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Abstract

This dissertation contains three essays in econometrics. A common theme is the impact of pub-

lication bias on the statistical credibility of published research, reproducibility, and evidence-

based policy.

The first chapter examines how adopting improved but enlarged standard errors for in-

dividual studies can inadvertently lead to higher bias in the studies selected for publication.

Intuitively, this is because larger standard errors raise the bar on statistical significance, which

exacerbates publication bias. Despite the possibility of higher bias, I show that the coverage

of published confidence intervals unambiguously increases. I illustrate these phenomena using

a newly constructed dataset on the adoption of clustered standard errors in the difference-in-

differences literature between 2000 and 2009. Clustering is associated with a near doubling in

the magnitude of published effect sizes. I estimate a model of the publication process and find

that clustering led to large improvements in coverage but also sizable increases in bias.

The second chapter examines why replication rates for experimental studies are low in

the social sciences. I emphasize that issues with common power calculations in replication

studies may play an important role. In a simple model of the publication process, I show that

issues with the way that replication power is commonly calculated imply we should always

expect replication rates to fall below their intended power targets, even when original studies

are unbiased and there is no p-hacking or treatment effect heterogeneity. Empirically, I find

that a parsimonious model accounting only for issues with power calculations can fully explain

observed replication rates in experimental economics and social science, and two-thirds of the
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replication gap in psychology.

The third chapter, which is joint work with Toru Kitagawa, examines how publication bias

can impact evidence-based policy. For minimax regret policymakers, we characterize the opti-

mal treatment rule with selective publication against statistically insignificant results. We then

show that the optimal publication rule which minimizes maximum regret is non-selective. This

means that the optimal publication regime for policy choice in the minimax regret framework

is also consistent with valid statistical inference in scientific research.
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Chapter 1

Do Standard Error Corrections

Exacerbate Publication Bias?

Abstract. Over the past several decades, econometrics research has devoted substantial efforts to improving the

credibility of standard errors. This paper studies how such improvements interact with the selective publication

process to affect the ultimate credibility of published studies. I show that adopting improved but enlarged

standard errors for individual studies can inadvertently lead to higher bias in the studies selected for publication.

Intuitively, this is because increasing standard errors raises the bar on statistical significance, which exacerbates

publication bias. Despite the possibility of higher bias, I show that the coverage of published confidence intervals

unambiguously increases. I illustrate these phenomena using a newly constructed dataset on the adoption

of clustered standard errors in the difference-in-differences literature between 2000 and 2009. Clustering is

associated with a near doubling in the magnitude of published effect sizes. I estimate a model of the publication

process and find that clustering led to large improvements in coverage but also sizable increases in bias. To

examine the overall impact on evidence-based policy, I develop a model of a policymaker who uses information

from published studies to inform policy decisions and overestimates the precision of estimates when standard

errors are unclustered. I find that clustering lowers minimax regret when policymakers exhibit sufficiently high

loss aversion for mistakenly implementing an ineffective or harmful policy.
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1.1 Introduction

Over the past several decades, econometrics research has devoted substantial efforts to im-

proving the accuracy of estimated standard errors in a wide variety of settings (White, 1980;

Moulton, 1986; Newey and West, 1987; Staiger and Stock, 1997). In practice, these improve-

ments often lead to larger standard errors that increase the coverage of reported confidence

intervals for a given study. However, larger standard errors also make statistical significance

more difficult to obtain, and insignificant results are frequently censored in the publication

process (Franco et al., 2014; Brodeur et al., 2016; Andrews and Kasy, 2019). Thus, the studies

that are ultimately selected for publication may depend critically on how standard errors are

calculated. This in turn can affect the statistical credibility of published research in unantici-

pated ways.

Little attention has been paid to the close connection between standard error corrections

and selective publication. This paper studies how their interaction can affect true and estimated

treatment effects in published research, bias, and overall coverage. A key insight is that in-

creasing reported standard errors effectively raises the bar for statistical significance, which can

exacerbate publication bias. Higher bias pushes toward undercoverage, raising questions about

whether more robust inference methods actually meet their primary aim of improving coverage

conditional on publication. I develop a theoretical framework to answer these questions and

then apply it to the difference-in-differences (DiD) literature in the 2000’s when clustering was

growing in popularity.

I begin by extending the selective publication model in Andrews and Kasy (2019) to incor-

porate the possibility that reported standard errors are mismeasured. In the model, researchers

draw an estimated treatment effect β̂j from an N(βj, σ
2
j ) distribution, where the true treatment

effect and standard error (βj, σj) are drawn from a joint probability distribution µβ,σ. Publica-

tion may depend on the statistical significance of the reported t-ratio, either because journals

prefer publishing significant results or because researchers do not write them up in anticipation

2



of low chances of publication. In contrast to the standard model, reported standard errors

may be downward biased (and t-ratios upward biased). This makes it easier to obtain sta-

tistical significance, which can increase the probability of publication. The model applies to

clustered standard errors to account for serial correlation, which is the empirical setting I ana-

lyze, but also more generally to any corrections that tend to enlarge reported standard errors

e.g. heteroscedasticity-robust standard errors, heteroscedasticity and autocorrelation consis-

tent standard errors, or corrections for weak instruments.

Using this framework, I show that average bias in published studies can either increase or

decrease following standard error corrections, but that increases are inevitable when correc-

tions are sufficiently large. Moreover, I show that analogous results hold for changes in true

and estimated treatment effects. The case of large corrections is empirically relevant because

uncorrected standard errors have been shown in many instances to be severely downward bi-

ased.1 Intuitively, in a regime where standard errors are severely downward biased, a relatively

high share of estimates will be reported as statistically significant (often erroneously). This

means that relatively few studies are censored by selective publication, leading to little bias

in published studies. By contrast, in a regime where standard errors are correctly measured,

and hence larger, a greater share of estimates will be insignificant and censored through the

publication process, resulting in higher bias (Ioannidis, 2008; Andrews and Kasy, 2019; Frankel

and Kasy, 2022). However, with small corrections, it is possible to construct examples where

bias decreases. For instance, corrections can shift the distribution of published studies to those

with larger true effects. Such studies tend to generate larger estimates which are less likely to

be censored by selective publication. This can lead to lower bias overall.

Despite the possibility of higher bias, I show that standard error corrections unambiguously

increase average coverage in published confidence intervals. This holds under very general

conditions. In particular, it holds for any degree of selective publication against null results,

any sized correction, and for arbitrary distributions of true treatment effects. In practical terms,

1For example, Abadie et al. (2023) find using US Census Data that standard errors clustered at the state
level are more than 20 times larger than robust standard errors.
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this means that we can extend the common intuition that standard error corrections increase

coverage in individual studies to the more realistic case where publication favors statistical

significance. Overall, the theoretical results highlight a striking tension: in the presence of

publication bias, standard error corrections enhance the credibility of published confidence

intervals, but can also inadvertently deteriorate the credibility of published point estimates.

I turn next to studying these issues empirically, using a new dataset I constructed from

DiD studies published between 2000–2009. Over this period, clustered standard errors to

account for serial correlation became common practice, in part because of an influential study

by Bertrand et al. (2004) that demonstrated their practical importance. My data are drawn

from the same six economics journals analyzed in that study, but for a later period.2 The DiD

studies in the sample consist primarily of policy evaluations (e.g. health care, tax, education).

This is a compelling setting for applying the theoretical results for two reasons. First, DiD

is an extremely popular research design in the quantitative social sciences. In economics,

it is the most widely referenced quasi-experimental method and its popularity has increased

dramatically over time (Currie et al., 2020). Second, failing to cluster frequently results in

large downward bias in standard errors, which can lead to exaggerated statistical support for

the effectiveness of an intervention (Moulton, 1986, 1990; Bertrand et al., 2004).

Descriptive statistics reveal two striking patterns that are consistent with clustering in-

teracting with publication bias to change the distribution of published estimates. First, the

adoption of clustered standard errors in the empirical DiD literature over the 2000’s was asso-

ciated with a near doubling in the magnitude of estimated treatment effects. This large gap

remains even after controlling for differences in research topics, sample size, and including year

and journal fixed effects. Second, the data exhibit strong evidence for publication bias favoring

statistical significance. Following the metaregression approach in Card and Krueger (1995), I

find, for both unclustered and clustered studies, a strong positive association between stan-

2The journals are: American Economic Review, the Industrial and Labor Relations Review, the Journal
of Labor Economics, the Journal of Political Economy, the Journal of Public Economics, and the Quarterly
Journal of Economics.
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dard errors and effect sizes, such that the overwhelming majority of published studies report

statistically significant results. Following Brodeur et al. (2016), I also plot the distributions of

test statistics for unclustered and clustered studies. Both distributions are strikingly similar

and show substantial bunching around the 5% significance threshold, which is suggestive of

publication bias and p-hacking.

The theory emphasizes that we cannot make inferences about the sign of the change in bias

or the magnitude of the increase in coverage from these reduced-form facts alone. To learn

about the impact of clustering on bias and coverage, I therefore estimate an augmented version

of the Andrews and Kasy (2019) model using data from clustered studies.3 Consistent with

estimates in alternative settings, I find a high degree of publication bias in the empirical DiD

literature: significant findings at the 5% level over 60 times more likely to be published than

insignificant findings.

Next, I use the estimated model to calculate what would have happened if clustered studies

had instead reported unclustered standard errors. To do this, I make the simplifying assumption

that unclustered standard errors are downward biased by a constant factor r. I then calibrate

r such that the model prediction matches differences in key moments between the clustered

and unclustered studies, assuming the same underlying distribution of latent (published and

unpublished) studies. This gives r̂ = 0.51, meaning that clustered standard errors tend to be

around twice the size of unclustered standard errors.

Model estimates show that clustering led to large improvements in coverage. In the unclus-

tered regime, the coverage probability of published confidence intervals was only 0.28. This

implies severe mismeasurement in the calculation of confidence intervals prior to the adoption

of clustering, with fewer than one in three published confidence intervals containing the true

parameter value. By contrast, coverage increased to 0.70 in the clustered regime, a large im-

provement but still below nominal coverage of 0.95 due to publication bias.

Despite substantial improvements in coverage, clustering also led to average bias in published

3The augmented empirical model follows Vu (2023), which extends the empirical model in Andrews and
Kasy (2019) to estimate the latent distribution of standard errors.
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studies doubling, from 1.23 percentage points to 2.44 percentage points. This is equivalent to

the increase in bias that would occur when moving from a regime with no selective publication

(where bias is zero) to one that censors 85% of statistically insignificant results at the 5% level

with clustered standard errors. That is, the impact of clustering on bias is comparable to a

fairly severe degree of publication bias. The model estimates also show that clustering led to

the selection of studies for publication with larger true and estimated treatment effects, since

these studies are, all else equal, more likely to produce statistically significant results.

Given the trade-offs between bias and coverage, the welfare implications of clustering are

unclear. To understand the implications of clustering on evidence-based policy, I develop a

model where policymakers use evidence from published studies to inform a policy decision, but

where reported standard errors may be unclustered. In the model, a policymaker chooses a

treatment rule which maps findings from published studies to policy choices, with the aim of

minimizing maximum regret i.e. the expected welfare loss due to making the inferior decision

(Savage, 1951; Manski, 2004; Stoye, 2009; Tetenov, 2012). Following Frankel and Kasy (2022)

and Kitagawa and Vu (2023), I consider the case where selective publication can censor studies

from being observed by policymakers.

My treatment choice model extends existing frameworks by analyzing treatment choice

under the mistaken belief that unclustered standard errors reflect the true standard error.

This operationalizes the costs and benefits of clustering in a policy setting. On the one hand,

clustered standard errors allow policymakers to more accurately gauge the statistical precision

of the evidence contained in published studies, resulting in better informed decisions. On the

other hand, studies with larger standard errors are more likely to be insignificant and censored,

leaving policymakers to act without evidence.

Calibrating the treatment choice model to the DiD setting, I find that clustering lowers

minimax regret when policymakers weigh welfare losses from implementing an ineffective or

harmful treatment (Type I error) at least 63 times more than welfare losses from failing to

implement a beneficial treatment (Type II error). As a benchmark, note that Type I error
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would need to be weighed around 100 times more than Type II error for a decision rule that

minimizes maximum regret to rationalize hypothesis testing with a 5% statistical significance

threshold (Tetenov, 2012). Thus, the model suggests that clustering improves treatment choice

if we use the benchmark implicitly implied by conventional hypothesis testing. The intuition

behind this result is that decision-makers in the unclustered regime overestimate the precision

of published parameter estimates, which leads to a suboptimal decision rule that is too lenient

with respect to the evidence required for implementing the policy. This leniency is especially

costly when policymakers exhibit a high degree of loss aversion for mistakenly implementing

an ineffective or harmful policy (i.e. Type I error).

Related Literature. This paper contributes to, and connects, two large literatures: the

metascience literature on publication bias (Card and Krueger, 1995; Ioannidis, 2005, 2008;

Franco et al., 2014; Gelman and Carlin, 2014; Ioannidis et al., 2017; Miguel and Christensen,

2018; Amrhein et al., 2019b; Andrews and Kasy, 2019; Frankel and Kasy, 2022; DellaVigna

and Linos, 2022) and the econometrics literature on robust measures of uncertainty (Anderson

and Rubin, 1949; White, 1980; Moulton, 1986, 1990; Bertrand et al., 2004; Lee et al., 2022;

Abadie et al., 2023). While both literatures are guided by the overarching goal of improving

the credibility of empirical analysis, little attention has been paid to how they interact. This

paper builds on existing publication selection models to provide general theoretical results on

how standard error corrections can affect estimated treatment effects, true treatment effects,

bias and coverage. Empirically, it uses newly collected data from the DiD literature to show

that clustering led to substantial improvements in coverage but also large increases in bias.

This paper also contributes to the literature on statistical decision theory and treatment

choice (Wald, 1950; Savage, 1951; Stoye, 2009, 2012; Tetenov, 2012; Kitagawa and Tetenov,

2018; Frankel and Kasy, 2022). In the existing literature, treatment choice models typically

assume that standard errors are correctly measured. This paper extends existing minimax

regret models to incorporate concerns in the econometrics literature that statistical inference

is impaired by mismeasured standard errors. It develops a treatment choice model where
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policymakers overestimate the precision of published estimates when reported standard errors

are unclustered.

This paper proceeds as follows. Section 2.2 develops the theoretical framework and presents

the main propositions. Section 1.3 describes the empirical setting and presents the descriptive

statistics. Section 1.4 shows the results from the empirical model. Section 1.5 develops the

treatment choice model and presents the main welfare results. Section 1.6 concludes.

1.2 Theory

1.2.1 Model of Publication Bias and Standard Error Corrections

I begin by introducing a model of how studies are generated and published in an empirical

literature of interest. This could be a literature addressing many different research questions

(e.g. the DiD literature). Alternatively, it could be a meta-analysis focused on a single question

(e.g. the impact of job training programs on employment outcomes). The model builds on the

selective publication model in Andrews and Kasy (2019) to incorporate the possibility that

reported standard errors are downward biased. While much of the discussion is framed around

clustering to match the empirical application, the same model applies more generally to any

method correcting for downward bias in standard errors. For proofs of the propositions, see

Appendix 3A.

Suppose we observe estimated treatment effects, standard errors, and an indicator for

whether or not standard errors are corrected for a sample of published studies indexed by

j. The model of the DGP has five steps:

1. Draw latent true treatment effect and standard error: Draw a research question

with true treatment effect (βj) and standard error (σj):

(βj, σj) ∼ µβ,σ
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where µβ,σ is the joint distribution of latent true effects and latent standard errors.

2. Estimate the treatment effect: Draw an estimated treatment effect from a normal

distribution with parameters from Stage 1:

β̂j|βj, σj ∼ N(βj, σ
2
j )

3. Report standard errors based on ‘standard error regime’ r:

σ̃j = r · σj

where the corrected regime (Cj = 1) has r = 1 and the uncorrected regime (Cj = 0) has

r ∈ (0, 1).

4. Publication selection: Selective publication is modelled by the function p(·), which

returns the probability of publication for any given t-ratio using the reported standard

error. Let Dj be a Bernoulli random variable equal to one if the study is published and

zero otherwise:

Pr(Dj = 1|β̂j, σ̃j) = p

(
β̂j
σ̃j

)
(1.1)

We observe i.i.d. draws from the conditional distribution of (β̂j, σ̃j, Cj) given Dj = 1. In the

corrected regime, standard errors are accurately measured with r = 1 and the model coincides

with the Andrews and Kasy (2019) model. However, the model differs in the uncorrected

regime, since reported standard errors are downward biased with r ∈ (0, 1). This implies that

reported t-ratios are upward biased since |β̂j|/σ̃j > |β̂j|/σj. Imposing a constant downward bias

factor of r permits a simple exposition of the model.4 In the empirical application, I perform

a robustness exercise where r is drawn from a distribution.

4Note however that all theoretical results can be generalized to the case where r is a random variable with
support on (0, 1), provided that r ⊥⊥ (β̂j , βj , σj).
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I impose a number of regularity conditions and assumptions. First, I normalize true treat-

ment effects to be positive and assume a finite first moment:

Assumption 1 (True Treatment Effect Normalization). Let βj have support on a subset of the

non-negative real line, not be degenerate at zero, and have a finite first moment.

For empirical literatures examining different questions and outcomes, normalizing true ef-

fects to be positive is justified because relative signs across studies are arbitrary. The require-

ment that βj not be degenerate at zero is to avoid the special case where coverage probabilities

always equal zero when all insignificant results are censored by the publication process.

Second, I assume that true effects are statistically independent of standard errors:

Assumption 2 (Independence of True Effects and Standard Errors). Let βj ⊥⊥ σj.

This is commonly assumed in meta-analyses and is also assumed in the ‘meta-study’ esti-

mation approach proposed in Andrews and Kasy (2019), which I implement in the empirical

section. It is unlikely to hold when experimental researchers choose sample sizes based on

predicted effect sizes in power analyses (e.g. Camerer et al. (2016)) or when target parameters

are mechanically correlated with standard errors through measurement.5 However, it may be

more likely to hold in experimental settings where exogenous budget constraints are the main

determinant of sample sizes, or in observational settings where available datasets are the pri-

mary determinant of the sample size.

Finally, I impose the assumption that publication bias depends only on statistical signifi-

cance:

Assumption 3 (Publication Selection Function). Let p(β̂j/σ̃j) = 1− (1−γ) ·1[|β̂j|/σ̃j < 1.96]

with γ ∈ [0, 1).

5For example, Chen (2023) considers estimates of tract-level economic mobility in the Opportunity Atlas
(Raj et al., 2020). Census tracts with more low-income household have (i) lower true economic mobility and (ii)
more precise estimates of economic mobility due to larger sample sizes. This generates a positive correlation
between true economic mobility and standard error estimates.
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That is, significant results (based on the reported standard error) at the 5% level are pub-

lished with probability one, while insignificant results are published with probability γ ∈ [0, 1).

This assumption is used to match the common concern that publication favors statistical sig-

nificant findings. The 5% significance level is chosen because it is the most commonly used

critical threshold. However, the main theoretical results generalize to other critical thresholds.

Illustrative Example

Consider a simple example to illustrate the model and motivate the general theoretical results

which follow. Suppose researchers are interested in studying the impact of a health reform on

average life expectancy, and that the reform is implemented in some states and not others.

For the first stage of the model, suppose the average treatment effect for treated states

(ATT) is equal to a one-year improvement in life expectancy, β = 1, and that the standard

error is σj = 1 for all studies j = 1, 2, ...J (i.e. the joint distribution of true effects and

standard errors, µβ,σ, is degenerate). In the second stage, researchers conduct a large number

of independent DiD studies to learn about the (unobserved) ATT, each producing an unbiased

DiD estimate β̂j drawn from a N(1, 1) distribution. For the third stage, we consider two regimes

for calculating standard errors. In the clustered regime, researchers correctly cluster by state

and reported standard errors equal true standard errors (σ̃j = σj). However, in the unclustered

regime, researchers fail to cluster by state and erroneously report standard errors which are

half their true value (r = 1
2
and σ̃j < σj). In the fourth and final stage, only a subset of the

latent DiD estimates β̂j are published due to publication bias. In particular, suppose that the

publication process censors all insignificant findings at the 5% level (i.e. γ = 0 in Assumption

3).

While both standard errors regimes are subject to the same degree of publication bias,

statistical significance is easier to obtain in the unclustered regime because t-statistics are

upward biased by a factor of two. Thus, the studies selected for publication differ across

regimes. We are interested in how this affects both bias and coverage in published DiD studies.
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First, consider bias and recall that the true ATT is a one-year improvement in life ex-

pectancy. In the unclustered regime, reported standard errors are half the true value such that

the effective threshold for statistical significance is half of what it should be. Thus, all DiD esti-

mates β̂j whose absolute values are smaller than 1.96× 1
2
= 0.98 years are censored by selective

publication. This clearly leads to upward bias, such that the average DiD estimate conditional

on publication is Er[β̂j|Dj = 1] = 1.64 years (where the subscript indicates the standard error

regime r = 1
2
). Clustering makes matters worse because increasing reported standard errors

raises the effective threshold for statistical significance. Now, DiD estimates whose absolute

values are smaller than 1.96 years are censored such that the average DiD estimate conditional

on publication increases to E1[β̂j|Dj = 1] = 2.45 years.

Overall, clustering increases bias by 0.81 years (or 125%). This is more than twice the

magnitude of bias in the unclustered regime and equal to around four-fifths of the true ATT.

It is equivalent to the increase in bias that would arise when moving from a regime with no

publication bias to a regime where 88% of insignificant results at the 5% level are censored

(based on correctly measured standard errors). In other words, clustering has a large impact

on bias which is comparable to very severe levels of selective publication.

Higher bias implies that estimates are, on average, further away from the true ATT. This

raises the question of whether clustering could potentially fail to meet its primary goal of

improving the average coverage of published confidence intervals (in this example, and also

more generally). It turns out that coverage conditional on publication does in fact increase in

this case, by 19 percentage points (0.65 to 0.84). The proof in Lemma 1A.6 in Appendix 3A

shows that higher coverage is equivalent to showing that the hazard function of the normal

distribution is increasing.

This example illustrates a key tension emphasized throughout this paper: for the studies

selected for publication, improvements in the credibility of confidence intervals through better

coverage (↑ 19 ppts) can come at the unintended cost of a deterioration in the credibility of

point estimates due to increased bias (↑ 125%). It also demonstrates that these effects can be
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large.

This tension has only been shown here for a special case where (µβ,σ, γ, r) =
(
Pr[βj =

1, σj = 1] = 1, 0, 1
2

)
. In the remainder of this section, I move beyond this special case to

answer, in general, what happens to bias and coverage in published studies when standard

error corrections for downward bias are applied. In particular, I derive exact conditions under

which the tension between increased bias and coverage generalizes to other settings.

1.2.2 Bias

The illustrative example shows that it is possible for standard error corrections to increase

bias in published studies. Under what conditions does this conclusion hold more generally? I

find that a sufficient condition for increased bias is that corrections are ‘sufficiently’ large, and

present an example where small corrections can lead to a decrease in bias.

Before presenting the main result, I first define the key measures of interest. Throughout,

I normalize the true standard error to σj = 1 and omit it from the notation for clarity. Note

that the theoretical results apply both to empirical literatures examining a single question of

interest (e.g. the impact of a health reform on life expectancy) and to those addressing different

research questions (e.g. the empirical DiD literature examining different policy evaluations).

The theoretical results will apply to several measures of bias. The first measure is internal-

validity bias, which is defined Er[β̂j − βj|Dj = 1] and where the subscript r in the expectation

denotes the standard error regime. The publication regime, γ, is implicit in the notation, since

the main focus is on standard error corrections. Internal-validity bias asks how far, on average,

published estimates are from the questions they answer. The second measure is study-selection

bias, which is defined as Er[βj|Dj = 1]−E[βj].6 This measures how far, on average, published

true effects are from the average that would occur if there were no publication bias. In certain

6In general, study-selection bias is non-zero because true treatment effects βj follow a distribution. This
applies both when the empirical literature of interest is concerned with different questions and when it examines
a single question. Variation in true treatment effects may arise in the latter case because of heterogeneity across
studies in populations, research design, policies etc.
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contexts, this is referred to as ‘site-selection bias’ (Allcott, 2015).

The relevant measure of bias can depend on context. To illustrate, consider the previous

example of the impact of a health reform on life expectancy. Suppose that the true ATT of a one-

year improvement in life expectancy is in fact a weighted average of heterogeneous treatment

effects across treated states. Moreover, assume that different studies examine different subsets

of treated states.7 First, consider a scenario where study-selection bias is the primary object

of interest. Suppose continued federal funding for this health program depends on the average

treatment effect in treated states, E[βj]. However, due to publication bias for positive results,

studies examining states where the program is most effective are most likely to be published,

leading to positive study-selection bias. This exaggerates the average effectiveness of the policy

and may lead to a less informed decision with respect to federal funding. Next, consider a

scenario where internal-validity bias is the primary concern. Suppose that heterogeneous effects

across treated states reflect variation in program features e.g. the cost structure. Policymakers

are interested in rolling out the health reform in a new, untreated state and want to know which

cost structure will be most effective in producing positive health outcomes. In this scenario,

policymakers may be relatively unconcerned if study-selection bias skews toward published

studies examining states where the policy is most effective, since this happens to align with their

objectives. Instead, their primary concern is internal-study bias conditional on cost structure,

so as to correctly gauge the likely impact of the policy in the new, untreated state.8

Additionally, in the case where the empirical literature of interest examines many different

questions (e.g. the DiD literature analyzed in the empirical section), the primary concern may

also be internal-validity bias. In this context, study-selection bias reflects different research

questions being addressed in the published literature compared to the case without publication

bias. Since different studies are examining different questions, this kind of selection has less

clear implications for statistical credibility.

7This could arise, for example, due to idiosyncratic data constraints faced by individual researchers.
8Selecting policies based on those with the largest estimates is known to induce upward bias in estimated

policy impact. Procedures for correcting inference for this ‘winner’s curse’ are studied in Andrews et al. (2023).
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Finally, consider total bias, which is defined as Er[β̂j|Dj = 1] − E[βj]. It asks how far

published estimates are from the average true effect across all latent studies, and is equal

to the sum of internal-validity bias and study-selection bias. This relationship gives rise to

the following decomposition, which provides useful intuition for examining how standard error

corrections can affect each type of bias:

E1[β̂j |Dj = 1]−Er[β̂j |Dj = 1]︸ ︷︷ ︸
∆Estimated Treatment Effects = ∆Total Bias

= E1[β̂j − βj |Dj = 1]−Er[β̂j − βj |Dj = 1]︸ ︷︷ ︸
∆Internal-Validity Bias

+ E1[βj |Dj = 1]−Er[βj |Dj = 1]︸ ︷︷ ︸
∆Study-Selection Bias

(1.2)

That is, the change in total bias is equal to the sum of the change in internal-validity bias

and study-selection bias. The main result of this subsection provides a sufficient condition

under which all three changes are positive:

Proposition 1 (Large Corrections Increase Bias). Under Assumptions 1, 2, and 3, there exists

an r∗ ∈ (0, 1] such that for any r ∈ (0, r∗), internal-validity bias, study-selection bias, and total

bias all increase with standard error corrections.9

Proposition 1 states that sufficiently large standard error corrections inevitably lead to

increases in each of the three types of bias discussed. This is important for two reasons.

First, it implies that corrections are most likely to increase bias in published studies in the

cases where they are most needed. Second, prior evidence suggests relatively severe downward

bias in uncorrected standard errors in practice (Moulton, 1986, 1990; Bertrand et al., 2004).

Thus, large downward bias in uncorrected standard errors may be the empirically relevant case,

although a definitive answer requires knowledge of the underlying model parameters, which we

estimate in the empirical section for DiD studies.

For intuition underlying Proposition 1, consider internal-validity bias (other measures share

similar intuition). When standard errors are severely downwardly biased, almost all results are

9All inequalities are strict except for study-selection bias, which is a weak inequality. If the latent distribution
of true treatment is non-degenerate, then the inequality for study-selection bias is also strict.
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reported as significant. Consequently, there is very little selective publication and estimates

have relatively small internal-validity bias. However, corrections increase standard errors, which

leads to more studies with small effect sizes being censored by the publication process and hence

higher bias. It follows that moving from the uncorrected regime with little bias to the corrected

regime must necessarily increase bias.

To see why the sufficient condition of large corrections is required, consider an example

where small standard error corrections lead to a decrease in internal-validity bias.10 Consider

a literature addressing two research questions, one with a small true effect and one with a

large true effect. Specifically, let the latent distribution of true effects βj take on two possible

values (β1, β2) = (1, 4) with probabilities 4
5
and 1

5
, respectively. Assume only one in twenty

insignificant studies are published (γ = 1
20
) and unclustered standard are 80% of their true

value (r = 4
5
).

In the clustered regime, a higher share of studies addressing the question with the larger

effect (β2 = 4) are published relative to the unclustered regime. This is because studies ad-

dressing the question with the smaller true effect (β2 = 1) are more likely to be insignificant

with clustering and hence censored by selective publication. This decreases average internal-

validity bias overall because studies addressing questions with very large effect sizes have bias

close to zero.11 The intuition behind this is that when true effects are large, the probability of

obtaining an insignificant result, and thus being subject to publication bias, is low. Overall,

then, clustering shifts the distribution of published studies toward those with larger true effects

and hence smaller bias.

This example highlights a second important point: it is possible for estimated treatment

effects to increase with clustering, despite the fact that internal-validity bias decreases. To

see why, consider again the decomposition in equation (1.2). Clustering in this example leads

to an overall increase in estimated treatment effects (0.30) that reflects an increase in true

10See Appendix 1B for examples where study-selection bias and total bias can decrease with small standard
error corrections.

11This is shown graphically in Figure 1C.1 in Appendix 1C.
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treatment effects (0.31) which outweighs a decrease in internal-validity bias (−0.01). Thus, by

observing higher effect sizes in clustered studies, it is not possible, in general, to infer the sign

of the change in bias. This underscores the limitations of what we can learn about bias from

reduced-form statistics calculated on observed effect sizes. Proposition 1, of course, guarantees

that bias must increase if corrections are sufficiently large. Figure 1.1 illustrates this by tracing

out the change in internal-validity bias from adopting different sized standard error corrections

(r). In this example, we have that r∗ = 0.77, meaning that corrections that enlarge standard

errors by more than 30% will lead to an increase in bias.

In summary, internal-validity bias, study-selection bias, and total bias can in general increase

or decrease with corrections, but must always increases when corrections are sufficiently large.

Figure 1.1: Change in Internal-Validity Bias

Notes: Change in Internal-Validity Bias from adopting standard error corrections for different degrees
of downward bias r: E1[β̂j − βj |Dj = 1]−Er[β̂j − βj |Dj = 1], with γ = 1

20 . The dashed vertical line
at r∗ = 0.77 denotes the value of below which bias always increases with standard error corrections.
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1.2.3 Coverage

We turn next to how standard error corrections impact coverage probabilities in the presence

of publication bias. First, define expected coverage conditional on publication in standard error

regime r ∈ (0, 1] as Coverage(r) = Prr[βj ∈ (β̂j − 1.96r, β̂j + 1.96r)|Dj = 1] i.e. the proba-

bility that published 95% confidence intervals based on reported standard errors contain the

true effect.12 Compare this to expected coverage in a standard econometric analysis without

publication bias: Prr[βj ∈ (β̂j − 1.96r, β̂j + 1.96r)]. In the case without publication bias, it is

clear that standard error corrections for downward bias will increase coverage.

The presence of publication bias, however, introduces several complications. In the defini-

tion of Coverage(r), see that the degree of downward bias affects not only the width of reported

confidence intervals, but also the studies (β̂j, βj) that end up making it into the published lit-

erature, since uncorrected standard errors are more likely to lead to statistically significant

findings. This can complicate comparisons between uncorrected and corrected regimes. To

illustrate, consider Figure 1.2, which depicts three possible realizations of the estimated treat-

ment effect β̂ (black points) for a fixed true effect β. Each realization would be treated differ-

ently under corrected and uncorrected regimes. Confidence intervals with corrections (purple)

are twice the width of those without corrections (yellow). Consider each case:

1. Expand CIs to include β: an interval that did not cover β or zero in the uncorrected

regime now expands to cover β while still not covering zero in the corrected regime.

2. Expand CI of a covered study to include zero: an interval that covered β but not

zero in the uncorrected regime now expands to cover zero and is therefore censored with

some positive probability in the corrected regime.

3. Expand CI for an uncovered study to include zero: an interval that did not cover

β or zero in the uncorrected regime now covers zero and is censored with some positive

12This definition is similar to the coverage concept discussed in Armstrong et al. (2022) in relation to empirical
Bayes confidence intervals, although here I condition on publication.
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Figure 1.2: Three Potential Effects of Clustering on Coverage Conditional on Publication

probability in the corrected regime.

In standard analyses that do not account for publication bias, the first effect is the only

relevant case and hence corrections clearly improve coverage. The second and third effects

occur due to publication bias, since corrections can now censor studies that would otherwise

be published. The second effect decreases coverage and the third increases it.

In general, it is not clear a priori which effects dominate or even whether any of them

do dominate in all cases. A key reason for this difficulty lies in the fact that different true

effects end up in the published literature for the corrected and uncorrected regimes owing to

selective publication. Thus, the relative share of published estimates in each of the three cases

listed above varies across regimes and ultimately depends on the underlying model parameters.

Given that I allow for arbitrary distributions of latent true effects, µβ, this opens up a large

set of possible comparisons, including those which would in principle most favor corrections

worsening coverage.

Despite these complications, the next result states, in general, that expected coverage in
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published studies unambiguously increases:

Proposition 2 (Standard Error Corrections Increase Coverage). Under Assumptions 2 and 3,

Coverage(1)− Coverage(r) > 0 for any r ∈ (0, 1).

In practical terms, Proposition 2 means that we can extend the common intuition that

coverage increases with standard error corrections in individual studies to the more realistic

case where there is publication bias. It also rules out the possibility that both bias and coverage

might worsen with standard error corrections. In conjunction with Proposition 1, this implies

that standard error corrections always improve the average quality of variance estimates in

published studies, but can worsen bias when corrections are large.

The proof of Proposition 2 builds on the special case where the distribution of true effects

βj is degenerate and γ = 0.13 The proof shows that this conclusion holds more generally,

in particular, for (i) arbitrary levels of selective publication against null results, γ ∈ (0, 1);

and for (ii) arbitrary distributions of latent studies µβ. Both generalizations are non-trivial

extensions of the special degenerate case. This is because the distribution of published studies,

β̂j, βj|Dj = 1, on which expected coverage is calculated, depends jointly on the degree of

selective publication γ, the extent to which standard errors are downward biased by r, and the

latent distribution of true effects µβ.

The generalization to any level of selective publication makes use of a result which shows

that any publication regime γ ∈ [0, 1] can be expressed as a mixture of a publication regime

which publishes all insignificant results (γ = 1) and one that censor all insignificant results

(γ = 0). Loosely speaking, since coverage trivially improves in the former regime, we only need

to focus on the latter case where γ = 0. Generalizing the result to non-degenerate distributions

of βj uses the shape of the coverage probability curve as a function of βj and the fact that when

γ = 0, the distribution of published true treatment effects βj|Dj = 1 in the corrected regime

13Coverage is shown to increase in this special case in Lemma 1A.6 in Appendix 3A. The proof shows there are
two cases to consider, one where the degenerate value for β is relatively ‘large’ and another where it is relatively
‘small’. For large true effect, only effects one and three in Figure 1.2 occur and thus coverage must increase
with corrections. For ‘small’ true effects, the proof shows that increased coverage is equivalent to showing that
the hazard function for normal distribution is increasing.
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with r = 1 first-order stochastically dominates the corresponding distribution in the uncorrected

regime with r < 1. Finally, note that the proof is not specific to the 5% significance threshold

and thus generalizes to other critical thresholds. For more details, see Appendix 3A.

Remark 1 (Improvements in Coverage). A common concern with publication bias is that pub-

lished confidence intervals under-cover the true parameter. However, it is also possible that

they over-cover the true parameter, even when standard errors are uncorrected and downward

biased. In this case, Proposition 2 implies that corrections would increase coverage further,

making them, on average, overly conservative. Lemma 1A.9 in Appendix 3A shows that a suf-

ficient condition for undercoverage in the uncorrected regime when nominal coverage is 0.95

is r < 0.8512. Thus, corrections that are sufficiently large will either decrease the distance to

nominal coverage or achieve coverage that is weakly higher than the nominal target. In the em-

pirical application to the DiD literature, the average coverage of published confidence intervals

in uncorrected regime is estimated to be far below nominal coverage.

1.3 Setting and Data

I turn now to analyzing the implications of the theoretical results in a particular setting:

the adoption of clustered standard errors in the empirical DiD literature. There are several

motivations for the empirical analysis. First, the theoretical results show that the impact of

standard error corrections on bias is ambiguous in general and depends on the distribution of

latent studies, the degree of selective publication, and the size of the standard error correction.

Second, the magnitude of the change in bias (irrespective of the sign) and coverage is an

empirical question. A third motivation is that DiD is an extremely popular research design

in economics and the quantitative social sciences more broadly, with growing use over time

(Currie et al., 2020). Below, I describe the setting and present descriptive statistics. The

following section estimates an empirical model and presents the main results.
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1.3.1 Data

The empirical analysis uses a newly constructed dataset of DiD articles published in six journals

over 2000–2009: the American Economic Review, the Industrial and Labor Relations Review,

the Journal of Labor Economics, the Journal of Political Economy, the Journal of Public Eco-

nomics, and the Quarterly Journal of Economics. These journals were chosen to match those

analyzed in Bertrand et al. (2004) for the previous decade, 1990–2000. Following Currie et al.

(2020), I identified DiD articles using a string-search algorithm. I collected data on the ‘main’

DiD estimate in each study, and excluded placebo tests and tests of alternative hypotheses. The

‘main’ estimate was chosen from the first DiD table in the paper. When there were multiple es-

timates, I chose the one emphasized in the discussion of the results or the abstract. When there

were several specifications, I selected the one with full controls. For DiD articles that fit the

inclusion criteria described below, I manually collected data on the estimated DiD treatment

effect; the reported standard error; an indicator for whether a correction for serial correlation

is implemented; an indicator for policy evaluations14; and the number of observations. I also

obtained JEL classification codes from EconLit.

While the main type of standard error correction in the sample is clustering, a small number

of studies implement other corrections e.g. block-bootstrapped standard errors or two-period

aggregation. For brevity, I use the term ‘clustering’ in this article to refer to any correction

which accounts for the correlation of errors within groups across time. While the ‘correct’

level of clustering is an active topic of research (e.g. Abadie et al. (2023)), there is little

disagreement over whether standard errors should allow for serial correlation in DiD settings.

