cluster corrected for multiple comparisons to p < 0.05. Slice number in the y direction 

is listed under each coronal section. A. Voxel wise contrast of Rule Deviants > New Items, Same Rule (NISR) (W 

extent = 560, J = 1296, B = 623 voxels). B. Voxel wise contrast of Number Deviants > NISR (W extent = 772, J = 

750, B = 667 voxels). C. Voxel wise contrast of Unique Ramp, Rule Deviants > NISR (W extent = 560, J = 630, B = 

581 voxels). 
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Figure 4-1. Example Ramp and Last Item regressors through the orthogonalization process. Note that SPM first 

creates regressors from onsets (in seconds, shown in A.) in samples using higher resolution to be convolved, and then 

they are down-sampled before being orthogonalized and entered in the GLM. 
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Figure 4-2. Example Unique Ramp and Unique Last Item regressor T-values after orthogonalization for the 

Right Area 46 ROI. A. Example  T-values for the rule condition when Ramp is the last regressor in the model. B. 

Example  T-values for the rule condition when Last Item is the last regressor in the model. 
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3. Chapter 3: Sequence rule modulates DLPFC activity 
within our established no-response abstract sequential 

paradigm 
3.1. Abstract 

In the previous chapter, we demonstrated that the monkey DLPFC sub-region Area 46 responds 

when viewing changes to an established sequence, with specific ramping dynamics present during 

sequential monitoring. These visual sequences can be described based on their abstract rule or 

structured timing, features which we have termed sequential characteristics. However, it is 

unknown whether either (or both) of these specific sequential characteristics modulate the 

observed neural responses in monkey Area 46. To determine which sequential characteristics 

modulate neural responses in DLPFC during no-response abstract sequence viewing we created 

task variants which isolated sequence rule, timing, and images. Monkeys underwent awake 

behaving functional magnetic resonance imaging (fMRI) while viewing these tasks variants. When 

monkeys performed the no-report sequence variants, we found that right area 46 shows increased 

activity for isolated abstract rule and isolated structured timing. These results suggest that both 

abstract rule and structured timing are involved in abstract sequence representations, with a neural 

activity that increases when both characteristics are present to define an abstract sequence in the 

DLPFC during abstract sequence viewing. 
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3.2. Introduction 

Our previous experiments aimed to understand a very specific instantiation of visual abstract 

sequences. However, these sequences contained multiple features related to image presentation 

and timing. The co-occurrence of these features within sequential tasks can result in neural 

responses that are difficult to disambiguate from each other when studying abstract sequences. 

Therefore, to understand the underlying system that subserves these mechanisms, it is necessary 

to isolate these characteristics to identify how they may contribute to observed neural activity 

during abstract sequences.  

For our study, we defined abstract sequences based on a specific set of sequential characteristics. 

These sequential characteristics are the features that can be used to describe the composition of 

an abstract sequence. One such characteristic, abstract rule, allows us to describe the higher order 

structure of the sequence independent of the individual images within the sequence. We 

constructed the simplest version of an abstract visual sequence as containing an abstract rule of 

either three of the same, one different or all of the same (AAAB or AAAA). An additional 

characteristic we selected was a specific application of timing which we termed structured timing. 

Structured timing refers to the uniformly spaced repetition of images which groups them 

temporally across sequence presentations. An example of such a timing structure would include 

equivalent 100 ms inter-image intervals for a four-image set grouping them proximally in time in 

a consistent manner. Both abstract rule and structured timing can be used to define an abstract 

sequence, and as such may contribute either independently or in combination to observed neural 

activity during sequential tasks. 

Literature studying abstract sequence characteristics and their neural representations is notoriously 

sparse, limiting our understanding of their impact on neural responses. Previous work has studied 
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some of these sequential characteristics, albeit outside of the context of understanding abstract 

sequential tasks. Work studying rule has shown that specific brain areas process rule changes 

during no-response auditory tasks in both macaques and humans (Bekinschtein et al., 2009; 

Dehaene et al., 2015; Uhrig et al., 2014). On the other hand, there is an extensive literature on 

timing. These studies include anticipation time, rhythmic timing, and elapsed “wait” time (Coull 

& Nobre, 2008, 2008; A. Nobre et al., 2007; Schapiro, Rogers, et al., 2013). However, structured 

timing as it relates to abstract sequences and how it may modulate responses relevant to sequential 

monitoring has not been studied. These characteristics have been shown to modulate neural 

activity in the DLPFC both in sequential and non-sequential contexts. However, much of this work 

has studied these characteristics either 1) outside of a sequential context; 2) in tasks containing 

confounds with other features or 3) in scenarios where other cognitive processes could influence 

the observed neural responses. Therefore, there is a need to understand the influence of these 

sequential characteristics on neural activity in isolation of other task confounds. 

The DLPFC has been implicated in the processing of sequential rule and ordinal position. As 

referenced in our general introduction the monkey DLPFC has been shown to process sequential 

rules and ordinal position during motor tasks (Averbeck et al., 2003, 2006; Shima et al., 2007). 

Work in both humans and monkeys has further supported the processing of sequential rules in the 

macaque PFC during auditory and visual tasks (Bellet et al., 2022; Uhrig et al., 2014; L. Wang et 

al., 2015, 2019). However, most of this work has not directly tested rule representations in isolation 

of additional tasks, or specifically for abstract visual sequences. This could result in neural 

dynamics relevant to rule and its related brain areas being confounded with other sequential 

characteristics or cognitive processes. It is possible that abstract rule in isolation is sufficient to 

define sequential boundaries and modulate DLPFC activity.  



81 
 

Another sequential characteristic thought to modulate DLPFC activity is timing. Timing can be 

described in a variety of ways including the passage of time or intervals in between the appearance 

of stimuli. Work studying timing has shown that prefrontal regions are involved in temporal 

processing (Gu et al., 2015; Lewis & Miall, 2003; Niki & Watanabe, 1979; Pouthas et al., 2005). 

Interval timing studies in rodents have shown that prefrontal regions have similar ramping 

dynamics as those seen during sequential tasks in humans (J. Kim et al., 2013; M. Xu et al., 2014). 

The monkey DLPFC shows neural activity for the temporal monitoring of timing (Chiba et al., 

2021; Niki & Watanabe, 1979; Onoe et al., 2001). However, whether isolated structured timing on 

its own can modulate neural responses in the DLPFC associated to abstract sequential tasks has 

yet to be tested. 

In our previous study, we showed that the DLPFC processes sequences containing the combined 

characteristics of abstract rule and structured timing during no-response abstract sequence 

viewing. Neural activity was present for changes to an established sequence, with the DLPFC 

showing ramping activity or an increasing pattern of activity as animals progressed through the 

items in the sequence (Figure 12) This ramping pattern of activity is thought to be related to the 

process of sequential monitoring or tracking one’s place in a sequence. However, as we discussed 

in the previous paragraphs these ramping dynamics have been shown to be modulated by different 

characteristics present in sequential tasks, outside of the sequential context. Therefore, it is not 

known whether animals are engaging in monitoring, nor which of these sequential characteristics 

are implicated during abstract sequence monitoring. With the following set of experiments we will 

isolate the characteristics of timing and rule to test whether they modulate ramping dynamics 

related to sequential monitoring in the DLPFC.  
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We hypothesized that Area 46 of the monkey DLPFC is modulated by both abstract rule and 

structured timing. In our original experimental design these characteristics were present 

simultaneously for each sequential event. Therefore, to determine the influence of each 

characteristic on the observed neural dynamics in the monkey DLPFC, we tested abstract rule and 

structured timing in isolation. To test these hypotheses, we conducted event-related fMRI in awake 

nonhuman primates with a set of three tasks no-response tasks. The tasks were designed following a 

standard 2 x 2 design, with each task variant isolating either abstract rule (Rule Only) or structured 

timing (Time Only) characteristics present in the no-response abstract visual sequence paradigm 

(Figure 12, and no-response abstract visual sequence task as described in Yusif Rodriguez et al., 2022, 

Figure 4). A variant which contained neither structured timing nor abstract rule (Random) was used 

as a control. Results from these task variants identified that nonhuman primate DLPFC represents 

isolated abstract rule and isolated structured timing information, with similar ramping dynamics 

observed in humans and non-human primates during sequential tasks (Desrochers et al., 2015, 2019; 

McKim & Desrochers, 2022b; Yusif Rodriguez et al., 2022). These dynamics were not present when 

random fractal images are presented without abstract rule or structured timing. Comparisons across 

tasks suggest that the neural dynamics observed in the monkey DLPFC sub-region area 46 during 

abstract sequence viewing are a result of the combined characteristics of abstract rule and time. Overall, 

our findings suggest that individual sequential characteristics compound to larger neural response in 

area 46 for abstract sequence representations. 
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3.3. Materials and Methods 

3.3.1. Subjects 

We tested three adult male rhesus macaques (ages spanning 6-12 years during data collection, 9-

14 kg). All procedures followed the NIH Guide for Care and Use of Laboratory Animals and were 

approved by Institutional Animal Care and Use Committee (IACUC) at Brown University.  

3.3.2. No-Report Abstract Sequence Variants 

All visual stimuli used in this study were displayed using an OpenGL-based software system 

developed by Dr. David Sheinberg at Brown University. The experimental task was controlled by 

a QNX real-time operating system using a state machine. Eye position was monitored using video 

eye tracking (Eyelink 1000, SR Research). Stimuli were displayed at the scanner on a 24” 

BOLDscreen flat-panel display (Cambridge Systems). Task variants were designed following a 

2x2 task design, including the no-report abstract visual sequence task (Yusif Rodriguez et al., 

2022). Each task variant isolates one feature that was present in the original no-report task: abstract 

rule, structured timing, or image. 

3.3.2.1. Stimuli 

Each image presentation consisted of fractal stimulus (approximately 8° visual angle) with varying 

colors and features. Fractals were generated using MATLAB for each scanning session using 

custom scripts based on stimuli from (H. F. Kim & Hikosaka, 2013) following the instructions 

outlined in (Miyashita et al., 1991). For each scan session, new, luminance matched, fractal sets 

were generated. Therefore, the same fractal set was used for all task variants run in same scan 

session, and would match the stimuli presented in previous studies (Yusif Rodriguez et al., 2022). 

All stimuli were presented on a gray background, with a fixation spot that was always present on 
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the screen superimposed on the images. To provide behavioral feedback, the fixation spot was 

yellow when the monkey was successfully maintaining fixation and red if the monkey was not 

fixating.  

Because each task draws fractal images from varying image pools, for clarity we will define each 

image pool as the following: images from the habituation image pool will be referred to as [A, B, 

C, D], images from the deviant image pool will be [E, F, G], and images from the novel image 

pool will be [H, I, J, K]. 

3.3.3. Sequence Rule Only Task 

3.3.3.1. Sequence Types  

There are two possible sequence rules in this task (Figure 13). Sequences were composed of 

images drawn from the habituation image pool of four possible fractals. Sequences were composed 

from these images in one of two possible rules: three of the same, one different (e.g., AAAB, 

DDDC) and four of the same (e.g., AAAA, CCCC). All sequences contained four images with 

jittered inter-stimulus intervals to decorrelate between each sequential image presentation (mean 

2 s, 0.25-8 s). 

