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Chapter 1

Introduction

We are currently in the midst of an exciting era of physics, for both theorists and experi-

mentalists alike. Now more than ever before, the theories which encode our understanding

of the universe are able to be studied with a wide array of experimental and observational

tools. For example, the Large Hadron Collider at CERN has confirmed the standard model

(SM) of particle physics to high precision, the LIGO/Virgo/KAGRA collaboration has con-

firmed general relativity (GR) via observations of gravitational waves (GW), and careful

measurements of the cosmic microwave background have made the case for ΛCDM cosmol-

ogy. However, all is still not known. Fortunately for theorists who would be out of a job if

the aforementioned theories described the universe perfectly and completely, there are still

many unknowns and open questions in the realm of cosmology, gravitation and high-energy

physics.

Some of these questions are as follows. Most notably, while quantum mechanics does an

excellent job explaining physics on the smallest scales and general relativity the largest, we

still do not have a verified theory of quantum gravity. If one attempts to quantize gravity

directly, one runs into nonrenormalizability issues, among others. Thus, it seems that general

relativity must be a low energy limit of some UV complete theory which accurately describes

quantum gravity effects. The most prominent such theory is string theory, in which the

fundamental object is no longer a particle, but a string. String theory and its variants have

1
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been widely studied in a variety of contexts but there has still been no direct observational

evidence for the theory, nor any other proposed theories of quantum gravity, such as loop

quantum gravity.

Another open problem is that of dark matter. Dark matter makes up about 25% of the

energy density of the universe and its presence has been observationally inferred through

techniques including observations of spiral galaxy rotation curves and gravitational lensing.

However, despite the critical role that dark matter plays in our universe, it has never been

directly detected and its constituent particle remains a mystery. The leading paradigm since

the discovery of dark matter has been the WIMP, or weakly interacting massive particle

and efforts are ongoing to detect such a particle with experiments such as LZ and XENON.

Thus far, these experiments have been unsuccessful in finding dark matter, but have been

making the viable parameter space smaller and smaller. As such, other alternative dark

matter candidates have gained popularity, including axion-like particles, primordial black

holes and other exotic models. Despite the wide range of possible models though, the dark

matter problem remains.

Beyond the puzzles of quantum gravity and dark matter, there are many other unsolved

problems, including as the cosmological constant problem and the Hubble tension. Clearly,

though our trusty theories such as the standard model, general relativity and ΛCDM cosmol-

ogy have done a great job predicting the dynamics of the universe, there are still many open

questions and puzzles to be solved. By looking for physics beyond the standard paradigms,

we hope to glean insight into these questions and move towards a resolution. In the case

of quantum gravity, it is useful to study theories which may not necessarily be quantum

theories of gravity themselves, but that are derived from some UV complete theory in order

to make progress towards the ultimate goal. Similarly, for dark matter, it is of significant

interest to continue building models and think creatively about possible solutions to the dark

matter problem.

Broadly motivated by these questions, this thesis will explore non-standard cosmological

and gravitational theories and investigate both the theoretical nuances of such theories as well



3

as observational prospects and constraints. We focus specifically on cosmological implications

of higher-spin particles and gravitational phenomena in various theories of modified gravity.

The structure of this thesis is as follows. We begin in Chapter 2 with a discussion of

the relevant background information for the work presented. The remainder of the thesis is

split into three pars. We first begin in Part I in the early universe and consider cosmological

aspects of higher spin fields during inflation. Chapter 3 discusses higher spin supersymmetry

in the context of the cosmological collider program and Chapter 4 investigates higher spin

particles as a dark matter candidate. We then redshift our way to the late universe in Part II,

where we discuss the propagation of gravitational waves, both in a modified theory of gravity

in which the cosmological constant is dynamical in and noncommutative gravity in Chapter

6. Lastly, we remain in the late universe in Part III where we explore aspects of rotating

black holes in another modified theory of gravity, dynamical Chern-Simons gravity. We study

the ‘Chern-Simons caps’ in Chapter 7 and conclude with an investigation of superradiance

for dCS black holes in Chapter 8. Finally, we present concluding remarks in Chapter 9.



Chapter 2

Background

2.1 General Relativity and Gravitational Waves

2.1.1 General Relativity

One of the most beautiful agreements of theory and experiment in physics is Einstein’s

theory of General Relativity, written down in 1915, and its confirmation by the LIGO ex-

periment nearly 100 years later in 2015. Einstein’s theory, motivated by special relativity

and Newtonian gravity is built upon the following two principles [2]:

1. General principle of relativity: the general principle of relativity states that the laws of

physics should remain the same in all reference. This generalizes the special principle of

relativity, which postulates that the laws of physics are the same in all inertial reference

frames.