For descriptive statistics in this section, I simply present the reported standard errors for

clustered and unclustered studies. In the empirical model in the following section, I make a

stronger assumption that reported clustered standard errors reflect the true standard error.

14This denotes studies that evaluate a specific policy (e.g. by a government or firm) and does not refer to
studies which simply have policy relevance. For example, consider a study on the causal effect on the peer
effects of boys’ schooling outcomes on girls’, which is estimated by exploiting the impact of an earthquake on
compulsory military service for males. While this may have policy relevance, it is not considered here to be a
policy evaluation.
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To ensure meaningful comparisons of effect sizes across studies, I included studies where

the dependent variable is in percent or log units, or otherwise convertable to percent units. For

dependent variables in non-percentage units, the effect is recorded relative to the sample mean

of the treatment group prior to the treatment.15 Consider, for example, a study estimating

the impact of an educational program on the drop-out rate. I convert the estimated treatment

effect into percent units by dividing it by the mean drop-out rate of the treated group before

the intervention. When the mean of the treatment group prior to treatment is unavailable, I

instead normalize by the mean of the dependent variable for the whole sample. Two studies

did not report an average for the dependent variable and were excluded. For effect size con-

versions, standard errors are rescaled such that the t-ratio is unchanged. I restrict attention

to DiD estimates with an indicator for the treatment variable, and exclude, for example, esti-

mated treatment effects based on changing the rate of a continuous treatment variable (e.g. 10

percentage point change in the share of those eligible for medicare).

Figure 1.3 shows a time series of the fraction of DiD articles implementing a correction

for serial correlation between 2000 and 2009. This period saw a dramatic rise in the adoption

of clustered standard errors, from around one in four at the beginning of the decade to near

universal adoption by the end of it. This could in part be due to the publication of Bertrand

et al. (2004), which was highly influential and released as a working paper in the early 2000’s.

Despite earlier emphasis in the econometrics literature on the importance of accounting for

correlation in errors within groups (e.g. Moulton (1986)), Bertrand et al. (2004) showed in

a survey of DiD studies that the use of corrections in the empirical literature was very rare

between 1990 and 2000. Specifically, Bertrand et al. (2004) identified 65 DiD papers with a

potential serial correlation problem and found that only five (7.7%) implemented some form of

standard error correction.16

Table 1.1 presents summary statistics. The sample consists of 96 DiD studies, 66 of which

report clustered standard errors. Clustered studies have, on average, larger standard errors

15Note that the normalized ATE is a different parameter to the ATE in log differences (Roth and Chen, 2023).
16Four of these five studies used GLS for corrections, which they argue is relative ineffective.
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Figure 1.3: Three-Year Centered Moving Average of the Clustering Adoption Rate

than unclustered studies. This is consistent with the econometrics literature that emphasizes

downward bias in the absence of corrections (Moulton, 1986, 1990; Bertrand et al., 2004; Abadie

et al., 2023). The ratio of the average reported standard errors in unclustered studies to

clustered studies is 4.250/6.497 = 0.654 i.e. published clustered standard errors are on average

53% larger than published unclustered standard errors. It is important to note that 0.654 is

not an estimate of the degree of downward bias in unclustered standard errors (r), which would

be equal to the ratio of unclustered to clustered standard errors in latent studies, not published

studies.17

Clustered studies are also associated with much larger effect sizes than unclustered studies

(19.5% vs. 12.2%). Here, the effect size is defined as the absolute value of the estimated

treatment effect. That larger standard errors are accompanied by higher effect sizes is consistent

with the main mechanism emphasized in the theory in Section 2.2, namely, that clustering

17In fact, this ratio is likely to be an upwardly biased estimate of r. This is because clustering increases
reported standard errors which makes publication more difficult. Clustered studies with smaller standard errors
are therefore more likely to be statistically significant and published, which would make this ratio larger.
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Table 1.1: Summary Statistics: Unclustered and Clustered Studies using Difference-in-Differences

Unclustered Clustered Difference (2)-(1)

Reported standard error (%) 4.253 6.500 2.247
(4.341) (6.723) (1.144)

Effect size (%) 12.182 19.529 7.347
(14.554) (18.481) (3.489)

#JEL codes 3.033 3.333 0.300
(1.245) (1.34) (0.28)

JEL:H (Public) 0.233 0.242 0.009
(0.430) (0.432) (0.095)

JEL:I (Health, Education, & Welfare) 0.433 0.333 -0.100
(0.504) (0.475) (0.109)

JEL:J (Labor and Demographics) 0.667 0.545 -0.121
(0.479) (0.502) (0.107)

JEL:Other 0.533 0.667 0.133
(0.507) (0.475) (0.109)

Policy evaluation 0.867 0.803 -0.064
(0.346) (0.401) (0.080)

log(observations) 9.964 9.849 -0.115
(2.111) (2.073) (0.461)

Number of studies 30 66 36

Notes: The sample is DiD literature over 2000-2009 based on inclusion criteria described in the main
text. The first two columns report means and standard deviations below in parentheses. In the final
column, robust standard errors are reported from a regression of the row variable on an indicator for
clustering. JEL codes H, I and J are presented because they are the most commonly listed codes.
JEL:H is an indicator which equals one if at least one of the JEL codes is H; JEL:I and JEL:J are
defined similarly. The variable JEL:Other equals one if the study lists at least one code that is not H,
I or J.

raises the bar for statistical significance and results in the selection of larger effect sizes due

to publication bias. More detailed descriptive statistics consistent with this interpretation are

presented further below.

The remaining rows of Table 1.1 show summary statistics on study characteristics. The

number of primary JEL categories is around around three for both clustered and unclustered

studies.18 The most common categories are H (Public Economics), I (Health, Education, and

Welfare), and J (Labor and Demographic Economics). While a high share of both unclustered

18There are 26 primary JEL categories (A to Z) corresponding to different fields of economic research. For
the full distribution of JEL codes in unclustered and clustered studies, see Appendix 1D.
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and clustered studies belong to these categories, clustered studies are somewhat less likely to

report categories I and J. Similarly, while the majority of all studies are policy evaluations, the

fraction for clustered studies (0.80) is somewhat lower than in unclustered studies (0.87). These

statistics are consistent with DiD research designs being used in a wider variety of settings over

time.

1.3.2 Two Stylized Facts

In this subsection, I present descriptive statistics on two stylized facts:

1. Clustering was associated with the magnitude of published estimates almost doubling in

size after controlling for differences in research topics, sample size, and including year and

journal fixed effects; and

2. There is strong evidence of publication bias favoring statistically significant results.

Effect Size Gap

As shown in Table 1.1, there is a large difference in the magnitude of estimated treatment

effects between unclustered and clustered studies. Differences in observable study character-

istics cannot explain this gap. Table 1.2 reports results from a regression of the effect size

on an indicator for clustering, adding additional controls with each successive column. The

final specification includes year and journal fixed effects and controls for sample size, research

topic (JEL categories), and an indicator for policy evaluations. The estimated coefficient in

the specification with full controls implies that effect sizes in clustered studies are larger than

those in unclustered studies by a factor of 1.84 (22.36% vs. 12.18%).

This is a striking gap and consistent with a substantial shift in the distribution of published

studies. However, it is important to emphasize that the theoretical results in Subsection 1.2.2

show that observing larger estimated treatment effects in clustered studies does not, in and

of itself, tell us whether bias has actually increased. The example presented there shows that
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Table 1.2: Impact of Clustering on Effect Sizes

(1) (2) (3) (4)

Clustered 7.347 8.265 9.464 10.182
(3.489) (3.977) (4.315) (4.778)

Unclustered mean 12.18 12.18 12.18 12.18
Observations 96 96 96 96
Adjusted-R2 0.028 0.067 0.056 0.053
Year FE X X X
Journal FE X X
Study controls X

Notes: OLS regressions of estimated treatment effects on an indicator for clustering. The dependent
variable is in percent units (or log points for studies where the dependent variable in in logs). The
estimated coefficient on the clustering indicator is in percentage point units. Study controls include a
quadratic on the log of the number of observations, an indicator for policy evaluations, and a three-way
interaction between the three most common JEL primary categories: H (Public Economics), I (Health,
Education, and Welfare), and J (Labor and Demographic Economics). Robust standard errors are in
parentheses.

higher effect sizes can also be consistent with a decrease in bias.19 To make inferences about

changes in bias, it is therefore necessary to estimate the latent distribution of studies, which

we do in the following section.

An alternative explanation for the observed gap is that it is driven by strategic clustering.

This is a particular form of endogeneity where researchers p-hack their standard errors to

increase the chances of publication. In particular, suppose that researchers strategically choose

not to cluster if doing so would overturn a statistically significant result. This behavior would

also generate a positive correlation between clustering and estimated treatment effects. Thus,

the effect size gap in Table 1.2 might reflect the impact of clustering on estimated treatment

effect via selective publication process and strategic clustering by researchers.

To test whether strategic clustering is driving this result, I examine effect sizes of unclus-

19Strictly speaking, the example shows that the unnormalizaed difference in effect sizes, E[β̂j |Dj = 1, Cj =

1] − E[β̂j |Dj = 1, Cj = 0], is positive. However, it is also true in this example that the difference in the

magnitude of estimated treatment effects, E[|β̂j |
∣∣Dj = 1, Cj = 1] − E[|β̂j |

∣∣Dj = 1, Cj = 0] is positive. This

section focuses on absolute effect sizes because we do not in fact observe unnormalized effect sizes β̂j conditional
on our normalization that βj is positive (Assumption 1). For a concrete example, consider a study with an

observed estimate β̂j , and an unobserved true effect βj , which could be positive or negative. Now normalize the

true effect to be positive |βj |. Whether or not we switch the sign of β̂j to be consistent with this normalization
requires knowledge of the sign of unnormalized βj , which we do not observe.
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tered studies in the 1990–1999 period from the same set of journals. During this period, the

overwhelming majority of studies reported unclustered standard errors (Bertrand et al., 2004)

and hence strategic clustering is unlikely to be affecting the distribution of effect sizes. If strate-

gic clustering was absent in the 1990–1999 period, but present during the 2000–2009 period,

then, all else equal, we might expect effect sizes to be smaller in the 2000–2009 period. This is

because strategic clustering would increase the fraction of published studies in the unclustered

regime with relatively small effect sizes that would be ‘just significant’ without clustering, but

insignificant with it. Instead, I find that the mean effect size in the 2000–2009 period is close

to, and in fact slightly larger than, the mean effect size in the 1990–1999 period (12.18% and

10.57%). The difference is statistically indistinguishable from zero, although statistical power is

somewhat limited. Controlling for differences in observable study characteristics, including JEL

topics and sample sizes, does not change this conclusion. This supports the idea that strategic

clustering of the simple form discussed here is not driving observed differences in effect sizes

across clustered and unclustered regimes. This, of course, covers only one form of endogeneity

and other forms could in principle be present. For more details, see Appendix 1E.

Ultimately, the primary goal of the empirical analysis is to estimate the changes in bias and

coverage that occur due to clustering, not simply changes in effect sizes. To this end, in the

following section, I propose an estimation approach for the empirical model that yields unbiased

estimates of the model parameters irrespective of whether or not there is strategic clustering

of the simple form described here. Moreover, this provides an additional test for strategic

clustering, by comparing robust model estimates to those in the baseline model. Using this

approach, we cannot reject the null hypothesis of no strategic clustering. See Subsection 1.4.1

for further discussion.

Selective Publication on Statistical Significance

The second stylized fact concerns evidence for publication bias favouring statistically significant

results. While publication bias has been documented in a wide variety of settings, it is important
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to test for it in the DiD setting, for two reasons. First, to establish the applicability of the

theoretical results; and second, to justify estimating the selective publication model in the

following section. I explore two common approaches used in the meta-science literature for

detecting selective publication.

The first is the metaregression approach proposed in Card and Krueger (1995). Figure 1.4

visualizes a regression of effect sizes on reported standard errors. Panels (a) and (b) separate

articles using clustered and unclustered standard errors, respectively. The results are consistent

with selective publication on the basis of statistical significance, for at least three reasons.

First, there are simply very few studies with statistically insignificant results. Second, larger

standard errors are associated with larger effect sizes. Metaregression estimates in both regimes

give a slope coefficient which implies that a one percentage point increase in standard errors is

associated with a little over a two percentage point increase in estimated effect sizes – this is,

approximately the increment necessary for maintaining statistical significance. In the absence

of selective publication, there may be little reason to expect a systematic relationship between

estimated treatment effects and standard errors, because the sample size in observational studies

is not typically chosen but instead predetermined by available datasets.20 Finally, the estimated

slope coefficient on reported standard errors is very similar across clustered and unclustered

regimes. Given that unclustered standard errors are systematically downward biased, one would

expect, under the null hypothesis of no selective publication, that clustering would lead to a

decrease in the slope coefficient on standard errors. Instead, the estimated linear relationship

between treatment effects and reported standard errors is similar across regimes.

Following Brodeur et al. (2016), a second test examines the distribution of t-statistics to

determine if there is a bunching around critical significance thresholds. Panel (c) shows the dis-

tribution of test statistics for unclustered studies, while Panel (d) shows the same for clustered

studies. The vertical dashed line marks the 5% threshold significance level. In both figures,

there is a large mass of t ratio values just above this threshold, and a ‘missing’ mass just below

20This contrasts with experimental studies where larger sample sizes may be chosen by authors performing
power calculations to detect small expected effect sizes.
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Figure 1.4: Selective Publication and p-Hacking

Notes: These figures present evidence of selective publication and p-hacking in the empirical DiD
literature over 2000–2009. Panels (a) and (b) report OLS regressions of estimated treatment effects
on standard errors in the unclustered and clustered regime. The dashed line separates statistically
significant and insignificant results at the 5% level. Robust standard errors are reported in parentheses.
Panels (c) and (d) show the distribution of absolute t-statistics for both regimes; the vertical dashed
line is at 1.96, the critical threshold for statistical significance at the 5% level.
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it. Despite the fact that standard errors are systematically higher in clustered studies, the

distributions appear very similar in both regimes, providing additional evidence of selective

publication (or p-hacking).

1.4 Empirical Model

Descriptive statistics provide evidence that clustering led to a change in the distribution of

estimated treatment effects via selective publication. However, from these descriptives alone, we

cannot make inferences about some of the main quantities of interest, namely, bias and coverage.

To do this, I follow an empirical strategy consisting of two steps. In the first, I estimate the

model in Section 2.2 using data from clustered DiD studies. This gives parameters governing

the latent distribution (µβ,σ) and selective publication (γ) for clustered studies. With these

model estimates, we can analyze counterfactual scenarios of what would have happened had

clustered studies instead reported unclustered standard errors which were downward biased by

any specified factor r. In the second step, I describe two approaches for calibrating reasonable

values for r. I then present the main results.

1.4.1 Estimation

First, I estimate the model of selective publication in Section 2.2 using data from clustered

studies. Following Andrews and Kasy (2019), I estimate the latent distribution of true effects

assuming that βj ⊥⊥ σj (Assumption 2) and βj|λβ, κβ ∼ Gamma(λβ, κβ). Following Vu (2023),

I augment the baseline model to jointly estimate the distribution of standard errors, assuming

this also follows a gamma distribution: σj|λσ, κσ ∼ Gamma(λσ, κσ). This is necessary for

calculating coverage. In line with the theory, I assume publication probabilities follow a step

function where the relative probability of publishing a statistically insignificant result at the

5% level is given by γ.21 Finally, note that clustered standard errors are assumed in estimation

21This is similar to Assumption 3 in that selective publication follows a step function at the 5% level. It
differs, however, in that it does not impose that γ ∈ [0, 1). In particular, estimation allows the possibility that
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to reflect the true variation of estimated treatment effects.

Consistency of the model parameters requires that Cj ⊥⊥ β̂j|βj. This assumption is violated

if there is strategic clustering, which I address below in an alternative estimation approach.

The assumption is not violated, however, by non-random clustering with respect to study char-

acteristics. For example, there is suggestive evidence in Table 1.1 that DiD studies outside of

Health, Education & Welfare (JEL:I) and Labor & Demographics (JEL:J) are more likely to

use clustered standard errors. If this were indeed the case, then estimation would still yield

consistent estimates of the latent distribution of studies in the clustered regime; however, the

latent distribution in the unclustered regime would differ. This has implications for intepreting

the main results, which I discuss further below. Finally, note that I restrict attention to clus-

tered studies to avoid imposing strong assumptions about the mapping between unclustered

standard errors and (unobserved) clustered standard errors for unclustered studies in the like-

lihood function.22

Table 1.3 presents the maximum likelihood estimates. The estimate γ̂ = 0.016 implies a

high degree of selective publication. In particular, it means that statistically significant results

are around 60 times more likely to be published than insignificant results. This is broadly

similar to estimates of publication bias in Andrews and Kasy (2019) for replication studies in

economics (γ̂ = 0.038) and psychology (γ̂ = 0.017).

As mentioned above, the presence of strategic clustering would lead to model misspecifica-

tion and inconsistent parameter estimates. To address this potential issue, I propose an alterna-

tive estimation approach which is robust to the a scenario where researchers choose to cluster if

and only if it does not change the significance of their results. For a formal presentation of this

augmented model, see Appendix 1F. The main idea in this alternative approach is to estimate

γ ≥ 1 such that the relative probability of publishing insignificant results is the same as, or higher than, for
significant results. Note that publication probabilities are only identified up to scale.

22This is because publication is based on unclustered standard errors while the true variation of the estimated
treatment effect is based on the unobserved clustered standard error. Although we later impose an assumption
about this mapping to estimate what would have happened if standard errors were unclustered, conducting
estimation without this restrictive assumption means that the consistency of the parameters estimates does not
rely on it being correctly specified.
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Table 1.3: Maximum Likelihood Estimates

Latent true effects βj Latent standard errors σj Selection
κβ λβ κσ λσ γ

0.154 17.802 1.426 6.475 0.016
(0.035) (2.692) (0.167) (1.282) (0.007)

Notes: Estimation sample is clustered DiD studies over 2000–2009 (N = 66). Robust standard
errors are in parentheses. Latent true treatment effects and standard errors are assumed to follow a
gamma distribution with shape and scale parameters (κ, λ). The coefficient γ measures the publication
probability of insignificant results at the 5% level relative to significant results. For example, γ = 0.016
implies that significant results are 62.5 times more likely to be published than insignificant results.

the parameters governing the latent distribution of studies on the selected subset of statistically

significant clustered studies; this entails setting γ = 0 and not estimating it. The rationale is

that the distribution of significant, clustered studies, β̂j, σj|Dj = 1, Cj = 1, |β̂j|/σj ≥ 1.96, is

completely invariant to this form of strategic clustering. This is because strategic clustering

only affects studies whose results are insignificant when clustered but significant when unclus-

tered. However, none of these studies are included in the subsample of statistically significant

clustered studies. Thus, the distribution of studies, and hence the likelihood, is unaffected by

whether or not strategic clustering is present. For a formal statement and proof of this claim,

see Lemma 1F.1 in Appendix 1F. Robust estimates for the latent distribution of studies are

presented in Table 1F.1 and statistically indistinguishable from the baseline estimates in Table

1.3. This suggests that strategic clustering of the form discussed here does not bias baseline

parameter estimates.23 Given these results, I focus on the model estimates in Table 1.3.

1.4.2 Unclustered Counterfactuals

With the model estimates in Table 1.3, we can calculate expected bias, coverage, true treat-

ment effects and estimated treatment effects under the counterfactual scenario where clustered

studies report unclustered standard errors that are downward biased by any specified factor

23Given similar parameter estimates, the results for bias and coverage using the robust approach are very
similar to those presented in the main text. For more details, see Appendix 1F.
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r ∈ (0, 1). We can then compare these statistics across unclustered and clustered regimes.

The interpretation of this counterfactual comparison is analogous to an ATT measure of the

impact of clustering on the statistical properties of published, clustered studies. If the latent

distribution of studies differs across clustered and unclustered regimes, then this ATT measure

might differ from an ATE measure which would be the impact of clustering on both unclustered

and clustered studies.

This ATT measure can be computed for any specified value of r ∈ (0, 1) using only the

model estimates in Table 1.3. Figure 1G.1 in Appendix 1G shows the results as a function of

r over the unit interval. This can be connected directly to Proposition 1, which states that

bias must increase for sufficiently large standard error corrections i.e. for any r less than some

model-dependent value r∗. Based on the estimates in the DiD setting, I find that r∗ = 0.95.

This implies that any corrections enlarging standard errors by 5.3% or more would lead to an

increase in bias in published DiD studies. Since Proposition 2 guarantees increased coverage,

it follows that the qualitative conclusion of higher coverage but increased bias will exist for all

but very small standard error corrections. The quantitative results, however, will depend on r,

with larger corrections leading to larger changes in both bias and coverage.

1.4.3 Calibrating r

This subsection considers alternative approaches for calibrating r. As a starting point, note

that the first-best approach would be to obtain the empirical distribution for r by calculating

the ratio of unclustered to clustered standard errors from all studies in the estimation sample of

clustered studies. Unfortunately, this is not possible because code and data availability policies

were uncommon in the 2000’s. Instead, I use two alternative approaches. I focus on the first

in the main text and show that the second provides very similar results in Appendix 1H.

In the first approach, I make the simplifying assumption that all unclustered standard errors

are downward biased by a constant factor r ∈ (0, 1). I then calibrate r using the method of

simulated moments (McFadden, 1989). Specifically, I select the value of r which minimizes the
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distance between moments predicted by the model and the actual moments observed in the

data. Given that r measures the degree of downward bias in unclustered standard errors, the

moment I choose for calibration is the difference in average reported standard errors between

clustered and unclustered studies in the published literature. Carrying out this procedure gives

r̂ = 0.51. In other words, clustered standard errors are estimated to be around twice the size of

unclustered standard errors.24 This is a large adjustment. This calibration approach assumes

that the distribution of latent studies in clustered studies is the same as in unclustered studies.

This would be violated, for example, if there are differences in the datasets which tend to

be used in latent unclustered and clustered studies, since this would imply differences in the

latent distribution of standard errors. Nevertheless, if the assumption is violated, then we still

obtain a valid counterfactual for what would have occurred if clustered studies had instead

been unclustered and were around half the size of true standard errors.

To address some of the concerns of this first method, I propose an alternative approach

which calculates the empirical distribution of r using a sample of DiD studies between 2015–

2018. Over this period, code and data availability policies were more common than in the

2000–2009 period. The benefit of this approach is that it does not require the assumption the

latent distribution of studies is identical across regimes. Moreover, it is immune to concerns

over strategic clustering because unclustered and clustered standard errors are calculated for

each individual study. Its main drawback relative to the first approach is external validity,

since it is based on data from a later time period.

I consider DiD papers published between 2015–2018 as identified in Brodeur et al. (2020).

I collected data on standard errors from six of the 25 journals sampled in that study.25 While

24Lee et al. (2022) propose a standard error adjustment for the single-IV model and apply it to recently
published AER papers. In this setting, they find that corrected standard errors are at least 49 percent larger
(i.e. r ≤ 0.672) than conventional 2SLS standard errors at the 5% level.

25The journal are Applied Economic Journal: Applied Economics, Applied Economic Journal: Economic Pol-
icy, American Economic Review, Journal of Labor Economics, Journal of Political Economy and the Quarterly
Journal of Economics. Four overlap with journals from the main analysis. The two excluded journals are the
Industrial and Labor Relations Review, which is not in the Brodeur et al. (2020) sample; and the Journal of
Public Economics, which did not require authors to submit data and code over the 2015–2018 period. I included
data from Applied Economic Journal: Applied Economics and Applied Economic Journal: Economic Policy due
to a small sample size based on the four overlapping journals alone. The two additional journals were chosen
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Figure 1.5: Empirical Distribution of r from 2015–2018 DiD Studies

Notes: Calculated from original code, where r equals the ratio of unclustered to clustered standard
errors. The sample consists of a subset of DiD studies identified in Brodeur et al. (2022). For more
details on sample selection, see the main text.

code is available for almost all studies, not all use publicly available data. Overall, I calculate r

in 23 out of 72 DiD studies (31.9%) using non-proprietary data. Figure 1.5 shows the empirical

distribution. The mean is 0.76 and a small fraction of studies have clustered standard errors

which are larger than unclustered standard errors (r > 1). For calculating the counterfactual

scenario for unclustered studies, we can draw randomly from this distribution to determine the

degree bias for each study individually. This is useful because in reality, r varies across studies

and depends on the within-cluster correlation of the regressor, the within-cluster correlation

of the error, and the number of observations in each cluster (Cameron and Miller, 2015). As

mentioned above, both approaches lead to quantitatively similar conclusions. In the main text,

I focus on the first approach using the method of simulated moments to calibrate r.

because they: (i) published a high share of DiD studies over this period; and (ii) required replication materials
for publication.
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1.4.4 Impact of Clustering on Coverage and Bias

Table 1.4 presents the main results. The estimated model shows that clustering increased

coverage dramatically, from only 0.28 in the unclustered regime to 0.70 in the clustered regime.

This implies severe mismeasurement of standard errors prior to the adoption of clustering,

with fewer than one in three published studies reporting confidence intervals covering the true

effect. Note that while coverage improves substantially, it still remains, at 0.70, below nominal

coverage of 0.95 due to selective publication.

The remaining rows in Table 1.4 show the impact of clustering on various measures of bias.

Recall that the change in total bias can be decomposed into the change in internal-validity bias

and study-selection bias (equation (1.2)). In this context, the primary measure of interest is

internal-validity bias. This is because different studies in the empirical DiD literature address

different research questions, and the main concern is therefore each study’s internal validity.

The model shows that clustering led to internal-validity bias doubling in magnitude, from 1.23

ppts to 2.44 ppts. To gauge the size of this change, we can ask what fraction of insignificant

results (with correctly measured standard errors) would need to be censored by publication

bias to observe the same increase bias (1.21 ppts)? I find that 85% of null results would need

to be censored (i.e. γ = 0.15). In other words, the increase in internal-validity bias from

clustering is comparable to very severe levels of publication bias against null results. Next,

see that clustering leads to a large increase in study-selection bias, as studies with larger true

treatment effects are more likely to produce statistically significant results and therefore be

selected for publication. As mentioned earlier, changes in study-selection bias do not have

clear implications for statistical credibility in the DiD context, since different studies address

different research questions. Increases in study-selection bias and internal-validity bias mean

that total bias rises by 6.48 ppts overall.

Robustness results based on the empirical distribution for r are presented in Table 1H.1 in

Appendix 1H. In this alternative approach, the degree of bias of unclustered studies is drawn

randomly from the distribution of r (Figure 1.5), such that r varies across unclustered studies.
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Table 1.4: Impact of Clustering on Coverage and Bias in Published Studies

Unclustered (r̂ = 0.51) Clustered (r = 1) Change

Coverage 0.28 0.70 0.42

Total Bias (Er[β̂j |Dj = 1]−Er[βj ]) 3.51 (100%) 10.00 (100%) 6.48 (100%)

Internal-Validity Bias (Er[β̂j − βj |Dj = 1]) 1.23 (34.9%) 2.44 (24.4%) 1.21 (18.7%)
Study-Selection Bias (Er[βj |Dj = 1]−Er[βj ]) 2.29 (65.1%) 7.56 (75.6%) 5.27 (81.3%)

Notes: These figures are based on the parameter estimates of the empirical model in Table 1.3. Figures
are calculated by simulating published studies under unclustered and clustered regimes and assuming
that unclustered standard errors are downward biased by a constant factor r̂ = 0.51.

Results are quantitative similar to those in Table 1.4. In particular, clustering improves coverage

from 0.36 to 0.70 and internal-validity bias increases by 1.07 ppts. Alternatively, assuming that

unclustered studies are downward biased by a constant factor equal to the mean of the empirical

distribution (r̂ = 0.76) yields qualitatively similar results, but somewhat smaller changes in

both coverage and bias. For more details, see Appendix 1H.

Overall, the results underscore the tension from clustering which has been emphasized

throughout this paper, namely, that improved credibility of standard errors can come at the

unintended cost of declining credibility in point estimates. Quantifying this in the empirical

DiD literature shows that both the gains and costs are large.

1.4.5 Non-Selective Publication

A common recommendation to combat distortions arising from publication bias is to implement

reforms to publish all results, irrespective of their statistical significance. For example, imple-

menting results-blind peer review (Chambers, 2013; Foster et al., 2019), launching journals

dedicated to publishing insignificant findings26, and even offering cash incentives for publishing

null findings (Nature 2020).

To analyze the impact of these reforms in the DiD literature, I perform a counterfactual

26Examples include: Positively Negative (PLOS One); Journal of Negative Results in Biomedicine; Journal
of Articles in Support of the Null Hypothesis; Journal of Negative Results - Ecology and Evolutionary Biology.
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analysis where there is no selective publication. In other words, I perform the same empirical

exercise as for the main results, but set γ = 1 such that no insignificant studies are censored.

When publication is non-selective, there exists no trade-off between coverage and bias when

clustering. Coverage increases from 0.68 to reach nominal coverage of 0.95, and all forms of

bias are zero in both standard error regimes. The welfare implications, however, are not clear.

In particular, publishing all results is not necessarily without drawbacks. This is because non-

selective publication leads to many published studies with small true treatment effects that are

very imprecisely measured, and hence relatively uninformative for decision-makers who rely on

empirical evidence from published studies to make policy choices. As noted in Frankel and

Kasy (2022), if publication comes at a cost (e.g. the opportunity cost of drawing attention

away from other studies due to limited journal space), then it is not necessarily the case that

the non-selective regime is preferable to the selective regime. To better understand the impact

of clustering on welfare, I develop a treatment choice model in the next section to evaluate the

impact of clustering on decision-making in a policy context.

1.5 Impact of Clustering on Evidence-Based Policy

The empirical model in Section 1.4 suggests that clustering led to large improvements in cov-

erage but also substantially higher bias. What are the implications of this for evidence-based

policy? In this section, I develop a model of a policymaker who chooses whether to implement

a policy based on evidence from published studies, but who overestimates the precision of es-

timates when standard errors are unclustered. I consider a policymaker who aims to minimize

maximum regret i.e. the expected welfare loss from making an inferior treatment choice. I

derive the minimax decision rule in the clustered and unclustered regimes, and then compare

minimax regret across regimes. The main finding is that clustering lowers minimax regret if

and only if the policymaker has sufficiently high loss aversion with respect to mistakenly imple-

menting an ineffective or harmful policy i.e. of committing Type I error. Overall, the results
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suggest that clustering is beneficial if the cost of Type I error is specified in a way that is

consistent with hypothesis testing using a 5% significance threshold.

1.5.1 Setup

The basic setup is the same as in Kitagawa and Vu (2023), which extends the model of minimax

regret decision-makers in Manski (2004) and Tetenov (2012) to include publication bias. The

model presented here makes a further extension to include the possibility that reported standard

errors are mismeasured (e.g. from failing to cluster).

The policymaker’s problem is to decide whether they should implement a single policy

(a = 1) or not implement it (a = 0).27 The policy’s unobserved average treatment effect is

denoted by β. All members of the population are assumed to be observationally identical. We

normalize utility to be zero when no policy is implemented. Following Tetenov (2012), I consider

a policymaker whose utility function may exhibit loss aversion (Kahneman and Tversky, 1979)

for implementing a harmful policy (β ≤ 0). The policymaker’s utility from an action a with

average treatment effect β is given by

U(a, β|K) =


Kaβ if β ≤ 0

aβ if β > 0

(1.3)

where K ≥ 1 measures the policymaker’s loss aversion. As K increases, the policymaker weighs

the utility cost of committing Type I error (implementing the policy when β ≤ 0) increasingly

high relative to Type II error (not implementing the policy when β > 0). As a benchmark,

note that classical hypothesis testing is consistent with a high degree of loss aversion from Type

I error. In particular, regret from committing Type I error would need to be weighed around

27A more general formulation of the policymaker’s problem is to assign some portion a ∈ [0, 1] of observa-
tionally identical members of a population either a status quo treatment or an innovative treatment. Assuming
a ∈ {0, 1} does not affect the results. This is because in continuous action case for the model in Tetenov (2012),
on which this model is based, the policymaker’s decision rule for an observational identical population will
either treat all or none of the members. For expositional simplicity, I consider the status quo treatment to be
not implementing the policy and the innovative treatment to be implementing it.
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100 times more than Type II regret for a decision rule that minimizes maximum regret to be

consistent hypothesis testing with a 5% statistical significance threshold (Tetenov, 2012).

A study is conducted which provides evidence about true average treatment effect β. How-

ever, due to publication bias, it may not be observed by the policymaker. The policymaker’s

statistical treatment rule maps realizations of the publication process to policy decisions. There

are two possibilities. First, the case where a study is published and the policymaker uses the

evidence contained in it to inform their policy choice. Second, the case where no study is

published and the policymaker must rely on a default action.

Let D = 1 denote the event when a study is published and D = 0 the event where it is not.

Consider first the case where D = 1. When the study is published, the policymaker observes

(β̂, σ̃), that is, the estimated treatment effect β̂ and the reported standard error σ̃. If standard

errors are clustered, then σ̃ = σ. If they are unclustered, then σ̃ = r · σ < σ since r ∈ (0, 1).

Importantly, the policymaker’s statistical decision rule is chosen based on their beliefs about

how a study’s results, (β̂, σ̃), were generated. In the main analysis, I consider a naive policy-

maker who believes β̂ is normally distributed on B = R according to N(β, σ̃2), since approx-

imate normality is widely assumed in practice for inference, including in all the DiD papers I

examine. This belief can be incorrect on two counts. First, if there is publication bias, then β̂ is

not normally distributed but follows a truncated normal distribution. Thus, in practical terms,

the model assumes that policymakers naively take estimates from the published literature at

face-value and do not make statistical adjustments to correct for publication bias. Second, be-

liefs will be wrong about the variance of the estimate σ̃2 in the case where standard errors are

unclustered. In other words, policymakers take reported standard errors in published studies to

be accurate measures of the estimate’s uncertainty, irrespective of whether they are clustered

or not.

We turn next to see how these beliefs affect the policymaker’s decision rule. Let δ1 : B →

[0, 1] be the statistical decision rule in the event that a study is published, which maps observed

estimates to the probability of implementation. Following Tetenov (2012), it is sufficient to
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restrict our attention to smaller class of threshold decision rules where a policy is implemented if

and only if the published estimate β̂ is above some chosen threshold T i.e. δT1 (β̂) = 1{β̂ > T}.28

Thus the expected welfare of the threshold rule δT1 under the misspecified belief that β̂ is normal

and the observed, but potentially mismeasured, standard error σ̃, is equal to

W̃
(
δT1 , β, σ̃|K

)
=


Kβ
[
1− Φ

(
T−β
σ̃

)]
if β ≤ 0

β
[
1− Φ

(
T−β
σ̃

)]
if β > 0

(1.4)

To derive a decision rule, it is first necessary to adopt a framework for dealing with the

uncertainty of β. Two common approaches are the Bayesian framework and minimax regret

framework. For example, in the Bayesian approach, the policymaker sets a prior belief distribu-

tion π over the average treatment effect β and chooses a threshold T to maximize (misspecified)

expected welfare:
∫
W̃
(
δT1 , β, σ̃

)
π(β)dβ.

However, in many situations, policymakers may have insufficient information to form a

reasonable prior or priors may conflict when decisions are made by members of a group. In

this situation, a common alternative is to introduce ambiguity on the treatment outcomes and

pursue robust decisions. Specifically, I consider a policymaker that aims to minimize maximum

regret (Manski, 2004; Stoye, 2009; Tetenov, 2012), where regret for a threshold rule δT1 equals

the difference between the highest possible expected welfare outcome given full knowledge of

the true impact of all treatments and the expected welfare attained by the statistical decision

rule:

28This is because the policymaker believes X to follow a normal distribution, which satisfies the monotone
likelihood ratio property. It follows from Karlin and Rubin (1956a) that the class of threshold decision rules is
essentially complete and consideration of other rules is not necessary.
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R̃1

(
δT1 , β, σ̃|K) = W

(
1{β > 0}

)
− W̃

(
δT1 , β, σ̃|K

)
=


−Kβ

[
1− Φ

(
T−β
σ̃

)]
if β ≤ 0

βΦ
(
T−β
σ̃

)
if β > 0

(1.5)

In words, regret is equal to the probability of making a mistake multiplied by the magni-

tude of that mistake |β| (and weighted according to K). Thus, the policymaker chooses their

minimax regret threshold decision rule based on misspecifed beliefs to minimize regret in the

worst-case scenario:

T ∗ = argmin
T∈R

max
β∈β

R̃1

(
δT1 , β, σ̃|K) (1.6)

Next, consider the event where no study is published. The no-data decision rule is denoted

by δ0 ∈ [0, 1], which denotes the probability of implementing the policy when no evidence is

available. Using a similar derivation as above, we arrive at the following expression for regret

R̃0

(
δ0, β|K) =


−Kβδ0 if β ≤ 0

β(1− δ0) if β > 0

(1.7)

Note that this expression is also misspecified, in that the policymaker makes no inferences

about the fact that a study might have been censored. Similar to the event where a study is

published, the no-data decision rule is obtained by the following optimization

δ∗0 = argmin
δ0∈[0,1]

max
β∈β

R̃0

(
δ0, β|K

)
(1.8)

For the no-data decision problem to be well-defined, we impose the following bounds on the

support of β:

Assumption 4 (Symmetric Bounds on Average Treatment Effect). Let the support of β be

[−B,B] for some B > β∗ > 0, where β∗ = argmaxβ>0

{
β · Φ(0− β)

}
.
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The technical condition requiring that the bound be sufficiently large ensures that the

minimax regret problem in the event that a study is published is not constrained by the bound.

Overall, the policymaker’s minimax decision rule (T ∗, δ∗0) covers both realizations of the

publication process and is chosen according to (1.6) and (1.8).

