
Calculating Entanglement in Molecules
Jeffrey Tejada, Kevin Rapp, and Brenda Rubenstein

Abstract

Entanglement is the correlation between the state of one particle and the 
state of another. When two particles are entangled, the transfer of information 
between them is instantaneous, a surprising result that now serves as the 
basis for quantum computing. Using entangled quantum bits (qubits), which 
store probabilities represented by wave functions in a superposition of states, 
quantum computing enables more efficient computations. Quantifying 
entanglement is essential to utilizing qubits, currently embodied in particles 
(ions, photons, electrons, etc.), not entire molecules. Our goal was to pioneer 
a method to calculate entanglement between electrons in molecules using 
exact diagonalization, which can be used to solve the Schrodinger Equation 
for molecular Hamiltonians. We calculated the entanglement of electrons 
within molecules represented by the Hubbard Model, ultimately to be used to 
rank molecular qubit candidates. 

The Hubbard Model
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Creating a System Hamiltonian

Automate

Figure 2: (a) A four-site, four-electron 1D system. Electron movement from a doubly occupied site is not influenced by the site’s 
location in the lattice.  (b) A six-site, four-electron 2D system. The electron movement is diagonal, so the resulting state is invalid. 
(c) A 9-site, four-electron 2D system. Electron movement is limited to the sites immediately adjacent to the doubly occupied site.
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Creation of a 
Hamiltonian for the 
system described in 
Figure 3:

Finally, we combine these 
two matrices together to 
get the final Hamiltonian 
representing the system.

We begin with an empty 
4 x 4 matrix, where 4 is 
the amount of possible 
states for the system.

To formulate  Ht, we find states with doubly 
occupied sites, i.e. states one and four. We 
then move one of the doubly occupied 
electrons (either the down spin or the up 
spin) and see if it matches any other states. 
This matching provides the coordinates for 
locations of t.

State one can transition into states two and three, 
and state four can transition into states three and 
two, meaning in the one column and row, the 
second and third positions will be locations for t. 
The Hubbard model Hamiltonian is written to 
incorporate symmetry in the matrix, explaining why 
values go in both the columns and rows of doubly 
occupied states.

# of
states

(4)

To formulate HU we find states with doubly occupied sites. 
States one and four both contain sites that are doubly 
occupied, so these are used to place U values in the matrix.

U values range 
from 2 to 5, and t 
typically equals 1.

HU Ht

Conclusion 

We created the Hubbard model Hamiltonian, a benchmark for molecules and 
more complex systems. By writing a program we automated the exact 
diagonalization process of creating a system-specific Hamiltonian for all 1D 
and 2D systems. The model cannot exceed 10 sites, a limitation created by 
the need for huge amounts of computer memory as the number of sites 
increases. We were then able to extract energies (eigenvalues) and 
wavefunctions (eigenvectors) from this Hamiltonian, and further work with 
these values in our program to output the Renyi entropies of the system. Our 
immediate next step is to use these Renyi entropies to calculate the 
entanglement of the electrons in a system, using the following equation:

Using the values for entanglement calculated with this method, we will rank 
molecular qubit candidates based on the strength of their entanglements.

The Hubbard Model, a benchmark for molecule modelling, describes a 
lattice of sites containing electrons, where an electron can move, or 
tunnel, from site to site. We chose this model as the starting point in 
calculating entanglement in molecules due to its simplicity. Its 
Hamiltonian boils all interactions down to two components:

The requirements for this system include: a total spin of zero (achieved when 
the number of up spins equals the number of down spins), adherence to the 
Pauli Exclusion principle, and the electrons must move to adjacent sites 
when the system is specified to be 2D.

Ht : the kinetic energy, describing 
the movement of an electron from 
one site to another.

HU : the interaction energy, representing 
Coulombic repulsion when a site is 
occupied by two electrons.
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States:
2 sites, 

2 electrons

To automate, we chose to represent states as binary 
strings, using the Pauli Exclusion Principle and a total 
spin of zero to filter out unwanted states.

States:
3 sites, 

2 electrons

As the number of 
sites grows, the 

number of states 
grows exponentially.
Automation is limited 

to 10 sites.

Using these strings, we automated the 
formation of HU and Ht, and subsequently H. By 
diagonalizing H, we received the energies and 
wavefunctions of the system.

To calculate the Renyi entropy of the system using the energies and wave 
functions, we used the following steps:

,

 0.03824601 0.06792543 0.06792543 0.03198333
 0.06792543 0.19989752 0.07410811 0.06792543
 0.06792543 0.07410811 0.19989752 0.06792543
 0.03198333 0.06792543 0.06792543 0.03824601

Future Work
Our future work will focus on automating the creation of the molecular 
Hamiltonian:

This Hamiltonian more accurately represents a molecule and its electrons. 
With this Hamiltonian, we plan to write another program that performs exact 
diagonalization to extract the energies and wavefunctions of the system, 
which will require more nuance due to its complexity. We will also use 
Quantum Monte Carlo Methods to achieve our goals. Our end goal is to 
calculate the entanglement of molecules, and then rank current molecular 
candidates using these values. Discuss further relevance to quantum 
computing here.

Exact diagonalization: the process of 
formatting a Hamiltonian in matrix form, 
to then diagonalize using a computer.

Exact Diagonalization

Diagonalization: a 
method that converts 
a square matrix into 
a diagonal matrix 
that conveys the 
same foundational 
information.

Figure 1: The process of exact diagonalization in action. The 
white space represents zeros, and the gray squares represent 
the information of the matrix, with the darker squares showing 
how this process condenses information onto the diagonal.

Figure 3: A two-site, two-electron system where each combination of electron orientations is a 
state, totalling four states. The arrows point from doubly occupied states to states where an 
electron may have transitioned to another site. Only one can move at a time, so state 1 cannot 
become state 4 in one movement, and vice versa.