2. Equivalence principle: the equivalence principle comes from the observation of the

equivalence of gravitational and inertial mass, and has two formulations; the strong

and weak equivalence principles. The weak equivalence principle states that locally,

one can choose an inertial frame in which the laws of physics are identical to those in

a frame in which gravity is absent. The strong equivalence principle extends the weak

equivalence principle more generally to hold in a relativistic theory and for all the laws

of physics.

4
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As eloquently put by John Archibald Wheeler, general relativity can be summed up as

‘spacetime tells matter how to move, matter tells spacetime how to curve.’ This can be see

quantitatively from the Einstein Field Equations,

Rµν −
1

2
Rgµν + Λgµν = 8πTµν , (2.1)

where gµν is the spacetime metric, Rµν is the Ricci curvature tensor, R the Ricci scalar and

Tµν the energy-momentum tensor of the spacetime. We have also included the cosmological

constant, Λ. The above is written in geometric units such that G = c = 1. The left-hand side

of Eq. (2.1) reflects the curvature of the spacetime, ‘spacetime tells matter how to move,’ and

the right-hand side describes the matter present in the spacetime, ‘matter tells spacetime

how to curve.’ Eq. (2.1) is a set of ten nonlinear partial differential equations. Luckily,

employing the Bianchi identities can reduce this to six. Nonetheless, finding exact solutions

of this system of equations is highly nontrivial. Such solutions of the Einstein field equations

describe spacetimes, including black hole spacetimes and expanding cosmological spacetimes.

The first exact solution to the Einstein equations was found by Karl Schwarzschild in 1915,

which describes an uncharged and non-rotating black hole. According to Birkhoff’s theorem,

the Schwarzschild metric is the most general spherically symmetric solution of the Einstein

equations. The Schwarzschild line element is given by

ds2 = −fdt2 + 1

f
dr2 + r2dθ2 + r2 sin2 θdϕ2, (2.2)

where f is the so-called ‘Schwarzschild factor’

f = 1− 2M

r
, (2.3)

where again we have worked in geometric units such that G = c = 1. In this expression, we

can see that there is a singularity at r = 2M , known as the Schwarzschild horizon, as well

as at r = 0. However, the singularity at r = 2M is coordinate system dependent, whereas

the singularity at r = 0 is a true curvature singularity.
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Other notable solutions to the Einstein equations include the Kerr metric, which describes

a rotating black hole, the Riessner-Nordstrom metric, describing a charged black hole, the

Kerr-Newman metric, which describes a charged and rotating black hole, and the Friedmann-

Lemaitre-Robertson-Walker metric (FLRW), which describes an expanding universe. The

Einstein equations have also been solved in higher dimensions, giving rise to a 5D black ring

solution, for example, as well as in various modified theories of gravity, such as the slowly

rotating black hole in dynamical Chern-Simons gravity.

General relativity can also be written in terms of an action,

S =

∫
d4x

√
−gR, (2.4)

known as the Einstein-Hilbert action. The variation of this action with respect to the metric

yields the Einstein equations.

2.1.2 Gravitational Waves

One of the most stunning predictions of general relativity is the existence of gravitational

waves, spacetime ripples which propagate as a result of mergers of compact objects. To

understand the emergence of gravitational waves from the Einstein field equations, first

consider a perturbation to the metric such that [2]

gµν = ηµν + hµν , (2.5)

where ηµν is the Minkowski metric and |hµν | ≪ 1. This is considered a ‘weak field ap-

proximation’ in which we assume the gravitational field is weakly perturbed about a flat

background. This allows us to linearize the Einstein equations and explore the gravitational

wave behavior. Let us study this linearization further. The perturbation Eq. (2.5) leads to

the following expression for the Christoffel symbols:

Γρ
µν =

1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) . (2.6)
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This allows us to linearize the Riemann tensor and the Ricci tensor:

Rµνρσ = 1
2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) , (2.7)

Rµν = 1
2
(∂σ∂νh

σµ + ∂σ∂µh
σ
ν − ∂µ∂νh−2hµν) , (2.8)

where h is the trace of the perturbation and 2 is the d’Alembertian operator. Similarly, we

can obtain the Ricci scalar via contraction:

R = ∂µ∂νh
µν −2h. (2.9)

All together, these linearized quantities yield the Einstein equations, here in vacuum with

zero cosmological constant:

Gµν =
1

2

(
∂σ∂µh

σ
ν + ∂σ∂νh

σ
µ − ∂µ∂νh−2hµν − ηµν∂ρ∂λh

ρσ + ηµν2h
)
= 0. (2.10)

One can choose a gauge to work in to make these equations more tractable. One common

choice is the Lorentz gauge, which has the gauge condition:

∂µh
µ
λ −

1

2
∂λh = 0. (2.11)

This condition leads to the following satisfying form for the vacuum Einstein equations:

2hµν = 0. (2.12)

It is clear to see that this choice has simply reduced the Einstein equations to a relativistic

wave equation, for which we can find plane wave solutions. Consider one such solution

hµν = Aµνe
ikµxµ

, (2.13)

where Aµν are constants. Note that to obtain true gravitational waves, we must have k2 =

0. This itself necessitates that gravitational waves must travel at the speed of light (an
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important test of GR which we will discuss in the next section).