1.5.2 Minimax Regret Decision Rule

The follow result gives the minimax decision rule under misspecified regret, covering both the

clustered regime (σ̃ = σ) and unclustered regime (σ̃ < σ):

Lemma 1 (Minimax Regret Decision Rule). Under Assumptions 3 and 4, the minimax regret

decision rule for a publication-bias naive policymaker given reported standard error σ̃ and Type

I error loss aversion parameter K is given by

(T ∗, δ∗0) =

(
g(K) · σ̃, 1

1 +K

)
(1.9)

where g(K) is a strictly increasing function of K and g(1) = 0

Figure 1.6 illustrates Lemma 3.3.1 calibrating to the level of publication bias (γ̂ = 0.016)

and downward bias in standard errors (r̂ = 0.51) in the empirical DiD literature. In the first

panel, observe that the threshold rule in both regimes is increasing in the Type I error loss

aversion parameter K, but that in the unclustered regime it is strictly below the clustered

regime’s threshold rule when K > 1.29 For intuition, see that the threshold rule in equation

(1.9) is decreasing in reported precision. That is, higher reported precision means that the

policymaker believes the estimate to convey more information about the true treatment effect

and hence a less conservative threshold rule is implemented. Thus, in the unclustered regime,

the policymaker overestimates the precision of evidence from published studies and is therefore

too lenient with their threshold rule for implementing the policy. The absolute size of the

29Note that the threshold rule in the clustered regime coincides exactly with the threshold rule in the model
with normal signals in Tetenov (2012), although in this setting signals are not in fact normally distributed.
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Figure 1.6: Minimax Regret Decision Rule in Clustered and Unclustered Regimes

Notes: The first panel shows the threshold rule in the event that a study is published and given by
equation (1.6). The second panel shows the no-data rule in even that a study is not published. The
level of publication bias γ̂ = 0.016 and the extent of downward bias r̂ = 0.51 are based on the empirical
model estimated on studies in the DiD literature in Section 1.4.

difference increases with Type I error loss aversion. This is because Lemma 3.3.1 implies that

the threshold rule in the unclustered regime is downward biased by a constant factor r, since

T ∗
C=0/T

∗
C=1 = g(K) · σ̃/g(K) · σ = r.

In the second panel, we can see that the probability of implementing the policy decreases

as K increases (and equals 1
2
when K = 1). This is because the welfare cost of implementing

an ineffective or harmful policy increases with K, which leads the policymaker to be more con-

servative with respect to implementation. Note that the no-data rule is unaffected by whether

or not standard errors are clustered since no study is actually observed by the policymaker.

1.5.3 Comparing Regimes Based on True Regret

While the minimax regret decision rule in Lemma 3.3.1 is based on misspecified regret, I

evaluate any given decision rule (T, δ0) based on its true regret. True regret is derived from

accurate beliefs about β, namely, that it follows a truncated normal distribution with (clustered)
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standard error σ, and where truncation down-weights the insignificant region of the density

(based on γ). The utility of action a1 when a study is published and action a0 when it is not,

is given by

U
(
a1, a0, β|K

)
=


KβDa1 + β(1−D)a0 if β ≤ 0

βDa1 + β(1−D)a0 if β > 0

(1.10)

and the expected welfare of the decision rule (T, δ0) is given by

W
(
δT1 , δ0, β, σ, σ̃|K

)
=


K

(
β ·Pr[D = 1|β, σ̃] · [1− F (T |β, σ, σ̃,D = 1)] + β ·

(
1−Pr[D = 1|β, σ̃]

)
δ0

)
if β ≤ 0

β ·Pr[D = 1|β, σ̃] · [1− F (T |β, σ, σ̃,D = 1)] + β ·
(
1−Pr[D = 1|β, σ̃]

)
δ0 if β > 0

(1.11)

where Pr[D = 1|β, σ̃] is the ex-ante publication probability conditional on (β, σ̃); and

F (·|β, σ, σ̃, D = 1) is the cdf of a truncated normal distribution.30 See that the probability

of publication is based on the reported standard error and thus the effective significance thresh-

old will differ across regimes. This also shows up in the cdf, where publication probabilities are

based on σ̃ but the true variation in the estimated treatment effect is governed by σ.

Finally, for a given average treatment effect β, true (i.e. clustered) standard error σ, and

the Type I error loss aversion parameter K, regret is given by the following expression:

R
(
δT1 , δ0, β, σ, σ̃|K

)
=


−K · β

(
Pr[D = 1|β, σ̃] · [1− F (T |β, σ, σ̃,D = 1)] + (1−Pr[D = 1|β, σ̃])δ0

)
if β ≤ 0

β

(
Pr[D = 1|β, σ̃] · F (T |β, σ, σ̃,D = 1) + (1−Pr[D = 1|β, σ̃]) · (1− δ0)

)
if β > 0

(1.12)

Thus, true regret is equal to the ex-ante probability of making an the incorrect treatment

choice multiplied by the cost of the mistake |β|, and then weighted according to the planner’s

30Specifically, the cdf is given by

F (t|β, σ, σ̃,D = 1) ≡
∫ t
−∞ p

(
x
σ̃

)
ϕ
(
x−β
σ

)
dx∫

p
(
x
σ̃

)
ϕ
(
x−β
σ

)
dx
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relative concern over Type I and Type II regret. Another way to interpret this expression is

that it is what the policymaker would be using to choose their decision rule in order to minimize

maximum regret if they had correct beliefs. The minimax regret of any decision rule (T, δ0)

given σ is given by

MMR(T, δ0|K) = max
β∈[−B,B]

R
(
δT1 , δ0, β, σ|K

)
(1.13)

For any K ≥ 1, let MMR∗
C=0(K) denote the value of minimax regret in the unclustered

regime based on the (misspecified) decision rule from Lemma 3.3.1 and let MMR∗
C=1(K) denote

the corresponding statistic for the clustered regime. Then the percent change in minimax regret

from moving from the unclustered regime to the clustered regime is given by

100 ·
(
MMR∗

C=1(K)

MMR∗
C=0(K)

− 1

)
(1.14)

Figure 1.7 plots this quantity for different values of the Type I error loss aversion parameter

K. Results show that clustering lowers minimax regret if and only if K > 63. Recall that

classical hypothesis testing at the 5% level entails a much larger level of loss aversion to Type

I error i.e. K = 102.4 (Tetenov, 2012). Thus, the model suggests that clustering increased

welfare if we use the benchmark cost implicitly implied by 5% hypothesis testing, although this

could be overly conservative in certain settings.

To understand the intuition behind this result, note that clustering presents a trade-off for

the policymaker. On the one hand, it improves the statistical precision of the evidence which

leads to a superior threshold rule. On the other hand, clustering increases the probability of

censoring studies, which increases the chances that policymakers are forced to make decisions

without evidence. Suppose thatK = 1. In this unique case, the threshold rule is identical across

regimes (T ∗ = 0) and thus clustering provides no advantage. However, the probability of pub-

lication is lower in the clustered regime such that minimax regret is substantially larger than in

the unclustered regime. However, as K increases the trade-off described above gradually favors

clustering. This is because the threshold rule in the unclustered regime becomes increasingly
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Figure 1.7: Percent Change in Minimax Regret from Clustering

Notes: The percent change in minimax regret moving from the unclustered regime to the clustered
regime is calculated according to equation (1.14). The level of publication bias γ̂ = 0.016 and the
extent of downward bias r̂ = 0.51 are based on the empirical model estimated on studies in the DiD
literature in Section 1.4.

miscalibrated as K increases, which leads to larger costs in terms of minimax regret. When K

is above 63, minimax regret in the clustered regime is lower than in the unclustered regime.

1.6 Conclusion

The econometrics literature on standard error corrections and the meta-science literature on

publication bias share the common goal of improving credibility in empirical research. However,

they are most often considered in isolation and the interaction between them has received

little attention. This paper studies how their interaction affects the statistically credibility of

published studies and decision-making among policymakers when treatment choice is informed

by published evidence.

A central tension highlighted in the theory is that standard error corrections increase cover-

age but can also, unintendedly, worsen bias. Empirically, this is the case in the DiD literature,
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where clustering leads to large improvements in coverage but also sizable increases in the bias

of estimated treatment effects. Incorporating this trade-off in a policymaking model with pub-

lication bias shows that clustering lowers minimax regret when loss aversion to Type I error is

sufficiently high.
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Appendix

This appendix contain proofs and supplementary materials. Section 1A contains proofs for

the Propositions and Lemmas in the main text. Section 1B provides examples showing that

bias can decrease when standard error corrections are small. Section 1D provides additional

graphs illustrating the data. Section 1E shows descriptive statistics for unclustered studies in

the 1990–1999 period. Section 1F introduces an augmented model with strategic clustering

and proposes an estimation approach which is robust to certain forms of strategic clustering.

It presents results from this alternative approach and compares them to the main results for

robustness. Section 1G shows counterfactual comparisons between the clustered regime and the

unclustered regime for all values of r on the unit interval. Finally, Section 1H shows robustness

of the main results from using the empirical distribution of r calculated from 2015–2018 DiD

studies.

1A Proofs

Proof of Proposition 1: The main result follows from two Lemmas which I prove below.

First, Lemma 1A.2 shows that there exists an r1 ∈ (0, 1] such that for any r ∈ (0, r1) internal-

validity bias increases:

E1[β̂j − βj|Dj = 1]−Er[β̂j − βj|Dj = 1] > 0

Next, Lemma 1A.3 claims that there exists an r2 ∈ (0, 1] such that for any r ∈ (0, r2)

study-selection bias weakly increases:

E1[βj|Dj = 1]−Er[βj|Dj = 1] ≥ 0

Define r∗ = min{r1, r2}. It follows that for any r ∈ (0, r∗), internal-validity bias and
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study-selection bias both increase. This immediately implies that the change in total bias (and

estimated treatment effects), E1[β̂j|Dj = 1]−Er[β̂j|Dj = 1], is positive since it is equal to the

sum of the change in internal-validity bias and study-selection bias. Below, I present Lemmas

1A.2 and 1A.3 on which this argument is based. Before that, I present Lemma 1A.1, which is

used in Lemma 1A.2.

Lemma 1A.1 (Expression for Bias Conditional on Publication). For a given β ∈ [0,∞),

γ ∈ [0, 1) and r ∈ (0, 1],

Bias(β, γ, r) =
(1− γ)

[
ϕ(1.96r − β)− ϕ(β + 1.96r)

]
Φ(−1.96r − β) + γ

[
Φ(1.96r − β)− Φ(−1.96r − β)

]
+ 1− Φ(1.96r − β)

(15)

where ϕ(·) and Φ(·) denote the normal pdf and cdf, respectively.

Proof. Define Zj = β̂j − β so that Zj ∼ N(0, 1) and bias conditional on publication is equal

to Er[Zj|Dj = 1] = Er[β̂j|Dj = 1] − β. We can write bias as the weighted sum of conditional

expectations of the standard normal distribution:

Er[Zj|Dj = 1] = Prr[Zj ≤ −1.96r − β|Dj = 1] ·E[Zj|Zj ≤ −1.96r − β]

+Prr[−1.96r − β < Zj ≤ 1.96r − β|Dj = 1] ·E[Zj| − 1.96r − β < Zj ≤ 1.96r − β]

+Prr[Zj > 1.96r − β|Dj = 1] ·E[Zj|Zj > 1.96r − β]

=

(
Prr[Dj = 1|Zj ≤ −1.96r − β]Φ(−1.96r − β)

Prr[Dj = 1]

)(
− ϕ(−1.96r − β)

Φ(−1.96r − β)

)

+

(
Prr[Dj = 1| − 1.96r − β ≤ Zj ≤ 1.96r − β]

[
Φ(1.96r − β)− Φ(−1.96r − β)

]
Prr[Dj = 1]

)

×
(
ϕ(−1.96r − β)− ϕ(1.96r − β)

Φ(1.96r − β)− Φ(−1.96r − β)

)

+

(
Prr[Dj = 1|Zj ≥ 1.96r − β]

[
1− Φ(1.96r − β)

]
Prr[Dj = 1]

)(
ϕ(1.96r − β)

1− Φ(1.96r − β)

)
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= −ϕ(−1.96r − β)

Prr[Dj = 1]
+
γ
[
ϕ(−1.96r − β)− ϕ(1.96r − β)

]
Prr[Dj = 1]

+
ϕ(1.96r − β)

Prr[Dj = 1]

The second equality uses Bayes’ Rule on the probability terms and the formula for the

expectation of a truncated standard normal on the expectation terms (i.e. for any a < b, we

have that E[Zj|Zj ∈ (a, b)] = [ϕ(a)− ϕ(b)]/[Φ(b)−Φ(a)]). The final equality uses Assumption

3, which states that the relative publication probabilities are one for significant results and γ

for insignificant results. Simplifying the numerator and expanding the denominator gives the

desired result.

Lemma 1A.2 (Sufficient Condition for Increase in Internal-Validity Bias). Under Assumptions

1, 2, and 3, there exists an r1 ∈ (0, 1] such that for any r ∈ (0, r1) internal-validity bias increases

with standard error corrections.

Proof. First, I show that Er[β̂j|Dj = 1] → E[βj] as r → 0. Using Bayes Rule, we have

Er[β̂j|Dj = 1] =

∫
β̂fβ̂|D(β̂|Dj = 1; γ, r)dβ̂ =

∫
β̂

(
Prr[Dj = 1|β̂j]fβ̂(β̂)

Prr[Dj = 1]

)
dβ̂

=

∫ (
β̂ · p

(
β̂
r

) ∫
β
ϕ(β̂ − β)fβ(β)dβ∫

β
Prr[Dj = 1|β]fβ(β)dβ

)
dβ̂ (16)

Note in the second equality that the distribution of latent studies fβ̂(·) does not depend

on either γ or r. Consider the integrand in (16). First, see that the numerator approaches

β̂
∫
β
ϕ(β̂ − β)fβ(β)dβ as r → 0. Next, see that the denominator satisfies

lim
r→0

∫
β

Prr[Dj = 1|β]fβ(β)dβ = 1

This equality uses the dominated convergence theorem to move the limit inside the integral

and the fact that the probability of publication for any fixed β approaches one as r → 0 (since

all results are significant, and hence not censored, in the limit). To see that the conditions for

the dominated convergence theorem are met, first see that the integrand converges pointwise

to fβ(β) as r → 0. Second, see that for any r ∈ (0, 1] and β ≥ 0, the integrand is bounded
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above by fβ(β) since Prr[Dj = 1|β] ≤ 1.

Thus, returning to the full expression for the integrand in equation (16), we can see that it

converges pointwise to β̂
∫
β
ϕ(β̂ − β)fβ(β)dβ as r → 0. Next, see that for any r ∈ (0, 1] and

β̂ ∈ R, the absolute value of the integrand satisfies

|β̂| · p
(
β̂
r

) ∫
β
ϕ(β̂ − β)fβ(β)dβ∫

β
Prr[Dj = 1|β]fβ(β)dβ

≤ |β̂| · ϕ(0)∫
β
Pr1[Dj = 1|β]fβ(β)dβ

where the bound follows from the fact that p
(
x
r

)
≤ 1 and

∫
β
ϕ(x − β)fβ(β)dβ ≤ ϕ(0) in the

numerator, and Prr[Dj = 1|β] is strictly decreasing in r in the denominator.

Since the integrand in equation (16) (i) converges pointwise to β̂
∫
β
ϕ(β̂ − β)fβ(β)dβ and

(ii) is dominated by an integrable function, we can apply the dominated convergence theorem

to get

lim
r→0

Er[β̂j|Dj = 1] =

∫
β̂

β̂

∫
β

ϕ(β̂ − β)fβ(β)dβdβ̂

=

∫
β

(∫
β̂

β̂ϕ(β̂ − β)dβ̂

)
fβ(β)dβ =

∫
β

E[β̂j|β]fβ(β)dβ = E[βj] (17)

which is what we wanted to show.

In the next step of the proof, I use similar arguments to also show that Er[βj|Dj = 1] →

E[βj] as r → 0. Using Bayes’ Rule, we can write

Er[βj|Dj = 1] =

∫
βfβ|D(β|Dj = 1; γ, r)dβ

=

∫
β

(
β ·Prr[Dj = 1|β]fβ(β)∫
β
Prr[Dj = 1|βfβ(β)dβ

)
dβ

Note that the latent distribution of true effects, fβ(β), does not depend on either γ or r.

Now see that the integrand converges pointwise to βfβ(β) as r → 0. This follows because

limr→0Prr[Dj = 1|β] = 1 in the numerator and because the denominator converges to one, as

shown earlier.
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Next, see that for any r ∈ (0, 1] and β ≥ 0, we have

β ·Prr[Dj = 1|β]fβ(β)∫
β′ Prr[Dj = 1|β′]fβ(β′)dβ′ ≤

βfβ(β)∫
β′ Pr1[Dj = 1|β′]fβ(β′)dβ′

where the inequality follows from the fact that Prr[Dj = 1|β] is weakly less than one (nu-

merator) and decreasing in r (denominator). Note that the upper bound is integrable since

Assumption 1 requires βj to have a finite first moment. Thus, appealing again to the dominated

convergence theorem, we have

lim
r→0

Er[βj|Dj = 1] =

∫
β

βfβ(β)dβ = E[βj] (18)

Using the convergence in mean results in equations (17) and (18) and the linearity of ex-

pectations, it follows that

∆Bias(r) ≡ E1[β̂j − βj|Dj = 1]−Er[β̂j − βj|Dj = 1]

→ E1[β̂j − βj|Dj = 1] =

∫
β

Bias(β, γ, 1)fβ(β)dβ > 0 (19)

as r → 0. The final inequality follows because it is clear from Lemma 1A.1 that Bias(β, γ, 1) ≥ 0

when γ ∈ [0, 1) (Assumption 3) and β ≥ 0, and with strict inequality when β > 0. Assumption

1 requires that there exists some β > 0 on the support of βj, giving the strict inequality.

Now we can prove the main claim. Consider the following set:
{
r|r ∈ (0, 1],∆Bias(r) = 0

}
.

We know it is non-empty because ∆Bias(1) = 0. Label the minimum of this set r1. The claim

is that for all r ∈ (0, r1), ∆Bias(r) > 0. We will prove this by contradiction. Suppose instead

that there exists an r̄ ∈ (0, r1) where

∆Bias(r̄) ≤ 0 < lim
r→0

∆Bias(r)
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where the second inequality follows from equation (19). Note that ∆Bias(r) is continuous in r

over (0, 1) and well-defined for all r ∈ (0, 1]. Thus, there must exist some ϵ ∈ (0, r̄) such that

∆Bias(r̄) ≤ 0 < ∆Bias(ϵ). It follows from the intermediate value theorem that there exists an

r′ ∈ (ϵ, r̄) such that ∆Bias(r′) = 0 with r′ < r̄ < r1. But this contradicts the premise that r1

is the smallest number satisfying this equality.

Lemma 1A.3 (Sufficient Condition for Increase in Study-Selection Bias). Under Assumptions

1, 2, and 3, there exists an r2 ∈ (0, 1] such that for any r ∈ (0, r2) study-selection bias weakly

increases with standard error corrections.

Proof. Consider two cases. The first is the trivial case where the distribution of βj is degenerate

at some β > 0. Then for any r ∈ (0, 1], ∆SSB(r) ≡ E1[βj|Dj = 1] − Er[βj|Dj = 1] = 0. Let

r2 = 1. Then for any r ∈ (0, r2) there is no change in study-selection bias with standard error

corrections: ∆SSB(r) = 0.

Next, consider the case where the distribution of βj is non-degenerate. See that

lim
r→0

∆SSB(r) = E1[βj|Dj = 1]− lim
r→0

Er[βj|Dj = 1]

= E1[βj|Dj = 1]−E[βj]

=

∫ ∞

0

[1− Fβ|D(t|Dj = 1; γ, 1)]dt−
∫ ∞

0

[1− Fβ(t)]dt

=

∫ ∞

0

[Fβ(t)− Fβ|D(t|Dj = 1; γ, 1)]dt (20)

The second equality uses the convergence in expectation result in equation (18) from Lemma

1A.2. The third equality uses the fact that for any non-negative random variable X with

cdf FX , we can write E[X] =
∫∞
0
[1 − FX(t)]dt. Equation (20) is positive if the distribution

of published true treatment effects in the corrected regime, Fβ|D(·|Dj = 1; γ, 1), first-order

stochastically dominates the latent distribution of true treatment effects Fβ(·). To show this

holds, fix t ∈ [0,∞) and see that
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∫ t

0

fβ(β)dβ −
∫ t

0

fβ|D(β|Dj = 1; γ, 1)dβ

=
1

Pr1(Dj = 1)

(
Pr1(Dj = 1)

∫ t

0

fβ(β)dβ −
∫ t

0

Pr1(Dj = 1|β)fβ(β)dβ
)

=
Fβ(t)

Pr1(Dj = 1)

(
Eβ

[
Pr1(Dj = 1|β)

]
−Eβ

[
Pr1(Dj = 1|β)

∣∣∣β ≤ t)
])

≥ 0

where the first equality uses Bayes’ Rule for the second term. The second equality uses the fact

that for any function g(·) and t > 0 we can write
∫ t
g(β)fβ(β)dβ = Eβ[g(β)|β ≤ t; γ, 1] · Fβ(t).

The final inequality follows from the fact that Pr1(Dj = 1|β) is an increasing function of β.31

Since βj is non-degenerate, there exists some t ∈ [0,∞) for which this inequality is strict. This

implies that equation (20) is strictly positive, which is what we wanted to show.

With this result, we can prove the main claim for the case where βj is non-degenerate,

namely, that for sufficiently small r, expected true treatment effects will increase following

standard error corrections. First, consider the set
{
r|r ∈ (0, 1],∆SSB(r) = 0

}
. We know it is

non-empty because ∆SSB(1) = 0. Label the minimum of this set r2. The claim is that for all

r ∈ (0, r2), ∆SSB(r) > 0. Suppose in contradiction of the claim that there exists an r̄ ∈ (0, r2)

where

∆SSB(r̄) ≤ 0 < lim
r→0

∆SSB(r)

where the second inequality follows from the arguments above. Note that ∆SSB(r) is continuous

in r over (0, 1) and well-defined for all r ∈ (0, 1]. Thus, there must exist some ϵ ∈ (0, r̄) such

that ∆SSB(r̄) ≤ 0 < ∆SSB(ϵ). It follows from the intermediate value theorem that there exists

an r′ ∈ (ϵ, r̄) such that ∆SSB(r′) = 0 with r′ < r̄ < r2. But this contradicts the premise that

r2 is the smallest number satisfying this equality.

31The derivative is given by:

∂

∂β

[
Pr(Dj = 1|β; γ, 1)

]
= (1− γ)

(
ϕ(1.96− β)− ϕ(1.96 + β)

)
≥ 0

which is strictly positive when β > 0.
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Proof of Proposition 2: With a slight abuse of notation, let fβ(·) denote the distribution

of |βj|. This normalization is for notational convenience and is not necessary for proving the

result. Next, note that the proof is based on selective publication against insignificant results

at the 5% level, in line with Assumption 3; however, all arguments generalize straightforwardly

to other critical thresholds.

As a starting point, the following Lemma provides an expression for average coverage in

published studies for a fixed true effect, which will be used throughout the proof.

Lemma 1A.4 (Expression for Coverage with Degenerate βj). For any β ∈ [0,∞), r ∈ (0, 1]

and γ ∈ [0, 1], expected coverage in published studies is equal to

Coverage(β, r) =


γ[Φ(1.96r−β)−Φ(−1.96r)]+Φ(1.96r)−Φ(1.96r−β)

Φ(−1.96r−β)+1−Φ(1.96r−β)+γ[Φ(1.96r−β)−Φ(−1.96r−β)] if β ≤ 2× 1.96r

Φ(1.96r)−Φ(−1.96r)
Φ(−1.96r−β)+1−Φ(1.96r−β)+γ[Φ(1.96r−β)−Φ(−1.96r−β)] if β > 2× 1.96r

(21)

Proof. Fix β ∈ [0,∞). See that

Coverage(β, r) = Prr[β̂j − 1.96r ≤ β ≤ β̂j + 1.96r|Dj = 1]

=

∫ β+1.96r

β−1.96r

fβ̂|D,β(β̂|Dj = 1, β; γ, r)dβ̂

=

∫ β+1.96r

β−1.96r
Prr(Dj = 1|β̂)ϕ(β̂ − β)dβ̂

Prr(Dj = 1|β)

using Bayes Rule in the last equality and the fact that the probability of publication does

not depend on the true effect β after conditioning on the estimate β̂. Recall that statistically

significant results are published with probability one and insignificant results with probability

γ ∈ [0, 1) (Assumption 3). Evaluating the integral in the numerator and expanding the denom-

inator gives the desired expression.

To begin, recall that the publication regime is uniquely characterized by γ ∈ [0, 1), the

relative probability of publishing insignificant results (Assumption 3). In the Lemma below, I
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show that the distribution of published studies in any publication regime γ ∈ [0, 1) is isomorphic

to a mixture of a publication regime with γ = 0 (i.e. all insignificant results are censored) and

publication regime with γ = 1 (i.e. all insignificant results are published).

Lemma 1A.5 (Publication Regime as Mixed Distribution). The density of published studies

in publication regime γ ∈ [0, 1] and standard error regime r ∈ (0, 1), fβ̂,β|D(β̂, β|Dj = 1; γ, r),

is equivalent to the following mixture of densities:

fβ̂,β|D(β̂, β|Dj = 1; γ, r) = ω(r) · fβ̂,β|D(β̂, β|Dj = 1; 1, r) +
[
1− ω(r)

]
· fβ̂,β|D(β̂, β|Dj = 1; 0, r)

with

ω(r) =
γ

Prr(Dj = 1)
∈ [0, 1] (22)

Proof. For this proof, I express the probability of publication in publication regime γ and

standard error regime r explicitly as Pr(Dj = 1; γ, r) (rather than subscripting the probability).

The claim is trivially true in the case where γ = 0 or γ = 1. Let γ ∈ (0, 1). With Bayes Rule

and Assumption 3 which assumes a step-wise publication selection function, we have that

fβ̂,β|D(β̂, β|Dj = 1; γ, r) =
Pr(Dj = 1|β̂; γ, r)ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)

=
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β) + γ1{|β̂| < 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)
(23)

Note in the first equality that the probability of publication does not depend on the true

effect β after conditioning on the estimate β̂.

Now consider the mixture of two publication regimes: (i) a regime where all results are

published (γ = 1) with weight ω(r) as defined in equation (22); and (ii) a regime where all

insignificant results are censored (γ = 0) with weight 1− ω(r). I show that the density of this

mixture is equivalent to the density of published studies for publication regime γ ∈ (0, 1) in
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equation (23). Substituting the weights and densities in the mixture gives

ω(r) · fβ̂,β|D(β̂, β|Dj = 1; 1, r) +
[
1− ω(r)

]
· fβ̂,β|D(β̂, β|Dj = 1; 0, r)

=

(
γ

Pr(Dj = 1; γ, r)

)(
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β) + 1{|β̂| < 1.96r}ϕ(β̂ − β)fβ(β)

)

+

(
Pr(Dj = 1; γ, r)− γ

Pr(Dj = 1; γ, r)

)(
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; 0, r)

)

=

(
Pr(Dj = 1; γ, r)− γ

(
1−Pr(Dj = 1; 0, r)

)
Pr(Dj = 1; 0, r)︸ ︷︷ ︸

≡κ

)(
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)

)

+

(
γ1{|β̂| < 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)

)
It is clear that this expression equals the density in the publication regime γ ∈ (0, 1) in

equation (23) provided that κ = 1. This is can be verified by substituting the following identify

into the numerator:

Pr(Dj = 1; γ, r) =

∫
β

(
Φ(−1.96r − β) + 1− Φ(1.96r − β)

)
fβ(β)dβ

+ γ

∫
β

[Φ(1.96r − β)− Φ(−1.96r − β)]fβ(β)dβ

= Pr(Dj = 1; 0, r) + γ(1−Pr(Dj = 1; 0, r))

In the next step, I show that Lemma 1A.5 implies we only need to show that coverage

increases with standard error corrections in the publication regime where γ = 0. For clarity,

let expected coverage in publication regime γ ∈ [0, 1] and standard error regime r ∈ (0, 1] be

denoted by

cγ(r) ≡
∫

Coverage(β, r)fβ|D(β|Dj = 1; γ, r)dβ

Lemma 1A.5 implies that expected coverage in publication regime γ can be written as a
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weighted average of coverage in the ‘publish all insignificant results’ regime and the ‘publish no

insignificant results’ regime: cγ(r) = ω(r)c1(r) +
(
1− ω(r)

)
c0(r). This implies that the change

in expected coverage from standard error corrections in publication regime γ is equal to

cγ(1)− cγ(r) =
[
ω(1)c1(1) +

(
1− ω(1)

)
c0(1)

]
−
[
ω(r)c1(r) +

(
1− ω(r)

)
c0(r)

]
=
(
1− ω(r)

)(
c0(1)− c0(r)

)
+ ω(1)

(
c1(1)− c0(1)

)
− ω(r)

(
c1(r)− c0(1)

)
>
(
1− ω(r)

)(
c0(1)− c0(r)

)
where the inequality uses the fact that c1(1) − c1(r) = [Φ(1.96) − Φ(−1.96)] − [Φ(1.96r) −

Φ(−1.96r)] > 0, and ω(1) > ω(r) because the probability of publication in the denominator for

the weight in equation (22) is decreasing in r. These two inequalities imply that the product

in the second term is strictly greater than the product in the third term. Thus, we only need

to show that coverage increases in the case where γ = 0 to show that coverage increases overall

in publication regime γ ∈ [0, 1).

Fix γ = 0 for the remainder of the proof. We want to show that expected coverage increases

with standard error corrections:

c0(1)− c0(r)

=

∫ ∞

0
Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −

∫ ∞

0
Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

=

(∫ 2×1.96r

0
Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −

∫ 2×1.96r

0
Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

)

+

(∫ ∞

2×1.96r
Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −

∫ ∞

2×1.96r
Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

)
(24)

We will show that both differences in the parentheses are weakly positive, and that at least one

is strictly positive, which gives the desired result.
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Consider the second difference, where the integrals are over β ≥ 2 × 1.96r. Consider the

integrand in the second term of the difference (and keep the integral limits fixed). Using the

expression for coverage when β ≥ 2 × 1.96r from Lemma 1A.4 and Bayes’ Rule we have that

the integrand is equal to

Coverage(β, r)fβ|D(β|Dj = 1; 0, r) =

(
Φ(1.96r)− Φ(−1.96r)

Pr(Dj = 1|β; 0, r)

)
·

(
Pr(Dj = 1|β; 0, r)fβ(β)

Pr(Dj = 1; 0, r)

)

=

(
Φ(1.96r)− Φ(−1.96r)

Pr(Dj = 1; 0, r)

)
· fβ(β)

Consider the term in parentheses in the final line. The numerator is increasing in r and

the denominator is decreasing in r. Since both terms are strictly positive, this implies that the

integrand is weakly increasing in r (and strictly increasing when fβ(β) > 0). In equation (24),

this implies that the difference in the second parentheses is weakly positive, since the integral

limits are the same for both terms, but r takes its maximum value of one in the first term.

Next, I show that the first difference in (24) is weakly positive. To do so, I make use of

three Lemmas, which I state and prove below.

Lemma 1A.6 (Coverage Increases for Degenerate βj). Let γ = 0. For any β ∈ (0,∞) and

r ∈ (0, 1], we have

∂

∂r

(
Coverage(β, r)

)
> 0

Proof. We will show the more general result that coverage increases with corrections for de-

generate βj for any critical threshold c > 0 (note that at the 5% significance threshold we

have c = 1.96r). For convenience, let the second argument in the Coverage(·, ·) function be

the critical threshold c rather than the reported standard error r. The case where β ≥ 2c with

c = 1.96r has already been shown in the main text of the proof for the more general case where

βj follows a distribution. That proof clearly generalizes to other thresholds. Next, consider the

second case where β ∈ (0, 2c). The expression for coverage (Lemma 1A.4) when γ = 0 is given
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by

Coverage(β, c) =
Φ(c)− Φ(c− β)

Φ(−c− β) + 1− Φ(c− β)

Taking the derivative with respect to c gives

∂

∂c

(
Coverage(β, c)

)

∝ ∂

∂c

(
Φ(c)−Φ(c−β)

)(
Φ(−c−β)+1−Φ(c−β)

)
−
(
Φ(c)−Φ(c−β)

)
∂

∂c

(
Φ(−c−β)+1−Φ(c−β)

)
where we ignore the denominator in the quotient rule since it is positive. This derivative is

weakly positive if and only if

ϕ(c+ β) + ϕ(c− β)

1− Φ(c+ β) + 1− Φ(c− β)
≥ ϕ(c− β)− ϕ(c)

Φ(c)− Φ(c− β)
(25)

Now recall that for Z ∼ N(0, 1) and a < b, we have E[Z|Z ∈ (a, b)] = [ϕ(a)−ϕ(b)]/[Φ(b)−Φ(a)].

Hence we have

E[Z|Z ∈ (c+ β,∞)] =
ϕ(c+ β)

1− Φ(c+ β)
≡ µ1

E[Z|Z ∈ (c− β,∞)] =
ϕ(c− β)

1− Φ(c− β)
≡ µ2

E[Z|Z ∈ (c− β, c)] =
ϕ(c− β)− ϕ(c)

Φ(c)− Φ(c− β)
≡ µ3

For β ≥ 0, we have that µ1 ≥ µ2 ≥ µ3. Now let

ω =
1− Φ(c+ β)

1− Φ(c+ β) + 1− Φ(c− β)

Since ω ∈ (0, 1), we have that ωµ1 + (1 − ω)µ2 ≥ µ3, which gives the desired inequality in

(25).

Lemma 1A.7 (Derivative of Coverage With Respect to r). For any β ∈ [0,∞), r ∈ (0, 1] and
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γ ∈ [0, 1], we have

∂

∂β

(
Coverage(β, r)

)
=


> 0 if β ≤ 2× 1.96r

< 0 if β > 2× 1.96r

Proof. We will prove the more general result for arbitrary critical threshold c > 0 (note that

c = 1.96r at the 5% significance threshold). That is, we will show that coverage is increasing in

β when β ≤ 2c and decreasing in β when β > 2c. As in Lemma 1A.6, let the second argument

in the Coverage(·, ·) function be the critical threshold c rather than the reported standard error

r. Consider the expression for coverage in Lemma 1A.4. Consider first the case where β ≤ 2c.

Using the quotient rule gives

∂

∂β

(
Coverage(β, c)

)
∝ ϕ(c− β)d(β, c)−

(
ϕ(c− β)− ϕ(c+ β)

)
n1(β, c) > 0

where we define the denominator as d(β, c) ≡ Φ(−c−β)+1−Φ(c−β)+γ[Φ(c−β)−Φ(−c−β)] > 0

and the numerator as n1(β, c) ≡ γ[Φ(c − β) − Φ(−c)] + Φ(c) − Φ(c − β) > 0. The inequality

follows because d(β, c) > n1(β, c) and ϕ(c− β) > ϕ(c− β)− ϕ(c+ β) > 0.

Consider next the case where β > 2c. Define the numerator as n2(β, c) ≡ Φ(c)−Φ(−c) > 0.

Then

∂

∂β

(
Coverage(β, c)

)
∝ −n2(β, c) ·

∂

∂β

(
d(β, c)

)
= −n2(β, c) ·

[
(1−γ)

(
ϕ(c−β)−ϕ(c+β)

)]
< 0

Lemma 1A.8 (First Order Stochastic Dominance in Corrected Standard Error Regime). Let

Fβ|D(β|Dj = 1; γ, r) denote the cdf of published true treatment effects in standard error regime

r ∈ (0, 1] and publication regime γ ∈ [0, 1]. Then Fβ|D(β|Dj = 1; 0, 1) first-order stochastically

dominates Fβ|D(β|Dj = 1; 0, r) for any r ∈ (0, 1).

Proof. I establish first-order stochastic dominance by showing that the monotone likelihood

ratio property holds for the following ratio of densities. By Bayes Rule we have
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fβ|D(β|Dj = 1; 0, 1)

fβ|D(β|Dj = 1; 0, r)
=

(
Pr[Dj=1|β;0,1]fβ(β)

Pr[Dj=1;0,1]

)
(
Pr[Dj=1|β;0,r]fβ(β)

Pr[Dj=1;0,r]

)
=

(
Φ(−1.96− β) + 1− Φ(1.96− β)

Φ(−c− β) + 1− Φ(c− β)

)
·K

where c ≡ 1.96r and K ≡ Pr[Dj = 1; 0, r]/Pr[Dj = 1; 0, 1] > 0. Thus the derivative with

respect to β is given by

∂

∂β

(
fβ|D(β|Dj = 1; 0, 1)

fβ|D(β|Dj = 1; 0, r)

)
∝ ∂

∂β

(
Φ(−1.96−β)+1−Φ(1.96−β)

)(
Φ(−c−β)+1−Φ(c−β)

)

−
(
Φ(−1.96− β) + 1− Φ(1.96− β)

)
∂

∂β

(
Φ(−c− β) + 1− Φ(c− β)

)

We want to show this is positive, which is equivalent to showing the following inequality

ϕ(1.96− β)− ϕ(1.96 + β)

1− Φ(1.96− β) + 1− Φ(1.96 + β)
≥ ϕ(c− β)− ϕ(c+ β)

1− Φ(c− β) + 1− Φ(c+ β)
(26)

Note that c = 1.96r < 1.96 since r ∈ (0, 1). Hence it suffices to show that the fraction

on the right hand side is increasing in c. To show this, first let Z ∼ N(0, 1). Then using the

formula for the expectation of a truncated normal gives

E[Z|Z ∈ (c− β, c+ β)] =
ϕ(c− β)− ϕ(c+ β)

Φ(c+ β)− Φ(c− β)
≡ µ1(β, c)

Next, define

µ2(β, c) ≡
Φ(c+ β)− Φ(c− β)

1− Φ(c− β) + 1− Φ(c+ β)

Now see that µ1(β, c) · µ2(β, c) gives the right hand side ratio in equation (26). Thus the
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derivative using the product rule is equal to

∂

∂c

(
µ1(β, c) · µ2(β, c)

)
=

∂

∂c

(
µ1(β, c)

)(
µ2(β, c)

)
+
(
µ1(β, c)

) ∂
∂c

(
µ2(β, c)

)

Showing that all four terms in this expression are positive is sufficient for proving the

derivative is positive. First, see that µ2(β, c) is clearly positive. Next, see that µ1(β, c) is

positive because it is the conditional expectation of a standard normal over an even interval

centered at c > 0. Moreover, the derivative ∂µ1(β, c)/∂c is positive because the conditional

expectation must increase when the fixed-width interval over which the expectation is taken

increases (i.e. shifts to the right). Finally, using the quotient rule, we have

∂

∂c

(
µ2(β, c)

)
∝ ∂

∂c

(
n(β, c)

)(
d(β, c)

)
−
(
n(β, c)

) ∂
∂c

(
d(β, c)

)
=
(
ϕ(c+ β)− ϕ(c− β)

)
d(β, c) + n(β, c)

(
ϕ(c+ β) + ϕ(c− β)

)
where n(β, c) ≡ Φ(c+β)−Φ(c−β) denotes the numerator and d(β, c) ≡ 1−Φ(c−β)+1−Φ(c+β)

the denominator. This derivative being positive is equivalent to

ϕ(c+ β)

d(β, c)− n(β, c)
≥ ϕ(c− β)

d(β, c) + n(β, c)
⇐⇒ ϕ(c+ β)

1− Φ(c+ β)
≥ ϕ(c− β)

1− Φ(c− β)

This inequality holds because the hazard function of the normal distribution is increasing

and c+ β ≥ c− β when β ≥ 0.