3.3.3.2. Block Structure  

Each block contained a single stimulus presentation block containing 30 sequences (120 fractal 

image presentations) and lasted approximately 272 s on average. Sequences were presented in 

pseudo-random order such that a sequence could not begin with the same fractal as the final fractal 

of the previous sequence.  
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3.3.3.3. Run Structure 

Each run was composed of a single block, starting, and ending with 14 s fixation blocks Figure 

13 The same sequential rule was used for the entirety of a single run: three the same, one different 

(e.g., AAAB, DDDC) and four the same (e.g., AAAA, CCCC). Runs lasted approximately 5 min. 

The sequence rule (three same, one different or four same) used for each run was counterbalanced 

across each scanning session to have an equal number of runs for each rule. Monkeys typically 

completed 4-6 runs of this task (among other tasks not reported here) in a single scanning session 

(one day). 

3.3.4. Timing Only Task 

3.3.4.1. Timing Types  

There were fifteen possible condition combinations of timing and images that could occur in this 

task (Figure 14). This task intended to isolate the effects of familiar or habituated timings 

compared to rare, less frequent timings also referred to as “deviant” timings. Therefore, images 

were presented in a pseudorandom order, with no image repetitions following any given image 

presentation. To perceptually group the pseudo randomly presented images, sets of 2, 4 or 6 images 

were assigned particular timing templates. In the following section we will describe possible 

stimuli combinations in terms of possible timing template assignments (habituation timings or 

deviant timings), and possible fractal image category (habituation image, deviant image, or novel 

image pool) within a given timing assignment. The possible combinations are the following: 

habituation images with habituation timings, deviant and habituation images with habituation 

timings, habituation images with deviant timings, deviant and habituation images with deviant 

timings and novel images with habituation timings. Across these possible time and image 

combinations there a total of nine different timing templates used. These templates matched the 
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ones used in Yusif Rodriguez et al., 2022.  The inter-image group interval was jittered to 

decorrelate across timing templates (mean 2 s, 0.25-8 s). 

Habituation Timings  

Habituation timings were drawn from a pool of 6 possible templates. All templates contained four 

images and followed one of three possible general timings based on the total duration of the image 

presentations: short (1.1 s), medium (1.7 s), and long (2.3 s). Each template, in turn, had two 

possible timing variations within it, one with longer stimulus durations and one with shorter 

stimulus durations: short 0.1 s and 0.2 s, medium 0.1 s and 0.3 s, long 0.2 s and 0.3 s. Inter-stimulus 

intervals were arranged to evenly space the four stimulus presentations within the total sequence 

duration.  

Fractal combinations to timings were categorized based on the total timing stimulus durations 

(short, medium or long). Additionally, within each combination images were pseudo randomly 

assigned such that there was no predictable pattern or subsequent image repetitions. Stimuli 

combinations for fractal images would then be the following:  

Habituation Image Combinations: Short habituation timings with habituation images (HsH), 

medium habituation timings with habituation images (HmH), long habituation timings with 

habituation images (HlH). Therefore, an example image group could be ABAD assigned one of 

the aforementioned possible timing templates.  

Deviant Image Combinations: Due to the rarity of deviant image presentations, images appearing 

within a habituation image and timing template combination would tend to occur mixed in with 

habituation images. These possible conditions were either short habituation timings with 

habituation and deviant images (HsHD), medium habituation timings with habituation and deviant 
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images (HmHD), or long habituation timings with habituation and deviant images (HlHD). An 

example image group could be EBAD, assigned one of the aforementioned total durations.  

Novel Image Combinations: Short habituation timings with novel images (HsN), medium 

habituation timings with novel images (HmN), long habituation timings with novel images (HlN). 

An example image group could be IJHK, assigned one of the aforementioned total durations.  

Deviant Timings 

Deviant timings were drawn from three possible timing templates. Across deviant timings, the 

total durations were matched to the short, medium, and long habituation timing templates. When 

images were assigned a deviant timing template, images are displayed for 0.2 s, regardless of 

deviant total timing type. There were three deviant timing templates, detailed as follows:   

Medium Deviant Combinations: The timings within this template are assigned to four images and 

had a total duration of 1.7 s. Because deviant timings occurred in the same blocks where a deviant 

image occurrence was possible and with habituation images occurring, the image and timing 

combinations were as follows: Medium deviant timing with habituation images only (MDH); 

Medium deviant timing with habituation and deviant images (MDHD). 

Short and Long Timings: The timings within this template are assigned to two (short timing 

template) or six (long timing template) images and had a total duration of either 1.1 s (short timing 

template) or 2.3 s (long timing template) respectively. Because deviant timings occurred in the 

same blocks where a deviant image occurrence was possible and with habituation images 

occurring, the image and timing combinations were as follows: Short deviant timing with 

habituation images only (SDH); Short deviant timing with habituation and deviant images 
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(SDHD); Long deviant timing with habituation images only (LDH); Long deviant timing with 

habituation and deviant images (LDHD). 

3.3.4.2. Block Structure  

Each block contained 30 sequences and lasted approximately 130 s on average. Habituation and 

Novel image blocks contained equal numbers of the six possible timing templates (two of each: 

short, medium, and long).  

All fractal images were presented in pseudo-random order such that fractal presentations were 

counterbalanced, but the same fractal image could not follow the next. Deviant blocks were 

composed of 96 habituation images and 24 deviant images, each assigned a timing template for 

presentation. All deviant timing combinations within a block were of the same type. The six 

deviant timings were pseudo-randomly interspersed throughout the block such that deviant timings 

did not occur in the first 6 image timing assignments of the block (to avoid block initiation 

confounds), and deviant timings were not presented consecutively to each other. If deviant timings 

contained a variable number of items (i.e., short deviant timings and long deviant timings), then 

an equal number of two- and six-item timings were included within a single block. The 24 

habituation timings within deviant blocks were presented in the same manner as in habituation 

blocks (i.e., evenly distributed timing templates and avoiding fractal image repeats). 

3.3.4.3. Run Structure 

Each run was composed of four blocks, interleaved with 14 s fixation blocks. The first block of 

each run contained only habituation timings with habituation images. The two subsequent blocks 

were either a medium deviant timing block or a short and long deviant timing block, with their 

order counterbalanced across runs. The last block was always a novel image with habituation 

timings block. The same habituation rule was used for the entirety of a single run. Runs lasted 
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approximately 10 min. Monkeys typically completed 2-4 runs of this task in a single scanning 

session (one day). 

3.3.5. Image Only Task 

3.3.5.1. Stimuli Types 

This task included stimuli from the habituation, deviant and novel images pool (Figure 15). The 

inter-stimulus interval was jittered to decorrelate across individual image presentations (mean 2 s, 

0.25-8 s).  

3.3.5.2. Block Structure  

Each block contained 120 images and lasted approximately 112 s on average. Habituation blocks 

contained 120 images from the habituation image pool. Habituation images were presented in 

pseudo-random order such that a previous fractal presentation could not be followed by the same 

fractal. The deviant block was composed of 96 habituation images and 24 deviant images. The six 

deviant images were pseudo-randomly interspersed throughout the block such that deviant images 

did not occur in the first 24 image presentations of the block (to avoid block initiation confounds), 

and deviant images were not presented consecutively to each other. The 96 habituation images 

within the deviant block were presented in the same manner as in habituation blocks (i.e., pseudo-

random order such that a previous fractal presentation could not be followed by the same fractal). 

The novel block contained images from the four possible novel image pool for that scan session. 

The novel image block presentation followed the same rules as the habituation image block. 

3.3.5.3. Run Structure 

Each run was composed of three blocks, interleaved with 14 s fixation blocks (Figure 15). The 

first block of each run contained only habituation sequences. The second block was always a 

deviant image block, and the third block was always a novel image block. Runs lasted 
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approximately 15 m. Monkeys typically completed 2-4 runs of this in a single scanning session 

(one day). 

3.3.6. Pre-scan Fixation Period 

All runs were initiated according to the monkey’s fixation behavior to ensure that the monkey was 

not moving and engaged in the task before acquiring functional images. During this pre-scan 

period, a fixation spot was presented. Once the monkey successfully acquired this fixation spot 

and received approximately four liquid rewards (12 – 16 s), functional image acquisition and the 

first habituation block were initiated. 

3.3.7. Reward 

The timing of liquid rewards was not contingent upon task events, only on the monkey maintaining 

fixation. Rewards were delivered on a graduated schedule such that the longer the monkey 

maintained fixation, the more frequent rewards were administered (Leite et al., 2002). The first 

reward was given after 4 s of continuous fixation. After two consecutive rewards of the same 

fixation duration, the fixation duration required to obtain reward was decreased by 0.5 s. The 

minimum duration between rewards that the monkey could obtain was 0.5 s. Fixation had to be 

maintained within a small window (typically 3° of visual angle) around the fixation spot to not 

break fixation. The only exception was a brief time window (0.32 s) provided for blinks. If the 

monkey’s eyes left the fixation window and returned within that time window, it would not trigger 

a fixation break. If fixation was broken, the reward schedule would restart at the maximum 4 s 

duration required to obtain reward. 
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3.3.8. FMRI Data Acquisition 

Methods are as described in (Yusif Rodriguez et al., 2022). Monkeys were trained to sit in the 

“sphynx” position in a custom MR-safe primate chair (Applied Prototype, Franklin, MA or 

custom-made by Brown University). The monkey’s head was restrained from moving via a plastic 

“post” (PEEK, Applied Prototype, Franklin, MA) affixed to the monkeys’ head and the primate 

chair. Monkeys were habituated to contrast agent injection procedures, recorded MRI sounds, 

wearing earplugs (Mack's Soft Moldable Silicone Putty Ear Plugs, Kid’s size), and transportation 

to the scanner prior to MRI scanning sessions. Monkeys were trained on the behavioral task with 

different images that were not used during scanning. 

Prior to each scanning session, monkeys were intravenously injected with a contrast agent: 

monocrystalline iron oxide nanoparticle (MION, Feraheme (ferumoxytol), AMAG 

Pharmaceuticals, Inc., Waltham, MA, 30 mg per mL or BioPal Molday ION, Biophysics Assay 

Lab Inc., Worcester, MA, 30 mg per mL). MION to improves the contrast-to-noise ratio ~3-fold 

(Leite et al., 2002; Vanduffel et al., 2001) and enhances spatial selectivity of MR signal changes 

(Zhao et al., 2006). MION was injected, approximately 30-60 min before scanning, into the 

saphenous vein below the knee (7 mg/kg), then flushed with a volume of sterile saline 

approximately double the volume of the MION injected. No additional MION was added during 

scanning, as MION has a long blood half-life (15.3 +/- 3.5 hr) (Leite et al., 2002).  

A Siemens 3T PRISMA MRI system with a custom six-channel surface coil (ScanMed, Omaha, 

NE) at the Brown University MRI Research Facility was used for whole-brain imaging. 

Anatomical scans consisted of a T1-MPRAGE (repetition time, TR,  2700 ms; echo time, TE, 3.16 

ms; flip angle, 9°; 208 sagittal slices; 0.5 x 0.5 x 0.5 mm), a T2 anatomical (TR, 3200 ms; TE 410 

ms; variable flip angle; 192 interleaved transversal slices; 0.4 x 0.4 x 0.4 mm), and an additional 
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high resolution T2 anatomical (TR, 8020 ms; TE 44 ms; flip angle, 122°; 30 interleaved transversal 

slices; 0.4 x 0.4 x 1.2 mm). Functional images were acquired using a fat-saturated gradient-

echoplanar sequence (TR, 1.8 s; TE, 15 ms; flip angle, 80°; 40 interleaved axial slices; 1.1 x 1.1 x 

1.1 mm).  