Now, to account for gravitational waves which arise in nature, such as those emitted by

merging black holes, we must consider the Einstein equations with a source,

2h̄µν = −16πTµν , (2.14)

where h̄µν is the trace reversed perturbation. It is well known that this type of sourced wave

equations can be solved with the Green’s function method such that

h̄µν(x) = −16π

∫
G(x− y)Tµνd

4y. (2.15)

The retarded Green’s function is given by

G(x− y) = − 1

4π|x⃗− y⃗|
δ
[
|x⃗− y⃗| − (x0 − y0)

]
θ(x0 − y0). (2.16)

Together, for the perturbation we then have

h̄µν = 4

∫
d3y

|x⃗− y⃗|
Tµν(t− |x⃗− y⃗|, y⃗). (2.17)

With some manipulations we can define the quadrupole moment tensor of the system:

Iij =

∫
d3yT 00yiyj, (2.18)

and find that for the spatial part of the gravitational wave, we have

h̄ij(x⃗, t
′) =

2

r

[
d2Iij(t

′)

dt2

]
t′=t−r

, (2.19)

where r is the distance to the source. This solution matches our physical intuition behind

the gravitational wave processes from compact binary systems, namely that gravitational

waves are emitted due to a change in the masses via the quadrupole moment.

Gravitational waves have a measureable effect. As the waves propagate away from their
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Figure 2.1: Effect of a + (left) and × (right) polarized gravitational wave on a ring of test particles.

source, they create tiny ‘ripples’ in spacetime itself. These ripples have the effect of distorting

spacetime and it’s contents. As an example, consider the impact of a gravitational wave on

a circle of test particles. The two gravitational wave + and × polarizations each stretch the

test particles in a characteristic way. In Figure 2.1 we see the effects of each on a ring of test

particles, and specifically that each polarization mode has distinct behavior.

The GW polarizations can also be written in terms of handedness as hR and hL as a linear

combination of the + and × modes.

These distortions can also be measured on earth, which is the key principle behind the

LIGO experiment (now the LIGO/Virgo/KAGRA Collaboration). These experiments con-

sist of Michelson inteferometers, as demonstrated in Figure 2.2.

As the gravitational wave propagates through spacetime and passes earth, it stretches the

length of the detector arms by less than a proton width, which can then be observed. These

theorized gravitational waves became a reality in 2015 when the first gravitational wave

event from a binary black hole merger was detected by the LIGO and Virgo collaboration

in 2015. Since then, 90 such detections have been made, including from binary black holes,

from binary neutron stars and even binary black hole-neutron star systems.
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Figure 2.2: Schematic diagram showing the basic LIGO inteferometer setup. Image credit: Caltech/MIT
LIGO Lab.

2.1.3 Tests of General Relativity

Multiple methods exists with which to test general relativity, and thus far the theory has

withstood all of them. The first test that GR passed with flying colors took place in our own

solar system backyard - the explanation of the perihelion precession of the planet Mercury.

The fact that the perihelion, or point of closest approach, of Mercury’s orbit precesses

is an effect which can mostly, but not exactly, be explaned by the gravitational pull of

the other planets in the solar system. However, there is a deviation of approximately 43

arcseconds per century between the measured effect and the predicted value by considering

the impacts of the other planets with classical Newtonian mechanics. This discrepancy

was first noticed in 1859 by Urbain Le Verrier and puzzled astronomers. Many solutions,

including the existence of another planet were proposed, but ultimately all failed. It was

not until Einstein introduced general relativity that it was realized that the missing 43

arcseconds/century could be exactly explained by post-Newtonian general relativistic effects.

This explanation of Mercury’s pericenter precession represented the first astrophysical test

of GR [2]. Further solar system tests of GR have also proved robust, including observations

of the bending of light around the sun.

Moving to the 21st century, GR has withstood further trials, the main test arising from
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the aforementioned detection of gravitational waves as well as observations of binary pulsars.