Thus, fβ|D(β|Dj = 1; 0, 1)/fβ|D(β|Dj = 1; 0, r) is increasing in β and therefore satisfies the

monotone likelihood ratio property. This implies first-order stochastic dominance, giving the

desired result.

Using these three Lemmas, we have that∫ 2×1.96r

0

Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −
∫ 2×1.96r

0

Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

≥
∫ 2×1.96r

0

Coverage(β, r)fβ|D(β|Dj = 1; 0, 1)dβ−
∫ 2×1.96r

0

Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ ≥ 0
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The first inequality uses Lemma 1A.6 to replace Coverage(β, 1) with Coverage(β, r) in the

first term. The final inequality follows from the fact that Coverage(β, r) is strictly increasing

over (0, 2 × 1.96r) (Lemma 1A.7) and first-order stochastic dominance in the distribution of

published true effects in the corrected regime as compared with the uncorrected regime (Lemma

1A.8). Thus, the difference is strictly positive if βj has support on a subset of (0, 2 × 1.96r)

and zero otherwise.

Finally, note that βj is assumed to have support on a subset of the non-negative real line

and not be degenerate at zero (Assumption 1). This implies that both differences in equation

(24) are weakly positive and that at least one is strictly positive, completing the proof.

Lemma 1A.9 (Sufficient Condition for Improved Coverage). If nominal coverage equals 0.95

and r < 0.8512, then Coverage(r)< 0.95.

Proof. Let nominal coverage equal 0.95. Consider coverage conditional on publication in the

uncorrected regime:

Coverage(r) =

∫
Coverage(β, r)fβ|D(β|Dj = 1; γ, r)dβ ≤ Coverage(2× 1.96r, r)

=
Φ(1.96r)− Φ(−1.96r)

Φ(−3× 1.96r) + 1− Φ(−1.96r) + γ[Φ(−1.96r)− Φ(−3× 1.96r)]

≤ Φ(1.96r)− Φ(−1.96r)

Φ(−3× 1.96r) + 1− Φ(−1.96r)
(27)

The first inequality follows from Lemma 1A.7, which shows that Coverage(β, r) is increasing in

β when β ≤ 2×1.96r and decreasing in β when β > 2×1.96r; this implies that it is maximized

when β = 2 × 1.96r. The equality in the second line uses the formula for coverage in Lemma

1A.4. The last inequality uses the fact that the expression in the second line is decreasing in γ.

Denote the final expression in equation (27) as h(r). It is straightforward to show that

dh(r)/dr > 0. Moreover, see that h(r) is continuous in r, and that h(0) = 0 and h(1) = 0.9744.
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By the intermediate value theorem, it follows that there exists some r̄ ∈ (0, 1) such that

h(r̄) = 0.95. Since dh(r)/dr > 0, it follows that this value is unique and that h(r) < 0.95 for

all r < r̄. Finally, we can calculate that r̄ = 0.8512, completing the proof.

Proof of Lemma 3.3.1: First, consider the threshold rule. Tetenov (2012) considers the case

where the estimated treatment effect β̂ is normally distributed while I consider the case where

the policymaker erroneously believes it is normally distributed. Since the derivation of the

statistical decision rule is based on identical beliefs, the results from Tetenov (2012) on page

160 immediately apply, despite the fact that those beliefs happen to be incorrect in this setting.

(Note however that regret, which is based on the true distribution of studies, will differ in this

setting compared to the setting in Tetenov (2012)).

The no-data rule is identical to the one proved in Kitagawa and Vu (2023).

1B Ambiguous Impact of Corrections on Bias

Proposition 1 shows that bias increases with standard error corrections when they are suffi-

ciently large. This appendix presents examples where bias can decrease when standard error

corrections are small. This is formalized in the following lemma:

Lemma 1B.1 (Ambiguous Impact on Bias). Under Assumptions 1, 2, and 3, standard error

corrections have an ambiguous impact on the individual signs for the change in internal-validity

bias, study-selection bias and total bias. That is, there exist distinct combinations of (µβ,σ, γ, r)

such that their individual signs can be positive, negative, or zero.

Proof. The proof consists of presenting numerical examples and contains two steps. In the

first, I show ambiguity in the sign of the change in internal-validity bias and total bias. In the

second, I do the same for study-selection bias.
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(1) Internal-Validity Bias and Total Bias

Suppose that βj follows a degenerate distribution with Pr[βj = β] = 1 for some β > 0. This

implies that the change in internal-validity bias following standard error corrections will be

equal to the change in total bias (and the change in estimated treatment effects):

E1[β̂j − β|Dj = 1]−Er[β̂j − β|Dj = 1]︸ ︷︷ ︸
∆Internal-validity bias

= E1[β̂j |Dj = 1]−Er[β̂j |Dj = 1]︸ ︷︷ ︸
∆Total bias=∆Estimated treatment effects

(28)

We can use the expression for Bias(β, γ, r) from Lemma 1A.1 to show that the sign of

equation (28) from standard error corrections is ambiguous i.e. the sign of Bias(β, γ, 1) −

Bias(β, γ, r) can be positive, negative or zero. Fix (γ, r) = (0.1, 0.75). Then for β = 1.5 and

β = 0.25, we have that

Bias
(
1.5, 0.1, 1

)
− Bias

(
1.5, 0.1, 0.75

)
= 0.8244− 0.6307 = 0.1937 > 0

Bias
(
0.25, 0.1, 1

)
− Bias

(
0.25, 0.1, 0.75

)
= 0.34319− 0.3722 = −0.0290 < 0

Finally, by the intermediate value theorem, there exists some β′ ∈ (0.25, 1.5) such that

Bias(β′, 0.1, 1)− Bias(β′, 0.1, 0.75) = 0.

(2) Study Selection Bias

Consider a two-point distribution for βj where Pr[βj = β] = p∗1 ·1{β = β1}+(1−p∗1)·1{β = β2}

for 0 ≤ β1 < β2 and p∗1 ∈ (0, 1). Then by Bayes’ Rule we have

TrueTE(β1, β2, p
∗
1, γ, r) ≡ Er[βj|Dj = 1] =

p∗1β1C(β1, γ, r) + (1− p∗1)β2C(β2, γ, r)

p∗1C(β1, γ, r) + (1− p∗1)C(β2, γ, r)

where C(β, γ, r) ≡
∫
z′
p
(
β+z′

r

)
ϕ(z′)dz′ is the probability of publication conditional on β.
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Now suppose β1 = 0 and p∗1 = 0.5. Then the change in true treatment effects is given by

TrueTE(0, β2, 0.5, γ, 1)− TrueTE(0, β2, 0.5, γ, r)

= β2

(
C(β2, γ, 1)

C(0, γ, 1) + C(β2, γ, 1)
− C(β2, γ, r)

C(0, γ, r) + C(β2, γ, r)

)
(29)

which is strictly positive if and only if

C(β2, γ, 1)

C(0, γ, 1)
>
C(β2, γ, r)

C(0, γ, r)

That is, true treatment effects will increase if the probability of publication conditional on

β2 > 0 relative to the probability of publication conditional on β1 = 0 is higher in the corrected

regime relative to the uncorrected regime.

As in the previous section, fix (γ, r) = (0.1, 0.75). We can use the expression in equation (29)

to calculate the change in true treatment effects from standard error corrections for different

values of β2. For β2 = 1.5 and β2 = 0.75, we have that

TrueTE(0, 1.5, 0.5, 0.1, 1)− TrueTE(0, 1.5, 0.5, 0.1, 0.75) = 0.0261 > 0

TrueTE(0, 0.75, 0.5, 0.1, 1)− TrueTE(0, 0.75, 0.5, 0.1, 0.75) = −0.0016 < 0

Finally, by the intermediate value theorem, there exists some β′ ∈ (0.75, 1.5) such that

TrueTE(0, β′, 0.5, 0.1, 1)− TrueTE(0, β′, 0.5, 0.1, 0.75) = 0.

Practically, Lemma 1B.1 implies that the impact of standard error corrections on either bias,

estimated treatment effects, or true treatment effects is fundamentally an empirical question. In

particular, to learn how bias has changed in any given setting, it is necessary to have knowledge

about the underlying parameters (µβ,σ, γ, r).

Recall that the main text provides an example where internal-validity bias decreases with
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corrections. This example relies on the distribution of published true effects changing. By con-

trast, Proposition 1B.1 shows that bias can decrease with a degenerate, and hence unchanged,

distribution of true effects.

For intuition, consider the example in Lemma 1B.1 which examines bias in the case of an

empirical literature examining a single question of interest with a fixed true effect. With r = 3
4
,

clustering increases the effective significance threshold from 1.96× 3
4
≈ 1.5 to approximately 2.

With selective publication (γ = 1
10
), the clustered regime will therefore censor a large share of

studies between 1.5 and 2. How this impacts bias depends on whether censoring these studies

tends to increase or decrease the expected estimated treatment effect in the uncorrected regime.

In the examples given in the proof, we have that E[β̂j|Dj = 1, β = 1.5; γ = 1
10
, r = 3

4
] = 2.13

and E[β̂j|Dj = 1, β = 1
4
; γ = 1

10
, r = 3

4
] = 0.62, where βj is degenerate in both cases. In the

first case, moving to the clustered regime censors studies with effect sizes between 1.5 and 2,

which are smaller than the mean in the unclustered regime of 2.13; this leads to an increase

in estimated treatment effects and thus bias since βj is degenerate. In the second case, the

opposite occurs.
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1C Bias and True Treatment Effects

Figure 1C.1: Plot of E1[β̂j − β|Dj = 1, β] for different values of β and γ = 0.1.

1D Details on Descriptive Statistics

This appendix provides further details on the descriptive statistics in Section 1.3.

Figure 1D.1 shows the distribution of JEL codes. Note that studies typically include multiple

JEL codes and Figure 1D.1 plots the distribution at the JEL code level rather than at a study-

level e.g. with weighted JEL codes. The results show that clustered articles are less likely to

be Health, Education & Welfare (I); and Labor (J), although the difference is not statistically

significant. Figure 1D.1 shows that clustered studies are more contain to have JEL codes

that are outside the three dominant categories of Public Economics (H); Health, Education &

Welfare (I); and Labor (J).

71



Figure 1D.1: Distribution of JEL codes. The most common JEL codes are: Public Economics (H);
Health, Education & Welfare (I); and Labor (J)

Figure 1D.2: Five-Year Centered Moving Average of the Magnitude Estimated Treatment Effects
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Figure 1D.2 shows the five-year centered moving average of estimated treatment effects by

clustering regime.32 Effect sizes are considerably larger for studies reporting clustered standard

errors. In particular, the magnitude of estimated treatment effects range approximately between

20–25% in the clustered regime and between 12.5–17.5% in the unclustered regime.

1E Comparative Descriptive Statistics from 1990–1999

This appendix analyzes unclustered studies from the 1990–1999. The main motivation is to

examine the extent to which strategic clustering over 2000–2009 (i.e. the time period in the

main analysis) might be driving the result that effect sizes in the clustered regime substantially

larger than the unclustered regime. Analyzing DiD articles published between 1990 and 1999 is

useful because the norm over this period was to report unclustered standard errors (Bertrand

et al., 2004). Thus, DiD studies in this period are unlikely to be subject to strategic clustering,

providing a useful comparison group.

Table 1E.1 compares effect sizes between unclustered studies published between 2000–2009

to those published between 1990–1999. The average effect size between 2000-2009 is 12.18%. In

the earlier 1990-1999 period, effect sizes were only between 1.5–2 ppts smaller. This difference

is statistically indistinguishable from zero, although with relatively few observations there is

somewhat limited power to reject the null hypothesis. This provides suggestive evidence that

the large increase in effect sizes observed over the 2000–2009 period is not driven by strategic

clustering of the form discussed here.

There are two reasons for the relatively small sample size. First, the string-search algorithm

I use from Currie et al. (2020) which I use is based on searching articles for variations of the

term ‘difference-in-differences’ (e.g. DiD, diff-and-diff etc.) Use of this terminology was less

consistent in the 1990’s when DiD designs were beginning to be used more frequently in applied

work. A second reason for the small sample is that studies must meet the inclusion criteria

32A five-year averaging window is used because there are relatively few clustered studies in earlier years of
the decade and relatively few unclustered studies in later years of the decade.
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described in Section 1.3 which ensure comparability of effect sizes (i.e. estimated treatment

effects in percent units from a binary treatment) across studies.

Table 1E.1: Effect Sizes of Unclustered Studies: 1990’s vs. 2000’s

1(1990− 1999) -1.609 -1.725
(4.145) (3.264)

Mean in 2000–2009 12.18 12.18
Observations 43 43
Adjusted-R2 -0.021 0.054
Study controls X

Note: The sample is unclustered studies over 1990-2009. Results are from OLS regressions of the
magnitude estimated treatment effects on an indicator for whether the study was published between
1990–1999. Study controls include a quadratic on the log of the number of observations, an indicator for
policy evaluations, and a three-way interaction between JEL topics H (Public Economics), I (Health,
Education, and Welfare), and J (Labor and Demographic Economics). These JEL topics are the most
common codes for DiD studies. The dependent variable is in percent units or, for studies where the
dependent variable is measured in logs, in log point units. The estimated coefficients are in percentage
point units. Robust standard errors are in parentheses.

1F Robust Estimation for Strategic Clustering

The presence of strategic clustering could affect the consistent estimation of parameters of the

latent distribution, which could, in turn, affect the main results on the impact of clustering

on bias and coverage. This appendix proposes an estimation approach which is robust to the

simple form of strategic clustering where researchers choose to cluster only when it does not

change the statistical significance of their findings.

First, I extend the model in the main text to include strategic clustering. Second, I present

the robust estimation strategy and implement it for the DiD sample. Finally, I compare results

from the main text with those using the alternative robust estimation approach. I find very

similar results across both approaches, which provides evidence that the form of strategic

clustering discussed here is not driving the main conclusions.
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1F.1 Model of Strategic Clustering

The model extends the model in Section 2.2 to incorporate strategic clustering:

1. Draw a latent study: (βj, σj) ∼ µβ,σ

2. Estimate the treatment effect: β̂j|βj, σj ∼ N(βj, σ
2
j )

3. Report standard errors: This follows a two-stage process. In the first stage, researchers

either endogenously cluster with probability βc,1 ∈ [0, 1] or otherwise exogeneously cluster

with probability 1 − βc,1. In the second stage, researchers choose which standard errors

to report depending on the outcome of the first stage.

(a) Endogenous clustering:

σ̃j =


r · σj if 1.96r ≤ |β̂j|/Σ ≤ 1.96

σj otherwise

(b) Exogeneous clustering:

σ̃j =


r · σj with probability 1− βc,2

σj with probability βc,2

where r ∈ (0, 1) and βc,2 ∈ (0, 1).

4. Publication selection:

Pr(Dj = 1|β̂j, σ̃j) =


γ if |β̂j|/σ̃j ≥ 1.96

1 otherwise

(30)

The extension from the baseline model in Section 2.2 is in the third step. There exists some

probability βc,1 that researchers will choose whether or not to cluster strategically. Specifically,
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researchers strategically choose not to cluster with probability when doing so allows them to

obtain statistical significance. Otherwise, they always cluster. When βc,1 = 0 clustering is

completely exogenous and the model collapses to the baseline model.

1F.2 Robust Estimation

The follow result provides the basis for an estimation approach which is robust to the form of

strategic clustering outlined in the model above:

Lemma 1F.1. The distribution of statistically significant, published studies in the clustered

regime, β̂j, σj, βj|Dj = 1, Cj = 1, |β̂j|/σj ≥ 1.96, does not depend on (βc,1, βc,2).

Proof. I will show that the density of published clustered studies in the endogenous regime

is identical to the density in the exogenous regime when γ = 0. Since the overall density of

published clustered studies is simply a mixture of these the endogenous and exogenous regimes,

it follows that the overall density must equal to the density in the exogenous regime with γ = 0,

which does not depend on (βc,1, βc,2). Note also that conditioning on statistical significance is

equivalent to setting γ = 0, since doing so censors all insignificant results.

First, consider the endogenous regime, which we denote with E = 1. By Bayes Rule we

have that the density of published clustered studies is given by

fβ̂,σ,β|D(β̂, σ, β|Dj = 1; γ, 1, E = 1) =
Pr1[Dj = 1|β̂, σ;E = 1] 1

σ
ϕ
(
β̂−β
σ

)
Pr1[Dj = 1;E = 1]

∝ 1{|β̂|/σ ≤ 1.96r} · γ 1
σ
ϕ

(
β̂ − β

σ

)
+ 1{|β̂|/σ > 1.96} · 1

σ
ϕ

(
β̂ − β

σ

)
Note that all studies with |x|/σ ∈ (1.96r, 1.96) are strategically unclustered in the endoge-

nous regime, and hence the density over this region for clustered studies is zero.

Next, consider the density of published clustered studies in the exogenous regime:

fβ̂,Σ,β|D,Σ̃(β̂, σ, β|Dj = 1; γ, 1, E = 0) =
Pr1[Dj = 1|β̂, σ;E = 0] 1

σ
ϕ
(
β̂−β
σ

)
Pr1[Dj = 1;E = 0]
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∝ 1{|β̂|/σ ≤ 1.96} · γ 1
σ
ϕ

(
β̂ − β

σ

)
+ 1{|β̂|/σ > 1.96} · 1

σ
ϕ

(
β̂ − β

σ

)
When γ = 0, the densities in these two regimes are clearly identical.

For intuition, consider the regime where standard errors are chosen strategically. Strate-

gically choosing not to cluster occurs whenever a study is significant without clustering but

insignificant with clustering i.e. |β̂|/σ ∈ (1.96r, 1.96). But studies with |β̂|/σ ∈ (1.96r, 1.96)

would never be published in a clustered regime with publication regime γ = 0, because they are

statistically insignificant with clustered standard errors, irrespective of whether there is strate-

gic clustering or not. Thus, strategic clustering has no impact on the distribution of studies

once we condition on statistical significance.

This result provides the basis for an approach to obtaining unbiased estimates of the latent

distribution in the presence strategic clustering. We do this by estimating the model with the

selected sample of statistically significant clustered studies, β̂j, σj|Dj = 1, Cj = 1, |β̂j|/σj ≥

1.96, and setting γ = 0 such that we only estimate µβ,σ. Normally, the selection function p(·)

represents selective publication, but now it reflects the joint selection of the publication process

and the econometrician who chooses which results to use for estimation. Since we knowingly

condition estimation on significant results, we know that γ = 0 and do not need to estimate it.

In other words, once we condition on the selection of the econometrician, conditioning again by

selective publication has no impact since it is also based on statistical significance. Thus, we

can recover the latent distribution irrespective of whether or not there is strategic clustering.

1F.3 Robust Maximum Likelihood Estimation

Under the null hypothesis of no strategic clustering, the estimated latent distribution using the

full sample, β̂j, σj|Dj = 1, Cj = 1, should be similar to the unbiased estimate with the significant

sample, β̂j, σj|Dj = 1, Cj = 1, |β̂j|/σj ≥ 1.96. However, if there is strategic clustering, then

then the density of the data is different, the model misspecified, and the estimates for the
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Table 1F.1: Robust Maximum Likelihood Estimates

Latent true effects βj Latent standard errors σj Selection
κβ λβ κσ λσ γ

Restricted (Robust) 0.205 15.126 1.602 6.039 0.000
(0.102) (3.220) (0.260) (2.006) –

Standard 0.154 17.802 1.426 6.475 0.016
(0.0353) (2.692) (0.167) (1.282) (0.007)

Notes: Estimation sample is clustered DiD studies over 2000–2009. The number of observations
is 66 in the standard model and 60 in the restricted model which only uses statistically significant
estimates at the 5% level. Robust standard errors are in parentheses. Latent true treatment effects
and standard errors are assumed to follow a gamma distribution with shape and scale parameters
(κ, λ). The coefficient γ measures the publication probability of insignificant results at the 5% level
relative to significant results.

latent distribution should also be different.33 Thus if the estimates of the latent distribution

are sufficiently different, then we can reject the null of no strategic clustering. Otherwise, we

do not reject it.

I apply this test to the DiD sample of clustered studies. The full sample has 66 studies

and the restricted sample of significant studies consists of 60 studies. Estimates for the latent

distribution of studies are similar for both approaches. For each parameter, the 95% confidence

interval of the estimated parameters in the restricted model contains the standard model pa-

rameter estimate, and vice versa. This implies that we cannot reject the null hypothesis of

endogenous clustering.

1F.4 Bias and Coverage Results with Robust Model

Ultimately, we are interested in how differences in parameter estimates from the robust approach

could affect our final conclusions about the impact of clustering on bias and coverage. One

concern with the statistical test above is that limited power in the above test prevents us from

rejecting the null hypothesis despite differences in parameter estimates that have a meaningful

impact on the main results examining the impact of clustering on bias and coverage in Section

1.4. To alleviate these concerns, I perform a robustness exercise where I reproduce the main

analysis using parameter estimates from the robust model. This allows us to test the sensitivity

33Note that the probability of publishing null results γ must be non-zero, since they appear in the sample.
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of the main results to the (statistically insignificant) differences in parameter estimates in Table

1F.1.

To estimate the parameters of the latent distribution, the robust model sets γ = 0 and

therefore does not estimate it. Thus, it is necessary to choose the value of γ to calculate

the impact of clustering. For robustness, I choose three different values. The first is setting

γ to the same value estimated in the standard model for DiD studies (A). The second is to

set γ = 0.037, which is the value estimated by Andrews and Kasy (2019) for replications in

experimental economics (B).34 Finally, to test sensitivity of the results, I set it to γ = 0.1, a

relatively large value which is 6.25 times larger than the value estimated in DiD studies (C).

Table 1F.2 presents the results. Overall, the conclusion from the ‘standard model’ that

clustering increases coverage by a large amount at the expense of increased bias is maintained

across all calibrations of the robust model. This suggests that the main results are unlikely to

be driven strategic clustering of the form presented in the model above.

34This is based on the meta-study estimation approach which is also used in this article.
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Table 1F.2: Results for Model Robust to Strategic Clustering

Unclustered (r̂ = 0.51) Clustered (r = 1) Change

Standard Model (γ̂ = 0.016)

Coverage 0.28 0.70 0.42

Total Bias (Er[β̂j |Dj = 1]−Er[βj ]) 3.51 (100%) 10.00 (100%) 6.48 (100%)

Internal-Validity Bias (Er[β̂j − βj |Dj = 1]) 1.23 (34.9%) 2.44 (24.4%) 1.21 (18.7%)

Study-Selection Bias (Er[βj |Dj = 1]−Er[βj ]) 2.29 (65.1%) 7.56 (75.6%) 5.27 (81.3%)

Robust Model

A DiD Studies (γ = 0.016)

Coverage 0.31 0.72 0.41

Total Bias 4.16 (100%) 10.55 (100%) 6.39 (100%)

Internal-Validity Bias 1.52 (36.5%) 2.94 (27.9%) 1.42 (22.3%)

Study-Selection Bias 2.64 (63.5%) 7.60 (72.1%) 4.96 (77.7%)

B Economics Experiments (γ = 0.037)

Coverage 0.33 0.75 0.42

Total Bias 3.96 (100%) 9.22 (100%) 5.26 (100%)

Internal-Validity Bias 1.44 (36.4%) 2.56 (27.8%) 1.12 (21.3%)

Study-Selection Bias 2.52 (63.6%) 6.66 (72.2%) 4.14 (78.7%)

C One-in-Ten Censored (γ = 0.1)

Coverage 0.38 0.81 0.43

Total Bias 3.46 (100%) 6.70 (100%) 3.24 (100%)

Internal-Validity Bias 1.24 (35.8%) 1.83 (27.3%) 0.59 (18.2%)

Study-Selection Bias 2.22 (64.2%) 4.87 (72.7%) 2.65 (81.8%)

Notes: The ‘standard model’ results are reprinted from the main text. The remaining results under
‘Robust Model’ are based on the procedure outlined in Appendix 1F, for different values of γ, which
measures the level of publication bias against insignificant results at the 5% level. Figures are calcu-
lated by simulating published studies under unclustered and clustered regimes.
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1G Impact of Clustering for Different Sized Corrections

Figure 1G.1: Results on the Impact of Clustering for Different Values of r

Notes: Change in coverage, total bias (and estimated treatment effects), study-selection bias, and
internal-validity bias for the estimated model parameters in Table 1.3 as a function of downward bias
in unclustered standard errors r. The vertical dashed line at r̂ = 0.51 represents the calibrated value
using the method of simulated moments. The vertical dashed line at r̂ = 0.76 represents the mean of
the empirical distribution of r from 2015–2018 DiD studies.
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1H Impact of Clustering on Bias and Coverage Using

the 2015–2018 Empirical Distribution of r

Table 1H.1: Impact of Clustering Based on 2015–2018 Empirical Distribution of r

Unclustered Clustered (r = 1) Change

Random draws of r

Coverage 0.36 0.70 0.34

Total Bias 4.67 (100%) 10.00 (100%) 5.32 (100%)

Internal-Validity Bias 1.38 (29.5%) 2.44 (24.5%) 1.07 (20%)

Study-Selection Bias 3.29 (70.5%) 7.55 (75.5%) 4.26 (80%)

Mean: r̂ = 0.76

Coverage 0.49 0.70 0.21

Total Bias 6.67 (100%) 10.00 (100%) 3.32 (100%)

Internal-Validity Bias 2.03 (30.4%) 2.44 (24.4%) 0.41 (12.3%)

Study-Selection Bias 4.64 (69.6%) 7.56 (75.6%) 2.91 (87.7%)

Notes: These figures are based on the parameter estimates of the empirical model in Table 1.3.
Figures are calculated by simulating published studies under unclustered and clustered regimes. In
the unclustered regime, the degree of bias in unclustered studies is based on the empirical distribution
of r from 2015–2018 studies. Panel A shows results based on drawing different values of r from
the empirical distribution for unclustered studies. Panel B assumes that all unclustered studies are
downward biased by a constant factor equal to the mean of the empirical distribution (r̂ = 0.76).
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Chapter 2

Why Are Replication Rates So Low?

Abstract. Many explanations have been offered for why replication rates are low in the social sciences, including

selective publication, p-hacking, and treatment effect heterogeneity. This article emphasizes that issues with

common power calculations in replication studies may also play an important role. Theoretically, I show in a

simple model of the publication process that issues with the way that replication power is commonly calculated

imply we should always expect replication rates to fall below their intended power targets, even when original

studies are unbiased and there is no p-hacking or treatment effect heterogeneity. Empirically, I find that a

parsimonious model accounting only for issues with power calculations can fully explain observed replication

rates in experimental economics and social science, and two-thirds of the replication gap in psychology.

2.1 Introduction

In a 2016 survey conducted by Nature, 90% of researchers across various fields agreed that the

scientific community faces a ‘reproducibility crisis’ (Baker, 2016). Growing consensus has been

supported by high-profile replication projects which find that the replication rate – i.e. the

fraction of replications that are significant with the same sign as the original study – is just

36% in psychology, 61% in experimental economics, and 62% in experimental social science

(Open Science Collaboration, 2015; Camerer et al., 2016, 2018).

Understanding the underlying cause of low replication rates is important for researchers
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and reformers aiming to improve the credibility of published research. There is a large lit-

erature examining a wide range of explanations, including selective publication against null

results (Franco et al., 2014; Open Science Collaboration, 2015; Camerer et al., 2016, 2018);

p-hacking and other questionable research practices (Ioannidis, 2005, 2008; Simonsohn et al.,

2014; Brodeur et al., 2016, 2020, 2022; Elliott et al., 2022); and heterogeneity across original

studies and replications in research design and experimental subjects (Higgins and Thompson,

2002; Cesario, 2014; Simons, 2014; Stanley et al., 2018; Bryan et al., 2019).

In this article, the main theoretical result shows that we should expect the replication rate

to fall short of its intended target, owing to issues with the common approach of setting power

in replications. This is true regardless of whether or not there is selective publication, and even

in ‘ideal’ conditions with no p-hacking, no heterogeneity, and relatively high statistical power

in original studies (e.g. 80%). Let RP (x, σr|θ) be the probability of successfully replicating a

study with observed original effect size x and replication standard error σr conditional on un-

observed true effect θ. Replicators commonly set the replication standard error (or equivalently

the replication sample size) as a function of the observed effect size x, such that RP (x, σr(x)|θ)

equals a pre-specified intended power target 1 − β when x = θ (e.g. 1 − β = 0.9 would corre-

spond to 90% intended power target, where β is the target probability of Type II error). This

approach was used, for example, in large-scale replication studies in psychology and economics

(Open Science Collaboration, 2015; Camerer et al., 2016), and a survey of replications in the

psychology literature by Anderson and Maxwell (2017) shows that it is the most commonly

implemented approach. In practice, replication rates consistently fall below the intended power

target 1−β, which is commonly interpreted as an indicator that original effects are biased due

to factors such as selective publication, p-hacking, or treatment effect heterogeneity. However,

this article highlights that the replication function RP (·|θ) is a non-linear, locally concave func-

tion. Thus, even if original estimates were unbiased, with EX|Θ[X|θ] = θ, by Jensen’s inequality

we have that EX|Θ[RP (X, σr(X)|θ)|θ] < RP (θ, σr(θ)|θ) = 1 − β. That is, stated replication

rate targets in large-scale replication studies using the approach described above do not provide

84



an attainable benchmark against which to judge replication rates observed in practice; even

if original studies were unbiased, such targets are not in fact reachable in expectation. I also

show that the gap between the expected replication rate and its intended power target is larger

when the original published studies have low power, a problem that we expect to be severe in

practice given evidence of low power in various empirical literatures from (Button et al., 2013;

Ioannidis et al., 2017; Stanley et al., 2018; Arel-Bundock et al., 2023).

The main theoretical result applies to studies using what I refer to as the common power rule,

which sets replication power to detect the original estimated effect size. More recently, some

studies have begun to use a higher-power variant which I refer to as the fractional power rule,

wherein replication power is set to detect some fraction of the estimated effect size. Building

on results in Andrews and Kasy (2019), I show that the expected replication rate using the

fractional power rule can be either above or below the stated power target.

To what extent can these theoretical insights explain the low replication rates actually

observed in large-scale replication studies? Although the theory predicts that the actual repli-

cation rate will always fall below the target when using the common power rule, the magnitude

of this gap is an empirical question. Likewise, for replication studies using the fractional power

rule, both the sign and the magnitude of the gap is an empirical question.

To evaluate the importance of power issues in practice, I therefore empirically investigate

the results of three replication studies, two of which use the common power rule (Open Science

Collaboration, 2015; Camerer et al., 2016) and one of which uses the fractional power rule

(Camerer et al., 2018). In each application, I estimate the empirical model in Andrews and

Kasy (2019) using a ‘metastudy approach’ that corrects for publication bias to obtain the

underlying distribution of latent studies prior to screening by the publication process.35 I then

use the estimated latent distribution of studies to simulate what we should expect the replication

35It is necessary to model publication bias to estimate the latent distribution of studies. However, for a
given latent distribution of studies, the replication rate itself does not depend on the degree to which selective
publication suppresses insignificant results (Andrews and Kasy, 2019; Kasy, 2021). This is for the simple reason
that the replication rate only includes significant results in its definition. See Section I.B below for additional
discussion.
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rate to be based on the power calculations actually implemented in replications. Importantly,

the model and its predictions are based only on data from original studies and assume away

researcher manipulation and heterogeneous treatment effects. The empirical exercise asks, in

effect, whether observed replication rates could have been predicted by issues with power alone,

before the replication studies themselves were actually undertaken and in a parsimonious model

without treatment effect heterogeneity or p-hacking.

I find that the predicted replication rate is almost identical to observed replication rates

in experimental economics (60% vs. 61%) and experimental social science (54% vs. 57%).

Replications in experimental economics implemented the common power rule, while those in

experimental social science used a fractional power rule.36 These empirical results are consistent

with the null hypothesis that observed replication rates in these studies are driven entirely by

issues with power calculations, rather than other issues such as p-hacking or treatment effect

heterogeneity. Of course, failure to reject a hypothesis does not mean that it is true, and thus

we should not necessarily conclude that these other factors are not present in these settings.

Nevertheless, other evidence has also suggested a relatively limited role for p-hacking in the

context of lab experiments studied here (Brodeur et al., 2016, 2020; Imai et al., 2020).

In psychology, the predicted replication rate is 55%, whereas the observed replication rate

is 35%. Since the intended power target was 92%, issues with power calculations explain

only two-thirds of the gap in psychology. In the case of psychology, we can therefore reject

the null that the replication gap is entirely explained by issues with power calculations. This

provides strong evidence that some other factors are important in psychology. Some possibilities

discussed in the literature include heterogeneous treatment effects, p-hacking, and differences

across subfields.

In an extension, I examine the relative effect size (defined as the mean of the ratio of

the replication effect size and the original effect size), a common complementary continuous

36In the experimental social science replications (Camerer et al., 2018), replicators used a fractional power
rule in the first stage of replications predicted here, where replication power was set to detect 75% of the original
effect size with 90% intended power.
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measure of replication. I generate relative effect size predictions in each field using a similar

method as for the replication rate. I once again find that the predictions are quite similar to

observed outcomes in economics (0.70 vs. 0.66). The model is somewhat farther off for social

sciences (0.53 vs. 0.44), perhaps suggesting some role for other factors, although the difference

is not statistically distinguishable from zero. In psychology, predictions are quite far off (0.64

vs. 0.37), again providing strong evidence for alternative factors.

This article contributes to the large metascience literature and the growing literature on

predicting research outcomes (Ioannidis, 2005; Franco et al., 2014; Gelman and Carlin, 2014;

Dreber et al., 2015; Maxwell et al., 2015; Anderson and Maxwell, 2017; Stanley et al., 2018;

Miguel and Christensen, 2018; Altmejd et al., 2019; Amrhein et al., 2019a; DellaVigna et al.,

2020; Gordon et al., 2020; Frankel and Kasy, 2022; DellaVigna and Linos, 2022; Nosek et al.,

2022). Andrews and Kasy (2019) and Kasy (2021) provide stylized examples showing that the

replication rate can vary widely depending on the latent distribution of studies (i.e. the joint

distribution of true effects and standard errors for published and unpublished studies). The-

oretically, this article builds on this observation by establishing that the expected replication

rate is bounded above by its nominal target owing to issues with common power calculations in

replication studies. This result holds for any distribution of latent studies. Empirically, I pro-

vide evidence that among the profusion of explanations for low replication rates, a parsimonious

model accounting only for issues with replication power calculations and low power in original

studies can adequately account for observed replication rates in experimental economics and

social science.

2.2 Theory

2.2.1 Model of Large-Scale Replication Studies

I consider the model in Andrews and Kasy (2019). Suppose a large-scale replication study

is conducted in an empirical literature of interest and we observe the estimated effect sizes
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and standard errors for original studies and their replications. Let upper case letters denote

random variables, lower case letters realizations. Latent studies (published or unpublished)

have a superscript * and published studies have no superscript. The model of the DGP has

five steps:

1. Draw a population parameter and standard error: Draw a research question with

population parameter (Θ∗) and standard error (Σ∗):

(Θ∗,Σ∗) ∼ µΘ,Σ

where µΘ,Σ is the joint distribution of latent true effects and latent standard errors.

2. Estimate the effect: Draw an estimated effect from a normal distribution with param-

eters from Stage 1:

X∗|Θ∗,Σ∗ ∼ N(Θ∗,Σ∗2)

3. Publication selection: Selective publication is modelled by the function p(·), which

returns the probability of publication for any given t-ratio. Let D be a Bernoulli random

variable equal to 1 if the study is published and 0 otherwise:

P(D = 1|X∗/Σ∗) = p

(
X∗

Σ∗

)
(31)

4. Replication selection: Replications are sampled from published studies (X,Σ,Θ) (i.e.

latent studies (X∗,Σ∗,Θ∗) conditional on publication (D = 1)). Replication selection is

modelled by the function r(·), which returns the probability of being chosen for replication

for any given t-ratio. Let R be a Bernoulli random variable equal to 1 if the study is

chosen for replication and 0 otherwise:

P(R = 1|X/Σ) = r

(
X

Σ

)
(32)

88



5. Replication: A replication draw is made with:

Xr|Θ, X,Σ,Σr, D = 1, R = 1 ∼ N
(
Θ,Σ2

r

)

We observe i.i.d draws of
(
X,Σ, Xr,Σr

)
from the conditional distribution of

(
X∗,Σ∗, Xr,Σr

)
given D = 1 and R = 1. I consider what happens in the Andrews and Kasy (2019) model

outlined above when the replication standard error, Σr, is set to detect the original estimate X

with a pre-specified power level 1− β, where β is the target probability of Type II error. This

approach is implemented, for example, in Open Science Collaboration (2015) and Camerer et al.

(2016), and a survey of replications the psychology literature by Anderson and Maxwell (2017)

shows that it is the most commonly implemented approach. I refer to this as the common

power rule, which is formalized as follows:

DEFINITION 1 (Common power rule). The common power rule to detect original effect size

x with intended power 1− β sets the replication standard error to

σr(x, β) =
|x|

1.96− Φ−1(β)
(33)

This is equivalent to setting the replication sample size to N ×
[
σ
|x|

(
1.96−Φ−1(β)

)]2
, where

N and σ are the original study’s sample size and standard deviation, respectively.

The justification for the common power rule is that the power in any given replication

study will equal its intended power target of 1 − β when x = θ.37 In practice, replication

rates consistently fall below this benchmark, which is typically taken as evidence that original

estimates are biased because of selective publication or p-hacking. While this argument has

intuitive appeal, it does not account for the fact that replication power is a non-linear function

of the random original estimate X; thus, even if E[X|Θ = θ] = θ, the replication probability

evaluated at the expectation (which equals the intended target) will not, in general, be equal

37For a formal statement and proof, see Lemma B1.
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to the expected replication rate.

This argument is developed more formally in the following section, under a number of

regularity conditions and assumptions imposed on the DGP. First, following Andrews and

Kasy (2019), we impose the normalization that true effects are positive:38

ASSUMPTION 1 (True effect normalization). The support of Θ is a subset of the non-negative

real line.

Second, we impose that the publication probability p(·) is weakly increasing in the t-ratio

and symmetric around zero:

ASSUMPTION 2 (Publication selection function). Let p(t) ̸= 0 for all |t| ≥ 1.96, p(t) be weakly

increasing for all t ≥ 1.96, and p(t) = p(−t) for all t ≥ 1.96. Allow p(·) to take any form when

t ∈ (−1.96, 1.96).