3.3.9. FMRI Data Analysis 

The majority of the following analyses were performed in Matlab using SPM 12 (http://www.fil. 

Ion.ucl.ac.uk/spm). Prior to analysis, data were preprocessed using the following steps: reorienting 

(to ensure proper assignment of the x,y,z planes), motion correction (realignment), normalization, 

and spatial smoothing (2 mm isotropic Gaussian kernel separately for gray matter and white 

matter). All steps were performed on individual runs separately. The T1-MPRAGE anatomical 

image was skull stripped using FSL BET brain extraction tool (http://www.fmrib.ox.ac.uk/fsl/) to 

facilitate normalization. All images were normalized to the 112-RM SL macaque atlas (McLaren 

et al., 2009). 

Runs were included for analysis only if they met the following criteria: the monkey had to be 

performing well and a sufficient number of acquisition volumes within the run had to pass data 

quality checks. The monkey’s performance was evaluated by calculating the percentage of time 

within a run that fixation was maintained. Runs were excluded if the monkey was fixating < 80% 

of the time (similar criteria as in Leite et al., 2002; Vanduffel et al., 2001; Wang et al., 2015). To 

evaluate data quality, we used the ART toolbox (Artifact Detection Tools, 

https://www.nitrc.org/projects/artifact_detect) to detect outlier volumes. Any volumes that had 

motion greater than one voxel (1.1 mm) in any direction were excluded. Any run with greater than 

12% of volumes excluded was excluded from analysis (see Table 9 and total included data). 

http://www.fmrib.ox.ac.uk/fsl/
https://www.nitrc.org/projects/artifact_detect
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Table 9. Percentage of excluded data using fixation and motion criteria and total included data across tasks and 
animals.  

% Excluded Fixation 
 Monkey B Monkey J Monkey W 
Rule Only 4.3% 8.24% 13.3% 
Time Only 5.06% 6.96% 10.13% 
Random 4.44% 7.78% 10.6% 
% Excluded Motion 
 Monkey B Monkey J Monkey W 
Rule Only 1.79% 16.1% 1.79% 
Time Only 1.89% 16.5% 0.63% 
Random 1.67% 13.3% 1.11% 
Total Included Runs 
 Monkey B Monkey J Monkey W Total Runs 
Rule Only 27 63 79 169 
Time Only 17 38 43 98 
Random 27 35 55 117 

 

3.3.9.1. Models 

Within-subject statistical models were constructed under the assumptions of the general linear 

model (GLM) in SPM 12 for each pseudo-subject bin. For all models, data were binned into 

approximately 10-run pseudo-subject bins. Each bin contained data from only one monkey. Runs 

were pseudo-randomly assigned to bins to balance the number of runs which followed each of the 

two sequential rules for the Rule Only task (three same, one different or four of the same) and the 

distribution of runs from earlier and later scanning sessions. Condition regressors were all 

convolved with a gamma function (shape parameter = 1.55, scale parameter = 0.022727) to model 

the MION hemodynamic response function (Vanduffel & Farivar, 2014). The first twenty four 

image presentations in a run and reward times were included as nuisance conditions. Additional 

nuisance regressors were included for the six motion estimate parameters (translation and rotation), 

outlier volumes, and image variability (standard deviation of within run image movement 
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variability, calculated using the ART toolbox). Outlier volumes were determined using the ART 

toolbox (standard global mean; global signal detection outlier detection threshold = 4.5; motion 

threshold = 1.1mm; scan to scan motion and global signal change for outlier detection) and one 

additional regressor with a “1” at only that volume was included for each volume to be “scrubbed”. 

Regressors were estimated using a bin-specific fixed-effects model. Whole-brain estimates of bin-

specific effects were entered into second-level analyses that treated bin as a random effect. One-

sample t-tests (contrast value vs zero, p < 0.005) were used to assess significance. These effects 

were corrected for multiple comparisons when examining whole-brain group voxelwise effects 

using extent thresholds at the cluster level to yield false discovery rate (FDR) error correction (p 

< 0.05).  

The following three GLMs were utilized for analyses as described: 

Onsets Model: To assess the univariate effects of deviant sequences, we constructed a model using 

instantaneous stimulus onset regressors. For the Rule Only and Random tasks, onsets were 

modeled for each individual image presentation. For the Time Only task onsets were modeled for 

the first item in each timing “template” with the following twelve condition regressors for different 

timing types: short, medium, and long habituation timing templates; medium deviant timings; two- 

and six-item deviant timings; and habituation timings with novel items.  

Parametric Ramp Model: To directly test whether variance could be better accounted for by 

ramping activation, we constructed a model that would allow a ramp regressor to compete for 

variance with onset activity. Onset regressors were constructed with an instantaneous stimulus 

onset regressor at each stimulus onset for the Image Only task, and at each image set onset for the 

Time Only task. Including an onset at each position effectively modeled sustained activation 
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throughout the sequence and enabled the inclusion of the following parametric regressors. The 

ramp parametric was entered as the structure position (1-4) for Time Only, or as “pseudo” position 

for the Image Only task. Parametric regressors were implemented hierarchically in the GLM. 

Therefore, variance explained by the last parametric regressor (in this case, ramping), is above and 

beyond what could be explained by the onsets regressor. 

Parametric Last Item versus Unique Ramp Model: To directly test whether variance could be better 

accounted for by a phasic response at the last item in the sequence or ramping activation, we 

constructed a pair of models to allow last item and ramp regressors to compete for variance within 

the same model. Onset regressors were constructed with an instantaneous stimulus onset regressor 

at each image onset for all tasks.  

The last item parametric was added as ones at the first sequence positions and an arbitrarily larger 

value (6) at the last item. The ramp parametric was entered as the sequence position (1-4, 1-2, or 

1-6) for either each sequence (Rule Only) or timing template (Time Only). Because there was no 

sequence rule or timing structure to group images in the Random task, both the last item and ramp 

parametrics were entered as if items were grouped to test for the possibility of either dynamic 

existing. Parametric regressors were implemented hierarchically in the GLM. Therefore, variance 

explained by the last parametric regressor (in this case, ramping), is above and beyond what could 

be explained by the onsets or last item regressors. 

Parametric Ramp versus Unique Last Item Model: This second model of the pair sought to identify 

variance uniquely explained by the last item regressor, above and beyond variance explained by 

the onsets or ramping regressors. All other aspects of the model were the same as the unique ramp 

model above. 
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3.3.9.2. ROI Analyses 

The primary bilateral regions of interest were constructed using area 46 clusters that had shown 

significant activity in Yusif Rodriguez et al., 2022.  We created the left ramp ROI utilizing the 

significant left DLPFC cluster of activation for Unique Ramp, Rule Deviants > NISR contrast in 

the unique ramp model (center xyz = -12.2, 36, 23). The right conjunction ROI was created from 

the right DLPFC cluster from the conjunction map obtained from the contrasts Rule Deviants > 

NISR and Number Deviants > NISR in the sequence onset model (center xyz = 10.2, 33.7, 21.8). 

To compare activation within and across ROIs in a manner that controlled for variance, we 

extracted t-values from the condition of interest over baseline using the Marsbar toolbox (Jean-

Baptiste Poline, 2002). T-values (one for each pseudo-subject bin: Rule Only, n = 16 bins; Time 

Only, n = 10; Random, n = 10) were entered into RM-ANOVAs with the identity of the monkey 

entered as a covariate.  

3.4. Results  

Three monkeys (macaca mulatta) performed no-report viewing of sequential task variants while 

undergoing awake fMRI scanning. The monkeys were trained to fixate on a central spot while 

viewing a stream of fractal images that varied in presentation depending on the task variant (Figure 

12). These task variants, like the one described in Yusif Rodriguez, et al., 2022, did not require 

responses, only fixation, and thus were also termed “no-report”. The tasks were performed in runs 

varying in total length between ~5-15 minutes. To encourage animals to maintain fixation 

throughout, rewards were administered on a graduated schedule not correlated with task image 

presentations: the longer they maintained fixation, the shorter the duration between rewards. 

Reward was thus decorrelated from the fractal visual stimuli (see Methods for more details). 
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Animals completed three possible tasks, with each one containing only the abstract rule (Rule 

Only), structured timing (Time Only), or neither (Random), as follows.  

To maintain consistency in the naming scheme of the used image sets, we kept the names of the 

images based on their respective categories in our no-response abstract visual sequence task. 

Therefore, habituation images came from the habituation image set and were always the most 

familiar images across tasks and had the highest frequency of presentation across task variants. 

Deviant images were taken from the deviant image pool also used in the previous study and served 

a similar function of being infrequent events in the blocks in which they were presented. Novel 

images did not exist in the previous task and have been labeled as such to differentiate that they 

were not previously viewed by animals outside of their corresponding tasks. 

 

Figure 12. Hypothesis summary and methodology. A. Schematic representation of the monkey dorsolateral 

prefrontal cortex (DLPFC) depicting the main questions that were the focus of this study: Is ramping in the monkey 

DLPFC modulated by isolated timing (bottom left) or isolated rule (bottom right)? B. Monkeys only fixate throughout 

runs. Scanning is performed in the “sphynx” position. C. 2x2 task design to isolate sequential characteristics. Possible 

tasks could contain either abstract rule and structured timing (no-response abstract visual sequence task; top left), 

structured timing and no abstract rule (Time Only; bottom left), abstract rule and no structured timing (Rule Only; top 

right), or neither (Random; bottom right). 
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3.4.1. Rule Only Task 

The sequence rule only task intends to isolate the abstract sequential rule. To isolate abstract 

sequential rule, we presented images where the only variable manipulated is whether animals view 

images following one of two possible sequential rules. In this task, timing between each image 

presentation has jittered inter-stimulus intervals (0.25s – 8s). Therefore, the timing is 

uninformative as it cannot be tracked nor predicted. This manipulation results in a task where no 

other information can be tracked other than the rule for the serial image presentation. For each run, 

animals viewed one of two possible sequential rules AAAB, or AAAA (A and B represent different 

images drawn from a pool of four possible images; 30 sequences in total per run, Figure 13). Each 

run began and ended with 14 s fixation blocks. A total of 169 (79 monkey W, 63 monkey J, 27 

monkey B) runs were analyzed. Monkeys performed the task well and fixated for 95% of the time 

in included runs (see Methods for those excluded). 
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Figure 13. No response rule-only task. A. Example partial rule only block for sequence rule three same, one different 

(AAAB). Each run contained a single block with 30 sequences in total, each composed of four fractal images (120 

images in total). B. Possible stimuli pool for rule only task. Stimuli come from the four possible images corresponding 

to the habituation stimuli fractal set. Yellow squares illustrate fixation blocks which occur at the beginning and end 

of the run. C. Segment of rule only runs with the two possible rule types: three of the same, one different (AAAB; top 

row), or four of the same (AAAA; bottom row). Blue water droplets schematize reward delivery, which is decoupled 

from sequence viewing and delivered on a graduated schedule based on the duration the monkey has maintained 

fixation.  