The existence of gravitational waves is itself a direct confirmation of general relativity, but

studying the properties of the waves allows us to further test the theory and place constraints

on any theories of modified gravity. The first such property is the propagation speed of the

gravitational waves. General relativity predicts that gravitational waves travel at the speed

of light, c, while many modified theories of gravity induce corrections such that the propaga-

tion speed is altered. The most stringent constraint on the speed of gravity comes from the

binary neutron star event, GW170817, which observed both gravitational and electromag-

netic emission from the merger. From the difference in arrival time of the electromagnetic

and gravitational signals, the speed of gravity has been constrained to

|vGW − vEM| ≲ 10−15. (2.20)

As we can see, the gravitational waves must travel either at the speed of light, or very close

to it, up to one part in 1015. Clearly, there is not much room for deviation here and this con-

straint has indeed ruled out many modified theories of gravity, such as certain formulations

of scalar-tensor theory, Hordenski theory, and Horava-Lifshitz gravity. Nonetheless, many

modified gravity theories do exist which do not modify the propagation speed or which have

such small modifications to still respect this bound [3, 4].

Another way in which general relativity is tested with observations of gravitational waves

is via the waveform. GR has made predictions for the waveform and waveform templates

have been constructed using such predictions. These templates have generally been found

to be a good match to the observed GW waveforms, but some theories such as dynamical

Chern-Simons gravity or noncommutative gravity predict modifications to the waveform in

distinctive ways. In particular, the phase of the wave is often modified in alternative theories,

as we discuss explicitly for noncommutative gravity in Chapter 6. Any deviations from the

phase have been constrained up to 3.5 post-Newtonian order [5].

General relativity can also be tested with binary neutron star and pulsar observations, as

we will also discuss in Chapter 6 in the context of noncommutative gravity. In particular,
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the Hulse-Taylor binary [6] and the binary pulsar system PSR J0737-3039 have been key

observations [7]. The most recent test of GR comes from the first direct image of a black

hole, taken by the Event Horizon Telescope (EHT) collaboration. Again, this observation

does not immediately indicate any violations of GR [8]. However, it does provide a rich

background on which to probe general relativity as more observations are available in the

coming years.

2.1.4 First Order Formalism of General Relativity

One can also understand general relativity in a differential geometric context, in what is

known as the ‘first order’ or Palatini formalism. In the second order, or metric formula-

tion, the metric itself is the only independent variable, and all other quantities such as the

connection and the curvature can be found in terms of gµν . In the Palatini formalism, the

metric and the connection are considered independent variables. This formulation of general

relativity is attractive for several reason. First, this is the necessary framework with which to

couple gravity to fermions. Additionally, the Palatini formalism can be related to Ashtekar

variables and Ashtekar’s formulation of canonical general relativity.

The Palatini formalism is characterized by the Palatini action,

S =

∫
ϵABCD(e

A ∧ eB ∧RCD[ω]), (2.21)

where ∧ is the antisymmetric wedge product, and we have introduced the following quanti-

ties. eA is known equivalently as the ‘tetrad,’ ‘frame field,’ or ‘vierbein,’ which is defined in

terms of the metric by

gµν = eAµ e
B
ν ηAB, (2.22)

where ηAB is the Minkowski metric. Here µ, ν are spacetime indices and A,B are SO(1,3)

Lorentz indices. The frame field is a one-form, written as

eA = eAµ ∧ dxµ. (2.23)
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The spin connection, ωAB is now, in general, independent from the frame field. If one is

considering a torsion-free theory, then the spin connection can be written in terms of the

frame field and Christoffel connection as

ωab
µ = eaνΓ

ν
σµe

σb +a
ν ∂µe

νb. (2.24)

If one is considering a theory in which the torsion is non-zero, then the above does not

apply and one must consider the spin connection as independent from the frame field. The

curvature two form and RAB[ω] is a function of the connection and is defined by:

RAB = DωAB = dωAB + ωA
C ∧ ωCB. (2.25)

Here, D is the exterior covariant derivative.

One unique aspect of the Palatini formalism is that by considering the frame field and

spin connection as independent variables, it allows for theories with non-zero torsion. The

torsion is defined as

TA = DeA = deA + ωA
B ∧ eB. (2.26)

General relativity is a torsion-free theory, in which case the spin connection can be written

as a a function of the frame field directly. However, if one wants to consider more exotic or

beyond-GR theories, one must consider the effects of torsion on the spacetime.

Let us now consider some aspects of perturbation theory in the first order formalism.

Recall that in the usual metric formulation, if one considers an inifintesimal spacetime dif-

feomorphism

xµ → xµ + ξµ, (2.27)

then a tensor field, Y transforms as

Y → Y + LξY, (2.28)

where Lξ is the Lie derivative with respect to ξµ. This leads us to the standard perturbation
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theory in the metric formulation. However, in the first order formalism, we must be careful

with our transformation. Recall that in this formulation, we have two types of indices to

keep track of, bot the spacetime indices as well as the SO(1,3) internal Lorentz indices. The

transformation discussed above only takes into account the former and does not account

for changes in the transformation due to the internal Lorentz structure. To resolve this

predicament, we must now consider a combined diffeomorphism and Lorentz transformation

to ensure that the combined transformation remains well behaved and gauge invariant. We

will consider a Lorentz transformation given by

ΛA
B = δAB + λAB, (2.29)

where we assume that λ is the same amount of small as ξ. Then, we can consider the

combination, the ‘Lorentzian Lie derivative,’ Kξ, such that

Kξ = Lξ + λAB . (2.30)

Then, the transformation of any arbitrary tensor, Y, becomes

Y → Y +KξY. (2.31)

This formulation of gauge invariant perturbation theory will be necessary for the discussion

in Chapter 5 in order to study gravitional waves in a theory which is an extension of general

relativity which contains a varying cosmological constant and non-zero torsion.