This allows for very general forms of publication bias (or lack thereof). Third, in step 4,

which models the replication selection mechanism, we assume that the set of significant results

chosen for replication is a random sample from published, significant results:

ASSUMPTION 3 (Replication selection function). For all |t| ≥ 1.96, let r(t) = c ∈ (0, 1] and

allow r(·) to take any form when t ∈ (−1.96, 1.96).

Finally, note that the article uses three distinct concepts of statistical power. First, power in

an original study is defined as the probability of obtaining a statistically significant estimate in

the same direction as the true effect.39 Second, power in a replication study (or the ‘replication

probability’) is defined as the probability of obtaining a significant effect with the same sign

as the original study (Definition 2 below), and will depend on the rule for setting replication

power (e.g. the common power rule). Finally, the intended power target of a given rule for

setting replication power, which we denote by 1− β.

38Large-scale replications include studies that examine different questions and outcomes. Normalizing true
effects to be positive is justified because relative signs across studies are arbitrary.

39The arguments made throughout are essentially unchanged if we consider the alternative definition of
obtaining a statistically significant estimate irrespective of the sign.
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2.2.2 Common Power Calculations and Low Replication Rates

This section defines the replication rate and then discusses the main result. First, we define

the replication probability of a single study and then use this to define the expected replication

rate over multiple studies.

DEFINITION 2 (Replication probability of a single study). The replication probability of a

published study (X,Σ,Θ) chosen for replication (R = 1) is

RP
(
X,Θ, σr(X, β)

)
= P

(
|Xr|

σr(X,Σ, β)
≥ 1.96, sign(Xr) = sign(X)

∣∣∣X,Θ, β, R = 1

)
(34)

This definition captures the dual requirement that the replication estimate is statistically

significant and has the same sign as the original study.

DEFINITION 3 (Expected replication rate). The expected replication probability is defined over

published studies (X,Σ,Θ) which are chosen for replication (R = 1) and statistically significant

(SX = 1). It is equal to

E

[
RP
(
X,Θ, σr(X, β)

)∣∣R = 1, SX = 1
]

(35)

Substituting the common power rule in Definition 1 for the replication standard error gives

the expected replication rate under the common power rule. Note that while insignificant

results may be replicated, they are not included in the replication rate in Definition 3, in line

with the main definition reported in most large-scale replication studies (Klein et al., 2014;

Open Science Collaboration, 2015; Camerer et al., 2016, 2018; Klein et al., 2018).40 With this,

we can state the main theoretical result:

40Replication power calculations themselves are typically designed with this definition in mind. Complemen-
tary replication measures include: the relative effect size; whether the 95% confidence interval of the replication
covers the original estimate; replication based on meta-analytic estimates; the 95% prediction interval approach
(Patil et al., 2016); the ‘small telescopes’ approach (Simonsohn, 2015); and the one-sided default Bayes factor
(Wagenmakers et al., 2016).
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PROPOSITION 1 (The common power rule implies the expected replication rate is below

its target.) Consider the model in I.A. Under assumptions 1, 2, and 3, if replication standard

errors are set by the common power rule to detect original estimates with intended power 1−β ≥

0.8314, then

E

[
RP
(
X,Θ, σr(X, β)

)∣∣R = 1, SX = 1
]
< 1− β (36)

From a practical perspective, Proposition 1 means that replicators who set the replication

sample size to detect original effect sizes should not expect the replication rate to reach its

intended target, regardless of whether or not there is selective publication, and even under ‘ideal’

conditions with no researcher manipulation, replications with identical designs and comparable

samples (i.e. no heterogeneity in true effects), no measurement error, random sampling in

replication selection, and high-powered original studies. That the intended target is not in fact

attainable in expectation underscores fundamental difficulties in interpreting replication rate

gaps observed in large-scale replication studies.

Figure 2.1 provides intuition for this result. It plots the replication probability of a single

study in Definition 2 as a function of the original effect X, for a fixed true effect θ and assum-

ing that the common power rule is applied with an intended power target of 1 − β = 0.9.

Denote this conditional replication probability function as RP
(
X, σr(X, β)

∣∣θ). It is clear

that RP
(
X, σr(X, β)

∣∣θ) is non-linear in X, which implies that EX|Θ
[
RP
(
X, σr(X, β)|θ

)]
̸=

RP
(
EX|Θ[X|θ], σr(EX|Θ[X|θ], β)|θ

)
, even if X is unbiased. If RP (·|θ) were globally concave,

Proposition 1 would immediately follow from Jensen’s inequality. However, it is only locally

concave around the true effect θ. The proof of Proposition 1 shows that when 1− β > 0.8314,

local concavity is sufficient to arrive at the same result for any distribution of latent studies.

The difference between the expected replication rate and its intended target is larger when

power in original studies is low. This is because the concavity of RP (·|θ) is more pronounced

when power in original studies is low. As an illustration, Figure 2.2 plots the relationship
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Figure 2.1: Replication Probability Function Conditional on Θ

Notes: Replication probability function in Definition 2 conditional on a fixed θ. The replication
standard error is calculated using the common power rule in Definition 1 to detect original effect sizes
with 90% power (i.e. σr(X,β) = |X|/3.242).

between the expected replication rate and power in original studies, again assuming the intended

power target in replications is set to 90%, close to mean reported intended replication power in

Open Science Collaboration (2015) and Camerer et al. (2016). To highlight the impact of power

in original studies, the relationship is derived assuming no p-hacking, no selective publication,

and no heterogeneity (i.e. assuming exact replications). The plot shows that the expected

replication rate is bounded above by its intended target of 90%, in line with Proposition 1, and

is especially low when power in original studies is low. For instance, the expected probability of

replicating an original study with 33% power is around 50%. With relatively low estimates of

power across various empirical literatures, this provides strong theoretical grounds for expecting

low replication rates in practice, even in the absence of issues with p-hacking or treatment effect

heterogeneity. For intuition, note that if the true effect is zero, the replication probability is

0.025 (regardless of the how the replication standard error is chosen). Continuity implies that

when original studies have true effects close to zero (and therefore power in original studies is

low), replication probabilities will also be very low.
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Figure 2.2: Original Power and the Expected Replication Rate Under the Common Power Rule

Notes: Power of original studies and the expected replication rate under the common power rule are
both functions of ω = θ/σ (normalized to be positive). Power is original studies to obtain a significant
effect with the same sign as the true effect is equal to 1−Φ(1.96− ω). The expected replication rate

is calculated by taking 106 draws of Z from N(ω, 1) and then calculating 10−6
∑106

i=1

[
1 − Φ

(
1.96 −

sign(zi)
ω

σr(zi,β)

)]
, with intended power equal to 1 − β = 0.9 and depicted by the horizontal dashed

line. The replication standard error is calculated using the common power rule (Definition 1) to detect
original effect sizes with 90% power, which is given by σr(zi, β) = |zi|/3.242. This figure assumes no
p-hacking, no heterogeneity in true effects, no selective publication and random replication selection.
Further details are provided in Section 2.2.

Two other factors affect the replication rate, although empirically their impact turns out to

be relatively small. First, as can be seen in Figure 2.1, when original estimates are significant

but with the ‘wrong’ sign, the probability of replication is very low (below 0.025) because

it requires the highly unlikely event that the replication estimate also has the wrong sign

and is statistically significant. Second, the replication rate induces upward bias in original

estimates because it is, by definition, calculated on a selected sample of significant findings.

Replication estimates will regress to the mean (Galton, 1886; Hotelling, 1933; Barnett et al.,

2004; Kahneman, 2011)41, although the ultimate impact on the replication rate is ambiguous

because conditioning on significance also tends to select larger true effects, which have higher

replication probabilities. Appendix C derives and estimates a decomposition of the replication

41For a formal statement and proof, see Proposition B1 in Appendix B.
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rate gap in economics and psychology, using the empirical methodology described in the next

section, and finds that it is almost entirely explained by the concavity of RP (·).

Proposition 1 applies to replications implementing the common power rule. Some more

recent replication studies have used a higher-power variant which I refer to as the fractional

power rule, wherein replication power is set to detect some fraction ψ of the estimated effect

size (Camerer et al., 2018, 2022). In Proposition B2 in Appendix B, I show that the expected

replication rate under the fractional power rule can be either above or below the stated power

target 1−β. More specifically, the expected replication rate can range anywhere between 0.025

and Φ[1.96− 1
ψ

(
1.96−Φ−1(β)

)
] > 1− β depending on the statistical power of original studies.

For instance, if ψ = 3
4
and 1− β = 0.9, as in the first-stage in Camerer et al. (2018), then the

expected replication rate could range anywhere between 0.025 and 0.99. These results build on

those in Andrews and Kasy (2019), who argue that replication rates may vary widely depending

on the latent distribution of studies. Finally, note that as with Proposition 1, these conclusions

hold whether or not there is selective publication, and even in the absence of p-hacking or

treatment effect heterogeneity.

Finally, a common perception is that selective publication favouring significant results – ei-

ther by authors or journals – produces more ‘false-positives’ in the published literature, which

are in turn harder to replicate. This theory is important to address because it enjoys substantial

support: over 90% of researchers cite ‘selective reporting’ as a contributing factor to irrepro-

ducibility, more than any other factor (Baker, 2016). However, Andrews and Kasy (2019) and

Kasy (2021) show that the replication rate in fact tells us very little about selective publication.

Both provide examples showing that the replication rate can take on almost any value depend-

ing on the latent distribution of true effects, irrespective of how selective publication is. In fact,

the replication rate in the Andrews and Kasy (2019) model is completely insensitive to selective

publication against null results.42 This follows from the simple fact that the replication rate

42For a formal statement, see Proposition B3 in Appendix B, which proves this more generally for measures

g(·) that condition on statistical significance. Setting g(x, σ, xr, β) = 1

[
|xr|

σr(x,σ,β)
≥ 1.96, sign(xr) = sign(x)

]
gives the result for the replication rate measure.
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definition does not include statistically insignificant results. Thus, even if insignificant results

were being widely published, they would not be included in the replication rate.4344

2.3 Empirical Applications

In this section, I test the null hypothesis that observed replication rates can be entirely explained

by issues with common power calculations emphasized in Proposition 1, rather than other issues

such as p-hacking or heterogeneity. To test this hypothesis, the theory requires that we estimate

the latent distribution of studies. This can then be used to generate replication rate predictions

which can be compared to observed replication rates. The procedure is as follows:

1. Estimate the latent distribution of studies, µΘ,Σ using an augmented version of the An-

drews and Kasy (2019) model applied to three large-scale replications.45 Estimation does

not use any data from replications.

2. Use the estimated model to simulate replications and predict what fraction of significant

results would replicate, absent any other issues such as p-hacking or heterogeneity.

3. Compare these predictions (which do not use any data from the replications) to actual

replication outcomes.

43A caveat is that the model assumes a fixed distribution of latent studies, whereas in practice it may be
endogenous, for example, if researchers engage in more specification searching when publication bias against
null results is high (Simonsohn et al., 2014; Brodeur et al., 2016, 2020, 2022).

44Appendix D examines measures of replication which may be more sensitive to changes in selective publication
than the replication rate. For evaluating efforts to reduce selective publication, simulation results show that the
prediction interval approach (Patil et al., 2016), when calculated over both significant and insignificant results,
may provide a useful alternative to the replication rate, the confidence interval measure, and the meta-analysis
approach.

45Note that estimating the latent distribution of studies requires modelling selective publication, as discussed
in the model in Section I.A. However, with estimates of the latent distribution in hand, replication rate predic-
tions in step 2 will not depend on the degree to which null results are suppressed, since the replication rate is
defined only over significant results.

96



2.3.1 Replication Studies

I examine three replication studies. Camerer et al. (2016) replicate results from all 18 between

subjects laboratory experiments published in American Economic Review and Quarterly Jour-

nal of Economics between 2011 and 2014. Open Science Collaboration (2015) replicate results

from 100 psychology studies in 2008 from Psychological Science, Journal of Personality and So-

cial Psychology, and Journal of Experimental Psychology: Learning, Memory, and Cognition.

Following Andrews and Kasy (2019), I consider a subsample of 73 studies with test statistics

that are well-approximated by z-statistics. Camerer et al. (2018) replicate 21 experimental

studies in the social sciences published between 2010 and 2015 in Science and Nature.

In Camerer et al. (2016), replicators used the common power rule to detect original effects

with at least 90% power. In Open Science Collaboration (2015), replication teams were in-

structed to achieve at least 80% power using the common power rule, and encouraged to obtain

higher power if feasible. Reported mean intended power was 92% in both cases. Camerer et

al. (2018) implemented a higher-powered fractional power rule consisting of two stages. In the

first stage, replicators aimed to detect 75% of the original effect with 90% power. In the second

stage, further data collection was undertaken for insignificant results from the first stage, such

that the pooled sample from both stages was calibrated to detect half of the original effect size

with 90% power. I predict replication outcomes in the first stage.46

Note that the theoretical result in Proposition 1 showing that the expected replication rate

is bounded above by its intended target applies to the common power rule and not to the

fractional power rule. For the fractional power rule, the expected replication rate can either

above or below the stated power target. In both cases, the magnitude of the gap is an empirical

question.

46Predicting second-stage outcomes is complicated by the fact that one study that was ‘successfully’ replicated
in the first stage was erroneously included in the second stage.
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2.3.2 Estimation

To calculate the expected replication rate, it is necessary to estimate the latent distribution

of studies µΘ,Σ. To do this, I estimate an augmented version of the empirical model in An-

drews and Kasy (2019). Specifically, Andrews and Kasy (2019) develop an empirical model

to estimate the marginal distribution of true effects Θ∗, but not of standard errors Σ∗. Since

predictions of the replication rate also require knowledge of the distribution of Σ∗, I augment

the model to estimate the joint distribution of (Θ∗,Σ∗). Estimation is based on the ‘metastudy

approach’, which only uses data from original studies. Identification requires that true effects

are statistically independent of standard errors, a common assumption in meta-analyses. I

assume that Σ∗ follows a gamma distribution with shape and scale parameters denoted by κσ

and λσ, respectively.

For all other aspects of the model, I implement identical model specifications as Andrews

and Kasy (2019), whose focus is on estimating publication bias. Matching their specifications,

I assume that |Θ∗| follows a gamma distribution with shape and scale parameters (κθ, λθ); and

that the joint probability of being published and chosen for replication, p(X/Σ) × r(X/Σ),

is a step-function parameterized by βp. The inclusion of steps at common significance levels

(1.64, 1.96, 2.58) varies slightly across applications owing to different approaches for choosing

which studies to replicate.47 Table 2.1 presents the maximum likelihood estimates together

with reproduced estimates from Andrews and Kasy (2019) for comparison.48 For common

parameters, estimates are very close.

47Details on mechanisms for replication selection are outlined in Appendix E. With Z = X/Σ, the selection
functions in each application are: r(X/Σ) × p(X/Σ) ∝ 1

(
1.64 ≤ |Z| < 1.96)βp2 + 1

(
|Z| ≥ 1.96) in economics;

r(X/Σ)× p(X/Σ) ∝ 1
(
|Z| < 1.64)βp1 + 1

(
1.64 ≤ |Z| < 1.96)βp2 + 1

(
|Z| ≥ 1.96) in psychology; and r(X/Σ)×

p(X/Σ) ∝ 1
(
1.96 ≤ |Z| < 2.58)βp3 + 1

(
|Z| ≥ 2.58) for social science experiments. Separate identification of

the publication probability function, p(), requires that we specify the replication selection function r().
48Estimates for psychology in this article are slightly different to the meta-study estimates reported in Andrews

and Kasy (2019) (their Table 2). The difference is due to a misreported p-value in the raw psychology data for
one study, which leads to an erroneous outlier in the distribution of original study standard errors. Table 2.1 in
this article reproduces estimates of their model with the corrected data. Excluding this study in the augmented
model leads to very similar replication rate predictions.
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Table 2.1: Maximum Likelihood Estimates

Latent true effects Θ∗ Latent standard errors Σ∗ Selection parameters
κθ λθ κσ λσ βp1 βp2 βp3

Economics experiments

Augmented model 1.426 0.148 2.735 0.103 0.000 0.039 –
(1.282) (0.072) (0.536) (0.031) (0.000) (0.05) –

Andrews and Kasy (2019) 1.343 0.157 – – 0.000 0.038 –
(1.285) (0.075) – – (0.000) (0.05) –

Psychology experiments

Augmented model 0.782 0.179 4.698 0.044 0.012 0.303 –
(0.423) (0.055) (0.605) (0.008) (0.007) (0.134) –

Andrews and Kasy (2019) 0.734 0.185 – – 0.012 0.300 –
(0.405) (0.056) – – (0.007) (0.134) –

Social science experiments

Augmented model 0.077 0.644 6.249 0.028 0.000 0.000 0.611
(0.106) (0.333) (1.762) (0.009) (0.000) (0.000) (0.427)
(0.091) (0.326) (1.754) (0.009) (0.000) (0.000) (0.419)

Andrews and Kasy (2019) 0.070 0.663 – – 0.000 0.000 0.583
(0.091) (0.327) – – (0.000) (0.000) (0.418)

Notes: Maximum likelihood estimates for economics (Camerer et al., 2016), psychology (Open Sci-
ence Collaboration, 2015) and social sciences (Camerer et al., 2018). Robust standard errors are in
parentheses. Latent true effects and standard errors are assumed to follow a gamma distribution;
parameters (κ, λ) are the shape and scale parameters, respectively. In economics and psychology,
joint publication and replication probability coefficients are measured relative to the omitted category
of studies significant at 5 percent level. Parameters βp1, βp2 in this case are the relative publication
probabilities of studies that are insignificant at the 10% level; and significant at the 10% level but
not at the 5% level. For example, in experimental economics, an estimate of βp2 = 0.039 implies that
results which are significant at the 5% level are about 26 times more likely to be published and chosen
for replication than results that are significant at the 5% level. Note that in economics, results which
were insignificant at thew 10% level were not selected for replication and hence βp1 = 0. In social
sciences, the omitted category is studies significant at the 1% level. Results below the 5% significance
level were not chosen for replication so that βp1 = βp2 = 0, and βp3 measures the publication prob-
ability of a result that is significant at the 5% level but not at the 1% level, relative to that of a a
significant result at the 1% level. Andrews and Kasy (2019) estimates are reproduced from accessible
data and code from their analysis.

2.3.3 The Predicted Replication Rate

Model parameters estimates in Table 2.1 can be used to generate replication rate predictions

by simulating replications using the following procedure:

1. Draw 106 latent (published or unpublished) research questions and standard errors

(θ∗sim, σ∗sim) from the estimated joint distribution µ̂Θ,Σ(κ̂θ, λ̂θ, κ̂σ, λ̂σ).
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2. Draw estimated effects x∗sim|θ∗sim, σ∗sim ∼ N(θ∗sim, σ∗sim2) for each latent study.

3. Use the estimated selection parameters β̂p to determine the subset of studies that are

published and chosen for replication.

4. For studies chosen for replication, calculate the replication standard error σsimr according

to the following rule

σsimr (xsim, β, ψ) =
ψ · |xsim|

1.96− Φ−1(β)
(37)

where ψ = 1 and 1 − β = 0.92 in economics and psychology, which corresponds to the

common power rule; and ψ = 3
4
and 1 − β = 0.9 in social science experiments, which

corresponds to a fractional power rule.49

5. Simulate replications by drawing replication effect sizes xsimr |θsim, σsimr ∼ N(θsim, σsim2
r )

Let {xi, σi, xr,i, σr,i}
Msig

i=1 be the (simulated) set of published, replicated original studies that

are significant at the 5% level, and their corresponding replication results.50 Msig is the number

of replicated originally-significant studies. The predicted replication rate is equal to

1

Msig

Msig∑
i=1

1

(
|xr,i| ≥ 1.96σr,i, sign(xr,i) = sign(xi)

)
(38)

2.3.4 Results

In experimental economics, the predicted replication rate is 60%, which is very close to the

observed rate of 61.1% (Table 2.2). This is an “out-of-sample” prediction in the sense that the

49This assumes all simulated replications set intended power equal to the mean of reported intended power.
In practice, there was some variation in the application of the power rule around the mean. Appendix F reports
predicted replication rates allowing for variation in intended power across studies that matches the empirical
variation in each application. Results are very similar and in fact slightly more accurate in all three applications
(61.5% in economics; 52.2% in psychology; and 55.5% in social science).

50In both experimental economics and psychology, a small number of original results whose p-values were
slightly above 0.05 were treated as ‘positive’ results and included in the replication rate calculation. To match
this, I set the cutoff for significant findings for the purposes of replication equal to the smallest z-statistic that
was treated as a ‘positive’ result for replication. Predictions are almost identical with a strict 0.05 significance
threshold.
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model is estimated only using information from the original studies, and does not incorporate

any information from the replications. The accuracy of this prediction is consistent with the

null hypothesis that the observed replication rate in economics can be explained entirely by a

parsimonious model accounting only for issues with power calculations, and not other issues

such as p-hacking or treatment effect heterogeneity. Failure to reject the null hypothesis does

not, of course, imply that it is true, and thus we should not necessarily conclude that these

other factors are not present. Nonetheless, other evidence points to a relatively limited role

for p-hacking in the context of lab experiments studied here, perhaps due to fewer researcher

degrees of freedom as compared with observational settings (Brodeur et al., 2016, 2020; Imai

et al., 2020). Note that despite the very accurate point estimate, standard errors are relatively

large, which implies limited power to reject the model’s prediction (perhaps owing to the fact

that there are only 18 replicated studies).

In psychology, the model predicts a replication rate of 54.5%. This is well below mean

intended power of 92%, but higher than the observed replication rate of 34.8%. In this case,

the model accounts for around two-thirds of the replication rate gap, and we can reject the

null hypothesis that the replication gap is entirely explained by issues with common power

calculations. The unexplained portion of the gap in psychology provides evidence that other

factors discussed in the literature and not incorporated in the model may be important, includ-

ing heterogeneity in true effects, p-hacking, and measurement error. Another possibility is that

the model should account for differences in replicating main effects and interaction effects, and

differences across subfields (Open Science Collaboration, 2015; Altmejd et al., 2019).

A popular variant for the common power rule is the fractional power rule, where replication

power is set to detect some fraction of the original effect size with a given level of statistical

power (e.g. Camerer et al. (2018) and Camerer et al. (2022)). Theoretically, under the specific

rule applied in Camerer et al. (2018), the expected replication rate can range anywhere between

0.025 and 0.99 depending on the power in original studies.51 Empirically, the predicted repli-

51Proposition B2 shows that the expected replication rate can range between 0.025 and 1−Φ[1.96− 1
ψ

(
1.96−
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cation rate for the experimental social sciences is 54.3%, which is very close to the observed

rate of 57.1%. The difference is statistically indistinguishable from zero, although the standard

error of the prediction is quite large. Similarly to experimental economics, the accuracy of

the point estimate of the prediction implies that we cannot reject the null hypothesis that the

observed replication rate can be explained by a parsimonious model accounting only for issues

with power calculations.

Table 2.2: Replication Rate Predictions

Economics experiments Psychology Social sciences

Nominal target (intended power) 0.92 0.92 –

Observed replication rate 0.611 0.348 0.571

Predicted replication rate 0.600 0.545 0.543

(0.122) (0.054) (0.134)

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science
Collaboration (2015) and social sciences to Camerer et al. (2018). The replication rate is defined as
the share of original estimate whose replications have statistically significant findings of the same sign.
Figures in the first row report the mean intended power reported in both applications. The second
row shows observed replication rates. The third row reports the predicted replication rate in equation
(38) calculated using parameter estimates Table 2.1. The fourth row shows standard errors for the
predicted replication rate which are calculated using the delta method. In social sciences, power is
set to detect three-quarters of the original effect size with 90% power. This approach does not have a
fixed nominal target for the replication rate.

Extensions

I examine three extensions. In Appendix G, I use the empirical models estimated in Table 2.1

to generate predicted average relative effect sizes, using a similar procedure to the replication

rate predictions. I find that the predicted relative effect size is quite similar to the observed

value in economics (0.70 vs. 0.66). In the social sciences, the model is somewhat farther off

(0.53 vs. 0.44), which may suggest a role for other factors, although the difference is not

Φ−1(β)
)
]. With the fraction of original effect size to detect equal to ψ = 3/4, and intended power set to

1− β = 0.9, the upper range equals 0.99.
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statistically distinguishable from zero. Finally, in psychology, the prediction is quite far off

(0.64 vs. 0.37), again providing strong evidence for alternative factors. Note that relative effect

sizes are affected both by selection of significant results for replication and the level of statistical

power in original studies.52

A second extension considers the proposed rule of setting replication power equal to original

power in Appendix F. In a review of 108 psychology replications by Anderson and Maxwell

(2017), 19 (17.6%) implemented this approach. In all three applications, this approach leads

to lower predicted replication rates than under the common power rule.

Given the issues that stem from conditioning on statistical significance, the third extension

in Appendix H examines the suggestion of extending the replication rate definition to include

null results that are ‘replicated’ if their replications are also insignificant. For empirical models

in economics and psychology, this ‘extended’ replication rate remains below intended power

under the common power rule.

2.4 Conclusion

The prominence of the replication rate stems in part from its apparent transparency and ease of

interpretation. However, caution should be applied when interpreting the replication rate from

large-scale replication studies using the common power rule for setting replication power. In

general, intended replication targets are not attainable in expectation. Moreover, the replication

rate gap will be particularly large when original power is low. Empirical evidence supports the

importance of these theoretical insights. In a parsimonious model with neither heterogeneity

nor p-hacking, predicted replication rates in experimental economics and social science are very

close to observed values. This is consistent with the null hypothesis that problems with power

calculations alone are sufficient to explain observed replication rates in these fields.

52Figure G2 in Appendix G shows that the expected relative effect size is an increasing function of power in
original studies and approaches one as original power approach 100%.
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Appendix

This appendix contain proofs and supplementary materials for “Why Is the Replication

Rate So Low?” Section A derives properties of the replication probability function. Section B

contains proofs for results in the main text, in addition to other theoretical results. Section C

presents an illustrative example of how the replication rate can vary with changes in selective

publication above the 1.96 significance threshold. Section D details replication selection mech-

anisms implemented in the three applications. Section E presents extensions of the empirical

results using alternative power calculations. Section F builds intuition for the empirical repli-

cation rate decomposition results. Section G examine two further extensions to the empirical

results: examining the impact of p-hacking on the replication rate; and an analysis of the rela-

tive effect size measure of replication. Appendix H examines a generalization of the replication

rate definition to include insignificant results.

2A Properties of the Replication Probability Function

This Appendix derives properties of the replication probability function (Definition 1). The first

‘property’ simply provides a convenient, compact notation. The remaining properties consider

the replication probability function under the common power rule to detect original effect sizes

with 1 − β intended power (Definition 3). Recall that the replication probability for original

study (x, σ, θ) is equal to

RP
(
x, θ, σr(x, σ, β)

)
= P

(
|Xr|

σr(x, β)
≥ 1.96, sign(Xr) = sign(x)

)
(39)

To provide intuition of the properties, Figure A1 provides an illustration of the replication

probability function for different values of x under the common power rule for 1− β = 0.9 and

a fixed value of θ.
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Lemma A1 (Properties of the replication probability function). The replication probability

function satisfies the following properties:

1. For any replication standard error σr(x, σ, β), the replication probability for an original

study (x, σ, θ) can be written compactly as

RP
(
x, θ, σr(x, σ, β)

)
= 1− Φ

(
1.96− sign(x)

θ

σr(x, σ, β)

)
(40)

The remaining properties assume the replication standard error σr(x, β) is set using the

common power rule in Definition 3 with intended power 1− β:

2. If 1 − β > 0.025, then RP
(
x, θ, σr(x, β)

)
is strictly decreasing in x over (−∞, 0) and

(0,∞).

3. If (1− β) > 0.6628, then RP
(
x, θ, σr(x, β)

)
is strictly concave with respect to x over the

open interval (max {0, [1− r∗(β)]θ}, [1 + r∗(β)]θ), where

r∗(β) = −
(
2 + 1.96.h(β)

)
+

√(
2 + 1.96.h(β)

)2 − 4× (1 + 1.96.h(β)− h(β)2
)

2
> 0 (41)

with h(β) =
(
1.96− Φ−1(β)

)
.

4. The limits of the replication probability function with respect to x are

lim
x→∞

RP
(
x, θ, σr(x, β)

)
= 0.025 and lim

x→−∞
RP
(
x, θ, σr(x, β)

)
= 0.025 (42)

lim
x↑0

RP
(
x, θ, σr(x, β)

)
= 0 and lim

x↓0
RP
(
x, θ, σr(x, β)

)
= 1 (43)

5. Suppose X∗ ∼ N(θ, σ2). Then E
[
RP
(
X, θ, σr(X, β)

)]
→ 1− β as θ → ∞ for fixed σ.
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Figure 2A.1: Replication Probability Function Under Common Power Rule

Notes: Example of the replication probability function under the common power rule with intended
power (1−β) = 0.9. The two vertical lines around θ marks the open interval over which the replication
probability function is strictly concave, where r∗ is given by equation (41).

Proof of 1.

The probability in equation (39) equals
[
1(x/σ ≥ 1.96) ×

(
1 − Φ

(
1.96 − θ

σr

)]
+
[
1(x/σ ≤

−1.96)×Φ
(
− 1.96− θ

σr

)]
. This captures the two requirements for ‘successful’ replication: the

replication estimate must attain statistical significance and have the same sign as the original

estimate. Equation (40) is obtained using the symmetry of the normal distribution, which

implies that Φ(t) = 1− Φ(−t) for any t. □

Proof of 2.

The first derivative of the replication probability function with the common power rule is

∂RP
(
x, θ, σr(x, β)

)
∂x

=


− θ
x2

(
1.96− Φ−1(β)

)
× ϕ
(
1.96− θ

x

(
1.96− Φ−1(β)

))
, x > 0

− θ
x2

(
1.96− Φ−1(β)

)
× ϕ
(
− 1.96− θ

|x|

(
1.96− Φ−1(β)

))
, x < 0

(44)
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These are strictly negative whenever
(
1.96− Φ−1(β)

)
> 0 ⇐⇒ (1− β) > 0.025. □

Proof of 3.

First, note that for x > 0, the second derivative of the replication probability function with the

common power rule is

∂2RP
(
x, θ, σr(x, β)

)
∂x2

=

(
h(β)θ

x3

)
ϕ

(
1.96− h(β)θ

x

)[
1 +

(
h(β)θ

x

)(
1.96− h(β)θ

x

)]
(45)

Let x = (1 + r)θ. Substituting this into the previous equation and simplifying shows that

equation (45) is strictly negative when the following inequality is satisfied

r2 +
(
2 + 1.96h(β)

)
.r +

(
1 + 1.96h(β)− h(β)2

)
< 0 (46)

The solution to the quadratic equation has a unique positive solution r∗(β) whenever (1−

β) > 0.6628. To see this, note that there exists a unique positive solution when
(
1+1.96h(β)−

h(β)2
)
< 0. This quadratic equation in h(β) must have a unique positive and negative solution

in turn, since the parabola opens downwards and equals 1 when h(β) = 0. The positive root

can be obtained from the quadratic formula, which gives 2.38014. Since the quadratic function

opens downward, this implies that for any h(β) > 2.38014, we have
(
1+1.96h(β)−h(β)2

)
< 0.

Thus, a unique positive solution to equation (46) exists whenever this condition is satisfied. In

particular, a unique positive solution exists whenever

h(β) = 1.96− Φ−1(β) > 2.38014

⇐⇒ Φ(1.96− 2.38014) > β

⇐⇒ (1− β) > 0.6628 (47)
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The unique positive solution for equation (46) can again be obtained by the quadratic

formula, which gives equation (41). Note that for any r > 0 where the inequality for concavity

in equation (46) is satisfied, the same must also be true of −r, since it makes the left-hand-

side strictly smaller. This implies that the replication probability function is strictly concave

(since its second derivative is strict negative) over (max {0, [1− r∗(β)]θ}, [1 + r∗(β)]θ), where

the maximum is taken because the replication probability function is discontinuous at 0. This

follows because of the properties of the quadratic function. Specifically, suppose f(x) is a

parabola that opens upward and intersects the y-axis at a negative value. Then for any two

points (a, b) with a < b and f(a), f(b) < 0, it must be that f(c) < 0 for any c ∈ (a, b). □

Proof of 4.

Substituting the common power rule into the replication probability function gives

RP
(
x, θ, σr(x, β)

)
= 1− Φ

(
1.96− θ

x

(
1.96− Φ−1(β)

))
(48)

The values of the limits can be seen immediately from this expression. □

Proof of 5.

This proof consists of two steps. In the first step, I show that the replication probability

function approaches linearity in x in an even interval around θ, as θ → ∞ for fixed σ. To see

this, fix r ∈ (0, 1). Then the second derivative evaluated at any point cθ ∈
(
rθ, (1+ r)θ

)
equals

∂2RP
(
x, θ, σr(x, β)

)
∂x2

∣∣∣∣∣
x=cθ

=

(
h(β)

c3θ2

)
ϕ

(
1.96− h(β)

c

)[
1 +

(
h(β)

c

)(
1.96− h(β)

c

)]
(49)

This approaches zero as θ → ∞, which implies that RP
(
x, θ, σr(x, β)

)
approaches linearity

in x over the interval
(
rθ, (1 + r)θ

)
in the limit.
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For the second step, see that as θ → ∞ with fixed σ, we have that

P
[
X∗ ∈

(
rθ, (1 + r)θ

)
|θ, σ

]
= Φ

(
(1 + r)θ − θ

σ

)
− Φ

(
rθ − θ

σ

)
→ 1 (50)

That is, the probability of drawing X∗ inside of the range
(
rθ, (1 + r)θ

)
approaches one in

the limit. But from the first step we know that the replication probability function is linear

over this range as θ → ∞ with fixed σ. This implies in the limit that E
[
RP
(
X, θ, σr(X, β)

)]
=

RP
(
E[X], θ, σr(X, β)

)
= RP

(
θ, θ, σr(X, β)

)
= 1− β, as shown in Lemma 1 in the main text.

2B Proofs of Propositions

For convenience, some proofs use notation distinguishing the publication probability function

p(·) over significant and insignificant regions:

p(X∗/Σ∗) =


psig(X

∗/Σ∗) if S∗
X = 1

pinsig(X
∗/Σ∗) if S∗

X = 0

where S∗
X is an indicator variable that equals one if

∣∣X∗/Σ∗
∣∣ ≥ 1.96 and zero otherwise.

Lemma B1 (Justification of the common power rule). Consider a published study (x, σ, θ). If

x = θ and a replication uses the common power rule to detect the original effect with intended

power 1− β, then

RP
(
θ, θ, σr(θ, β)

)
= 1− β (51)

Proof. Substitute the common power rule in the replication probability function derived in

Lemma A1.1 in Appendix A. If x = θ, then

RP
(
θ, θ, σr(θ, β)

)
= 1−Φ

(
1.96− sign(θ)

θ

σr(θ, β)

)
= 1−Φ

(
1.96− θ

θ

(
1.96−Φ−1(β)

))
= 1−β (52)
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Proof of Proposition 1: For notational convenience, let (Xsig,Σsig,Θsig) denote the distri-

bution of latent studies (X∗,Σ∗,Θ∗) conditional on being published (D = 1) and statistically

significant (|X∗/Σ∗| ≥ 1.96). The expected replication probability (Definition 2) under the

common power rule (Definition 3) can be written as

EX∗,Σ∗,Θ∗|D,R,S∗
X

[
RP
(
X∗,Θ∗, σr(X

∗, β)
)∣∣∣D = 1, R = 1, |X∗/Σ∗| ≥ 1.96

]
= EX,Σ,Θ|SX

[
RP
(
X,Θ, σr(X,Σ, β)

)∣∣|X/Σ| ≥ 1.96
]

= EXsig ,Σsig ,Θsig

[
RP
(
Xsig,Θsig, σr(Xsig, β)

)]
= EΣsig ,Θsig

[
EXsig |Σsig ,Θsig

[
RP
(
Xsig,Θsig, σr(Xsig, β)

)
|Θsig = θ,Σsig = σ

]]
(53)

where the second inequality drops the conditioning on being chosen for replication (R) because

it is assumed that replication selection on significant results is random; and the last equal-

ity uses the Law of Iterated Expectations. The proof shows that the conditional expected

replication probability satisfies EXsig |Σsig ,Θsig

[
RP
(
Xsig,Θsig, σr(Xsig, β)

)
|Θsig = θ,Σsig = σ

]
<

1 − β which implies that the expected replication probability is also less than intended

power 1 − β. For greater clarity in what follows, let E
[
RP
(
Xsig|θ, σ, β)

]
be shorthand for

EXsig |Σsig ,Θsig

[
RP
(
Xsig,Θsig, σr(Xsig, β)

)
|Θsig = θ,Σsig = σ

]
.

Note that the conditional expected replication probability can be written explicitly as

E
[
RP
(
Xsig|θ, σ, β)

]
=

∫ (
1−Φ

(
1.96−sign(x)

θ

|x|
(
1.96−Φ−1(β)

)) p
(
x
σ

)
1
σϕ
(
x−θ
σ

)
1
(
| xσ | ≥ 1.96

)
dx∫

x′ p
(
x′

σ )
1
σϕ
(
x′−θ
σ

)
1
(
| xσ | ≥ 1.96

)
dx′

(54)

where the integrand in equation (54) is obtained using the compact notation for the replication

probability derived in Lemma A1.1 and then substituting the common power rule in Definition

3. This density differs from a normal density in two respects: (1) the publication probability

function p
(
x
σ

)
reweights the distribution; and (2) conditioning on statistical significance trun-
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cates original effects falling in the insignificant region (−1.96σ, 1.96σ). The denominator is the

normalization constant.

First, we introduce some notation. Lemma A1.3 shows that if (1 − β) > 0.6628, then

RP
(
x, |θ, σ, β

)
is strictly concave over the open interval (max {0, [1− r∗(β)]θ}, [1 + r∗(β)]θ),

where r∗(β) is given by equation (41). This Proposition assumes (1 − β) > 0.8314, so the

condition is satisfied. To simplify the notation, define (l∗, u∗) =
(
(1 − r∗)θ, (1 + r∗)

)
when

r∗ ∈ (0, 1) and (l∗, u∗) =
(
0, 2θ

)
when r∗ ≥ 1; in both cases, the replication probability

function is strictly concave over an interval with mid-point θ.