3.4.2. Time Only Task 

The time only task intends to isolate activity related to structured timing. To isolate structured 

timing, we presented fractal images in a pseudorandom order where the only variable manipulated 

is the assigned timing template. In this task, timing between each image presentation has jittered 

inter-structure intervals (0.25s – 8s) and timing templates have inter-stimulus intervals that are 

consistent within the template. This structured timing then allows images to appear perceptually 
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grouped based on time proximity. The images themselves are uninformative as there is no order 

to their presentation and cannot be tracked nor predicted. This task was performed in runs (~10 

min each), that each contained four blocks (Figure 14). Each block contained specific timing 

template and image category pairings described in the following section (for more details on the 

task design see Methods). 

Habituation Images, Habituation Timings Block: For each run, the first block was always a block 

containing fractals drawn from the habituation image pool paired with pseudo randomly assigned 

habituation timing templates. Image presentations were such that a presented image could not be 

followed by the same image. The same timing template could also not be immediately repeated if 

it had already been assigned to a set of images. All the timings corresponding to the habituation 

timing template were structured such that the same interstimulus interval and stimulus duration 

length was assigned to 4 images in a row.  

Deviant and Habituation Images, Deviant and Habituation Timings Blocks: The two subsequent 

blocks contained both habituation image (96 of the 120 images, 80% of images in the block) 

presentations interspersed with rare deviant images which came from a separate image pool of 

three possible images (24 of the 120 images, 20% of images in the block). Image presentation 

frequency in this block was constructed to directly match the presentation frequency in the no-

response abstract visual sequence task. We similarly matched the frequency of the structured 

timing templates used, with 80% corresponding to the habituation template and 20% to the deviant 

templates. Additionally, to mirror the organization of the no-response abstract visual sequence task 

each of the two possible deviant blocks could only contain either the medium deviant timing 

template or the short/long deviant timing template. Deviant timing templates were drawn from a 

timing pool separate from the possible habituation timings. The order of these deviant blocks 
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would be randomly selected between runs, such that each one did not always happen before the 

other and vice versa. Because we were isolating the effect of time, there were multiple possible 

image and timing template pairings illustrated in Figure 14. 

Novel Images, Novel Timings Block: The last block of the run was always a block containing novel 

images that came from a separate pool of four possible novel fractals. Image presentations and 

timing assignments followed the same rules as described for the habituation images paired with 

habituation timings block. 

The four total blocks were interleaved with 14 s fixation blocks. A total of 98 (43 monkey W, 38 

monkey J, 17 monkey B) runs were analyzed. Monkeys performed the task well and fixated for 

95% of the time in included runs (see Methods for those excluded). 
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Figure 14. No response time-only task. A. Example partial habituation timing block with habituation images. B. 

Example stimulus pools show a set of images that would be used in a single scanning session. New images are used 

each session. C.  Six possible habituation (frequent) timing templates (left) and deviant (infrequent) timings (right) 

illustrated with gray and colored rectangles indicating single images. Total sequence durations are listed for each 

template type. D. Examples of a sub-set of possible timing and image category combinations. E. Example run, with 
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each bar indicating one multi-image timing structure: Each gray bar corresponds to habituation timings, colored bars 

correspond to deviant timings. The first block contains only habituation images paired with habituation timings. The 

subsequent two blocks contain 80% habituation timing templates and 20% deviant timing templates that can be paired 

to either habituation images or a combination of habituation and deviant images. The final block is always a novel 

images block paired with habituation timings. Timing structure blocks alternate with fixation blocks. Blue water 

droplets schematize reward delivery, which is decoupled from time-image pairings and delivered on a graduated 

schedule based on the duration the monkey has maintained fixation. 

3.4.3. Random Task   

The random task does not contain abstract rule nor structured timing, functioning as the control 

for our 2x2 task design. To make the task random, we presented images in a pseudorandom order 

with the only condition being that the previously presented image cannot be followed by the same 

one. In this task, timing between each image presentation had jittered intervals (0.25s – 8s). This 

task was performed in runs (~ 15 min each), that each contained three blocks. For each run, the 

first block contained only habituation images. The second block was always a deviant block 

containing both rare deviant image fractals (24 of the 120 image repetitions per block, 20% of 

image presentations) and habituation images (96 of the 120 images, 80% of images in the block) 

to match the image distribution of the no-response abstract visual sequence task with jittered 

stimulus presentation intervals. The last block of the run was always a block containing novel 

images with jittered stimulus presentation intervals. The three total blocks were interleaved with 

14 s fixation blocks. A total of 117 (55 monkey W, 35 monkey J, 27 monkey B) runs were analyzed 

for this task. 
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Figure 15. No response random task. A. Example partial random habituation image block. Each run contained three 

blocks with 120 presentations (360 image presentations in total). B. Possible stimuli pool for random task. Yellow 

squares illustrate fixation blocks which occur at the beginning and end of the run. C. Example block structure showing 

example segments of each block (in order of appearance within a run, top to bottom). Segment of random habituation 

images block (top row), stimuli come from the habituation stimuli pool. Segment of random deviant images block 

(middle row), stimuli come from the habituation stimuli pool (80% of images) or the deviant images pool (20%of 

images). Segment of random novel images block (bottom row), stimuli come from the novel stimuli pool. Blue water 

droplets schematize reward delivery, which is decoupled from image events and delivered on a graduated schedule 

based on the duration the monkey has maintained fixation.  
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3.4.4. Isolated abstract sequential rule modulates DLPFC responses 

Our first goal for this set of experiments was to test the hypothesis that neural activity in the 

DLPFC sub-region Area 46 responds to abstract rule in the absence of structured timing. Because 

this and the following sets of tasks are no report, in this task variant we tested this hypothesis using 

neural (BOLD) responses to position activity during isolated abstract sequence rule. Previous work 

has shown that neural responses related to sequential structure and changes to it require attention 

(Bekinschtein et al., 2009). Additionally, the monitoring of these abstract sequences is thought to 

associated with specific neural patterns of activity such as ramping dynamics (Desrochers et al., 

2015, 2019; McKim & Desrochers, 2022a). Our previous study using a no-report abstract visual 

sequence task in non-human primates showed increased neural responses in Area 46, and these 

responses showed similar ramping dynamics observed during human sequential monitoring tasks 

(Yusif Rodriguez et al., 2022). These previous findings support the prediction that animals are 

processing the overall higher order structure of the abstract sequences since we observed responses 

to sequential rule deviants. Therefore, we predict that abstract rule in the absence of structured 

timing contributes to the observed neural dynamics during no-response abstract sequence viewing 

and should similarly elicit neural responses in the DLPFC. 

Our 2x2 task design allowed us to test the combined influence of timing and rule on DLPFC 

activity, and now we can isolate these characteristics to test their individual influence. The no-

response abstract visual sequence task allowed us to observe responses related to monitoring 

changes to an established sequence using rare sequential deviants. However, we also wanted to 

test for ramping activity that could indicate monitoring throughout each sequence step. Therefore, 

in this task variant which we have named “Rule Only”, we have isolated one specific characteristic 

present in our previous no-response abstract visual sequence task, abstract sequence rule. Using 
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the rule only task we could identify position by position neural activity in Area 46 to determine 

whether abstract rule is monitored throughout and with similar ramping dynamics. Here, animals 

viewed a single block containing images from the habituation pool of images. These images were 

presented as sequences that followed a rule of either three of the same and one different (AAAB) 

or four of the same images.  

To test the prediction that isolated abstract visual sequence rule elicits ramping activity, we first 

constructed an unbiased region of interest (ROI) located in monkey area 46 in each hemisphere to 

compare activity across sequence positions. Our previous work identified specific sub-regions of 

activation within area 46 related to the processing of deviations to an established abstract sequence 

(Yusif Rodriguez et al., 2022). Therefore, we defined two ROIs from Yusif Rodriguez et al., (2022) 

during the no-report abstract visual sequence task on which this task is based on. One ROI was 

defined from the parametric ramping cluster in left area 46 (center xyz = -12.2, 36, 22.8; size = 

16.25 mm), and another from the conjunction map showing overlapping activity between rule and 

number changes in right area 46 (center xyz = 10.2, 33.7, 21.8; size = 5.2 mm). In all following 

sections we will refer to these ROIs as Left Ramp ROI and Right Conjunction ROI respectively. 

The resulting ROIs spanned a small region of area 46 that mainly contained area 46d (NIMH 

Macaque Template, NMT v2.0 Macaque Atlas, Jung et al., 2021; Seidlitz et al., 2018).  

To test for a ramping increase in activity we created a model that included separate regressors for 

each position in the four-item sequence, modeled as zero-duration onsets. Statistical testing was 

performed on ~10 run bins (n = 16), each consisting of data from a single monkey (see Methods). 

We compared t-values from the contrast of each condition over baseline (e.g., Position 1 > Baseline 

vs. Position 2 > Baseline, etc.) to account for potential differences in variance across conditions. 

This type of comparison was used to examine ROI activity throughout, and we refer to 
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comparisons by the conditions of interest (without listing the contrast over baseline, e.g., Position 

4 > Position 1, etc.). All statistical tests on ROIs were performed on binned data and included a 

covariate for monkey identity (n = 3). While we report the effect of monkey in the following 

analyses, the focus of the study was not on individual differences, and our discussion centers on 

condition effects. 

3.4.5. Activity in area 46 increases as a result of progression through sequence 

position 

We found that activity in the left ramp ROI represented abstract sequence changes, with the lowest 

activation in position 1, and highest activation occurring in position 4 (Figure 16, Table 10; 

position: F(3, 39) = 3.397, p = 0.027, ηp2 = 0.207). Responses matched a significant pattern of 

ramping activity across sequence positions (ramp: F(1, 13) = 11.78, p = 0.0045, ηp2 = 0.475). 

Position and ramping responses did not reach statistical significance in the right conjunction ROI 

(position: F(3, 39) = 0.316, p = 0.814, ηp2 = 0.024; ramp: F(1,13) = 0.940, p = 0.350, ηp2 = 0.067). 

Despite the lack of significant ramping in the right conjunction ROI, there were no significant 

differences between the left ramp ROI and the right conjunction ROI (position x brain area: F(3,84) 

= 2.347, p = 0.08, ηp2 = 0.055).  

As a control for the possibility that increasing ramping activity was occurring due to progression 

through the block, we created a model with regressors for positions one through eight. When 

comparing activity at position eight to activity at position four there was no significant difference 

(position: F(3, 39) = 3.397, p = 0.027, ηp2 = 0.207; Figure 16). Altogether these results suggest 

that area 46 responses are modulated by isolated abstract sequential rule.  
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Figure 16. Isolated abstract rule modulates ramping activity in area 46. T-values for the position of interest > 

baseline are shown. The locations of area 46 regions of interest (ROIs), left ramp ROI and right conjunction ROI, are 

illustrated in red on coronal sections (y = 35). A. Positions 1-4 compared to each other in left ramp ROI showed a 

reliable difference and a significant positive linear trend. B. Positions 1-4 compared to each other in right conjunction 

ROI. C. Positions 1-8 compared to each other in left ramp ROI show significant ramping activity. D. Positions 1-8 

compared to each other in right conjunction ROI. Error bars are 95% confidence intervals (1.96 x standard error of 

the within-bin mean). 