2.2 ΛCDM Cosmology

The current paradigm describing our universe is ΛCDM cosmology. To paraphrase Jo Dunk-

ley from the 2022 American Physical Society April meeting, ΛCDM almost certainly seems

correct, with the caveats that we don’t know what Λ is and we don’t know what CDM is.

Although tongue in cheek, the above anecdote nicely sums up the state of cosmology. ΛCDM
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Figure 2.3: Plot showing the Planck 2018 temperature power spectrum and fit to ΛCDM parameters. The
lower plot shows the residuals. Image via the Planck Collaboration [1].

is a standard model of big bang cosmology in which the universe is characterized mainly by

the presence of a cosmological constant or dark energy, Λ and cold dark matter as well as

ordinary matter. The model can be specified by six independent parameters, which are the

dark matter density, Ωch
2, the baryon density, Ωbh

2, the scalar spectral index, ns, the optical

depth, τ , the angular acoustic scale, 100θ∗, and the amplitude paramter, ln(1010As). Other

relevant parameters, including the Hubble tension and the age of the universe can be derived

from these base ones. Figure 2.3 shows the Planck 2018 best fit for the temperature power

spectrum, which we can see matches with stunning accuracy [1].

One may assume that this indicates that no open questions remain, but this is not the

case. As alluded to previously, we still have not observed dark matter directly, we are still

quite in the dark (no pun intended) as to the nature of dark energy, and other puzzles such

as the Hubble tension and the σ8 tension have crept up, all pointing towards the potential

need for new physics.
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2.3 Dark Matter

There is significant observational evidence for the existence of dark matter. The first hint

that visible, baryonic matter is not all that comprises our universe can be found in rotation

curves of spiral galaxies, which was first observed by Vera Rubin in 1978 [9]. In this seminal

paper, Rubin noted that the rotation curves of spiral galaxies seemed to flatten out as a

function of the distance from the center, rather than decrease, indicating that what was

thought of as the edge of a galaxy was not in fact the edge - that there was a significant

amount of additional mass present. This is what we now call ‘dark matter.’

Other observed evidence for dark matter includes the bullet cluster and gravitational

lensing. All of these observations indicate that there is missing mass in the universe that

we cannot see, but they do little to give us a hint towards what that mass could be. In

fact, we know very little about the nature of dark matter, beyond the fact that it must not

interact (or interact extremely weakly) with the standard model. There have been a wide

range of potential dark matter candidates over time, ranging from the ultra light axion with

a mass of 10−22 eV to black holes with masses on the order of tens to thousands of solar

masses. This range, spanning ∼80 orders of magnitude shows us how truly wide open the

dark matter problem is.

The most prominent dark matter candidate in recent years is known as the WIMP, or

weakly interacting massive particle. The WIMP satisfies the brief of a cold dark matter

candidate, fitting nicely into the ΛCDM picture as discussed in the previous section. Many

experiments are currently searching for WIMP dark matter, including the Lux-Zeppelin (LZ)

and XenonNTon experiments. However, as of yet there have been no detections. Further-

more, there have been no fruitful searches for dark matter at collider experiments at CERN,

or through indirect detection methods. This lack of observation is quickly shrinking the

viable parameter space for the WIMP.

Given that the WIMP has not yet been detected and the parameter space seems to be

shrinking, it is certainly of interest to explore alternative and more exotic models. Another
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dark matter candidate which has gained popularity in recent years is the axion, or axion-like

particle, which is an extremely light scalar field. Other models such as variations of WIMPS,

primordial black holes, and neutrinos have all been proposed as potential solutions, but

nothing has yet yielded any detection results. In Chapter 4 we propose another alternative

model in which the dark matter is a higher spin (s > 2) particle.

2.4 Inflation

Inflation is a hypothesized epoch of the early universe, approximately 10−32 seconds after

the big bang. This period is thought to consist of a rapid, non-adiabatic expansion of

spacetime to ‘inflate’ the universe. Inflation was originally proposed to solve several puzzles

in cosmology; notably the horizon problem and the flatness problem. They are as follows

[10, 11].