Consider first the case where r∗ ≥ 1 so that (l∗, u∗) =
(
0, 2θ

)
. The conditional replication

probability can be expressed as a weighted sum

E

[(
RP
(
Xsig|θ, σ, β

)]
= P

(
Xsig < l∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣Xsig < l∗
]

+P
(
l∗ ≤ Xsig ≤ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]
+P
(
Xsig > u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣Xsig > u∗
]

< P

(
Xsig < l∗

)
0.025+P

(
l∗ ≤ Xsig ≤ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]
+P

(
Xsig > u∗

)(
1−β

)
(55)

In the last line, the first term in the sum uses the fact that the maximum value of the

replication probability when x < l∗ = 0 is 0.025 (Lemma A1.2 and Lemma A1.4 in Appendix

A). The third term follows because RP
(
2θ|θ, σ, β

)
is the maximum value the function takes

over x > u∗ = 2θ, since the function is strictly decreasing over x > 0 (Lemma A1.2); and

therefore that RP
(
2θ|θ, σ, β

)
< RP

(
θ|θ, σ, β

)
= 1− β, where the equality is shown in Lemma

1. From equation (55), we can see that E
[
RP (Xsig|θ, σ, β)|l∗ ≤ Xsig ≤ u∗

]
< 1−β is a sufficient

condition for E
[
RP
(
Xsig|θ, σ, β)

]
< 1− β.

Before showing that this sufficient condition is satisfied, we show that the same sufficient

condition holds in the second case, where r∗ ∈ (0, 1) so that (l∗, u∗) =
(
(1−r∗)θ, (1+r∗)θ

)
. This

requires additional steps. First, express the conditional replication probability as a weighted

sum

E

[(
RP
(
Xsig|θ, σ, β

)]
= P

(
Xsig ≤ l∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣Xsig ≤ l∗
]
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+P
(
l∗ ≤ Xsig ≤ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]
+P
(
Xsig ≥ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣Xsig ≥ u∗
]

< P

(
Xsig ≤ l∗

)
+P
(
l∗ ≤ Xsig ≤ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]
+P
(
Xsig ≥ u∗

)
RP
(
u∗|θ, σ, β

)
(56)

The strict inequality follows for two reasons. For the first term in the sum, one is the

maximum value the function can take for any x. For the third term, RP (u∗|θ, σ, β) is the

function’s maximum value over x ≥ u∗, since the integrand is strictly decreasing over positive

values (Lemma A1.2). With an additional step, we can write this inequality as

E

[(
RP
(
Xsig|θ, σ, β

)]
<

1

2

(
1−P

(
l∗ ≤ Xsig ≤ u∗

))(
1 +RP

(
u∗
∣∣θ, σ, β))

+P
(
l∗ ≤ Xsig ≤ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]

(57)

This follows because P(Xsig ≤ l∗) ≤ P(Xsig ≥ u∗) and RP (u∗|θ, σ, β) < 1. That is, increas-

ing the relative weight on the maximum value of one, such that both tails are equally weighted,

must lead to a (weakly) larger value. The weak inequality P(Xsig ≤ l∗) ≤ P(Xsig ≥ u∗)

required for this simplification is shown below:

Lemma B2. Suppose X|θ, σ follows the truncated normal pdf in equation (54). Then for any

r∗ ∈ (0, 1), the following inequality holds: P
(
Xsig ≤ (1− r∗)θ

)
< P

(
Xsig ≥ (1 + r∗)θ

)
.

Proof. First, note that
(
(1 − r∗)θ, (1 + r∗)θ

)
is an interval over the positive real line centered

at θ. Consider two cases:

Case 1: Let (1 − r∗)θ ≤ 1.96σ. Define the normalization constant C =∫
x′
p
(
x′

σ
) 1
σ
ϕ
(
x′−θ
σ

)
1
(
|x
σ
| ≥ 1.96

)
dx′. Then

P

(
Xsig ≤ (1− r∗)θ

)
=

1

C

∫ −1.96σ

−∞
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′ ≤ 1

C

∫ ∞

2θ+1.96σ
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′
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<
1

C

∫ ∞

2θ+1.96σ
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′+

1

C

∫ 2θ+1.96σ

max {1.96σ,(1+r∗)θ}
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′ = P

(
Xsig ≥ (1+r∗)θ

)
(58)

Consider the weak inequality. Note that the mid-point between −1.96σ and 2θ+1.96σ is θ.

Thus, with no selective publication (i.e. p(t) = 1 for all t), we would have equality owing to the

symmetry of the normal distribution. However, recall that psig() is symmetric about zero and

weakly increasing in absolute value. It follows therefore that |2θ + 1.96σ| > | − 1.96σ| implies

psig(|2θ + 1.96σ|) ≥ psig(| − 1.96σ|); using this fact and symmetry of the normal distribution

about θ gives the weak inequality. The strict inequality follows because the additional term is

strictly positive, since psig() is assumed to be non-zero.

Case 2: Let (1− r∗)θ > 1.96σ. The argument is similar to the first case:

P

(
Xsig ≤ (1− r∗)θ

)
=

1

C

∫ −1.96σ

−∞
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′ +

1

C

∫ (1−r∗)θ

1.96σ
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′

<
1

C

∫ ∞

2θ+1.96σ
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′ +

1

C

∫ 2θ−1.96σ

(1+r∗)θ
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′

+
1

C

∫ 2θ+1.96σ

2θ−1.96σ
psig

(
x

σ

)
1

σ
ϕ

(
x− θ

σ

)
dx′ = P

(
Xsig ≥ (1 + r∗)θ

)
(59)

The inequality in equation (57) can be further simplified by placing restrictions on intended

power. In particular, if intended power satisfies 1− β ≥ 0.8314, then

E

[(
RP
(
Xsig|θ, σ, β

)]
<
(
1−P

(
l∗ ≤ Xsig ≤ u∗

))(
1− β

)
+P
(
l∗ ≤ Xsig ≤ u∗

)
E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]

(60)

This follows because with u∗ = (1 + r∗)θ, we have
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1

2

(
1 +RP

(
u∗
∣∣θ, σ, β)) =

1

2

(
1 +

(
1− Φ

(
1.96− 1.96− Φ−1(β)

1 + r∗(β)

))

≤ 1− β ⇐⇒ 1− β ≥ 0.8314 (61)

From equation (60), we can see thatE
[
RP (Xsig|θ, σ, β)

∣∣l∗ ≤ Xsig ≤ u∗
]
< 1−β is a sufficient

condition for E
[
RP (Xsig|θ, σ, β)

]
< 1− β. Thus, in both cases, the sufficient condition for the

desired result is the same.

This sufficient condition is shown in two steps. In the first, I show that this inequality

holds even in the case where there is no selective publication and all published results are

replicated (i.e. when X ∼ N(Θ,Σ2)). In the second, I show that this inequality remains true

once we allow for selective publication and truncation of the distribution due to conditioning

on statistical significance.

Lemma B3 states the first intermediate step. Its implications are of independent interest

and discussed in the main text. It shows that even in the optimistic scenario where original

estimates are unbiased, there is no selective publication, and all results are published and

replicated, that the expected replication probability still falls below intended power.

Lemma B3. Let published effects be distributed according to X|θ, σ ∼ N(θ, σ2). Suppose

p(t) = 1 and r(t) = 1 for all t ∈ R. Assume all results are included in the replication rate

calculation. Let power in replications is set according to the common power rule with intended

power 1− β ≥ 0.8314. Then E
[
RP (X|θ, σ, β

)]
< 1− β.

Proof. Recall that RP (x|θ, σ, β) is strictly concave with respect to x over the interval (l∗, u∗),

where (l∗, u∗) =
(
(1− r∗)θ, (1 + r∗)

)
when r∗ ∈ (0, 1) and (l∗, u∗) =

(
0, 2θ

)
; in both cases, the

mid-point of the interval is θ. We have that
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E

[
RP
(
X|θ, σ, β

)∣∣∣l∗ ≤ X ≤ u∗
]
=

∫ u∗

l∗
RP
(
x|θ, σ, β

) 1
σϕ
(
x−θ
σ

)
dx∫ u∗

l∗
1
σϕ
(
x′−θ
σ

)
dx′

< RP
(
θ
∣∣∣θ, σ, β)) = 1− β

(62)

where the strict inequality follows from Jensen’s inequality and the fact that E[X|l∗ ≤ X ≤

u∗] = θ. The final equality is a property of the replication probability function shown in Lemma

1 in the main text. This is the sufficient condition required for the desired result.

Note that the inequalities in equations (57) (for when r∗ ≥ 1) and (60) (for when r∗ ∈ (0, 1))

were derived under more general conditions, where the normal distribution may we reweighted

by p() and truncated based on significance. This setting is a special case with no selective

publication (i.e. p(t) = 1 for all t), and no truncation such that all results are included in the

replication rate irrespective of statistical significance.

The same conclusions hold when we introduce selective publication (which reweights the

normal distribution) and condition on statistical significance (which truncates the ‘insignifi-

cant’ regions of the density). Consider three cases. First, suppose that u∗ ≤ 1.96σ. Then

E
(
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
)
= 0 < 1 − β because of truncation. Second, suppose that

l∗ ≥ 1.96σ. Then

E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]
=

∫ u∗

l∗
RP
(
x|θ, σ, β

) psig
(
x
σ

)
1
σ
ϕ
(
x−θ
σ

)
dx∫ u∗

l∗
psig
(
x
σ

)
1
σ
ϕ
(
x′−θ
σ

)
dx′

≤
∫ u∗

l∗
RP
(
x|θ, σ, β

) 1
σ
ϕ
(
x−θ
σ

)
dx∫ u∗

l∗
1
σ
ϕ
(
x′−θ
σ

)
dx′

< RP
(
θ
∣∣∣θ, σ, β)) = 1− β (63)

Note that the distribution is invariant to the scale of psig(). Consider first the weak inequal-

ity. This follows because psig() is assumed to be weakly increasing over (l∗, u∗). When it is a

constant function over the interval, the equality holds. If psig(x/σ) > 0 for some x ∈ (l∗, u∗)
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then the function redistributes weight to larger values of x. Since RP (x|θ, σ, β) is strictly de-

creasing over positive values of x (Lemma A1.2), placing higher relative weight on lower values

implies that the weak inequality becomes strict. As in the proof to Lemma B3, the strict

inequality follows from Jensen’s inequality, since RP (x|θ, σ, β) is strictly concave over (l∗, u∗),

and the fact that the expected value of X over this interval is equal to the true value θ. The

last equality follows from Lemma 1 in the main text.

Finally, consider the case where l∗ < 1.96σ < u∗. Then

E

[
RP
(
Xsig|θ, σ, β

)∣∣∣l∗ ≤ Xsig ≤ u∗
]
=

∫ u∗

1.96σ

RP
(
x|θ, σ, β

) psig
(
x
σ

)
1
σϕ
(
x−θ
σ

)
dx∫ u∗

1.96σ
psig

(
x′

σ

)
1
σϕ
(
x′−θ
σ

)
dx′

=

∫ 2θ−1.96σ

1.96σ

RP
(
x|θ, σ, β

) psig
(
x
σ

)
1
σϕ
(
x−θ
σ

)
dx∫ u∗

1.96σ
psig

(
x′

σ

)
1
σϕ
(
x′−θ
σ

)
dx′

+

∫ u∗

2θ−1.96σ

RP
(
x|θ, σ, β

) psig
(
x
σ

)
1
σϕ
(
x−θ
σ

)
dx∫ u∗

1.96σ
psig

(
x′

σ

)
1
σϕ
(
x′−θ
σ

)
dx′

= ω

∫ 2θ−1.96σ

1.96σ

RP
(
x|θ, σ, β

) psig
(
x
σ

)
1
σϕ
(
x−θ
σ

)
dx∫ 2θ−1.96σ

1.96σ
psig

(
x′

σ

)
1
σϕ
(
x′−θ
σ

)
dx′

+(1−ω)

∫ u∗

2θ−1.96σ

RP
(
x|θ, σ, β

) psig
(
x
σ

)
1
σϕ
(
x−θ
σ

)
dx∫ u∗

2θ−1.96σ
psig

(
x′

σ

)
1
σϕ
(
x′−θ
σ

)
dx′

= ω

∫ 2θ−1.96σ

1.96σ

RP
(
x|θ, σ, β

) 1
σϕ
(
x−θ
σ

)
dx∫ 2θ−1.96σ

1.96σ
1
σϕ
(
x′−θ
σ

)
dx′

+ (1− ω)

∫ u∗

2θ−1.96σ

RP
(
x|θ, σ, β

) 1
σϕ
(
x−θ
σ

)
dx∫ u∗

2θ−1.96σ
1
σϕ
(
x′−θ
σ

)
dx′

< ωRP
(
θ
∣∣∣θ, σ, β))+ (1− ω).RP

(
2θ − 1.96σ

∣∣∣θ, σ, β)) < 1− β (64)

with

ω =

∫ 2θ−1.96σ

1.96σ
psig
(
x′

σ

)
1
σ
ϕ
(
x′−θ
σ

)
dx′∫ u∗

1.96σ
psig
(
x′

σ

)
1
σ
ϕ
(
x′−θ
σ

)
dx′

(65)

The second row simply breaks up the integral. The third row rearranges the sum so that

the conditional expectation of the replication probability appears in both terms. The third line

follows because, as in the previous case, the psig function redistributes weight to large values

of x and hence lower values of RP (x|θ, σ, β). In the last line, the first term uses the concavity

of RP (x|θ, σ, β) over (1.96σ, 2θ − 1.96σ) ⊂ (l∗, u∗), Jensen’s inequality, and the fact that the

expected value of X over this interval is equal to θ. The second term follows because 2θ−1.96σ

is the maximum value the function can take because RP (x|θ, σ, β) is strictly decreasing in x
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over positive values. The final inequality follows because RP
(
θ
∣∣θ, σ, β)) = 1−β (Lemma 1) and

RP
(
2θ− 1.96σ

∣∣θ, σ, β)) < 1− β because 2θ− 1.96σ > θ and the function is strictly decreasing

over positive values.

This covers all cases, proving the proposition.

Proposition B1 (Regression to the mean in replications). Suppose psig() is symmetric about

zero, non-zero over all values, differentiable, and weakly increasing in absolute value. Allow

pinsig() to take any form. Published original estimates X and corresponding replication esti-

mates Xr satisfy

E
[
X
∣∣Θ = θ, SX = 1

]
> θ = E

[
Xr|Θ = θ

]
(66)

Proof. We have E
(
Xr

∣∣Θ = θ
)
= θ by assumption. Next, note that

EX∗|Θ∗,S∗
X ,D

(
X∗|Θ∗ = θ, |X∗/Σ∗| ≥ 1.96, D = 1

)
= EX|Θ,SX

(
X|Θ = θ, |X/Σ| ≥ 1.96

)

= EΣ|Θ,SX

(
EX|Θ,Σ,SX

(
X|Θ = θ,Σ = σ, |X/σ| ≥ 1.96

))
(67)

where the last line uses the Law of Iterated Expectations. We will prove EX|Θ,Σ,S∗
X

(
X|Θ =

θ,Σ = σ, |X/σ| ≥ 1.96
)
> θ, which implies that the expression in equation (67) is also greater

than θ. Recall that X|θ, σ is the effect size of published studies and follows a truncated normal

distribution:

p
(
x
σ

)
1
σ
ϕ
(
x−θ
σ

)
1
(
|x
σ
| ≥ 1.96

)∫
p
(
x′

σ

)
1
σ
ϕ
(
x′−θ
σ

)
1
(
|x
σ
| ≥ 1.96

)
dx′

(68)

Define X = θ + σZ. Then the density for the transformed random variable Z is

p
(
z + θ

σ

)
ϕ
(
z
)
1
(
|z + θ

σ
| ≥ 1.96

)∫
p
(
z′ + θ

σ

)
ϕ
(
z′
)
1
(
|z + θ

σ
| ≥ 1.96

)
dz′

(69)
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For notational convenience, define the following normalization constants:

η̄ = P(X ≤ −1.96σ) +P(X ≥ 1.96σ) = P

(
Z ≤ −1.96− θ

σ

)
+P

(
Z ≥ 1.96− θ

σ

)
(70)

η1 = P(X ≤ −1.96σ) = P

(
Z ≤ −1.96− θ

σ

)
(71)

η2 = P(X ≥ 2θ + 1.96σ) = P

(
Z ≥ θ

σ
+ 1.96

)
(72)

η3 = P(1.96σ ≤ X ≤ 2θ − 1.96σ) = P

(
1.96− θ

σ
≤ Z ≤ θ

σ
− 1.96

)
(73)

Case 1.

Consider two cases. First, suppose θ ∈ (0, 1.96σ). Conditional on (θ, σ) (where we suppress the

conditional notation on (θ, σ) for clarity), the expected value of a published estimate conditional

of statistical significance is

E(X|1.96σ ≤ |X|) = 1

η̄

(
η1E(X|X ≤ −1.96σ) + η2E(X|X ≥ 2θ + 1.96σ)

+
(
η̄ − η1 − η2

)
E(X|1.96σ ≤ X ≤ 2θ + 1.96σ)

)
(74)

First note that E(X|1.96σ ≤ X ≤ 2θ + 1.96σ) > θ since we assume that θ ∈ (0, 1.96σ) and

psig() > 0. If η1E(X|X ≤ −1.96σ) + η2E(X|X ≥ 2θ + 1.96σ) ≥
(
η1 + η2

)
θ, it follows that

E(X|1.96σ ≤ |X|) > θ, which is what we want to show. Consider the first expectation in this

expression:
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E(X|X ≤ −1.96σ) = E

(
θ + σZ|Z ≤ −1.96− θ

σ

)
= θ + σE

(
Z|Z ≤ −1.96− θ

σ

)
(75)

Evaluating the expectation in the right-hand-side of equation (75) gives

E

(
Z|Z ≤ −1.96− θ

σ

)
=

1

η1

∫ −1.96− θ
σ

−∞
zpsig

(
z+

θ

σ

)
ϕ(z)dz = − 1

η1

∫ −1.96− θ
σ

−∞
psig

(
z+

θ

σ

)
ϕ′(z)dz

= − 1

η1

[
psig(−1.96)ϕ

(
− 1.96− θ

σ

)
− psig(−∞)ϕ(−∞)−

∫ −1.96− θ
σ

−∞
p′sig

(
z +

θ

σ

)
ϕ(z)dz

]

= − 1

η1
psig(−1.96)ϕ

(
− 1.96− θ

σ

)
+

1

η1

∫ −1.96− θ
σ

−∞
p′sig

(
z +

θ

σ

)
ϕ(z)dz (76)

where the second equality uses ϕ′(z) = −zϕ(z); the third equality uses integration by parts;

and the final equality follows because psig(−∞)ϕ(−∞) = 0 since psig() is bounded between

zero and one. Substituting this into equation (75) gives

E(X|X ≤ −1.96σ) = θ− σ

η1
psig(−1.96)ϕ

(
−1.96− θ

σ

)
+
σ

η1

∫ −1.96− θ
σ

−∞
p′sig

(
z+

θ

σ

)
ϕ(z)dz (77)

Next, note that

E(X|X ≥ 2θ + 1.96σ) = θ + σE
(
Z|Z ≤ θ

σ
+ 1.96

)
(78)

where

E

(
Z|Z ≤ θ

σ
+1.96

)
=

1

η2

∫ ∞

1.96+ θ
σ

zpsig

(
z+

θ

σ

)
ϕ(z)dz ≥ 1

η2

∫ ∞

1.96+ θ
σ

zpsig

(
z− θ

σ

)
ϕ(z)dz (79)
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since psig(z+θ/σ) ≥ psig(z−θ/σ) for all z ∈ (1.96+θ/σ,∞) because psig(t) is weakly increasing

over t > 1.96. For the right-hand-side of this equation, we can apply similar arguments used

to derive equation (76). Substituting the result into equation (78) gives

E(X|X ≥ 2θ + 1.96σ) ≥ θ +
σ

η2
psig(1.96)ϕ

(
1.96 +

θ

σ

)
+
σ

η2

∫ ∞

1.96+ θ
σ

p′sig

(
z − θ

σ

)
ϕ(z)dz (80)

Equations (77) and (80) imply

η1E(X|X ≤ −1.96σ) + η2E(X|X ≥ 2θ + 1.96σ)

≥ (η1 + η2)θ + σ

[
psig(1.96)ϕ

(
1.96 +

θ

σ

)
− psig(−1.96)ϕ

(
− 1.96− θ

σ

)]

+σ

[∫ −1.96− θ
σ

−∞
p′sig

(
z +

θ

σ

)
ϕ(z)dz +

∫ ∞

1.96+ θ
σ

p′sig

(
z − θ

σ

)
ϕ(z)dz

]
= (η1 + η2)θ (81)

In the second line, the second term in the sum equals zero because symmetry of psig() and

ϕ() about zero implies that both terms in the brackets are equal. To see why the third term in

the sum equals zero, note that

∫ −1.96− θ
σ

−∞
p′sig

(
z +

θ

σ

)
ϕ(z)dz =

∫ ∞

1.96+ θ
σ

p′sig

(
− u+

θ

σ

)
ϕ(u)du = −

∫ ∞

1.96+ θ
σ

p′sig

(
u− θ

σ

)
ϕ(u)du

(82)

The first equality follows from both changing the order of the integral limits and applying

the substitution u = −x; it also uses the symmetry of ϕ(). The final equality holds because

symmetry of psig() about zero implies that for any t > 1.96, p′sig(t) = −p′sig(−t).

Case 2.

Consider the second case where θ ≥ 1.96σ. For a given (θ, σ), we have
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E(X|1.96σ ≤ |X|) = 1

η̄

(
η1E(X|X ≤ −1.96σ) + η2E(X|X ≥ 2θ + 1.96σ)

η3E(X|1.96σ ≤ X ≤ 2θ − 1.96σ) +
(
η̄ − η1 − η2 − η3

)
E(X|2θ − 1.96σ ≤ X ≤ 2θ + 1.96σ)

)

>
1

η̄

(
θ(η1 + η2) +

(
η̄ − η1 − η2 − η3

)
θ + η3E(X|1.96σ ≤ X ≤ 2θ − 1.96σ)

)
(83)

The inequality follows from two facts. First, the inequality proved in the first case:

η1E(X|X ≤ −1.96σ) + η2E(X|X ≥ 2θ + 1.96σ) ≥ (η1 + η2)θ. Second, the expectation

in the third term of the sum satisfies E(X|2θ − 1.96σ ≤ X ≤ 2θ + 1.96σ) > θ because

θ ≥ 1.96σ ⇐⇒ 2θ − 1.96σ ≥ θ and we assume that psig() > 0.

It remains to show that E(X|1.96σ ≤ X ≤ 2θ − 1.96σ) ≥ θ. Then it follows that

E(X|1.96σ ≤ |X|) > θ, which is what we want to show. First, note that

E(X|1.96σ ≤ X ≤ 2θ − 1.96σ) = θ + σE

(
Z

∣∣∣∣1.96− θ

σ
≤ Z ≤ −1.96 +

θ

σ

)
(84)

It is therefore sufficient to show that E

(
Z

∣∣∣∣1.96 − θ
σ
≤ Z ≤ −1.96 + θ

σ

)
≥ 0. Writing out

the expectation in full gives

E

(
Z

∣∣∣∣1.96− θ

σ
≤ Z ≤ −1.96+

θ

σ

)
=

1

η3

(∫ 0

1.96− θ
σ

zpsig

(
z+

θ

σ

)
ϕ(z)dz+

∫ θ
σ
−1.96

0

zpsig

(
z+

θ

σ

)
ϕ(z)dz

)

=
1

η3

(∫ θ
σ
−1.96

0

z

[
psig

(
z +

θ

σ

)
− psig

(
− z +

θ

σ

)]
ϕ(z)dz

)
≥ 0 (85)

The second equality follows because

∫ 0

1.96− θ
σ

zpsig

(
z+

θ

σ

)
ϕ(z)dz = −

∫ 1.96− θ
σ

0

zpsig

(
z+

θ

σ

)
ϕ(z)dz = −

∫ θ
σ
−1.96

0

upsig

(
−u+ θ

σ

)
ϕ(u)du

(86)
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which uses the substitution u = −x and the symmetry of ϕ(). The weak inequality in equation

(85) follows because psig() is assumed to be weakly increasing over positive values. Thus,

z − θ/σ > −z + θ/σ for all z ∈ (0, θ/σ − 1.96) implies psig
(
z + θ/σ

)
− psig

(
− z + θσ

)
≥ 0.

This covers all cases and proves the proposition.

Proposition B2 Under the fractional power rule which sets the replication standard error

according to σr(X, β, ψ) = ψ·|X|
1.96−Φ−1(β)

with ψ < 1, the expected replication rate can range

between 0.025 and 1− Φ[1.96− 1
ψ

(
1.96− Φ−1(β)

)
] > 1− β.

Proof of Proposition B2: Under the fractional power rule, the expected replication rate

conditional on fixed (θ, σ) is given by

E[RP (X,Θ, σr(X, β, ψ)|Θ = θ,Σ = σ]

=

∫ [
1− Φ

(
1.96− sign(x)

θ

ψ · |x|
(
1.96− Φ−1(β)

))] 1
σ
ϕ

(
x− θ

σ

)
dx (87)

If θ = 0, then this equals 0.025. Next, suppose that θ > 0 and consider the case where

σ → 0 such that power in original studies approaches one. See that the integrand is bounded

above by one and converges pointwise as σ → 0 to

1− Φ
(
1.96− sign(x)

θ

ψ · |x|
(
1.96− Φ−1(β)

))
1{x = θ} (88)

since the normal distribution converges to a degenerate distribution when the variance goes to

zero. Thus, by the dominated convergence theorem (and the fact that θ > 0), we have that

lim
σ→0

E[RP (X,Θ, σr(X, β, ψ)|Θ = θ,Σ = σ] = 1− Φ
(
1.96− 1

ψ

(
1.96− Φ−1(β)

))
(89)

When ψ = 1, this equals 1 − β. Since equation (89) is strictly decreasing in ψ, it follows

that equation (89) is strictly above 1− β when ψ < 1.
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This shows that the expected replication of an individual study can range between 0.025

and 1−Φ[1.96− 1
ψ

(
1.96−Φ−1(β)

)
] > 1− β. Integrating over the distribution of latent studies

gives the desired result.

Proposition B3 For any function g(X,Σ, Xr, β),E
[
g(X,Σ, Xr, β)|D = 1, R = 1, SX = 1

]
does

not depend on pinsig().

Proof of Proposition B3: We can write E
[
g(X,Σ, Xr, β)|D = 1, R = 1, SX = 1

]
as∫

g(x, σ, xr, β)fX∗,Σ∗,Θ∗,Xr|D,R,S∗
X

(
x, σ, θ, xr

∣∣D = 1, R = 1, SX∗ = 1
)
dxdσdθdxr

=

∫
x,σ,θ

(∫
xr

g(x, σ, xr, β)fXr|X∗,Σ∗,Θ∗

(
xr|θ, σr(x, σ, β)

)
dxr

)
fX∗,Σ∗,Θ∗|D,R,S∗

X

(
x, σ, θ|D = 1, R = 1, S∗

X = 1
)
dxdσdθ (90)

The equality uses the Law of Iterated Expectations and

fXr|X∗,Σ∗,Θ∗,D,R,S∗
X

(
xr|θ, σr(x, σ, β)

)
= fXr|X∗,Σ∗,Θ∗

(
xr|θ, σr(x, σ, β)

)
. Replication estimates

are not subject to selective publication, which implies this is a normal density that does

not depend on p(). Hence, the term in parentheses can only be affected by p() indirectly

through fX∗,Σ∗,Θ∗|D,R,S∗
X
, which is the joint distribution of original studies conditional on being

published, chosen for replication, and statistically significant at the 5% level. However, this

distribution does not depend on the probability of publishing insignificant findings. To see

this, apply Bayes rule twice to get

fX∗,Σ∗,Θ∗|D,R,S∗
X

(
x, σ, θ|D = 1, R = 1, S∗

X = 1
)

=
P

(
D = 1

∣∣X∗ = x,Σ∗ = σ,Θ∗ = θ,R = 1, S∗
X = 1

)
P

(
D = 1

∣∣R = 1, S∗
X = 1

) ×
P

(
R = 1

∣∣X∗ = x,Σ∗ = σ,Θ∗ = θ, S∗
X = 1

)
P

(
R = 1

∣∣S∗
X = 1

)
×fX∗,Θ,Σ∗|S∗

X

(
x, θ, σ

∣∣S∗
X = 1

)
=

psig(x/σ)

E
(
psig(X∗/Σ∗)

∣∣S∗
X = 1

) · rsig(x/σ)

E
(
rsig(X∗/Σ∗)

∣∣S∗
X = 1

) · fX∗,Σ∗,Θ∗|S∗
X

(
θ, x, σ

∣∣S∗
X = 1

)
(91)

In the final line, the first factor in the product includes only psig(); the denominator does not
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condition on R because replication selection is assumed to be random for significant findings.

The second factor equals one because replication selection for significant results is assumed

to be random. The final factor in the product is the density of latent studies conditional on

significance, which is not affected by selective publication.

2C Replication Rate Gap Decomposition

How can we measure the relative importance of non-linearities as compared to distortions from

selection on significance? To answer this question, I derive a decomposition of the replication

rate gap, which I implement in the empirical section.

The decomposition is based on two regimes. Regime 1 (M1) assumes use of the standard

definition of the replication rate: only significant results are included, and replication selection

is a random sample of significant results. Regime 2 (M2) is based on a counterfactual scenario

where all results are published and replication is random. This implies the distribution of

published, replicated studies coincides with the distribution of latent studies. Formally, the

expectation operators under both regimes are defined by:

EM1

[
RP (X,Θ, σr(X,β))

]
=

∫
RP (x, θ, σr(x, β))fX∗,Θ∗|D,R,S∗

X
(x, θ|D = 1, R = 1, S∗

X = 1)dxdθ (92)

EM2

[
RP (X,Θ, σr(X,β))

]
=

∫
RP (x, θ, σr(x, β))fX∗,Θ∗(x, θ)dxdθ (93)

Using these, we have the following decomposition:

(1− β)−EM1

[
RP (X,Θ, σr(X,β))

]︸ ︷︷ ︸
replication rate gap

= (1− β)−EM2

[
RP (X,Θ, σr(X,β))

∣∣X ≥ 0
]︸ ︷︷ ︸

(i) concavity gap

+PM1

(
X < 0

)(
EM1

[
RP (X,Θ, σr(X,β))

∣∣X ≥ 0
]
−EM1

[
RP (X,Θ, σr(X,β))

∣∣X < 0
])

︸ ︷︷ ︸
(ii) wrong-sign gap

+EM2

[
RP (X,Θ, σr(X,β))

∣∣X ≥ 0
]
−EM1

[
RP (X,Θ, σr(X,β))

∣∣X ≥ 0
]

︸ ︷︷ ︸
(iii) selection-on-significance gap

(94)
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Proof. Write the expected replication probability under model 1 as

EM1

[
RP (X,Θ, σr(X,β))

]
= EM1

[
RP (X,Θ, σr(X,β))

∣∣X ≥ 0
]

+PM1

(
X < 0

)(
EM1

[
RP (X,Θ, σr(X,β))

∣∣X < 0
])

−EM1

[
RP (X,Θ, σr(X,β))

∣∣X ≥ 0
])

(95)

To arrive at equation (94), substitute equation (95) into the replication rate gap; add and

subtract EM2

[
RP (X,Θ, σr(X, β))

∣∣X ≥ 0
]
; and rearrange the terms.

Note that the concavity gap and the selection-on-significance gap condition on estimates

with the same sign as the underlying true effect. This allows us to determine their contribution

separate from the impact of attempting to replicate original estimates with the ‘wrong’ sign.

Table C1 presents the results. Panel A reproduces the results in the main text, and Panel

B present the decomposition results. The empirical results for the decomposition show that

failing to account for the concavity of the replication power function explains the overwhelming

majority of the explained replication rate gap in both economics and psychology. The selection-

on-significance gap in small, explaining only 3.1% of the gap in economics, while actually de-

creasing the replication rate in psychology. The latter outcome arises because conditioning on

statistical significance tends to select larger true effects, which have higher replication proba-

bilities than smaller true effects.
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Table 2C.1: Replication Rate Predictions and Decomposition Results

Economics experiments Psychology Social sciences

A. Replication rate predictions

Nominal target (intended power) 0.92 0.92 –

Observed replication rate 0.611 0.348 0.571

Predicted replication rate 0.600 0.545 0.543

B. Decomposition of explained gap

Predicted replication rate gap 0.320 (100%) 0.375 (100%) –

Concavity gap 0.292 (91.16%) 0.364 (97.16%) –

Wrong-sign gap 0.018 (5.72%) 0.030 (8.03%) –

Selection-on-significance gap 0.010 (3.12%) -0.019 (-5.18%) –

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open
Science Collaboration (2015) and social sciences to Camerer et al. (2018). The replication rate is
defined as the share of original estimate whose replications have statistically significant findings of the
same sign. Figures in the first row report the mean intended power reported in both applications.
The second row shows observed replication rates. The third row reports the predicted replication rate
in equation (38) calculated using parameter estimates Table 2.1. In social sciences, power is set to
detect three-quarters of the original effect size with 90% power. This approach does not have a fixed
nominal target for the replication rate.

Below I provide details underlying the intuition behind the decomposition results.

Concavity gap.—Figure C1 presents normal simulations showing that the non-linearity gap

is largest for standardized true effects ω ≡ θ/σ which are close to 0, and remains above 0.2

for ω ≤ 1. It decreases monotonically as the true effect size ω increases and approaches zero

in the limit.53 It follows that the size of the non-linearity gap depends on the distribution of

ω. The first row of graphs in Figure F2 plot the distribution of latent studies that have the

‘correct’ sign (this corresponds to the expression for the ‘non-linearity’ gap in equation (??)).

We see that a high fraction of latent studies have ω < 1, which explains why the non-linearity

53See Lemma A1.5 in Appendix A for a proof which shows that the non-linearity issue vanishes as true effect
sizes approach infinity.
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gap explains such a large role.

Wrong-sign gap.—Random sampling variation means that original estimates will occasion-

ally have the ‘wrong’ sign. When this occurs, the replication probability is bounded above by

0.025. The extent to which this issue contributes to low replication rates therefore depends

on the share of studies that have the wrong sign among significant studies. This share will

be higher in settings with small true effects and low statistical power (Gelman and Carlin,

2014; Ioannidis et al., 2017). As power approaches 100%, the ‘wrong-sign gap’ approaches zero

because the probability of drawing an estimate with the ‘wrong’ sign shrinks to zero.

Table C2 presents figures based on the estimated models, which show that significant results

in experimental economics and psychology are relatively low-powered. The share of significant

studies with the ‘wrong’ sign is 3% in economics, and 5% in psychology owing to lower statistical

power. As a consequence, the wrong-sign gap is around 1 percentage point higher in psychology

compared to economics.

Table 2C.2: Power and Estimates With the Wrong Sign For Statistically Significant Studies

Experimental economics Experimental psychology

Mean normalized true effect 2.835 2.251
Mean power 0.550 0.486
Share with wrong sign 0.030 0.054
Wrong-sign gap 0.018 0.030

Notes: Figures are based on simulated draws from the estimated distribution of latent studies in Table
1 in the main text. All statistics are calculated on the subset of statistically significant studies. The
normalized true effect is defined as θ/σ. Power is defined as the probability of obtaining a statistically
significant effect at the 5% level. The wrong-sign gap is defined in (??).

Selection-on-significance gap.—The Selection-on-significance gap is 1% in economics and

slightly negative for psychology (i.e. conditioning on statistical significance increases the repli-

cation rate compared to when there is no conditioning). The sign of this gap is ambiguous

because of two opposing effects from conditioning on statistical significance. To see these two

effects, consider the figures in Table C2 which are based on the estimated empirical models.

For the first effect, note that conditioning on significant findings increases mean bias in both
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Figure 2C.1: Replication Rate Gap Decomposition: Monte Carlo Simulations

Notes: Plots are based on simulating studies from an N(ω, 1) distribution, for different values of ω.
Replication estimates are drawn from a N(ω, σr(x, β)

2), where σr(x, β) is set based on the common
power rule to detect the original effect x with 1−β = 0.92 intended power. The non-linearity gap and
regression-to-the-mean gap are based on equation (??) and calculated using Monte Carlo methods.
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Figure 2C.2: Distribution of Normalized True Effects: Latent Studies and Significant Studies

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open
Science Collaboration (2015). Densities are based on simulated draws from the estimated distribution
of latent studies in Table 1 in the main text. Dashed vertical lines show the median of the distribution.

applications.54 This makes replication more difficult for any fixed level of ω. For the second

effect, note that conditioning also tends to select studies with larger standardized true effects

ω, which have higher replication probabilities.55 Higher replication probabilities arise because

(i) bias is lower for larger true effects; and (ii) non-linearity effects are less severe for more

highly powered studies.

The bottom panel in Figure C1 present normal simulations which show that mean bias

decreases as the standard effect size increases, and approaches zero in the limit. The intuition

is that censoring insignificant original estimates has little ‘bite’ when the true effect is very

large, since the probability of drawing an insignificant estimate is very small. Thus, as true

54Bias is positive for latent studies because these statistics condition on original estimates X∗ to have the
same sign as true effects.

55The impact of conditioning on the full distribution of ω can be seen in Figure C2.
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Table 2C.3: True Effect Sizes and Bias For Studies with the ‘Correct’ Sign

Economics experiments Psychology experiments
Latent Published & significant Latent Published & significant

Mean bias 0.113 0.200 0.091 0.173
Mean standardized true effect 1.415 2.915 1.084 2.367

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open
Science Collaboration (2015). Figures are based on simulated draws from the estimated distribution
of latent studies from Table 1 in the main text. The mean of the standardized true effect is equal to
E[Ω∗|S∗

X , X
∗ > 0, D]. Mean Bias is equal to E[X∗ − Ω∗|S∗

X , X
∗ > 0, D]. ‘Latent studies’ allow S∗

X

and D to be either 0 or 1. ‘Published & significant studies’ set S∗
X = 1 and D = 1.

effects become very large, the regression-to-the-mean gap approaches zero because the expected

replication probability of statistically significant findings with the ‘correct’ sign converges to

the expected replication probability of latent studies with the ‘correct’ sign.

2D Alternative Measures of Selective Publication

Proposition 1 shows that the replication rate is unresponsive to the most salient form of selective

publication. For journals and policymakers seeking to change current norms, this highlights

the need for more informative measures. In this section, I conduct policy simulations using the

estimated model to show how three alternative measures respond to changes in the selective

publication of null results:

1. Replication CI: This measure counts a replication as ‘successful’ if its 95% confidence

interval covers the original estimate: 1
[
X ∈

(
Xr − 1.96Σr, Xr + 1.96Σr

)])
.