Table 10. Repeated measures ANOVAs comparing position activity in L46 and R46 

  Left Ramp ROI Right Conjunction ROI 
Factor dfs F p ηp2 F p ηp2 
Positions 1-4 
Position 3, 39 3.397 0.027 0.207 0.316 0.814 0.024 
Ramp 1, 13 11.78 0.0045 0.475 0.940 0.350 0.067 
Monkey 2, 13 2.297 0.140 0.261 3.295 0.070 0.336 
Monkey x Position 6, 39 0.683 0.664 0.261 1.376 0.249 0.336 
Monkey x Ramp 2, 13 1.304 0.304 0.095 0.376 0.694 0.175 
Positions 1-8 
Position 7, 91 1.905 0.078 0.128 0.854 0.546 0.062 
Ramp 1, 13 5.111 0.042 0.282 0.013 0.911 0.001 
Monkey 2, 13 2.065 0.166 0.241 2.602 0.112 0.286 
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Monkey x Position 14, 91 0.783 0.685 0.241 0.685 0.783 0.286 
Monkey x Ramp 2, 13 1.610 0.237 0.108 0.293 0.751 0.095 
Positions 4 Vs 8        
Position 1, 13 0.053 0.821 0.0041 1.738 0.210 0.118 
Monkey 2, 13 0.970 0.405 0.130 0.281 0.759 0.041 
Monkey x Position 2, 13 0.378 0.692 0.055 0.593 0.567 0.084 

 

We next aimed to confirm whether a parametric ramp model could explain the observed ramping 

pattern of activity in this neural data, as was demonstrated in the previous study (Yusif Rodriguez 

et al., 2022). We hypothesized that isolated abstract rule would similarly produce changes in 

ramping activation in area 46 if abstract sequence monitoring underlies this dynamic. To confirm 

if a linear model of BOLD dynamics would capture also capture variance due to ramping in area 

46 during this task, we used the same model designed to isolate these dynamics as described in 

(Methods, Yusif Rodriguez et al., 2022). Because variance due to changes at the last item of the 

sequence could be misattributed to ramping regressors, we directly compared activity in both ROIs 

that could be accounted for by ramping and last item change regressors. In this control analysis, 

we found that activity was not significantly different between unique ramping and unique last item 

change across all positions in either the left ramp ROI (unique ramp: F(1,13) = 0.700, p = 0.418, 

ηp2 = 0.051; monkey x ramp: F(2,13) = 0.015, p = 0.985, ηp2 = 0.054) nor the right conjunction 

ROI (unique ramp: F(1,13) = 0.136, p = 0.718, ηp2 = 0.0104; monkey x ramp: F(2,13) = 0.843, p 

= 0.453, ηp2 = 0.0215; Figure 17).  
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Figure 17. No significant difference between unique ramping and unique last item activity for abstract rule in 

area 46 during Rule Only. T-values for the condition of interest > baseline shown. A. Unique ramp compared to 

unique last item in left ramp ROI showed no significant difference. B. Unique ramp compared to unique last item in 

right conjunction ROI showed no significant difference. Error bars are 95% confidence intervals (1.96 x standard error 

of the within-bin mean). 

Whole-brain contrasts further demonstrated the presence of significant activity in various brain 

areas for unique ramp activity and unique last item activity, but any significant activity was absent 

in either left or right area 46 (Figure 18). These comparisons supported the results of the ROIs in 

which there was no significant activity in area 46 for either unique ramp or unique last item. These 

results suggest that the dynamics in area 46 are potentially non-linear in nature, or capture more 

variance explained by last item responses with the jittered timing of this task. Further analysis and 

experiments will be necessary to tease these options apart. 
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Figure 18. Whole brain activity does not show significant unique ramping activity in Area 46 for Rule Only. A. 

Unique Ramp, All Positions > Baseline (FDRc p < 0.05, height p < 0.005 unc., ext. 94). B. Unique Last Item, All 

Positions > Baseline (FDRc p < 0.05, height p < 0.005 unc., ext. 115). Orbital Frontal Pole (OFP), Pre-Supplementary 

Motor Area (Pre-SMA), Pre-Motor Cortex (Pre-Motor), Parainsular Area (Pi), Intraparietal Area IPa), Nucleus 

Accumbens (NAcc), Amygdala (Amg), Primary Motor Cortex (M1), Ventral Intraparietal Area.  

Because a parametric ramp model did not capture variance in area 46, yet we did observe a 

significant linear increase in the left ramp ROI (Figure 16), we next examined whole-brain 

contrasts for areas that showed an increase across the sequence, regardless of the dynamics. To 

make this comparison, we compared activity at the last (fourth) and first positions in the sequence. 

Contrasts of All Positions > Baseline and Position 4 > Position 1 both showed significant clusters 

of activation in left area 46 (Figure 19). Other significant clusters of activation were located in 

areas such as the visual cortex, the hippocampus and caudate nucleus, which are some areas that 

were also observed in a similar auditory sequence task (L. Wang et al., 2015) as well as our 

previous work (Yusif Rodriguez et al., 2022). Therefore, while a parametric ramp model may not 

best explain the observed ramping dynamics, there is evidence for an increase in activity at the last 

position of the sequence when compared to the first. 
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Figure 19. Whole brain activity for last position compared to first suggests that isolated rule modulates DLPFC 

activity for Rule Only. A. Position 4 > Position 1 (FDRc p < 0.05, height p < 0.005 unc., ext. 80). Rostro Medial 

Frontal Pole (rmFP), Dorsolateral Prefrontal Cortex (DLPFC), Caudate, Entorhinal Cortex (EI), Superior Temporal 

Sulcus Ventral Bank (Tea), Somatosensory Area. 

Table 11. Last position compared to first position contrast activation coordinates. 

Contrast Location  Extent 
(voxels) 

x y z Peak 
t-val 

Rule Only Position 4 > Position 1       
 Amygdala 464 -8.5 20 0 6.05 
 Somatosensory Areas I-II 111 -6.0 4.5 32.5 5.66 
 Entorhinal Cortex 200 5.5 16.5 1.0 5.27 
 Caudate 280 8.5 28.0 22.5 5.19 
 Rostro Medial PFC 153 4.0 48.0 17.5 4.94 
 Dorsal Lateral PFC (Area 46) 140 -10.0 33.5 24.0 4.92 
 Caudal Dorsal Pre-Motor Cortex  93 17.0 21.5 27.5 4.64 
 Superior Temporal Area 80 12.0 3.0 25.0 4.63 
 Area PGa 118 22.0 8.0 5.5 4.54 
 Area TEa 123 16.5 13.5 0.5 4.17 

 

Overall, activity related to position onset activity suggests ramping dynamics are present for 

isolated rule in areas 46. This activity is similar to what was seen in our previous work seen in a 

task containing both abstract sequence rule and structured timing. Unlike what was seen in these 

previous results, a model for unique parametric ramping activity does not explain activity observed 

in area 46. However, unique last activity is not significant in area 46 either. Despite these findings 

it is possible then that the main “driver” of activity in area 46 of the DLPFC activity is abstract 
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rule. Isolated sequence rule is sufficient to define an abstract sequence and elicit DLPFC activity 

and could be sufficient sequential information to engage in sequential monitoring. 

3.4.6. Isolated structured timing does not modulate monkey DLPFC activity 

Our previous section suggested that rule in isolation could be sufficient to elicit ramping activity 

in the monkey DLPFC. However, given that our previous work showed ramping activity occurring 

when sequences contained both rule and timing information, it was necessary to test whether 

timing in isolation could also modulate DLPFC activity. Previous work has suggested that timing 

on its own can drive ramping activity in the frontal cortex (Bekolay et al., 2014; Narayanan, 2016; 

Narayanan & Laubach, 2009; Niki & Watanabe, 1979). It is possible then that the resulting 

ramping activity previously observed in our work resulted from a combination of timing and rule 

tracking. Because the utilized timing templates had set frequencies of appearance, it is also 

possible that animals were engaging in monitoring the timings as well, and not necessarily only 

monitoring the abstract sequences.  

In this experiment we aim to test the hypothesis that isolated structured timing, in the absence of 

an abstract rule, elicits neural activity in the DLPFC sub-region Area 46. Previous work has shown 

that the DLPFC responds to different types of timing structures including interval timing (Gu et 

al., 2015; J. Kim et al., 2013; M. Xu et al., 2014), temporal expectation (Coull & Nobre, 2008; 

Roesch & Olson, 2007) and structured timing (Cueva et al., 2020; Meirhaeghe et al., 2021; 

reviewed in A. C. Nobre & van Ede, 2018; J. Wang et al., 2018). Additionally, studies in both 

humans and other animals have shown that ramping dynamics can also occur in this region as a 

result of the influence of timing information (Desrochers et al., 2019; Ding, 2015). Our previous 

study using a no-report abstract visual sequence task in non-human primates suggests that timing 

information could be modulating increased neural responses and ramping dynamics in Area 46 
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(Yusif Rodriguez et al., 2022). To determine the influence of timing of the DLPFC activity and 

ramping dynamics, we created a 2 x 2 task design which includes a paradigm that queries 

structured timing as a variable.  

In this task variant which we have named “Time Only”, we have isolated one specific characteristic 

present in our previous no-response abstract visual sequence task, structured timing. Here, animals 

viewed a single block containing stimulus and timing pairings composed of habituation images 

with habituation timings, deviant and habituation images with deviant and habituation timings, 

and novel images with habituation timings (Figure 14). Two models were utilized to test the neural 

activity in the DLPFC related to structured timing. First, to generally test if isolated structured 

timing elicits a response in the DLPFC we used an instantaneous event onset model, where each 

timing structure is an individual event. Conditions were modelled according to all possible image 

and timing combinations (see Methods for more details).  Because there were multiple possible 

image combinations, and these were often grouped in the following sets of analyses we identified 

each category with the names as follows: Habituation timings paired with habituation images 

(HH), deviant timings paired with deviant and habituation images (DHD), habituation timings 

paired with novel images (NH). Afterwards, to test whether structured timing in isolation results 

in a ramping DLPFC activity we constructed a parametric ramp model with the same regressor 

categories as described for the instantaneous onsets model.  

3.4.7. Animals attend to task stimuli 

First, to determine whether animals were generally attending to visual stimuli, we tested activity 

from novel images compared to habituation images. Work in both humans and monkeys has 

implicated the PFC for the processing of novel stimuli information (Daffner et al., 2003; 

Ghazizadeh et al., 2020; Matsumoto et al., 2007). In the study by Ghazizadeh et al., 2020, a set of 
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fronto-cortical networks which included regions such as the ventral PFC and lateral PFC were 

identified as processing relationships between novel and familiar fractal stimuli during no-

response awake behaving monkey fMRI. These novelty responses are also thought to require 

attention to drive neural activity, suggesting that we would only observe them when animals are 

engaged with the task and attending to the different stimuli categories present. 

We predicted that if animals were attending the varying stimuli presented in the task, that we 

should be able to observe novelty responses in relevant brain areas including prefrontal regions. 