Horizon problem: The horizon problem stems from the observation that the CMB is nearly

perfectly homogeneous and isotropic, up to one part in 105. In all directions in the sky, the

CMB has a temperature of T ∼ 2.7 K. However, according to the standard cosmological

model, these patches of the sky would never have been in causal contact with each other,

making the uniformity of the CMB perplexing. We can see this explicitly by considering the

particle horizon:

rH =

∫
dt

a(t)
=

∫
dz

H(z)
, (2.32)

which describes the maximum radius light can travel given the age of the universe. The

physical size of the particle horizon, DH is then given by

DH(z) = a(z)rH(z), (2.33)

which, for a redshift of z = 1100 at last scattering, is ≈ 2 degrees. Clearly, based on our

observations of the homogeneity and isotropy of the CMB extending further than 2 degrees,

there must be a further explanation. Inflation resolves this issue by providing a model

in which these regions of spacetime are indeed in causal contact prior to the inflationary
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expansion.

Flatness problem: The flatness problem, as its name suggests, is the puzzle of why the

universe appears to be spatially flat, and why the curvature is zero, or if nonzero, a very

small number. This leads to a question of fine tuning of the initial cosmological parameters.

To see this explicitly, we can write the Friedmann equation as

|Ω0 − 1| = |k|
a2H2

(2.34)

Today, we measure the cosmic density parameter, Ω0 to be extremely close to 1 within 1%,

corresponding to the k = 0 flat universe that we observe ourselves to live in today. Notably,

if the value of Ω0 today is extremely close to 1, it must have always been - any small initial

deviation from Ω = 1 leads to an instability away from a flat universe, at odds with our

observations. This fine tuning is as severe as one part in 1060 if one considers the initial time

to be the Planck epoch.

Inflation addresses these problems by introducing a period of accelerated expansion in

the early universe. The inflationary paradigm solves the horizon problem by allowing for

the disparate regions of spacetime observed to be homogeneous at last scattering to in fact

have been in causal contact at one point. Then, the rapid expansion moves the regions back

out of causal contact, giving rise to what we observe today. Similarly, inflation provides an

answer to the flatness problem by allowing the scale factor to dominate over the curvature

and force Ω0 close to one.

The inflationary universe is described the FRW metric,

ds2 = −dt2 + a(t)2dx⃗2, (2.35)

where a(t) is the scale factor, describing the expansion of the universe. During inflation, the

scale factor is given by

a(t) = eHt, (2.36)

where H is the Hubble constant during this epoch, giving rise to the characteristic exponential
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growth.

This process is thought to be driven by a scalar field, ϕ, known as the inflaton. The action

for such a scalar field is given by

S =

∫
d4x

√
−g
(
R +

1

2
∂µϕ∂µϕ− V (ϕ)

)
(2.37)

leading to the equations of motion for the inflaton field:

ϕ̈+ 3Hϕ̇−∇2ϕ+
dV (ϕ)

dϕ
= 0. (2.38)

To obtain the dynamics of inflation, we ignore spatial inhomogeneities and work in the so-

called ‘slow roll’ regime, in which ϕ̈ is neglible in comparison to the 3Hϕ̇ and dV/dϕ terms.

We thus arrive at the slow roll condition:

3Hϕ̇ = −dV
dϕ

. (2.39)

We can cast the inflationary slow roll conditions into dimensionless forms. The condition

V ≫ ϕ̇2 can be written as

ϵ =
M2

P

16π

(
V ′

V

)2

≪ 1, (2.40)

which also gives rise to

η =
M2

P

16π

(
V ′′

V

)
≪ 1. (2.41)

Recently, it has been suggested that inflation can be used as a window into particle physics

via the CMB; the ‘cosmological collider’ program. Aspects of this will be discussed further

in Chapter 3 in the context of higher spin supersymmetry. Furthermore, inflation can give

rise to a gravitational production of massive particles due to non-adiabatic fluctuations in a

massive field. We discuss this mechanism as a potential genesis for a model of higher spin

dark matter in Chapter 4.



Part I

Higher Spin Cosmology

20



Chapter 3

Higher Spin Supersymmetry at the

Cosmological Collider: Sculpting

SUSY Rilles in the CMB

3.1 Introduction

We begin our journey of this thesis in the inflationary epoch of the early universe. Infla-

tionary cosmology provides the initial conditions of standard cosmology, and a mechanism

to explain the origin of the large scale structure of the universe. These initial conditions

are manifest in the statistical properties of anisotropies in the cosmic microwave background

(CMB) radiation, which in addition to being measured to an incredible precision [12], are

well described by linearized cosmological perturbation theory. This latter fact means the

statistical properties of the CMB are calculable, and combined with the conservation of the

primordial curvature perturbation on super-horizon scales [13, 14, 15, 16, 17, 18, 19], makes

possible deductions as to the precise particle content of the very early universe.