2. Meta-analysis: The standard criterion of replication with the same sign and significance

is applied to a fixed-effect meta-analytic estimate combining the original and replication

estimate (uncorrected for selective publication): 1
[
|Xm| ≥ 1.96Σm, sign(Xm) = sign(X)

]
where Xm and Σm are the meta-analytic estimate and standard error, respectively.56

56The fixed-effects meta-analytic estimate is a weighted average of original and replication estimates: Xm =(
ωoX+ωrXr

)
/(ωo+ωr), where the weights are equal to the precision of each estimate i.e. (ωo, ωr) = (Σ−2,Σ−2).
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3. Prediction interval: Original and replication estimates are counted as ‘consistent’ under

this approach if their difference is not statistically different from zero at the 5% level

(Patil et al., 2016). This is equivalent to estimating a 95% ‘prediction interval’ for the

original estimate and then determining if it covers the replication estimate: 1
[
Xr ∈(

X − 1.96
√
Σ2 + Σ2

r, X + 1.96
√

Σ2 + Σ2
r

)])
.57

These alternative replication measures are frequently reported in large-scale replication

studies (Open Science Collaboration, 2015; Camerer et al., 2016, 2018). In simulations, I

calculate these measures over significant and insignificant published results, since conditioning

on statistical significance makes them unresponsive to selective publication on null results

(Proposition B2).

Simulations assume that all results significant at the 5% level are published, and that results

insignificant at the 5% level are published with probability βp. I then calculate how the various

measures change with βp to see how well they capture changes in selective publication (e.g.

because of policy changes that reduce selective publication). Policymakers’ successful efforts to

increase the probability of publishing null results lead to an increase in the policy variable, βp.

Note that while model estimation assumes multiple cutoffs, policy simulations are performed

assuming policymakers influence publication probabilities at a single cutoff (1.96) for simplicity

(i.e. in the policy simulations I set βp = βp1 = βp2 and βp3 = 1 in social science).

Figure D1 shows the results. In line with Proposition 1, the replication rate is completely

unresponsive to changes in the probability of publishing null results, making it a poor measure

to evaluate efforts to reduce selective publication. Turning to alternative measures, note that

the replication CI and meta-analysis measures actually worsen when more null results are

published (βp → 1). This is because less selective publication leads to more small effects

being selected for replication, which have relatively low replication probabilities under these

These weights minimize the mean-squared error of Xm (Laird and Mosteller, 1990). The variance of this
estimator is given by Σ2

m = 1/(ωo + ωr).
57This approach assumes that original and replication estimates share the same true effect and are statistically

independent. For more details, see the Supplementary Materials for Patil et al. (2016).
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Figure 2D.1: Policy Simulations: Alternative Measures of Replication and Selective Publication

Notes: Details of each measure are provided in the main text. All measures except for the replication
rate are calculated over significant and insignificant published results. Simulations use model estimates
of the latent distribution of studies from Table 2.1 and set different levels of selective publication βp.
The first column reproduces replication rate predictions in Table 2.2.

approaches. By contrast, the prediction interval measure is low when selective publication

is high, and approaches close to 95% as the probability of publishing null results approach

one.58 The prediction interval measure performs well because it explicitly accounts for the

58When βp = 1, the prediction interval measure is slightly higher than 95% in all applications. This is
because it assumes that the original estimate X and the replication estimate Xr are uncorrelated. In practice,
the replication standard error is a function of the original estimate via the common power rule, which generates
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decline in original power as more small effects are selected for replication. Noisy low-powered

original studies contain limited information about true effects, which implies that a large range

of replication estimates are statistically consistent with them.

Overall, for the purpose of evaluating efforts to reduce selective publication, these results

suggest that calculating the prediction interval measure over a random sample of all published

results could provide a useful alternative to the replication rate.

2E Replication Selection in Empirical Applications

Replication selection is a multi-step mechanism that first selects studies, and then selects results

within those studies to replicate (since studies typically report multiple results). It consists of

three steps:

1. Eligibility: define the set of eligible studies (e.g. journals, time-frame, study designs).

2. Study selection: on the set of eligible studies, a mechanism that select which studies

will be included in the replication study.

3. Within-study replication selection: for selected studies, a mechanism for selecting

which result(s) to replicate.

These three features of the replication selection mechanism influence the interpretation of

the selection parameters (βp1, βp2, βp3).

Economics experiments.—Consider these three steps in Camerer et al. (2016):

1. Eligibility: Between-study laboratory experiments in American Economic Review and

Quarterly Journal of Economics published between 2011 and 2014.

some correlation between X and Xr.
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2. Study selection: Camerer et al. (2016) select for publication all eligible studies that

had ‘at least one significant between subject treatment effect that was referred to as

statistically significant in the paper.’ Andrews and Kasy (2019) review eligible studies

and conclude that no studies were excluded by this restriction. Thus, the complete set of

eligible studies was selected for replication.

3. Within-study replication selection: the most important statistically significant result

within a study, as emphasized by the authors, was chosen for replication. Further details

are in the supplementary materials in Camerer et al. (2016). Of the 18 replication studies,

16 were significant at the 5% level and two had p-values slightly above 0.05 but were

treated as ‘positive’ results for replication and included in the replication rate calculation.

I assume replication selection is random with respect to the t-ratio for results whose

p-values are below or only slightly above 0.05. This implies that βp2 measures the relative

probability of being published and chosen for replication for a result whose p-value is slightly

above 0.05, compared to if it were strictly below 0.05. Overall, the empirical results are

valid for the population of ‘most important’ significant (or ‘almost significant’) results, as

emphasized by authors, in experimental economics papers published in top economics journals

between 2011 and 2014.

Psychology.—Next, consider replication selection in Open Science Collaboration (2015):

1. Eligibility: Studies published in 2008 in one of the following journals: Psychological

Science, Journal of Personality and Social Psychology, and Journal of Experimental Psy-

chology: Learning, Memory, and Cognition.

2. Study selection: Open Science Collaboration (2015) write: ‘The first replication teams

could select from a pool of the first 20 articles from each journal, starting with the first

article published in the first 2008 issue. Project coordinators facilitated matching articles
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with replication teams by interests and expertise until the remaining articles were difficult

to match. If there were still interested teams, then another 10 articles from one or more

of the three journals were made available from the sampling frame.’ Importantly, the

most common reason why an article was not matched was due to feasibility constraints

(e.g. time, resources, instrumentation, dependence on historical events, or hard-to-access

samples).

3. Within-study replication selection: the last experiment reported in each article was

chosen for replication. Open Science Collaboration (2015) write that, ‘Deviations from

selecting the last experiment were made occasionally on the basis of feasibility or recom-

mendations of the original authors.’ A small number of results had p-values just above

0.05 but were treated as ‘positive’ results for replication, as in Camerer et al. (2016).

This selection mechanism implies that the empirical results are valid for the distribution of

last experiments in the set of eligible journals. Since neither studies nor results were selected

based on statistical significance, it is reasonable to treat the ‘last experiment’ rule as effectively

random. In this case, we can interpret the results are being valid for all results in the eligible

set of journals.

Social science experiments.—Finally, consider replication selection in Camerer et al. (2018):

1. Eligibility: Experimental studies in the social sciences published in Nature or Science

between 2010 and 2015.

2. Study selection: Camerer et al. (2018) include all studies that: ‘(1) test for an experi-

mental treatment effect between or within subjects, (2) test at least one clear hypothesis

with a statistically significant finding, and (3) were performed on students or other ac-

cessible subject pools. Twenty-one studies were identified to meet these criteria.’

3. Within-study replication selection: Camerer et al. (2018) write, ‘We used the fol-

lowing three criteria in descending order to determine which treatment effect to replicate
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within each of these 21 papers: (a) select the first study reporting a significant treat-

ment effect for papers reporting more than one study, (b) from that study, select the

statistically significant result identified in the original study as the most important result

among all within- and between-subject treatment comparisons, and (c) if there was more

than one equally central result, randomly select one of them for replication.’ All results

selected for replication had p-values strictly below 0.05.

This selection mechanism implies that the empirical results are valid for the population

of statistically significant between- or within-subject treatment comparisons in experimental

social science, which were identified by authors as the most ‘important’ and published in

Nature or Science between 2010 and 2015.

2F Predicted Replication Rates Under Alternative

Power Calculations

This appendix presents several extensions to the main empirical results on predicting repli-

cation rates in experimental economics, psychology and social science. The first extension

allows for variation in the application of the common power rule around mean intended power.

Results are similar to those in the main text, which assume no variability in the application

of the common power rule. The second extension generates replication rate predictions under

the rule of setting replication power equal to original power. This delivers lower replication

rates than the common power rule.

Alternative power calculation rules.—Consider first the rule used for calculating replication

power in the main text, and then two additional approaches. For concreteness, suppose we

want to calculate the replication standard error for a simulated original study (xsim, σsim, θsim).
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1. Common power rule (mean): This is the rule reported in the results in the main

text. It assumes no variability in the application of the common power rule, such that all

replications have mean intended power 1− β. This rule implies

σsimr (xsim, β) =
|xsim|

1.96− Φ−1(β)
(96)

2. Common power rule (realized): Intended power for individual replications varied

around mean intended power for at least two reasons. First, replication teams were

instructed to meet minimum levels of statistical power, and encouraged to obtain higher

power if feasible. Second, a number of replication in Open Science Collaboration (2015)

did not meet this requirement. Figure F1 shows the distribution of realized intended

power in replications for experimental economics and psychology. Realized intended power

is right-skewed for psychology. In experimental economics and social science, realized

intended power is distributed more tightly around mean.

To capture variability in the application of the common power rule, take a random draw

from the empirical distribution of |x|/σr and denote it 1.96− β̂n. Then realized intended

power for simulated study (xsim, σsim, θsim) is equal to

σsimr (xsim, β̂n) =
|xsim|

1.96− Φ−1(β̂n)
(97)

3. Same power: Set replication power equal to the power in the original study:

σsimr (σsim) = σsim (98)

This rule has been proposed as a straightforward, intuitive approach for designing repli-

cation studies. In a review of replication studies by Anderson and Maxwell (2017), 19 of

108 studies used this approach.
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Figure 2F.1: Histograms of Realized Intended Power in Replication Studies

Notes: Data are from Camerer et al. (2016), Open Science Collaboration (2015), and Camerer et al.
(2018), respectively. Realized intended power is defined as 1−Φ(1.96−ψ · xσr ) with ψ = 1 in economics
and psychology and ψ = 3/4 in social science. The horizontal dashed line is reported mean power in
each application. In economics and psychology, this is 92% to detect the original effect size. In social
science, this is 90% to detect three quarters of the effect size.

Results.—Table F1 presents the results for all three applications. Panel A shows that

allowing intended power to vary across replications (‘Realized power’) yields similar replication

rate prediction to assuming all replications have intended power equal to the report mean (‘92%

on X’). In fact, in all three applications, the accuracy improves very slightly under the realized

power rule. The biggest differences is in psychology, because the realized power rule accounts
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for the fact that the distribution of intended power is right skewed.

Panel B examines the proposed rule of setting replication power equal to original power. In

all three cases, the expected replication rate is lower than under the common power rule.

Table 2F.1: Replication Rate Predictions Under Alternative Replication Power Rules

Economics Psychology Social science

A. Replication rate predictions

Nominal target (intended power) 0.92 0.92 –

Observed replication rate 0.611 0.348 0.571

Mean power 0.600 0.545 0.543

Realized power 0.615 0.522 0.555

B. Alternative rule

Same power 0.550 0.486 0.494

Notes: Economics experiments refer to Camerer et al. (2016), psychology experiments to Open Science
Collaboration (2015), and social science experiments to Camerer et al. (2018). The replication rate
is defined as the share of original estimate whose replications have statistically significant findings of
the same sign. Figures in the first row are observed outcomes from large-scale replication studies.
Remaining rows report predicted replication rates using parameter estimates Table 1 in the main text
and assuming different rules for calculating replication power.

2G Relative Effect Size Predictions

The main focus of this article is the binary measure of replication based on the statistical

significance criterion. This is because of its status as the primary replication indicator in the

large-scale replication studies.59 However, complementary measures are frequently presented

alongside the replication rate. Perhaps the most common is the relative effect size, a continuous

measure of replication defined as the ratio of replication effect size and original effect size.

Relative effect sizes typically range between 0.35 and 0.7. Below, I include a brief theoretical

discussion of the relative effect size and then present predictions of this measure using the

59Power calculations in replications are themselves typically designed to measure a binary notation of repli-
cation ‘success’ or ‘failure’.
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estimated models.

Theoretical discussion.—The relative effect size for individual studies may be informative

about biases affecting original studies, especially when original studies are well-powered. How-

ever, as an aggregate measure of reproducibility, the relative effect size measure may be subject

to similar issues to the replication rate, at least in the case where it is defined exclusively over

significant findings.

First, if the relative effect size is defined over significant original results, then it will be

largely uninformative about the ‘file-drawer’ problem (Proposition B2).60 Second, non-random

sampling of significant results for replication mechanically induces inflationary bias in original

estimates and regression to the mean in replication estimates, such that relative effect sizes are

below one in expectation. Thus, similar to the replication rate, it has no natural benchmark

against which to judge deviations, making it challenging to interpret. Relatedly, the average

relative effect size is also very sensitive to power in original studies, which is unobserved. Figure

G1 provides an illustration with intended power set to 0.9, which shows that the expected

relative effect size for significant results is increasing in the power of original studies, and

approaches one only as statistical power approaches 100%.

60Defining it over null results may present its own difficulties. For a perfectly measured null effect, the
denominator in the statistic is equal to zero and the statistic is not well defined. On the other hand, if it is
close but not equal to zero, then the statistic is highly sensitive to the precision of replication estimates; this
raises questions about how one should set replication power when replicating a null effect.
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Figure 2G.1: Expected Relative Effect Size of Significant Original Studies and their Statistical Power

Notes: Illustration for the relationship between original power and the expected relative effect size
of significant findings under the common power rule are both functions of ω = θ/σ (normalized to
be positive). Original power to obtain a significant effect with the same sign as the true effect is
equal to 1 − Φ(1.96 − ω). The expected relative effect size is calculated by taking 106 draws of

Z from N(ω, 1) and then calculating 1
Msig

∑Msig

i=1 ρsigi,r /ρ
sig
i , where ρ = tanh z denotes the Pearson

correlation coefficient obtained by transforming the Fisher-transformed correlation coefficient (Fisher,
1915); and Msig is the number of significant latent studies. The superscript sig reflects the fact
that only statistically significant original results at the 5% level and their replications are included
in the calculation. Replication estimates zi,r are drawn from an N(ω, σr,i(zi, β)

2) distribution. The
replication standard error is calculated using the common power rule to detect original effect sizes
with 90% power (i.e. 1− β = 0.9), which is given by σr(zi, β) = |zi|/[1.96− Φ−1(β)] = |zi|/3.242.

Empirical results.—The estimated models in Table 1 in the main text can be used to gener-

ate predictions of the average relative effect sizes. To procedure for simulating replications

is identical to the procedure outlined in the main text for the replication rate case. Let

{xi, σi, xr,i, σr,i}
Msig

i=1 be the set of simulated original studies that are published and significant,

and their corresponding replication results; Msig is the size of the set. The predicted relative

effect size is equal to

1

Msig

Msig∑
i=1

ρsigi,r

ρsigi
(99)

where ρ = tanh z denotes the Pearson correlation coefficient which is obtained by transforming

the Fisher-transformed correlation coefficient (Fisher, 1915). I also present results for the
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median relative effect size. Results are presented in Table G2. The predicted average relative

effect size is relatively close to observed average relative effect size in economics, somewhat

further off in social science, and quite far off in psychology. In each case, the predicted average

relative effect size is optimistic compared to the observed value. In economics and psychology,

the difference in predicted and observed relative effect sizes is not statistically different from

zero, while in psychology it is. Predictions for median relative effect sizes show qualitatively

similar results.

Table 2G.1: Average Relative Effect Size Predictions

Economics Psychology Social Sciences

Observed relative effect size (mean) 0.657 0.374 0.443
Predicted relative effect size (mean) 0.703 0.637 0.533

(0.135) (0.060) (0.141)

Observed relative effect size (median) 0.691 0.292 0.527
Predicted relative effect size (median) 0.747 0.674 0.595

(0.129) (0.063) (0.240)

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open
Science Collaboration (2015) and social science experiments to Camerer et al. (2018). Observed
relative effect sizes are based on data from large-scale replication studies. Predicted average relative
effect sizes are calculated using equation (99) and the procedure outlined in the text. Standard errors
are calculated using the delta method.

2H Extending the Replication Rate Definition

This appendix analyzes a generalization of the replication rate definition that extends to in-

significant results. It outlines a number of issues with this proposal.

The Generalized Replication Rate.—Suppose we extend the definition of the replication rate

such that insignificant original results are counted as ‘successfully replicated’ if they are also

insignificant in replications. Assume replication selection is a random sample of published

results. Then we have the following definitions:
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Definition H1 (Generalized replication probability of a single study). The replication proba-

bility of a study (X,Σ,Θ) which is published (D = 1) and chosen for replication (R = 1) is

R̃P
(
X,Θ, σr(X,Σ, β)

)
=


P

(
|Xr|

σr(X,Σ,β)
≥ 1.96, sign(X) = sign(Xr)

∣∣∣X,Θ, σr(X,Σ, β)) if 1.96.Σ ≤ |X|

P

(
|Xr|

σr(X,Σ,β)
< 1.96

∣∣∣X,Θ, σr(X,Σ, β)) if 1.96.Σ > |X|
(100)

Definition H2 (Expected generalized replication probability). The expected generalized repli-

cation probability equals

E

[
R̃P
(
X,Θ, σr(X,Σ, β)

)]
= P

(
1.96.Σ ≤

∣∣X∣∣)E[R̃P(X,Θ, σr(X,Σ, β)
∣∣∣∣∣X,Θ, σr(X,Σ, β), 1.96.Σ ≤

∣∣X∣∣]

+

(
1−P

(
1.96.Σ ≤

∣∣X∣∣))E[R̃P(X,Θ, σr(X,Σ, β)
∣∣∣∣∣X,Θ, σr(X,Σ, β), 1.96.Σ >

∣∣X∣∣] (101)

First, note that Definition H2 equals the standard replication rate definition when the

expectation is taken only over significant studies because, in this case, P
(
|X| ≤ 1.96.Σ

)
=

0. Thus, the degree to which the expected generalized replication probability differs from

the standard expected replication probability depends on two factors. First, the share of

published results that are insignificant. Second, the expected probability that replications

will be insignificant conditional on original estimates being insignificant.61

Empirical Results.—To analyze the generalized replication rate, we can apply the empirical

approach outlined in the main text, but using the generalized definition in place of the original

definition. Recall that the original replication rate is invariant to publication bias against

null results. The generalized replication rate, by contrast, does vary as the degree of selective

publication against null results changes. Thus, two sets of results are presented for comparison.

The first set assumes selective publication using estimated selection parameters in Table 1 in the

main text. The second set assumes no selective publication (i.e. that all results are published

with equal probability). We examine two rules for calculating replication power: the common

power rule and the original power rule (where the replication standard error is set equal to the

61Additionally, note that this definition implies that if θ = 0, then R̃P
(
X,Θ, σr(X,Σ, β)|Θ = 0

)
= 0.90375.

That is, the replication probability of null results is constant and independent of power in original studies and
replication studies.
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original standard error). For more details on different rules for calculation replication power,

see Appendix E.

Table H1 reports the results for both applications. Under the common power rule, the sim-

ulated generalized replication rate remains below intended power in both publication regimes.

Under the original power rule, it is relatively low when there is selective publication and around

80% when there is no selective publication.

These generalized replication rate predictions differs from the standard replication rate pre-

dictions for two reasons: (i) the share of insignificant results in the published literature and

(ii) the replication probability when results are insignificant, which depends on the power rule

used in replication studies. On the first point, moving from the selective publication regime

to the no selective publication regime implies a dramatic increase in the share of insignificant

published results; in both applications, null results change from a minority of published results

to a majority. On the second point, the results show that the replication power rules considered

here have some undesirable properties. First, note that the common power rule is designed to

detect original estimates with high statistical power. This implies that low-powered, insignifi-

cant original results will be high-powered in replications, which increases the probability that

they are significant and thus counted as replication ‘failures’ under the generalized definition.

The original power rule has the reverse problem. On the one hand, low-powered, insignificant

original studies are likely to be insignificant in replications, which counts as a ‘successful’ repli-

cation under the generalized definition. However, on the other hand, low-powered, significant

original studies will have low replication probabilities when the same low-powered design is

repeated in replications. The generalized replication rate therefore depends crucially on the

share of significant and insignificant findings in the published literature, and the distribution

of standard errors. Under the original power rule with no selective publication, the generalized

replication rate is around 80% in both applications; however, with greater power in original

studies, the replication rate would fall.

While the generalized replication rate changes as selective publication is reduced, the direc-
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tion of this change depends on which replication power rule is used: with the original power

rule the replication rate increases, while with the common power rule it decreases.

Overall, generalizing the replication rate with Definition H2 does not deliver replication

rates close to intended power under the common power rule. For the original power rule, it is

higher when there is no selective publication because replications repeat low-power designs for

low-powered original studies with insignificant results. The generalized replication rate under

this original power rule will therefore be sensitive to the distribution of power in original studies.

Table 2H.1: Predicted Generalized Replication Rate Results

Simulated statistics

A Economics experiments 92% for X Original power

Selective publication

Generalized replication rate 0.600 0.553
P(Replicated|SX = 1) 0.600 0.551
P(Replicated|SX = 0) 0.574 0.789
P(SX = 1) 0.993 0.993
P(SX = 0) 0.007 0.007

No selective publication

Generalized replication rate 0.432 0.773
P(Replicated|SX = 1) 0.582 0.515
P(Replicated|SX = 0) 0.378 0.867
P(SX = 1) 0.268 0.268
P(SX = 0) 0.732 0.732

B Psychology experiments

Selective Publication
Generalized replication rate 0.546 0.526
P(Replicated|SX = 1) 0.544 0.487
P(Replicated|SX = 0) 0.563 0.839
P(SX = 1) 0.890 0.890
P(SX = 0) 0.110 0.110

No selective publication

Generalized replication rate 0.490 0.798
P(Replicated|SX = 1) 0.535 0.469
P(Replicated|SX = 0) 0.478 0.886
P(SX = 1) 0.209 0.209
P(SX = 0) 0.791 0.791

Notes: Economics experiments refer to Camerer et al. (2016) and psychology experiments to Open
Science Collaboration (2015). The generalized replication rate is defined in the text. The indicator
variable SX equals one for significant results and zero otherwise. Economics experiments refers to
Camerer et al. (2016) and psychology experiments to Open Science Collaboration (2015). Simulated
statistics are based on parameter estimates in Table 1 in the main text. Different column represent
different rules for calculating power in replications.
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Chapter 3

Optimal Publication Rules for

Evidence-Based Policy

Abstract. Empirical research can inform evidence-based policy choice but may be censored due to publication

bias. How does this impact the decisions of policymakers who do not have, or are unwilling to use, prior

beliefs about a policy’s impact? For minimax regret policymakers, we characterize the optimal treatment rule

with selective publication against statistically insignificant results. We then show that the optimal publication

rule which minimizes maximum regret is non-selective. This contrasts with the optimal publication rule for

Bayesian policymakers studied in the literature, where only ‘extreme’ results that sufficiently move the prior

are published. Thus, in the minimax regret framework, the optimal publication regime for policy choice is

consistent with valid statistical inference in scientific research.

3.1 Introduction

Publication bias has been widely-documented across various fields and led to debates in the

scientific community about reforming publication norms (Ioannidis, 2005; Franco et al., 2014;

Nosek et al., 2015; Miguel and Christensen, 2018; Nosek et al., 2018; Andrews and Kasy,

2019). Proposals to combat publication bias are often aimed at mitigating selective publication

of statistically significant findings. For example, launching journals dedicated to publishing
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null results (e.g. PLOS One); promoting preregistered analysis plans which are reviewed and

published prior to data collection (e.g. the Journal of Development Economics); banning the use

of stars to denote significance when presenting estimation results (e.g. the American Economic

Review); and even abandoning statistical significance altogether (McShane et al., 2019).

However, non-selective publication may not necessarily be optimal from the perspective of

a decision-maker who uses evidence from published studies to inform a policy decision. Frankel

and Kasy (2022) develop a model of a Bayesian decision-maker who has a prior distribution over

possible treatment outcomes and updates their beliefs using evidence from published studies

before making a policy decision. When publication entails a cost (e.g. the opportunity cost of

drawing attention away from other studies), the optimal rule is to publish only ‘extreme’ results

that sufficiently move prior beliefs. This gives rise to a striking trade-off: selective publication

enhances policy relevance while at the same time deteriorating statistical credibility.

While selective publication may be optimal for a Bayesian decision-maker, in many sit-

uations, policymakers may be unable or unwilling to base decisions on prior beliefs about

treatment outcomes. For example, they may have insufficient information to form a reasonable

prior, or if when decisions are made by a group, prior beliefs of different group members may

conflict with one another. A common alternative to relying on prior beliefs is to introduce

ambiguity on the treatment outcomes and pursue robust decisions.

In this paper, we consider a policymaker that aims to minimize maximum regret (Savage,

1951; Manski, 2004), where regret equals the difference between the highest possible expected

welfare outcome given full knowledge of the true impact of all treatments and the expected

welfare attained by the statistical decision rule. We first characterize the minimax regret

decision rule of the policymaker in the presence of publication bias, and then derive the optimal

publication rule that minimizes the value of minimax regret. In contrast to the Bayesian

framework, we show that the optimal publication rule for minimax regret decision-makers is

completely non-selective i.e. publication decisions do not depend on statistical significance.

Importantly, non-selective publication implies valid statistical inference. Thus, in the minimax
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regret framework, there exists no trade-off between policy relevance and statistical credibility.

Following Manski (2004), Stoye (2009), and Tetenov (2012), our model considers a policy-

maker whose problem is to assign members of a population one of two treatments: a status quo

treatment and an innovative treatment. A study about the relative effectiveness of the treat-

ments is conducted. However, the study is only observed by the policymaker if it is published,

which may depend on its statistical significance. We consider the case where t-ratios in a sym-

metric interval around zero are censored with probability βp ∈ [0, 1] e.g. statistical significance

at the 5% level implies that t-ratios between -1.96 and 1.96 will be published with probability

βp. Additionally, publication may also entail a cost c ≥ 0. We consider a policymaker who

correctly accounts for publication bias when choosing their statistical treatment rule (and later

consider a naive policymaker who does not account for it). If a study is published, the policy-

maker observes it and implements the innovative policy if its relative effect size is greater than

a chosen threshold value T . Alternatively, if a study is not published, then the policymaker

must act without evidence and implements the innovative treatment with probability δ0. The

policymaker chooses a statistical treatment rule – consisting of the threshold rule T and the

default action δ0 – that minimizes their maximum regret, that is, the expected welfare loss

relative to optimal welfare attained with knowledge of the true treatment effect.

We show that the minimax regret decision rule implements the innovative treatment if and

only if the published estimate of the relative efficacy of the innovative treatment is positive,

and randomizes between treatments with equal probability when no study is published i.e.

(T ∗, δ∗0) = (0, 1
2
). The intuition for this result follows from the two key factors. First, the

decision-maker’s welfare equally weighs Type I errors (from mistakenly implementing an inferior

treatment) and Type II errors (failing to implement the superior treatment). Second, the class of

publication rules we consider censors insignificant empirical results symmetrically around zero.

The first symmetry implies that the decision-maker will implement the innovative treatment

when the published evidence supports the innovative treatment having a positive effect, and

remain with the status quo treatment otherwise. Combined with the second symmetry, we can
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conclude that when the study is published, the sign of the estimate (i.e., T ∗ = 0) is sufficient for

the decision-maker to infer the sign of the effect, and when no study is published, the decision-

maker has no evidence regarding the sign of the relative treatment effect and will therefore

randomize between treatments.

Given the minimax regret rule of the decision-maker, we optimize the value of minimax

regret with respect to the publication rule. As the main result, we show that the resulting

optimal publication rule is to publish all results. This accords well with common intuition:

receiving evidence from a published study about the relative effectiveness of treatments allows

the policymaker to do better than in the case where no study is published and they must

randomize between treatments.

It is notable, however, that the opposite conclusion is reached when considering a Bayesian

decision-maker, for whom the optimal publication rule censors relatively uninformative studies

that do little to move prior beliefs of the decision-maker (Frankel and Kasy, 2022). Two

differences account for this. First, publication costs enter the expected welfare function in the

Bayesian framework of Frankel and Kasy (2022), while they do not appear in the expression

for regret in our framework. This is because regret equals the probability of making an inferior

treatment choice multiplied by the magnitude of the loss from doing so. Neither quantity

is affected by publication costs. Put differently, publication costs are constant with respect

to the decision rule and therefore have no impact on regret. The second difference is that

Frankel and Kasy (2022) define null results in the Bayesian framework as those which do

not move prior beliefs. By contrast, there is no notion of prior beliefs in the minimax regret

framework. We instead use the common definition of null results as those which are statistically

indistinguishable from zero. Accordingly, we consider a class of symmetric publication rules

that yield no information about the sign of the true effect when studies are not published. Since

published studies will always provide some evidence on the sign of the true effect, the optimal

publication regime in terms of the regret criterion is to publish all the results.

Our results highlight that the optimal publication regime can change drastically depending
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on what optimality criterion the policymaker pursues for policy choice. Which optimality

criterion is relevant in practice may depend on the factors such as behavioural axioms of

the decision-makers, availability of the prior belief of the policy effect, and/or the form of

publication bias relevant to the empirical literature of interest.

We consider three main extensions to the baseline model. Following Tetenov (2012), we first

extend the model to incorporate decision criteria that asymmetrically weigh Type I error (from

mistakenly implementing the inferior treatment) and Type II error (from mistaking rejecting a

superior treatment). We provide numerical evidence consistent with the conjecture the optimal

publication rule for minimax regret decision-makers with asymmetric regret criteria is also non-

selective.

Second, we consider a naive policymaker who, unlike the sophisticated policymaker in the

main analysis, does not account for publication bias when choosing their decision rule. Naive

policymakers could in some cases be more realistic than sophisticated policymakers, because

sophistication demands both knowledge of the publication rule and the ability to correctly

adjust for it. In this model, the naive policymaker’s expected welfare (and regret) is misspec-

ified because they believe, erroneously, that there is no publication bias.62 We evaluate their

subsequent decision rule based on the worse case scenario under correctly specified regret. We

show that minimax regret for the naive policymaker is weakly higher than for the sophisticated

policymaker.63 Thus, in general, the naive policymaker chooses a non-optimal decision rule

because they fail account for publication bias.

The optimal publication rule in the main analysis assumes that the policymaker and the

journal have the same preferences, namely, to minimize maximum regret. In the third ex-

tension, we consider the optimal publication rule under misaligned preferences. In particular,

we consider the case where the policymaker chooses their decision rule to minimize maximum

regret, but where the journal chooses the publication rule to maximize welfare (under some

62This affects: (i) their beliefs about the distribution of the published estimates; and (ii) implies that they
make no inferences about the size of the treatment effect when no study is published.

63Minimax regret for the naive policymaker is strictly higher when the Type I and Type II error are unequally
weighted.
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prior distribution for the policy’s effect). The main result shows that the journal’s optimal

action takes the form a simple threshold rule: publish all results if the cost c is sufficiently low;

otherwise, censor all null results. Thus, in the case where publication costs are low, the optimal

publication rule under misaligned preferences is the same as with aligned preferences. However,

when publication costs are high, it is possible that censoring all null results is optimal.

Related Literature. This article contributes to the literature on statistical decision theory

(Manski, 2004; Stoye, 2009; Tetenov, 2012). It generalizes the canonical model in the minimax

regret framework to incorporate publication bias against null results. We characterize the

optimal decision rule that minimizes maximum regret and extend results to the case where

Type I and Type II error are weighted asymmetrically. Our model coincides with the canonical

model in the special case where there is no publication bias.

This article also contributes to the meta-science literature on publication bias and optimal

publication rules (Ioannidis, 2005; Andrews and Kasy, 2019; Miguel and Christensen, 2018;

Frankel and Kasy, 2022). It is most closely related to Frankel and Kasy (2022), who examine

a similar problem in a Bayesian framework. In contrast to a Bayesian framework, where the

optimal publication rule selects only ‘extreme’ results for publication, we show in a minimax

regret framework that the optimal publication rule is completely non-selective.

3.2 Model

3.2.1 Setup

The policymaker’s problem is to assign two treatments to a population with observationally

identical members: the status quo treatment (t = 0) and the innovative treatment (t = 1). Fol-

lowing Manski (2004), suppose that each member j in population J has a treatment response

function yj(·) : {0, 1} → Y mapping treatments into outcomes. The population is a proba-

bility space (J,Ω, P ). The probability distribution P [y(·)] of the random vector y(·) describes
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treatment response across the population. The population is “large” in the sense that J is

uncountable and P (j) = 0. Next, let E[y(1)]− E[y(0)] ≡ θ ∈ Θ ⊆ R be the unknown average

treatment effect of the innovative treatment relative to the status quo treatment, with the

status quo treatment normalized to zero. When θ > 0, the innovative treatment is preferred;

otherwise, the status quo treatment is preferred.

Evidence about θ may be observed by the policymaker in the form of a published study.

However, not all studies are necessarily published. Consider first a latent study (published

or unpublished), which is characterized by (X, σ), where X is the estimated treatment effect

and σ is the known standard error. We assume X is normally distributed on X = R and

normalize σ = 1, so that X|θ ∼ N(θ, 1). This assumption is motivated by the fact that study

estimates are widely assumed to be approximately normal in practice. The normalization is for

notational convenience, since σ is known and fixed. The journal observes the latent study (X, 1)

and decides the probability of publication according to their publication rule, p : X → [0, 1].

Let D = 1 denote the event when a study is published and D = 0 the event when it is not. We

consider the class of publication rules where absolute t-ratios below a critical threshold tα may

be published with a lower probability than those above that threshold:

Assumption 3.2.1 (Publication Selection Function). Let p(X) = 1 − (1 − βp) · 1[|X| < tα]

with βp ∈ [0, 1].

The form of publication bias in Assumption 1 implies that published estimated treatment

effects follow a mixture of truncated normal densities, where the region below the critical

threshold of the density is down-weighted and the region above it is up-weighted. Denote the

cdf as

F (x|θ,D = 1) ≡
∫ x
−∞ p(y)ϕ(y − θ)dy∫
p(y)ϕ(y − θ)dy

, (102)

where ϕ(x) = (2π)−1/2 exp(2−1x2) is the probability density function of the standard normal

distribution.

The policymaker’s decision rule must cover two possible realizations of the publication
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process: the event when the study is published (D = 1) and event when it is not (D = 0). Let

Z = X ·D + {missing}(1−D) and the statistical treatment rule be δ : Z → [0, 1], with

δ(X,D) =


δ1(X) if D = 1

δ0 if D = 0

(103)

That is, δ(X,D) maps study outcomes to treatment assignment proportions when the study

is published, and assigns a default action δ0 ∈ [0, 1] when it is not.

We first consider a sophisticated policymaker who knows the exact form of publication

bias and correctly accounts for it when choosing their optimal decision rule. For example,

a sophisticated policymaker could estimate p(·) from a sample of studies in the published

literature (e.g. by using the Andrews and Kasy (2019) model). Their utility from treatment

rule δ(X,D) with treatment effect θ and observed data X is given by

U
(
δ, θ
)
= θDδ1(X) + θ(1−D)δ0 −Dc (104)

where c ≥ 0 represents the cost of publishing an article. Following Frankel and Kasy (2022), we

interpret this cost as the opportunity cost of directing the public’s limited attention away from

other studies. Welfare for a statistical decision rule δ(X,D) corresponds to a shared objective

by the policymaker and the journal. Expected welfare is obtained by integrating over possible

study outcomes:

W
(
δ, θ
)
=

∫
U
(
δ, θ
)
f(x′|θ)dx′

=θ ·P[D = 1|θ] ·E[δ1(X)|θ,D = 1] + θ ·
(
1−P[D = 1|θ]

)
δ0 −P[D = 1|θ] · c (105)

=W1(δ1, θ) +W0(δ0, θ)−P[D = 1|θ] · c

where W1(δ1, θ) = θ · P[D = 1|θ] · E[δ1(X)|θ,D = 1] is the welfare for the case that the
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study is published, and W0(δ0, θ) = θ ·
(
1 − P[D = 1|θ]

)
δ0 is the welfare for the case that the

study is not published.

Finally, regret is given by the difference between the highest possible expected welfare

conditional on θ and the expected welfare under the treatment rule. Let W ∗(θ) be the welfare

attained by the oracle rule δ1 = δ0 = 1(θ > 0). Then regret is given by

R
(
δ, θ
)
= W ∗(θ)−W

(
δ, θ
)

=


−θ
(
P[D = 1|θ] ·E[δ1(X)|θ,D = 1] + (1−P[D = 1|θ])δ0

)
if θ ≤ 0

θ

(
P[D = 1|θ] ·

(
1−E[δ1(X)|θ,D = 1]

)
+ (1−P[D = 1|θ])(1− δ0)

)
if θ > 0

(106)

That is, regret equals the magnitude of the loss |θ| multiplied by the expected probability

of assigning the inferior treatment choice. The expected probability of assigning the wrong

treatment is a weighted average of making the incorrect decision, where weights correspond

to different realizations of the publication process. Two points are worth noting. First, the

publication cost does not appear in the expression for regret because it is constant with respect

to the policymaker’s decision rule. Second, this expression for regret reflects a sophisticated

policymaker who has complete knowledge of publication bias. In particular, the sophisticated

policymaker correctly accounts for publication when considering the distribution of the esti-

mated treatment effect X, and the probability that a study is or is not published. In a later

section, we study a naive policymaker who does not account for publication bias.

The expression for minimax regret can be further simplified by restricting the class of

decision rules for δ1(X) to threshold rules. As in Tetenov (2012) for the Gaussian signal case,

this restriction is innocuous since in terms of welfare W1(δ1, θ) for published case, the class of

threshold rules is essentially complete, i.e., for any admissible rule δ1(X) in terms of W1(δ1, θ),

its welfare level can be replicated by a threshold rule.

Lemma 3.2.1 (Threshold Rules are Essentially Complete). Under Assumption 3.2.1, the class
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of threshold decision rules δT1 (X) = 1[X > T ] is essentially complete in terms of the welfare of

W1(δ1, θ).