ROI comparisons were completed using the same right ramp ROI and left conjunction ROI as 

described in the beginning of this chapter. Because the timings assigned to both novel and 

habituation images in this task corresponded to the same timing templates (Methods), any 

observed contrast activity should be specific to differences in image, and not timing. Results from 

ROI comparisons in the DLPFC show no significant differences between novel images and 

habituation images assigned the same timing templates (Figure 20; left ramp ROI; timings: F(1,7) 

= 0.084, p = 0.78, ηp2 = 0.012; monkey = F(2,7) = 5.8, p = 0.033, ηp2 = 0.624; monkey x timing: 

F(1,7) = 0.4, p = 0.685, ηp2 = 0.103; right conjunction ROI; timings: F(1,7) = 1.54, p = 0.25, ηp2 = 

0.18; monkey = F(2,7) = 2.02, p = 0.203, ηp2 = 0.365; monkey x timing: F(1,7) = 1.38, p = 0.313, 

ηp2 = 0.282).  
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Figure 20. DLPFC does not show significant activity for novel images when compared to habituation images in 

Time Only. T-values for the condition of interest > baseline shown. A. Onset activity for structured habituation 

timings with novel images (HN), compared to habituation timings with habituation images (HH) in left ramp ROI 

showed no significant difference. B. Onset activity for structured habituation timings with novel images (HN), 

compared to habituation timings with habituation images (HH) right conjunction ROI showed no significant 

difference. Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 

We additionally investigated whole brain activity to determine if novelty responses were present 

in other brain regions. As mentioned previously, a variety of brain regions have been implicated 

in the processing of novelty responses in the brain. Therefore, a simple ROI analysis in a specific 

sub-region may not accurately capture task relevant novelty responses. To identify whole brain 

neural activity related to novelty, we contrasted novel images to habituation images with the same 

timing templates (Timing HN > Timing HH) and combined habituation with deviant images to 

habituation images with the same timing templates (Timing HDH > Timing HH; Figure 21).  
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Figure 21. Novelty responses in different brain areas suggest that animals are attending to visual stimuli during 

Time Only task. A. Timing HHD > Timing HH (FDRc p < 0.05, height p < 0.005 unc., ext. 82). B. Timing HN > 

Timing HH (FDRc p < 0.05, height p < 0.005 unc., ext. 82). Insula, Piriform Cortex (Pir), Superior Temporal Sulcus 

(STS), Lateral Intraparietal Area (LIP), Occipitotemporal sulcus (ots), Cerebellum, Ventral Lateral Prefrontal Cortex 

(VLPFC), Intraparietal Sulcus (IPS). 

Results from these contrasts show activity we see activity in brain areas that have been identified 

as being related to novelty detection when compared to highly familiar stimuli during passive 

viewing. Some of the relevant brain areas include the VLPFC for novelty responses and LIP for 

deviant responses, both areas implicated in the processing of novel stimuli. Therefore, the current 

contrast results indicate that animals are attending to the changing visual stimuli. These findings 

suggest that animals are engaged with the task, which is essential to know given otherwise it would 

not be possible to determine whether results are related to engagement (or lack thereof) with the 

task stimuli. 
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3.4.8. Timing deviations in absence of abstract rule does not modulate activity in the 

DLPFC during Time Only task  

After determining that animals are attending to the presented image categories, we tested whether 

structured timing in isolation elicits responses in area 46. We utilized the same ROIs described in 

the previous section to first test whether there were significant differences in timing activity across 

possible conditions. T maps used to look at this activity were obtained by modelling the 

instantaneous onset of the beginning of each timing template (as described in Methods).  

To determine if isolate timing structure modulates DLPFC responses, we first tested if deviant 

timing templates would elicit greater DLPFC activity when compared to habituation timing 

templates. Previous work in timing literature has suggested that temporal expectation can modulate 

neural responses (Coull & Nobre, 2008). It is then possible that while completing this task, animals 

can create distinct expectations of frequent and less frequent time structures that could result in 

increased DLPFC responses. To test this prediction, we compared ROI activity in both the left 

ramp ROI and right conjunction ROI for deviant timings assigned to habituation and deviant 

images (DHD) to habituation timings assigned to habituation images (HH). Results from this ROI 

analysis were not significant (Figure 22; left ramp ROI; timings: F(1, 7) = 0.573, p = 0.474, ηp2 = 

0.08; monkey: F(2, 7) = 5.22, p = 0.04, ηp2 = 0.599; monkey x timing: F(1, 7) = 4.67, p = 0.05, ηp2 

= 0.572; right conjunction ROI; timings: F(1, 7) = 0.171, p = 0.692, ηp2 = 0.024; monkey: F(2, 7) 

= 2.23, p = 0.178, ηp2 = 0.39; monkey x timing: F(1, 7) = 0.243, p = 0.79, ηp2 = 0.065). This suggests 

that animals may not be actively tracking timing structure. 
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Figure 22. Deviant timing structure does not affect DLPFC activity in Time Only. T-values for the condition of 

interest > baseline shown. A. Onset activity for structured deviant timings with habituation and deviant images (DHD), 

compared to habituation timings with habituation images (HH) in left ramp ROI showed no significant difference. B. 

Onset activity for structured deviant timings with habituation and deviant images (DHD), compared to habituation 

timings with habituation images (HH) in right conjunction ROI showed no significant difference. Error bars are 95% 

confidence intervals (1.96 x standard error of the within-bin mean). 

We next aimed to determine whether image identity paired with timing modulated DLPFC 

responses. It is possible that while timing structure on its own may not modulate DLPFC activity, 

that the combined timing and associated images can affect neural responses, in absence of an 

abstract rule. To test this prediction, we compared activity in the DLPFC across matched timing 

structure. These comparisons were carried out for habituation timing templates exclusively 

containing habituation images to templates containing deviant images (Figure 23, A and B; left 

ramp ROI; timings: F(2, 32) = 0.242, p = 0.786, ηp2 = 0.015; timings x monkey: F(4, 32) = 0.89, p 

= 0.481, ηp2 = 0.435; right conjunction ROI; timings: F(2, 32) = 1.038, p = 0.37, ηp2 = 0.0609; 

timings x monkey: F(4, 32) = 1.138, p = 0.36, ηp2 = 0.2622) and habituation timing templates with 

novel images (Figure 23, C and D; left ramp ROI; timings: F(2, 32) = 0.46, p = 0.63, ηp2 = 0.03; 
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timings x monkey: F(4, 32) = 0.65, p = 0.63, ηp2 = 0.44; right conjunction ROI; timings: F(2, 32) 

= 1.02 , p = 0.37, ηp2 = 0.06; timings x monkey: F(4, 32) = 0.77, p = 0.55, ηp2 = 0.14). Results from 

this analysis did not show significant differences in DLPFC activity for structured timing and 

image identity pairings.  

 

Figure 23. There is no significant effect of image identity on area 46 activity in Time Only. T-values for the 

condition of interest > baseline shown. A. Onset activity for all short, medium, and long habituation timings assigned 

to deviants combined with habituation stimuli (purple line), compared to short, medium, and long habituation timings 

assigned to habituation images (light blue line) in left ramp ROI showed no significant difference (top left). B. Onset 

activity for all short, medium, and long habituation timings assigned to deviants combined with habituation stimuli 
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(purple line), compared to short, medium, and long habituation timings assigned to habituation images (light blue line) 

in right conjunction ROI showed no significant difference (top right). C. Onset activity for all short, medium, and long 

habituation timings assigned to novel stimuli (green line), compared to short, medium, and long habituation timings 

assigned to habituation images (light blue line) in left ramp ROI showed no significant difference (bottom left).  D. 

Onset activity for all short, medium, and long habituation timings assigned to novel stimuli (green line), compared to 

short, medium, and long habituation timings assigned to habituation images (light blue line) in right conjunction ROI 

showed no significant difference (bottom right).  Error bars are 95% confidence intervals (1.96 x standard error of the 

within-bin mean). 

Results in this section suggest that while animals are attending to stimuli, structured timing in 

absence of abstract sequence does not seem to be modulating DLPFC activity. Overall, responses 

related to novelty were seen in a variety of areas suggested to process novel image information 

such as VLPFC and LIP. These findings support that animals are attending to the image set, 

however they may not specifically be attending to the timing structures that perceptually group the 

images. Additionally, the deviant timing structures themselves may not be distinct enough to elicit 

a deviant response that would result in increased DLPFC activity.  

3.4.9. Isolated structured timing does not elicit ramping activity in the monkey 

DLPFC 

We demonstrated in the previous section that the DLPFC regions involved in our previous 

sequential task that had structured timing did not respond to isolated structured timing. However, 

in our previous work images presented in an abstract sequence paired with specific timing 

templates elicited ramping responses in the DLPFC. It is possible that these ramping responses 

were the result of combined monitoring of both abstract rule and timing structure. Therefore, we 

predicted that while these ramping responses may not be as large as those observed when both 

sequential characteristics are combined, that ramping activity would still be present in the DLPFC 
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due to processing of the timing templates. For these next set of analyses conditions were modeled 

to test using a parametric ramp (Methods). Unlike the unique ramp model used for the rule only 

task, given that there wasn’t a concern for activity related to a last item effect in this task design, 

regressors accounted for timing template onset, and then unique ramping activity.  

First, we tested whether there was a significant difference in ramping across the different possible 

image sets that are assigned the same timings. We mainly wanted to determine if any difference 

existed across timing types that could be a result of the influence of the images that were used. 

There were no significant differences in either the left ramp ROI or the right conjunction ROI 

when comparing across all task conditions with equivalent length structured timings (Figure 24; 

left ramp ROI; timings: F(2, 50) = 0.31, p = 0.74, ηp2 = 0.012; timings x monkey: F(4, 50) = 3.5, p 

= 0.014, ηp2 = 0.05; right conjunction ROI; timings: F(2, 50) = 0.06, p = 0.94, ηp2 = 0.002; timings 

x monkey: F(4, 50) = 1.06, p = 0.39, ηp2 = 0.03).  

 

Figure 24. Structured timing does not drive ramping activity in the DLPFC in Time Only. T-values for the 

condition of interest > baseline shown. A. Onset activity for all short, medium, and long habituation timings assigned 

to novel stimuli (green line), compared to short, medium, and long habituation timings assigned to habituation images 
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(light blue line) and short, medium, and long habituation timings assigned to deviants combined with habituation 

stimuli (purple line) in left ramp ROI showed no significant difference.  B. Onset activity for all short, medium, and 

long habituation timings assigned to novel stimuli (green line), compared to short, medium, and long habituation 

timings assigned to habituation images (light blue line) and short, medium, and long habituation timings assigned to 

deviants combined with habituation stimuli (purple line) in right conjunction ROI showed no significant difference. 

Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 

In our previous study, deviant images elicited activity in the DLPFC when they were components 

of an abstract visual sequence. Therefore, we aimed to determine whether animals were similarly 

tracking for deviant fractal appearance in a way that would elicit ramping activity, potentially 

indicating monitoring in the absence of an abstract rule. To test for ramping related to a deviant 

response in DLPFC outside of the sequential context, we compared deviant images that had 

habituation timing templates to habituation images assigned to habituation timing ramping 

activity. This would allow us to test for effects that are specific for the image type, and not the 

structured timing.  

Results from this comparison show areas including the insula, VLPFC, and dorsal Pre-motor are 

significantly more active for groups containing deviant fractals. This brain areas have also been 

shown to respond to deviant responses in tasks containing auditory sequences (L. Wang et al., 

2015). It is possible that there is a deviant response simply from the infrequent images that results 

in higher ramping activity. Overall, while there is interesting timing related activity in other related 

brain structures, there is no evidence that structured timing modulates ramping dynamics in the 

DLPFC. 
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Figure 25. No effect of deviant or novel image ramping activity when compared to habituation images with the 

same timing templates in Time Only. A. Ramp, Habituation Timings assigned to Habituation and Deviant Images 

(HHD) > Habituation Timings assigned to Habituation Images (HH) (FDRc p < 0.05, height p < 0.005 unc., ext. 90). 