In particular, while single-field slow-roll inflation predicts adiabatic, Gaussian, nearly-

scale invariant perturbations, interactions of the primordial curvature perturbation with

21
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new fields can generate deviations from Gaussianity, as encoded at lowest-order by the 3-

point function ⟨ζζζ⟩. Remarkably, this is sensitive even to fields that are heavier than the

Hubble scale during inflation [20, 21, 22], and thus probes particles at energy scales far above

those accessible by terrestrial colliders. The study of ⟨ζζζ⟩ as a particle detector has been

termed ‘Cosmological Collider Physics’ [23] (see also [24]), and gained significant momentum

due to the realization that interactions with higher spin bosons, namely the exchange of a

massive spin-s boson, impart a characteristic angular dependence on the non-Gaussianity,

⟨ζ(k1)ζ(k2)ζ(k3)⟩ ∝ Ps(k̂1 · k̂3) + k2 ↔ k3, with Ps(cos θ) the degree-s Legendre polynomial.

The study of higher spins has a long history dating all the way back to the founding of

relativistic field theory 1. Since then, higher spins have gained fame and attention in large

part due to their role in string theory2, as well as their use in exploring the holographic

principle3. Additionally, there is the old conjecture [28, 29, 30, 31] that physics beyond

Planckian energy scales will have higher symmetries emerging. From this point of view the

study of higher spins can be understood as an attempt to classify and realize the various

possibilities for these emerging symmetries. The study of manifestly supersymmetric higher

spins is a natural extension of the above program, both because supersymmetry is a property

of the underlying theory (as in the example of (super)string theory) and, more generally,

because it is compatible with the relevant structures (like the symmetries of S-matrix [32]).

For these reasons we are interested in using irreducible representations of the super-

symmetric extension of appropriate spacetime symmetry groups which involve higher spin

particles. These irreps are classified and labeled by the eigenvalues of the Casimir Operators.

In 4D these are the mass (m) and the superspin (Y) which takes either integer (Y = s) or

half integer values (Y = s + 1/2)4. These representations include multiple representations

of the non-supersymmetric spacetime symmetry group: For the massless case (m = 0) a

1First paper by Majorana in 1932 [25] followed by Dirac, Pauli, Fierz, Wigner and others.
2For example, the UV softness of perturbative string scattering amplitudes originates from the freedom to exchange higher

spin particles. More recently, higher spin fields have played a role in constraining the self-consistency of inflation in string
theory [26, 27].

3All available, consistent, fully interacting higher spin theories (such as Vasiliev’s or CS in 3D) require an AdS background
and a spin two state. Both of these requirements are ingredients of AdS/CFT correspondence.

4For the purpose of this discussion we will ignore infinite sized representations that go under the name of continuous
(super)spin representations [33].
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supermultiplet with superspin Y includes massless particles with spins j = Y + 1/2 and

j = Y, whereas for the massive case (m ̸= 0) a supermultiplet with superspin Y includes

massive particles with spins j = Y + 1/2, j = Y, j = Y and j = Y− 1/2. This implies that

supersymmetrizing the cosmological collider does not simply require adding a single higher

spin fermion, but rather additional fields as well.

As a step towards combining this with inflationary cosmology, we consider an inflationary

sector minimally coupled to a higher spin sector. The inflationary vacuum energy H2 breaks

supersymmetry, generating masses for the inflationary fermionic superpartners, while the

higher spin sector, behaving as ‘spectator fields’ which do not contribute to H2 and hence

do not contribute to supersymmetry breaking, retain their on-shell supersymmetry. Given

the candidate bosonic interactions proposed in the literature [23, 24], the remnant on-shell

supersymmetry of the higher spin sector uniquely determines the interactions of the higher

spin fermions with the primordial curvature perturbation. From this one can compute the

statistical properties of anisotropies in the CMB, and in this way, use the CMB as a detector

for higher spin supersymmetry at the early universe’s collider.

Each higher spin particle, as enumerated by the corresponding irreducible representation,

induces a contribution to the 3-point function ⟨ζζζ⟩, i.e. a signal at the cosmological collider,

and in this work we explicitly calculate the non-Gaussianity due to these contributions. Our

primary result is the prediction of higher spin supersymmetry for the angular dependence

of the non-Gaussianity: we find that the Ps contributions to the non-Gaussianity come in a

characteristic pattern. Namely, every Ps contribution to the non-Gaussianity is accompanied

by a Ps+1 contribution and a tower of associated Legendre polynomials Pm
s . The magnitudes,

while Boltzmann suppressed, are related by supersymmetric considerations.