With Lemma 1, any decision rule δ is fully characterized by a tuple (δT1 , δ0). The first element

corresponds to the threshold rule 1[X > T ] and is applicable when a study is published. The

second element is a default action δ0 and is applicable when a study is not published. With

this simplification, we can rewrite regret for decision rule δ in equation (111) as

R
(
(δT1 , δ0), θ

)
=


−θ
(
P[D = 1|θ] · [1− F (T |θ,D = 1)] + (1−P[D = 1|θ])δ0

)
if θ ≤ 0

θ

(
P[D = 1|θ] · F (T |θ,D = 1) + (1−P[D = 1|θ]) · (1− δ0)

)
if θ > 0

(107)

Finally, the optimal decision rule (T ∗, δ∗0) selects the rule which minimizes maximum regret:

(T ∗, δ∗0) = arg min
(T,δ0)∈R×[0,1]

max
θ∈R

R
(
(δT1 , δ0), θ

)
(108)

3.3 Optimal Publication Rule For Minimax Regret

In this section, we first characterize the optimal minimax regret decision rule for the sophisti-

cated policymaker. Given this decision rule, we then show analytically that the optimal pub-

lication rule that minimizes the value of minimax regret is non-selective. Finally, we provide

numerical evidence that this result generalizes to the case where the policy-maker’s concerns

over Type I and Type II error are asymmetric. Proofs are in Appendix 3A.

3.3.1 Optimal Minimax Regret Decision Rule

In the presence of publication bias, decision-makers must choose optimal actions for when

studies are published and when they are not. The following lemma characterizes the optimal

minimax regret decision rule:
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Lemma 3.3.1 (Minimax Regret Decision Rule Under Publication Bias). Under Assumption

3.2.1 for the sophisticated policymaker, (T ∗, δ∗0) =
(
0, 1

2

)
for any βp ∈ [0, 1].

When a study is published, the optimal minimax decision rule implements the innovative

treatment if the published estimate is positive; and when no study is published, the policymaker

randomly choose between treatments with equal probability. With symmetric concern of Type

I and Type II error, the policymaker will implement the innovative treatment when there is

evidence that it is superior to the status quo treatment. When no study is published there

exists no such evidence and hence the policymaker randomizes between treatments. The only

information available to the policymaker when no study is published is that the difference in

the efficacy of treatments is likely to be small, since publication bias censors small effect sizes.

However, because publication bias is symmetric around zero, no information is gained about

which treatment might be superior. When the study is published, a positive estimate is more

likely to come from a positive true treatment effect, while a negative estimate is more likely to

come from a negative true treatment effect. Hence, the policymakers’ threshold rule implements

the innovative policy if and only if the signal is positive.

It is noteworthy that the optimal minimax regret threshold decision rule in the presence

of publication bias is identical to the case where there is no publication bias (Tetenov, 2012).

This is a consequence of the symmetry of the problem when Type I error and Type II error are

equally weighted by the policymaker.

3.3.2 Optimal Non-Selective Publication Rule

Given the minimax decision rule (T ∗, δ∗0) =
(
0, 1

2

)
, what publication rule minimizes the value

of minimax regret? The following result provides the answer:

Proposition 3 (Non-Selective Optimal Publication Rule). Under Assumption 3.2.1, the value

of minimax regret is minimized for the sophisticated policymaker when the publication rule is

non-selective, that is, when βp = 1.
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The optimal publication rule for a minimax regret policymaker publishes all results. Thus,

under the optimal publication regime, the policymaker’s problem collapses into the standard

model with no publication bias in Tetenov (2012) where signals are normally distributed. The

intuition behind this result is straightforward: publishing a study always provides useful infor-

mation about the relative effectiveness of the treatments, which allows the policymaker to do

better than in the case where no study is published and they randomize between choices.

This conclusion differs starkly from the optimal publication rule in a Bayesian framework.

Frankel and Kasy (2022) show that the optimal publication rule in a Bayesian model only

publishes extreme results, that is, results that move prior beliefs sufficiently. In this framework,

null results are defined as those which do not change the policy-maker’s prior. By contrast, the

minimax regret framework does not rely on a prior distribution about treatment efficacy and

thus this notion of ‘null results’ is not well-defined. Instead, we model publication bias based

on the common definition of results being statistically indistinguishable from zero (Assumption

3.2.1).

A second key difference across these frameworks is the role of publication costs. In the

Bayesian setting, publishing relatively uninformative results that do little to move the poli-

cymaker’s prior belief yields no benefits, while at the same time incurring a cost; it is thus

not optimal to publish such results. By contrast, in the minimax regret framework, the cost

parameter c does not appear in the expression for regret, as can be seen in equation (107). This

is because regret equals the size of the loss from making an inferior treatment choice, |θ|, mul-

tiplied by the probability of this occurring. Since the expected cost of publication is the same

irrespective of the decision rule, the expression for regret does not include it. Thus, publication

costs have no impact on the minimax decision rule and therefore the optimal publication rule.

3.3.3 Type I Error Loss Aversion

Up until now, we have made the implicit assumption of equal weight for Type I error (of

mistakenly implementing an inferior policy) and Type II error (of failing to implement the

157



superior policy). However, in practice, policymakers may exhibit loss aversion and weigh the

regret from Type I error higher relative to Type II error. In fact, Tetenov (2012) finds that

classical hypothesis testing at the 5% level is consistent with a policymaker who weighs the

regret from Type I error around 100 times more than the regret arising from Type II error.

To incorporate this asymmetry in the concern over different types of error, we follow Tetenov

(2012) and introduce a Type I error loss aversion parameterK > 0. With this, the policymakers

utility is given by

U
(
δ, θ, c

)
=


K
(
θDδ1(X) + θ(1−D)δ0 −Dc

)
if θ ≤ 0

θDδ1(X) + θ(1−D)δ0 −Dc if θ > 0

(109)

Expected welfare is given by

W
(
δ, θ, c

)
=


K
(
θ ·P[D = 1|θ] ·E[δ1(X)|θ,D = 1] + θ ·

(
1−P[D = 1|θ]

)
δ0 −P[D = 1|θ] · c

)
if θ ≤ 0

θ ·P[D = 1|θ] ·E[δ1(X)|θ,D = 1] + θ ·
(
1−P[D = 1|θ]

)
δ0 −P[D = 1|θ] · c if θ > 0

(110)

and regret is equal to

R
(
δ, θ
)
= W

(
1(θ > 0), θ

)
−W

(
δ, θ
)

=


−Kθ

(
P[D = 1|θ] ·E[δ1(X)|θ,D = 1] + (1−P[D = 1|θ])δ0

)
if θ ≤ 0

θ

(
P[D = 1|θ] ·

(
1−E[δ1(X)|θ,D = 1] + (1−P[D = 1|θ])(1− δ0)

))
if θ > 0

(111)

What is the optimal publication rule for different levels of loss aversion for Type I error K?

Figure 3.1 plots minimax regret as a function of βp for different values of K, in addition to

the optimal minimax decision rule in each case. These figures are computed numerically. As a

benchmark, the first column shows the regime where K = 1. First, see that minimax regret is

decreasing βp, in line with Proposition 3. Second, see that the optimal minimax regret decision

rule is (T ∗, δ∗0) = (0, 1
2
) for all βp ∈ [0, 1], in line with Lemma 3.3.1.
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These are two particular cases. Numerical results for other values ofK show similar patterns,

namely, that the value of minimax regret is a decreasing function of βp. Based on this, we

conjecture that the optimal publication rule minimizing maximum regret being non-selective

generalizes to any K ≥ 1, although we do not have at present an analytical proof.

Now consider the case where K = 3 i.e. the policymaker weighs the Type I error of imple-

Figure 3.1: Minimax Regret and Optimal Decision Rule for Different Value of K
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menting the inferior treatment three times larger than the Type II error of failing to implement

the superior treatment. As in the case where K = 1, minimax regret is also decreasing in βp.

See that the threshold rule is increasing in βp. Similarly, the default probability of implement-

ing the innovative policy in the event that a study Just not published, δ∗0, is decreasing in βp

(and weakly less than 1
2
). That is, as βp gets larger, the policymakers decision rule becomes

more conservative with respect to assigning the innovative treatment. The intuition behind this

is that as βp increases, the possibility of noisier small effect being published increases, which

increases the risk of committing Type I error.

Finally, consider the case where K = 102.4, which is the value that rationalizes hypothesis

testing at the 5% significance level (Tetenov, 2012). Again, the level of minimax regret decreases

as a the relative probability of publishing null results increases. Given the very high level of

Type I loss aversion, the no-data rule is essentially zero for any value of βp. Again, the threshold

rule is increasing in βp, and at a faster rate than as for the case where K = 3.

3.4 Naive Policymakers

The sophisticated policymaker knows the exact form of publication bias and can accurately

account for it. This is a strong assumption. As an alternative, we may consider a policymaker

who naively chooses their decision rule without accounting for selective publication. This is

perhaps more realistic, in the sense that most published research reports standard errors and

assumes (approximately) normally distributed treatment effects for inference. ‘Naiveity’ im-

pacts both realizations of the publication process. When a study is published, the policymaker

erroneously believes it is normally distributed; and in the event that a study is not published,

the naive policymaker fails to account for censoring in the publication process when choosing

their default action. As in the sophisticated policymaker’s problem, a decision rule δ is equiv-

alent to the tuple (T, δ0). The naive policymaker’s misspecified welfare is equal to
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W̃
(
(T, δ0), θ) =


θ[1− Φ

(
T − θ

)
] if D = 1

θ · δ0 if D = 0

(112)

This gives rise to two misspecified regret expressions. First, in the event that a study is

published

R̃1

(
T, θ) =


−θ[1− Φ

(
T − θ

)
] if θ ≤ 0

θΦ
(
T − θ

)
if θ > 0

(113)

and second, in the event that no study is published,

R̃0

(
δ0, θ) =


−θδ0 if θ ≤ 0

θ(1− δ0) if θ > 0

(114)

Misspecified regret in equation (113) when a study is published is equivalent to the ex-

pression for regret in the model in Tetenov (2012) with normally distributed signals. This

expression is misspecified because the policymaker does not account for the fact that selective

publication distorts the distribution of estimated treatment effects. Misspecified regret when no

study arrives, in equation (114), is simply a function of the default action δ0 and the true effect

θ. It is misspecified in that it ignores that possibility that a study was not published because of

selective publication. For the minimax problem to be well-defined, we need to impose bounds

on θ. For the naive policymaker, we impose the following assumption:

Assumption 3.4.1 (Symmetric Bounds on Average Treatment Effect). Let the support of Θ

be [−B,B] for some B > θ∗ > 0, where θ∗ = argmaxθ>0

{
θ · Φ(0− θ)

}
.

The technical condition that the bound is larger than θ∗ = argmaxθ>0

{
θ · Φ(0 − θ)

}
ensures that the minimax problem when a study is published is not constrained by the bound.64

64Tetenov (2012) shows that the maximum θ∗ is attained on a closed interval [0, H] for some H > 0.
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The naive policymaker has, in effect, two decision problems, one for each realization of the

publication process.

T ∗ = argmin
T∈R

max
θ∈[−B,B]

R̃1(T, θ) (115)

δ∗0 = argmin
δ0∈[0,1]

max
θ∈[−B,B]

R̃0

(
δ0, θ

)
(116)

While (T, δ0) are chosen by the naive policymaker under misspecified beliefs about the DGP,

regret of any decision rule is assessed against the ‘true’ worst-case scenario which accounts for

publication bias. That is, regret for any decision rule (T, δ0) is identical to regret in the

sophisticated policymaker’s problem in equation (107).

To compare the ‘cost’ of naivity with respect to publication bias, we make the following

calculation for some fixed K and assuming that tα = 1.96:

100 ·
(
MMR∗

Naive(K)

MMR∗
Soph(K)

− 1

)
(117)

where MMR∗
Naive(K) is the value of minimax regret for the naive policymaker and MMR∗

Soph(K)

is the value of minimax regret for the sophisticated policymaker.

Figure 3.2 illustrates the cost of naivity when K = 3. Results show that the cost of naivity

if weakly positive. This is to be expected, since the naive planner chooses their decision rule

under misspecified beliefs. Interestingly, the results show that the costs of naivety are highest

when publication bias is moderate. When there is no publication bias, the cost of naivety is zero

because the naive policymaker belief that there is no publication bias is correct in this special

case. More surprisingly, the cost of naivety is also zero when there is extreme publication bias,

such that no insignificant results are published. This is because the optimal threshold rule

when the study is published is set identified and the solution for the naive policymaker and

the sophisticated policymaker both fall within this set. In particular, any threshold rule above

which the innovative treatment is implemented in the range of (-1.96σ, 1.96σ) will be effectively
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identical, because no insignificant studies within this range are ever published.

Figure 3.2: Cost of Naivity (K = 3)
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3.5 Misaligned Preferences

In the main analysis, the policymaker chooses a decision rule to minimize maximum regret, and

we consider the optimal publication rule of a journal editor who chooses βp ∈ [0, 1] with the

same preferences. In this extension, we consider what happens when the policymaker and the

journal editor do not have aligned preferences. In particular, we continue to assume that the

policymaker optimizes using minimax regret, but instead consider a journal editor who chooses

βp ∈ [0, 1] to maximize welfare under a Bayesian prior. Since the policymakers’ decision rule

could in theory depend on the journal editor’s choice for βp, we can view the equilibrium

outcome as resulting from a game between the editor and the policymaker. However, since

Lemma 3.3.1 shows that the minimax decision rule is the same for any value of βp ∈ [0, 1],

there are no strategic considerations at play. Throughout, we assume that Type I and Type II

error are equally weighted (K = 1).

More formally, for the policymaker’s decision rule δ and publication cost c, the Bayesian

journal editor’s problem is given by

max
βp∈[0,1]

∫
W
(
δ, θ, c

)
π(θ)dθ (118)

where welfare is given by equation 105 and π(·) denotes the prior belief distribution of the

journal editor. We assume that the prior satisfies the following regularity conditions:

Assumption 3.5.1 (Support of Journal Editor’s Prior). Let the prior distribution π(·) have

support on an open subset of the real line.

Recall the policymaker’s optimal minimax rule from Lemma 3.3.1 and that it is identical

for under both sophisticated and naive beliefs when K = 1. The following Proposition gives

the optimal publication rule of the Bayesian journal editor:

Proposition 4 (Optimal Bayesian Publication Rule). Suppose the policymaker implements the

optimal minimax regret decision rule (T ∗, δ∗0) = (0, 1
2
). Under Assumptions 3.2.1 and 3.5.1, the
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Bayesian journal editor’s optimal publication rule for any c ≥ 0 is given by

β∗
p =


1 if c ≤ T

0 if c > T

(119)

where

T =

1
2

∫
θ
([

Φ(tα − θ)− Φ(−θ)
]
−
[
Φ(−θ)− Φ(−tα − θ)

])
π(θ)dθ∫ [

Φ(tα − θ)− Φ(−tα − θ)
]
π(θ)dθ

> 0

The journal’s optimal action takes the form a simple threshold rule: publish all results if

publication costs are sufficiently low; otherwise, censor all null results. Thus, when publication

costs are low, the optimal publication rule under misaligned preferences is the same as with

aligned preferences, namely, it is non-selective. However, when publication costs are high, it

will be optimal to censor all null results.

For the Bayesian policymaker in the Frankel and Kasy (2022) model, the optimal publication

rule recommends censoring results which do not sufficiently move the prior. In other words,

the journal does not publish ‘unsurprising’ findings close to its prior beliefs on a given research

question (which is assumed to be shared by the public). Our result in Proposition 4 differs

because we consider the class of publication rules which censor statistically insignificant results.

The rationale behind this is that the censoring of null results is the most common form of

publication bias highlighted in the literature.

3.6 Conclusion

This paper studies treatment choice in the presence of publication bias in the case where poli-

cymakers are unwilling or unable to rely on prior beliefs about relative treatment efficacy. We

show that the optimal publication rule which minimizes maximum regret is non-selective. This

holds whether or not policymakers account for publication bias in choosing their treatment rule

i.e. whether they are sophisticated or naive in their beliefs about the DGP. This contrasts with
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the Bayesian policymaker studies in the literature, where the optimal publication rule for policy

choice censors results close to the decision-maker’s prior. Thus, the optimal publication regime

– and hence the statistical credibility of published research – can vary drastically depending on

the optimality criterion pursued by the policymaker and journals. In the minimax framework,

the publication regime which is optimal for treatment choice also delivers valid statistical in-

ference.
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Appendix

3A Proofs

Proof of Lemma 3.2.1: We focus on the welfare function W1(δ1, X) for the published case.

Karlin and Rubin (1956b) shows that if the distribution of sufficient statistics for θ satisfies the

monotone likelihood ratio property, the class of threshold decision rules is essentially complete

for a class of loss functions including the current one. Under Assumption 3.2.1, F (X|θ,D = 1)

is an exponentially family distribution with pdf

C(θ)h(x) exp(xθ), (120)

where C(θ) = exp(−θ2/2)√
2π
∫
p(t)ϕ(t−θ)dt and h(x) = p(x) exp(−x2/2), and X being a sufficient statistics

for θ. Since the exponential family distribution satisfies the monotone likelihood ratio property

(see, e.g., Section 3.4 in Lehmann and Romano (2005)), the current lemma follows.

Proof of Lemma 3.3.1: The proof follows two main steps. First, we solve the minimax prob-

lem for the sophisticated policymaker. In the second step, we show that the naive policymaker,

who optimizes under misspecified beliefs about the DGP, nonetheless arrives at the optimal

solution.

Sophisticated policymaker.—First, we show that the optimal decision rule for the sophisti-

cated policymaker is (T ∗, δ∗0) =
(
0, 1

2

)
. To do this, we use the following theorem (for reference,

see Theorem 1 in section 2.11 (pg 90) in Ferguson (1967)):

Lemma 3A.1. Suppose δ minimizes Bayes risk under π:

δ ∈ arg min
δ′∈D

∫
θ

R(δ′, θ)dπ(θ)
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and

R(δ, θ) ≤
∫
θ

R(δ, θ)dπ(θ)

for all θ ∈ Θ. Then δ is a minimax rule and π is least favourable.

Using this lemma, we first propose a guess for δ and π and then show that this guess satisfies

the sufficient conditions in Theorem A1 which imply that δ is the minimax regret decision rule.

Our guess is that the minimax regret decision rule is (T ∗, δ∗0) = (0, 1
2
). Regret under this

proposed rule for any θ is equal to:

R
(
(0, 0.5), θ

)
=


−θ
(
P[D = 1|θ] · [1− F (0|θ,D = 1)] + (1−P[D = 1|θ])1

2

)
if θ ≤ 0

θ

(
P[D = 1|θ] ·

(
F (0|θ,D = 1) + (1−P[D = 1|θ])1

2

))
if θ > 0

(121)

Next, guess that Nature’s least favorable prior is equal to

π =


θ∗+ with probability 1

2

−θ∗+ with probability 1
2

(122)

where θ∗+ = argmaxθ>0R
(
(0, 0.5), θ

)
. We know that θ∗+ ∈ (0,∞) because R

(
(0, 0.5), 0) = 0;

R
(
(0, 0.5), θ) → 0 as θ → ∞; and R

(
(0, 0.5), θ) > 0 for any θ > 0. The first and third claims

can be seen directly from equation (121). To see why the second claim is true see that

lim
θ→∞

{
θ ·P[D = 1|θ] · F (0|θ,D = 1)

}
+

1

2
lim
θ→∞

{
θ · (1−P[D = 1|θ])

)}
(123)

The first term equals zero because

lim
θ→∞

{
θ ·P[D = 1|θ] ·F (0|θ,D = 1)

}
< lim

θ→∞

{
θ ·Φ(0− θ)

}
= lim

θ→∞

{
θ2 · ϕ(0− θ)

}
= 0 (124)
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where the first inequality follows because F (.|θ,D = 1) is a truncated normal cdf and θ > 0;

the second last equality follows from L’Hôpital’s rule; and the final equality follows from the

fact that θ2 · ϕ(0− θ) has finite moments. The second term also equals zero since we have

θ · (1−P[D = 1|θ])
)
= (1− βp)(2π)

−1

∫ tα

−tα
θ exp

(
−1

2
(t− θ)2

)
dt (125)

and limθ→∞ θ exp
(
−1

2
(t− θ)2

)
= 0 at every t ∈ [−tα, tα], and apply the dominated convergence

theorem.

Next, we will show that (T ∗, δ∗0) = (0, 1
2
) minimizes Bayes risk with respect to π. For any

decision rule (T, δ0), Bayes risk equals

∫
θ

R
(
(T, δ0), θ

)
dπ(θ) =

1

2
· θ∗+
(
P[D = 1|θ∗+] · F (T |θ∗+, D = 1) + (1−P[D = 1|θ∗+])(1− δ0)

)

+
1

2
· θ∗+
(
P[D = 1|θ∗+] · [1− F (T |θ∗+, D = 1)] + (1−P[D = 1|θ∗+])δ0

)
=

1

2
· θ∗+
(
1−P[D = 1|θ∗+]

)
+

1

2
· θ∗+P[D = 1|θ∗+]

(
F (T |θ∗+, D = 1) + F (−T |θ∗+, D = 1)

)
(126)

Note that any δ0 is optimal, so we can choose δ∗0 = 1
2
. We will show that T ∗ = 0 minimizes

Bayes risk by showing that F (T |θ∗+, D = 1) + F (−T |θ∗+, D = 1) is minimized when T = 0. To

do this, we will show that any other choice of T leads to higher regret. Since the Bayes risk

under π (126) is symmetric in T , without loss of generality, we assume T > 0. Consider first

the case where T > tα > 0. We have

F (−T |θ∗+, D = 1) + F (T |θ∗+, D = 1) =
1

C

(
Φ(−T − θ∗+)+

+Φ(−T − θ∗+) +
[
Φ(−tα − θ∗+)− Φ(−T − θ∗+)

]
+βp

[
Φ(0− θ∗+)− Φ(−tα − θ∗+)

]
+ βp

[
Φ(tα − θ∗+)− Φ(0− θ∗+)

]
+
[
Φ(T − θ∗+)− Φ(tα − θ∗+)

])
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>
2

C

(
Φ(−tα − θ∗+) + βp

[
Φ(0− θ∗+)− Φ(−tα − θ∗+)

])
= 2 · F (0|θ∗+, D = 1) (127)

where C =
∫
p(z)ϕ(z−θ∗+)dz is the normalization constant of the truncated normal distribution.

The case where tα > T > 0 follows a similar argument. Thus, (T ∗, δ∗0) = (0, 1
2
) minimizes Bayes

risk with respect to π.

Finally, see that for any θ ∈ R, we have that

R
(
(0, 0.5), θ

)
≤ R

(
(0, 0.5), θ∗+

)
=

1

2
R
(
(0, 0.5), θ∗+

)
+
1

2
R
(
(0, 0.5),−θ∗+

)
=

∫
θ

R(δ, θ)dπ(θ) (128)

The first inequality follows from the construction of θ∗+. The next equality uses the symmetry

of the regret function with respect to θ around zero. From Theorem A1, it then follows that

the minimax regret decision rule for the sophisticated policymaker is (T ∗, δ∗0) = (0, 1
2
) and the

least favourable prior is π in equation (122).

Naive policymaker.—Next, we show that the naive policymaker arrives at the same decision

rule, despite ignoring selective publication. The naive policymaker’s optimal decision rule

consists of two problems, when a study is published and when it is not. When a study is

published, the policymaker (erroneously) believes the signal is normally distributed. This is

equivalent to the problem in Tetenov (2012), who proves that the optimal solution in the

symmetric case is T ∗ = 0.

Next, consider the case where no study is published. Misspecified regret is equal to

R̃0(δ0, θ) =


−θδ0 if θ ≤ 0

θ(1− δ0) if θ > 0

(129)

and thus misspecified worse-case regret given bounds in Assumption 3.4.1 is given by

maxθ∈[−B,B] R̃0(δ0, θ) = max{Bθ0, B(1 − δ0)}. The minimax regret decision rule equalizes the

arguments in the max operator, giving δ∗0 = 1
2
.
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Proof of Proposition 3: We have shown that for any βp ∈ [0, 1], both the sophisticated and

naive policymakers’ optimal minimax decision rule is (T ∗, δ∗0) = (0, 1
2
). It remains to show that

βp = 1 is the optimal publication rule, in the sense that it minimizes minimax regret.

Denote the value of minimax regret as a function of parameter βp:

V (βp) ≡ max
θ>0

{
θ

(
P[D = 1|θ]F (0|θ,D = 1) +

(
1−P[D = 1|θ]

)1
2

)}
(130)

= max
θ>0

{
θ

∫ 0

−∞
p(y)ϕ(y − θ)dy +

θ

2

∫ ∞

−∞
[1− p(y)]ϕ(y − θ)dy

}
,

= max
θ>0

f(θ, β), (131)

where f(θ, β) = θ
∫ 0

−∞ p(y)ϕ(y − θ)dy + θ
2

∫∞
−∞[1− p(y)]ϕ(y − θ)dy and its dependence on βp is

only through p(·).

Note that the value function inside the maximum operator is continuously differentiable

in βp with an integrable envelope over the domain of βp ∈ [0, 1]. Hence, by the generalized

envelope theorem (Theorem 2 in Milgrom and Segal (2002)), V (βp) is absolutely continuous

and admits the following integral representation:

V (βp) = V (0) +

∫ βp

0

fβp(θ
∗(β′

p), β
′
p)dβ

′
p, (132)

where fβp(·, ·) = ∂
∂β
f(θ, β) and θ∗(βp) is a maximizer of f(θ, βp) in θ given βp. Note that for

θ > 0, we can show

fβp(θ, βp) =
θ

2

[∫ 0

−tα
ϕ(y − θ)dy −

∫ tα

0

ϕ(y − θ)dy

]
< 0. (133)

To see this inequality holds, consider two cases. First, suppose that θ ≥ tα. Then we immedi-

ately get the desired result because ϕ(z − θ) is strictly increasing over (−tα, tα).

Next consider the case where θ ∈ (0, tα). Then
∫ θ
0
ϕ(y−θ)dy >

∫ 0

−θ ϕ(y−θ)dy since ϕ(y−θ) is
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strictly increasing in y for any y < θ. And we also have that
∫ tα
θ
ϕ(y−θ)dy =

∫ θ
2θ−tα ϕ(y−θ)dy >∫ −θ

−tα ϕ(y− θ)dy, where the first equality uses symmetry of the normal distribution about θ and

the second equality again uses the fact that ϕ(y − θ) is strictly increasing in y for any y < θ.

Taking these two inequalities together leads to the inequality of (133).

Combining (132) and (133), we conclude that V (βp) is a monotonically decreasing function,

and βp = 1 minimizes the value of minimax regret.

Proof of Proposition 4: Fix the optimal minimax rule for the policymaker: δ∗ = (T ∗, δ∗0) =

(0, 1
2
). Then

∫
W
(
δ∗, θ, c

)
π(θ)dθ =

∫
θ ·P[D = 1|θ, βp]

[
1− F (0|D = 1, θ, βp)

]
π(θ)dθ

+
1

2

∫
θ ·
(
1−P[D = 1|θ, βp]

)
π(θ)θ − c

∫
P[D = 1|θ, βp]π(θ)dθ

Now see that

∂

∂βp

(
P[D = 1|θ, βp]

)
= Φ(tα − θ)− Φ(−tα − θ)

∂

∂βp

(
F (0|D = 1, θ, βp) ·P[D = 1|θ, βp]

)
= Φ(−θ)− Φ(−tα − θ)

which implies that

∂

∂βp

[ ∫
W
(
δ∗, θ, c

)
π(θ)dθ

]
=

1

2

∫
θ
([

Φ(tα − θ)− Φ(−θ)
]
−
[
Φ(−θ)− Φ(−tα − θ)

])
π(θ)dθ

−c
∫ [

Φ(tα − θ)− Φ(−tα − θ)
]
π(θ)dθ

It is clear that the integral in the second term multiplied by c is positive. If the integral in

the first term is strictly positive, then the desired result clearly follows. That is, for sufficiently

low c, the derivative will be positive and the optimal rule will be β∗
p = 1. Conversely, for

sufficiently high c, the derivative will be negative and the optimal publication rule will be

172



β∗
p = 0.

In the remainder of the proof, we show the integral is indeed positive. For clarity, define

the integrand g(θ) ≡ θ
(
[Φ(tα − θ)−Φ(−θ)]− [Φ(−θ)−Φ(−tα − θ)]

)
. First, see that g(0) = 0.

However, Assumption 3.5.1 implies that there exists some θ ̸= 0 on the support of π(·). Thus,

to show that the integral is positive, it suffices to show that g(θ) > 0 for all θ ̸= 0.

To show this, first note that g(·) is symmetric about zero i.e. g(θ) = g(−θ). We can

therefore restrict our attention to θ > 0. Consider two cases. First, suppose tα − θ ≤ 0. Then

g(θ) > 0 if and only if [Φ(tα − θ) − Φ(−θ)] − [Φ(−θ) − Φ(−tα − θ)] > 0, which clearly holds

because the normal density is increasing over (−∞, 0).

Next, suppose that tα − θ > 0 ⇐⇒ tα > θ > 0. Then breakup up the integral and using

the symmetry of the normal density, we have

g(θ) = [Φ(tα − θ)− Φ(−θ)]− [Φ(−θ)− Φ(−tα − θ)]

=

(
[Φ(tα − θ)−Φ(0)] + [Φ(0)−Φ(−θ)]

)
−
(
[Φ(−θ)−Φ(−2 · θ)] + [Φ(−2 · θ)−Φ(−tα − θ)]

)

=

(
[Φ(0)−Φ(−θ)]− [Φ(−θ)−Φ(−2 · θ)]

)
+

(
[Φ(tα− θ)−Φ(0)]− [Φ(tα + θ)−Φ(2 · θ)]

)
> 0

where the inequality follows because both differences in the parentheses are strictly positive.

The first difference is positive because the normal density if increasing over (∞, 0). The second

difference is positive because the normal density if decreasing over (0,∞).
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rica, 2022, 90 (2), 887–906.

Ferguson, Thomas S., Mathematical Statistics: A Decision Theoretic Approach, New York, Aca-

demic Press, 1967.

Fisher, Ronald A., “Frequency Distribution of the Values of the Correlation Coefficient in Samples

from an Indefinitely Large Population,” Biometrika, 1915, 10 (4), 507–521.

Foster, Andrew, Dean Karlan, Edward Miguel, and Aleksandar Bogdanoski, “Pre-results

Review at the Journal of Development Economics: Lessons Learned So Far,” World Bank Develop-

ment Impact Blog, 2019.

Franco, Annie, Neil Malhotra, and Gabor Simonovits, “Publication bias in the social sciences:

Unlocking the file drawer,” Science, 2014, 345 (6203), 1502–1505.

Frankel, Alexander and Maximilian Kasy, “Which Findings Should Be Published?,” American

Economic Journal: Microeconomics, 2022, 14 (1), 1–38.

Galton, Francis, “Regression Towards Mediocrity in Hereditary Stature,” The Journal of the An-

thropological Institute of Great Britain and Ireland, 1886, 15, 246–263.

Gelman, Andrew and John Carlin, “Beyond Power Calculations: Assessing Type S (Sign) and

Type M (Magnitude) Errors,” Perspectives on Psychological Science, 2014, 9 (6), 641–651.

Gordon, Michael, Domenico Viganola, Michael Bishop et al., “Are Replication Rates the

Same Across Academic Fields? Community Forecasts from the DARPA SCORE Programme,”

Royal Society Open Science, 2020, 7.

177



Higgins, Julian P.T. and Simon G. Thompson, “Quantifying heterogeneity in a meta-analysis,”

Statistics in Medicine, 2002, 21 (11), 1539–1558.

Hotelling, Harold, “Review: The Triumph of Mediocrity in Business, By Horace Secrist,” Journal

of the American Statistical Association, 1933, 28 (184), 463–465.

Imai, Taisuke, Klavdia Zemlianova, Nikhil Kotecha et al., “How Common are False Positives

in Laboratory Economics Experiments? Evidence from the P-Curve Method,” Working Paper,

2020.

Ioannidis, John P. A., T. D. Stanley, and Hristos Doucouliagos, “The Power of Bias in

Economics Research,” The Economic Journal, 2017, 127 (605), 236–265.

Ioannidis, John P.A., “Why Most Published Research Findings Are False,” PLoS Med, 2005, 2 (8).

, “Why Most Discovered True Associations Are Inflated,” Epidemiology, 2008, 19 (5), 640–648.

Kahneman, Daniel, Thinking, Fast and Slow, Farrar, Straus and Giroux, 2011.

and Amos Tversky, “Prospect Theory: An Analysis of Decision under Risk,” Econometrica,

1979, 47 (2), 263–292.

Karlin, Samuel and Herman Rubin, “The Theory of Decision Procedures for Distributions with

Monotone Likelihood Ratio,” The Annals of Mathematical Statistics, 1956, 27 (2), 272–299.

and , “The Theory of Decision Procedures for Distributions with Monotone Likelihood Ratio,”

Annals of Mathematical Statistics, 1956, 27, 272–299.

Kasy, Maximilian, “Of Forking Paths and Tied Hands: Selective Publication of Findings, and What

Economists Should Do about It,” Journal of Economic Perspectives, 2021, 35 (3), 175–192.

Kitagawa, Toru and Alex Tetenov, “Who Should Be Treated? Empirical Welfare Maximization

Methods for Treatment Choice,” Econometrica, 2018, 86 (2), 591–616.

and Patrick Vu, “Optimal Publication Rules for Evidence-Based Policy,” Working Paper, 2023.

178



Klein, Richard A., Kate A. Ratliff, Michelangelo Vianello et al., “Investigating Variation in

Replicability: A “Many Labs” Replication Project,” Social Psychology, 2014, 45 (3), 142–152.

, Michelangelo Vianello, Fred Hasselman et al., “Many Labs 2: Investigating Variation in

Replicability Across Samples and Settings,” Advances in Methods and Practices in Psychological

Science, 2018, 1 (4), 443–490.

Laird, Nan M. and Frederick Mosteller, “Some Statistical Methods for Combining Experimental

Results,” International Journal of Technology Assessment in Health Care, 1990, 6 (1), 5–30.

Lee, David S., Justin McCrary, Marcelo J. Moreira, and Jack Porter, “Valid t-Ratio Infer-

ence for IV,” American Economic Review, 2022, 112 (10), 3260–3290.

Lehmann, Erlich L. and Joseph P. Romano, Testing Statistical Hypotheses, Springer, 2005.

Manski, Charles F., “Statistical Treatment Rules for Heterogeneous Populations,” Econometrica,

2004, 72 (4), 1221–1246.

Maxwell, Scott E., Michael Y. Lau, and George S. Howard, “Is Psychology Suffering from

a Replication Crisis? What Does “Failure to Replicate” Really Mean? ,” American Psychologist,

2015, 70 (6), 487–498.

McFadden, Daniel, “A Method of Simulated Moments for Estimation of Discrete Response Models

Without Numerical Integration,” Econometrica, 1989, 57 (5), 995–1026.

McShane, Blakeley B., David Gal, Andrew Gelman, Christian Robert, and Jennifer L.

Tackett, “Abandon Statistical Significance,” The American Statistician, 2019, 73 (1), 235–245.

Miguel, Edward and Garret Christensen, “Transparency, Reproducibility, and the Credibility

of Economics Research,” Journal of Economic Literature, 2018, 56 (3), 920–980.

Milgrom, Paul and Ilya Segal, “Envelope Theorems for Arbitrary Choice Sets,” Econometrica,

2002, 70 (2), 583–601.

Moulton, Brent R., “Random group effects and the precision of regression estimates ,” Journal of

Econometrics, 1986, 32 (3), 385–397.

179



, “An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Units ,”

The Review of Economics and Statistics, 1990, 72 (2), 334–338.

Newey, Whitney K. and Kenneth D. West, “A Simple, Positive Semi-Definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix,” Econometrica, 1987, 55 (3), 703–708.

Nosek, Brian A., Charles R. Ebersole, Alexander C. DeHaven et al., “The Preregistration

Revolution,” Proceedings of the National Academy of Sciences, 2018, 115 (11), 2600–2606.

, George Alter, George C. Banks et al., “Promoting an Open Research Culture,” Science,

2015, 348 (6242), 1422–1425.

, Tom E. Hardwicke, Hannah Moshontz et al., “Replicability, Robustness, and Reproducibil-

ity in Psychological Science,” Annual Review of Psychology, 2022, 73, 719–748.

Open Science Collaboration, “Estimating the reproducibility of psychological science,” Science,

2015, 349 (6251).

Patil, Prasad, Roger D. Peng, and Jeffrey T. Leek, “What Should Researchers Expect When

They Replicate Studies? A Statistical View of Replicability in Psychological Science,” Perspectives

on Psychological Science, 2016, 11 (4), 539–544.

Raj, Chetty, John Friedman, Nathaniel Hendren et al., “The Opportunity Atlas: Mapping

the Childhood Roots of Social Mobility,” Working Paer, 2020.

Roth, Jonathan and Jiafeng Chen, “Logs With Zeros? Some Problems and Solutions,” Working

paper, 2023.

Savage, Leonard J., “The Theory of Statistical Decision,” Journal of the American Statistical

Association, 1951, 46 (253), 55–67.

Simons, Daniel J., “The Value of Direct Replication,” Perspectives on Psychological Science, 2014,

9 (1), 76–80.

Simonsohn, Uri, “Small Telescopes: Detectability and the Evaluation of Replication Results,” Psy-

chological Science, 2015, 26 (5), 559–69.

180



, Leif D. Nelson, and Joseph P. Simmons, “P-Curve: A Key to the File-Drawer,” Journal of

Experimental Psychology: General, 2014, 143 (2), 534–547.

Staiger, Douglas and James H. Stock, “Instrumental Variables Regression with Weak Instru-

ments,” Econometrica, 1997, 65 (3), 557–586.

Stanley, T. D., Evan C. Carter, and Hristos Doucouliagos, “What Meta-Analyses Re-

veal About the Replicability of Psychological Research,” Psychological Bulletin, 2018, 144 (12),

1325–1346.

Stoye, Jörg, “Minimax Regret Treatment Choice With Finite Samples,” Journal of Econometrics,

2009, 151 (1), 70–81.

, “New Perspectives on Statistical Decisions Under Ambiguity,” Annual Review of Economics, 2012,

4, 257–282.

Tetenov, Aleksey, “Statistical treatment choice based on asymmetric minimax regret criteria,”

Journal of Econometrics, 2012, 166, 157–165.

Vu, Patrick, “Why Are Replication Rates So Low?,” Working Paper, 2023.

Wagenmakers, Eric-Jan, Josine Verhagen, and Alexander Ly, “How to Quantify the Evidence

for the Absence of a Correlation,” Behavior Research Methods, 2016, 48 (2), 413–26.

Wald, Abraham, Statistical Decision Functions, New York: John Wiley & Sons, 1950.

White, Halbert, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test

for Heteroskedasticity,” Econometrica, 1980, 48 (4), 817–838.

181