B. Ramp, Habituation Timings assigned to Novel Images > Habituation Timings assigned to Habituation Images (HH) 

(FDRc p < 0.05, height p < 0.005 unc., ext. 106). 

3.4.10. Simply viewing random fractal images is not enough to elicit DLPFC activity 

As part of our 2x2 study design, we included a task variant which isolated individual fractal images 

(as described in Figure 12). In the Random task (Figure 15) the fractal images used in all previous 

task variants are serially presented with no rule or timing. This task is meant to function as a 

control, such that we could test the following predictions. First, we aimed to test whether animals 

were attending to the task overall. Given that this is a no response task, we have limited ways in 

testing for task engagement. Therefore, while animals could be fixating, there is a possibility that 

they are not attending to the image contents. The random task variant is structured similarly to the 

time only variant, in that the final block contains novel fractal images. Other awake monkey fMRI 

studies have demonstrated that novelty responses in the brain only occur when animals are 

attending (Monosov et al., 2015; Zhang et al., 2019). Therefore, observing novelty responses in 
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this task would allow us to determine task engagement in absence of a response. Second, we aimed 

to test whether the DLPFC exclusively shows ramping responses due to sequential monitoring, 

and not due to other processes such as anticipating the end of a block, or simply viewing images. 

Previous work has suggested that ramping dynamics in the PFC can arise simply due to 

anticipation of a particular event (Berdyyeva & Olson, 2011; Coull & Nobre, 2008; Roesch & 

Olson, 2007). Therefore, while this task does not contain structured timing as we have presented 

previously, it is possible that neural responses tested in other task variants could be misinterpreted 

for a goal progression response. 

3.4.11. Animals attend to task stimuli 

Similar to the analysis carried out in the timing only section, we conducted a control comparison 

to determine whether animals were generally attending to visual stimuli. For this comparison we 

contrasted activity from novel images compared to habituation images. Findings from the 

contrasted Random Deviant > Habituation Images (Figure 26 A) and Random Novel > 

Habituation Images (Figure 26, B) show activity in brain areas that have been identified as being 

related to novelty detection when compared to highly familiar stimuli during passive viewing, 

including VLPFC (Ghazizadeh et al., 2020). These results mirror the findings from the timing only 

task, further supporting that animals are attending to the changing stimuli, but not necessarily 

processing them as sequential information in the absence of an abstract rule.  
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Figure 26. Responses related to detecting deviants and novel images indicate animals attend to task stimuli 

during Random task. A. Random Deviant > Habituation Images (FDRc p < 0.05, height p < 0.005 unc., ext. 89). B. 

Random Novel > Habituation Images (FDRc p < 0.05, height p < 0.005 unc., ext. 91). 

3.4.12. Task progression in the absence of abstract rule and structured time does not 

elicit increasing activity in area 46  

In another control analysis we tested our main hypothesis that simply viewing fractal images would 

not elicit ramping responses related to progression through the block. We specifically tested for 

increasing ramp-like dynamics that would indicate monitoring in the absence of an abstract rule 

and structured timing. To do this, we created a model in which position onsets were pseudo 

assigned in a similar manner to onsets from the Rule Only task. ROI analysis for position activity 

showed a significant effect of position for novel images on the left ramp ROI, other comparisons 

did not show a significant effect of position in area 46 (Figure 27, Table 12). 
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Figure 27. Ramping pattern of activity is not present in the DLPFC in the absence of abstract rule or structured 

timing in Random task. T-values for the condition of interest > baseline shown. A, B. Position onset activity for 

random habituation images in left ramp ROI and right conjunction ROI showed no significant difference. C, D. 

Position onset activity for random deviant images in left ramp ROI and right conjunction ROI showed no significant 

difference. E, F. Position onset activity for random novel images in left ramp ROI and right conjunction ROI showed 

no significant difference. Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 
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Table 12. Repeated measures ANOVAs comparing position activity in left ramp ROI and right ramp ROI 

  left ramp ROI right ramp ROI 
Factor dfs F p ηp2 F p ηp2 
Random Habituation Positions 1-4 
Position 3, 21 2.5 0.088 0.263 0.35 0.8 0.05 
Monkey 2, 7  1.03 0.40 0.223 0.5 0.64 0.12 
Ramp 1, 7 0.065 0.81 0.009 0 0.99 < 0.001 
Random Deviant Positions 1-4 
Position 3, 21 0.13 0.94 0.02 1.87 0.17 0.21 
Monkey 2, 7  1.02 0.41 0.23 2.4 0.16 0.41 
Ramp 1, 7 0.28 0.62 0.04 3.05 0.12 0.30 
Random Novel Positions 1-4 
Position 3, 21 5.63 0.005 0.45 0.33 0.81 0.45 
Monkey 2, 7  0.16 0.86 0.04 0.11 0.9 0.029 
Ramp 1, 7 2.09 0.19 0.23 1.03 0.34 0.13 

 

 

Figure 28. No increase in activity at last position compared to first in area 46 for isolated image during Random 

task. A. Random Habituation Images Position 4 > Position 1 (FDRc p < 0.05, height p < 0.005 unc., ext. 93). B. 
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Random Deviant Images Position 4 > Position 1 (FDRc p < 0.05, height p < 0.005 unc., ext. 106). C. Random Deviant 

Images Position 4 > Position 1 (FDRc p < 0.05, height p < 0.005 unc., ext. 91). Lateral Intraparietal Area (LIP), Lateral 

Sulcus (LS), Intermediate Agranular Insular Area (Iai), Medial Prefrontal Cortex (mPFC). 

We additionally contrasted the last position activity to first position activity to test for the 

possibility of increasing activity in other brain areas (Figure 28). Contrasts of Position 4 > Position 

1 across all image categories did not show significant activity in left area 46. However, we did 

observe activity in the lateral intraparietal area, superior temporal sulcus, and medial PFC. 

As an additional test for ramping dynamics in area 46 during this task, we utilized the same model 

designed to isolate these dynamics as described in (Methods, Yusif Rodriguez et al., 2022). In this 

control analysis, we found that activity was not significantly different for ramping across different 

image categories (Figure 29; left ramp ROI; image: F(2, 14) = 2.6, p = 0.1, ηp2 = 0.27; image x 

monkey: F(4, 14) = 0.965, p = 0.46, ηp2 = 0.5; right conjunction ROI; image: F(2, 14) = 0.107, p = 

0.9, ηp2 = 0.0151; image x monkey: F(4, 14) = 0.79, p = 0.55, ηp2 = 0.086).  

Overall, results from our random task confirmed our control predictions. First, we were able to 

determine that animals are attending to the image set that is being presented, as evidence by neural 

activity in brain areas known to process novelty. Additionally, we do not observe ramping 

dynamics in the DLPFC for progression through the images. Overall, animals are attending to the 

stimuli, and ramping does not occur for random image presentations in the absence of an abstract 

rule or timing structure. 
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Figure 29. A parametric ramping novel supports the prediction that the DLPFC does not show ramping activity 

in different stimulus categories in the absence of abstract rule and structured timing during Random task. T-

values for the condition of interest > baseline shown. A. Ramping activity across image categories in the random task 

in left ramp ROI showed no significant difference. B. Ramping activity across image categories in the random task in 

right conjunction ROI showed no significant difference. Error bars are 95% confidence intervals (1.96 x standard error 

of the within-bin mean). 

3.4.13. Cross task comparisons show significant differences in area 46 activity when 

abstract rule and structured timing are present 

For our final set of analyses, we first compared activity between the Rule Only and Random task 

for position. Our tasks were designed such that we would be able to compare activity across 

position for the first pair of tasks, to determine whether there were any significant differences 

between observed neural activity in progression across positions. Comparisons between the Rule 

only and Random tasks for ramping activity across position was not significantly different (left 

ramp ROI; position: F(3, 66) = 1.3, p = 0.3, ηp2 = 0.12; right conjunction ROI; position: F(3, 66) = 

0.95, p = 0.42, ηp2 = 0.02) 
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Figure 30. Comparison across position activity for Rule Only compared to Random is not significant. T-values 

for the condition of interest > baseline shown. A. Position activity across habituation in left ramp ROI showed no 

significant difference. B. Position activity across habituation in right conjunction ROI showed no significant 

difference. Error bars are 95% confidence intervals (1.96 x standard error of the within-bin mean). 

Due to the design of our tasks, it was not possible to similarly compare activity across all tasks at 

each individual fractal onset. Therefore, to determine differences between ramping activity across 

tasks we compared activity modelled as a parametric ramp. An ANOVA comparison showed 

significant differences between tasks. Tukey’s post-hoc test showed a significant difference 

between ramping in the no-response abstract visual sequence task (original task described in Yusif 

Rodriguez et al., 2022) and the random task (ANOVA; F(3, 52) = 5.0298 p = 0.0039). As illustrated 

in Figure 31, the combined activity from the no-response sequence task containing both time and 

rule show the highest t-values, while the Random task show the lowest. Data from the Rule Only 

and Time Only tasks show intermediate t-values when compared to the no-response sequence task 

and Random task. Findings from these comparisons suggest that abstract rule and structured timing 
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in isolation individually contribute to the neural activity observed for when these are combined for 

an abstract visual sequence representation.  

 

Figure 31. Left area 46 ramping activity across tasks suggests additive effect of abstract rule and structured 

timing. T-values in left Ramp ROI for parametric ramping in habituation image categories across all tasks. Activity 

in this region for the no-response abstract visual sequence task (Structured Time + Abstract Rule, red) is significantly 

different than activity in the same region during habituation image viewing during the Random task (No Structured 

Time + No Abstract Rule, black). There are no significant differences between the Rule Only task (isolated Abstract 

Rule, green) or the Time Only task (isolated Structured Time, blue) when compared against all other tasks. 

3.5. Discussion 

In this study we examined how monkey DLPFC (Area 46) represents distinct abstract sequential 

features in isolation. We tested two main hypotheses: First, that abstract rule in the absence of a 

timing structure elicits DLPFC activity suggesting sequential monitoring, and that structured 

timing in isolation without an abstract rule elicits DLPFC. We constructed these hypotheses 

predicting that both characteristics contribute to a combined response in the DLPFC sub-region 

area 46 (Yusif Rodriguez et al., 2022).These hypotheses were tested in a 2x2 study design of no-
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report viewing tasks that isolated the different features we identified as composing abstract visual 

sequences: abstract rule and structured timing, as well as including a control that we named 

random. We found evidence to support the hypothesis that both isolated abstract rule and isolated 

structured timing drive DLPFC activity related to abstract sequential representations in area 46 

during our abstract sequential task.  

Results from our rule only task variant support our previously observed findings that animals are 

engaging in abstract sequence monitoring. Specifically, we saw ramping activity occurring in area 

46 for abstract rule. This finding suggests that isolated rule is sufficient to elicit increased area 46 

ramping activity, potentially indicating that animals are monitoring the abstract sequential 

structure. Our data from whole brain activity further supports these findings. We identified a 

significant cluster of activity when contrasting Position 4 > Position 1 in other additional brain 

areas. Some of these areas have been identified as being involved in tasks with similar features as 

sequential tasks, including the hippocampus during visual statistical learning (Cerreta et al., 2018; 

Schapiro et al., 2016; Schlichting et al., 2013), suggesting that working memory could be playing 

a role and animals are engaged in remembering their place in the sequence. It is then possible that 

abstract rule on its own is a characteristic that determines “what is a sequence” in the context of 

our task. Overall, these findings are consistent with our expected results based on previous work 

in humans, where ramping activity mainly depended on the monitoring of sequential images 

following a specific abstract rule (Desrochers et al., 2015, 2019). 

Another characteristic present in abstract sequences that has been known to influence neural 

dynamics in DLPFC is timing. Tasks in humans and animals have shown that different types of 

timing processing, such as prediction of intervals or progression towards a goal elicits ramping 

activity in the DLPFC (M. Xu et al., 2014). Other brain areas have also been identified as being 
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involved during time processing including the basal ganglia (Monosov et al., 2015), the 

cerebellum, and motor cortical regions (Merchant & Averbeck, 2017). However, given the 

potential influence of timing in the previously observed DLPFC activity during abstract sequential 

tasks we tested the dynamics of structured timing in isolation.   

We predicted that isolated timing would modulate DLPFC activity based on prior literature. Our 

initial findings from the Time Only task did not provide evidence that structured timing in isolation 

influences DLPFC activity. There are a few speculations as to why we didn’t observe any ramping 

responses related to isolated structured timing. First, many of the experiments studying timing 

often have a task directed at making a choice related to the timing itself. Studies showing ramping 

dynamics in the brain related to elapsed time, often demand that a decision is made (Blanchard et 

al., 2015; de Lange et al., 2010), or occur during task engagement towards a goal (even if that goal 

is timing related) (J. Kim et al., 2013; M. Xu et al., 2014). In these instances, it is possible there 

are multiple variables that can explain these neural dynamics. First, animals are completing 

additional cognitive computations, such as decisions, which can contribute to the observed 

ramping signal. Additionally, because animals have to provide a specific response, it means that 

their attention is oriented towards the event which is directly being anticipated in time. Previous 

literature has shown that attending to time events and stimuli results in a signal gain (reviewed in 

A. C. Nobre & van Ede, 2018). It can be argued that, in our task design the most consistent and 

salient stimulus throughout all task variants are the fractal visual stimuli. This would in turn mean 

that, animals were not attending to the timing structure in such a way that it could elicit ramping 

dynamics in the way that previous studies in timing have shown. Additionally, this would support 

our findings that ramping occurs during all events that have abstract sequential image presentations 

since these are being actively attended to. Another possibility is that this type of structured timing 



135 
 

does not drive ramping dynamics. However, in order to determine this it would be necessary to 

construct a task that would better allow us to account for the influence of different timing structures 

in sequential tasks. 

Comparisons between tasks variants suggest a potentially intermediate effect of abstract rule and 

structured timing when presented in isolated, compared to when they are combined in a sequential 

structure. When comparing for position effects between the Rule Only and Random tasks, we did 

not see a significant increase in ramping across sequence position. While this was not necessarily 

unexpected, we did predict that there would be a significant difference for position increase 

ramping activity between Rule Only and the Random task variants. It is possible that the statistical 

test used was not appropriate to determine the difference in activity between both variants. 

However, findings from the Ruly Only task show a significant response for ramping throughout 

position, while this type of dynamic is non-existent in the Random task. When comparing across 

tasks using a parametric model, we instead are able to see significant differences in activity in area 

46 when there is abstract rule when combined with structured timing (no-response abstract visual 

sequence task) as opposed to when neither of these characteristics are present (Random task). 

While there is not a significant difference between the Rule Only and Time only task when 

compared to other task variants, it is worth nothing that their values lie in between the values for 

tasks variants containing either a combination of these characteristics or none. The data trends 

suggest a potential intermediate modulation of area 46 neural activity when only some sequential 

characteristics are present, and a compounded effect when they are both used to define a sequential 

structure, positively modulating DLPFC dynamics. 

Ramping dynamics are present for a variety of cognitive processes, one of which is anticipation. 

It is worth noting that there is a variety of information that can drive anticipatory responses. 
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Anticipation, and its related neural dynamics have been studied in the context of anticipating a 

reward (Falcone et al., 2019; McKim & Desrochers, 2022b; Monosov et al., 2015), decision-

making (de Lange et al., 2010; Lin et al., 2020), and goal related anticipation (Borra et al., 2011; 

Ma et al., 2014; Peters et al., 2005). While many of these are not of concern in our particular set 

of no-response tasks (reward is specifically decorrelated from task events; there is no decision or 

explicit goal), it was possible that anticipating the end of a block or run could elicit DLPFC 

ramping. However, when testing for ramping related to continuing through fractal images, it is 

evident that there was no neural activity in the DLPFC that indicated block end anticipation.  

Because our tasks were no-response, there was a possibility that animals could be viewing stimuli, 

but not necessarily attending to the different task contents and organization. Previous work has 

shown that without attention, task relevant dynamics do not occur (Bekinschtein et al., 2009; 

Chennu et al., 2013). Additionally, it has been demonstrated using no-response awake monkey 

fMRI, that both novel and familiar task images elicit neural responses in specific brain areas 

including the VLPFC, but only if animals are attending and engaged (Ghazizadeh et al., 

2020).When testing for responses related to image deviants, we did not see neural activity 

indicating that deviants were being processed as changes in the same way as when they are placed 

in an abstract sequence. However, when identifying if novelty responses existed in our task, as an 

indicator of attention, we see similar brain areas active in both our Time Only and Random task 

variants. In either variant, both deviants and novel image contrasts showed activity in brain areas 

relevant to novelty processing such as the VLPFC, striatum and parietal cortex (Figure 21, Figure 

26).Overall these findings suggest that animals are attending the stimuli, and not processing task 

relevant stimuli the same way as when they are organized according to abstract rule. 
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Some limitations on the present study were as follows. First, we are limited in the assertions that 

can be made regarding more active aspects of cognitive engagement given that all tasks were no-

response. While the tasks were designed this way intentionally, to avoid unwanted task confounds 

such as decision planning or motor task engagement, the task design also limits our evaluation of 

behavior related to sequential task processing. However, findings from this study have allowed us 

to identify specific task features that can be further studied in the future work using tasks with 

more behavioral engagement. Therefore, findings from this set of experiments provide an 

important foundation for future studies that will allow us to study sequential behaviors. Another 

limitation we encountered was more related to the specific scope of the analysis. An awake 

behaving fMRI study results in a wealth of data. Given our specific hypotheses about the role of 

the DLPFC in abstract sequence, we have not yet determined the involvement and potential 

influence of other brain areas in this set of experiments. Future work can then expand on these 

findings through the identification of regions that contribute to the observed DLPFC neural 

dynamics, and the relevant networks necessary for abstract sequential monitoring. 

In summary, the present study provides evidence that both abstract rule and structure timing are 

characteristics that in combination modulate DLPFC activity in the sub-region area 46. 

Additionally, this sub-region shows a ramping pattern of activity, similar to what has been shown 

in previous human studies during sequential task monitoring. There is a limited amount of work 

in non-human primates elaborating on the role of the DLPFC in abstract visual sequences. 

Furthermore, even fewer have identified the functional relevance of different sequential 

characteristics in abstract sequential monitoring and its related neural dynamics.  These findings 

provide important information for our understanding of the functional organization of the monkey 
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pre-frontal cortex regarding sequential information, and the task relevant characteristics that may 

represent abstract sequential structures in the brain.  
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4. Chapter 4: General Discussion and Final Remarks 

 
4.1. Overall Summary and Final Remarks 

In this thesis, we discuss several experiments used to determine the neural representation of 

abstract visual sequences in the monkey brain. While we had the benefit of having whole brain 

neural data using fMRI as the methods through which the experiments were conducted, we focused 

our hypotheses on the monkey DLPFC. Specifically, we developed distinct hypotheses for a sub-

region within DLPFC known as area 46. Throughout the introduction and other chapters in this 

work we have highlighted that other brain areas show neural activity during abstract sequence 

viewing. However, we focused our attention on the monkey DLPFC due to its identified 

homologies in connectivity to the human RLPFC (Neubert et al., 2014; Sallet et al., 2013). This 

was particularly motivated by previous work completed in humans where the human RLPFC was 

shown to be necessary for abstract sequential monitoring (Desrochers et al., 2015, 2019; McKim 

& Desrochers, 2022b) 

In our first experiment we identified that the DLPFC sub-region area 46 is involved in the 

processing of abstract visual sequences. One key finding from this study was the overlapping 

activity for both abstract rule and number processing in this sub-region. This is particularly 

interesting because we could consider a change in number itself to be construed as a different type 

of sequence, and similarly be processed as a deviation to an established rule. We thought that 

similarly to the way that a rule change is processed as an overall change in the sequential structure, 

requiring monitoring, that a number change would also result in an overall larger change in neural 

activity due to increased monitoring. Therefore, we had initially predicted that ramping dynamics 

would be similarly present in the DLPFC for the number deviants. This prediction was informed 
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by previous findings related to number processing in the brain (Dehaene et al., 2015; L. Wang et 

al., 2015). As shown in our no-response abstract visual sequence task, this was not the case. 

However, we believe this might be due to experimental design issues which limited our capacity 

to make any claims about the effect of number and whether it is overall processed as a higher order 

sequential change.  

Our second key finding was determining the influence of abstract rule and structured timing in the 

ramping dynamics we had observed in the first experiment. Abstract sequential information, and 

its representation in the primate and non-human primate brain has not been extensively studied. 

Much of the work done in this field has focused on sequences with fixed image identities, motor 

sequences or active task sequences. This work is novel in that we sought to tease apart the 

representation of the characteristics of abstract sequences in the brain with the simplest possible 

set of tasks that separated each of these sequential features. This work identified that in our specific 

definition of a simple abstract sequence, in a no-response task, the DLPFC shows a ramping pattern 

of activity for abstract rule. We additionally identify that a combination of abstract rule and 

structured timing could modulate neural responses in the DLPFC. This suggests the engagement 

of animals in monitoring sequential structures given sufficient sequential characteristics present, 

even in the absence of an instruction to do so. We consider these findings to provide a significant 

contribution to the field, in helping us understand what information in our environment helps us 

create boundaries between sequential events.  

4.2. Future Directions 

As any question in science, while we gained much understanding about the neural representation 

of sequences in the brain, there are still many more questions left to answer for our understanding 

of sequential processing. One of these possible future directions consists in further parsing out how 
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abstract sequences are represented in the monkey PFC. In the discussed set of experiments, we 

studied a very specific instance of abstract sequence. Even more specifically, we studied abstract 

visual sequences containing two very simple possible rules and a specific timing structure. 

Therefore, it is unknown whether the observed dynamics would generalize across different types 

of sequences with different rules, length, or number of items. Future experiments could be 

constructed to test whether DLPFC forms generalizable abstract sequential representations. 

Finally, fMRI has many benefits, but it is unable to answer all questions related to specific cell 

level activity that could influence the observed BOLD dynamics. Future work is already 

developing towards using monkey electrophysiology guided by these findings to better understand 

the cell level dynamics in the DLPFC during sequential tasks. 
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