This chapter is organized in the following way. In Section 2 we build the effective field

theory that will be the framework for our calculations. Section 3, gives a very elementary

review of massive, higher superspin supermultiplets focusing on the spectrum of propagating

spin particles they include. Furthermore it demonstrates how to construct a supersymmetric

extension of the previously studied class of effective field theories. In Section 4, using these
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types of fermionic higher spin terms we consider an effective interacting Lagrangian up to

first order in the higher spin fields. The effective Lagrangian is then used to calculate the

contribution of higher spin fermions to the three point function ⟨ζζζ⟩. The last section, Sec-

tion 5, gives a summary of our results and a short discussion for future directions, including

the tensor-scalar-scalar 3-point function ⟨γζζ⟩, which we compute for higher spin fermion

exchange.

3.2 Setup in Effective Field Theory

In this work we consider a tripartite marriage of 4D,N = 1 supersymmetric higher spins

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] with the effective field theory (EFT)

of inflation [49] and de Sitter supergravity [50, 51, 52]. We construct an effective field theory

of a supersymmetric theory of higher spins in a quasi-de Sitter spacetime with spontaneously

broken supersymmetry and spontaneously broken time-translation invariance. The goal of

this construction is to minimally couple the higher spin sector and the inflationary sector, in

such a way that the on-shell supersymmetry of the higher spin fields is maintained, despite

supersymmetry being broken by the inflationary vacuum energy. The on-shell supersymme-

try of the higher spin sector can then be used in conjunction with the effective field theory

of inflation to dictate the couplings of higher spin fermions and bosons to primordial pertur-

bations. This is distinct from the supersymmetric EFT of inflation [53] in that we do not

focus on the gravity multiplet, but instead on the higher spin supermultiplets.

Our approach allows us to make progress despite not having a full theory of interacting

higher spin de Sitter supergravity. While the setup may seem contrived, it bears some

similarity with the interplay of supersymmetry and anomaly cancellation in string theory.

To appreciate this, one may recall that the interactions between effective field theory, su-

persymmetry and anomaly cancellation are not as direct as one might imagine. In some cases

a complete superspace formulation or component-level supersymmetrization is known such

as in the example of the 4D, N = 1 WZNW-QCD action [54, 55, 56]. In the development of
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Heterotic theory, anomaly cancellation required the addition of a new term in the action a

la the famous Green-Schwartz mechanism [57], and this term required yet more terms (and

years of calculation) in order to restore supersymmetry to the action[58]. Similarly, in Type

II/M theories the gravitational anomaly on D/M-branes induced by loops of chiral fermions

is canceled via anomaly inflow by a higher-derivative correction to the bulk action [59, 60, 61],

and despite the anomaly not playing any direct role in supersymmetry, as for Green-Schwarz

the supersymmetrization of the anomaly-canceling terms requires yet more terms be added,

the calculation of which requires a herculean level of technical skill and detail [62]. The same

issue applies to the SL(2,Z) symmetry of type IIB: restoring the invariance naively broken

by the corrections requires the careful consideration of D-instantons [63] (and again these

new terms must be supersymmetrized).

In each of these cases, a seemingly complete theory is found to be anomalous, and cancel-

lation of the anomalies requires new terms. The new terms should respect the symmetries of

the action, and generically additional terms must be found to accomplish this task. However,

much can be learned even without a complete knowledge of all terms in the theory. For ex-

ample, in the interim period between [59, 60, 61] and [62], the AdS/CFT correspondence was

discovered [64]. Another example of this is of course the field of String Cosmology [65, 66],

which makes no recourse to the precise manner in which SL(2,Z) symmetry is maintained.

With all this in mind, we construct an effective theory along the lines discussed above.

This approach can be illustrated with simple examples involving chiral superfields in

N = 1 supersymmetry. The first non-trivial step is the ‘sequestering’ of supersymmetry

breaking to the inflationary sector, analogous to the Randall-Sundrum scenario [67]. This

can be done in a number of ways; one simple example is to take guidance from [68, 69] and

allow for a non-minimal Kahler potential, as in

W =MX , K = XX̄eY Ȳ + Y Ȳ . (3.1)

This exhibits a vacuum at X = X̄ = Y = Ȳ = 0, wherein supersymmetry is broken by X,

DXW =M . The scalar potential evaluated for X = X̄ = 0 is given by a constant V =M2,
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leaving the scalar component of Y massless: m2
Y ≡ ∂Y Ȳ V = 0 5. Similarly, the fermion

component of Y remains massless since DYW = 0. Thus the breaking of supersymmetry is

not communicated to the on-shell mass spectra of Y , and the Y superfield retains on-shell

N = 1 supersymmetry.

The utility of this approach is the enumeration of interactions and the tree-level couplings,

since despite the sequestering of supersymmetry breaking, there are interactions between X

and Y , which communicate the SUSY breaking at loop-level. Expanding X → δx and

Y → δy, δx, δy ∈ R, one finds the interactions between scalar components,

Lint = δy2(∂δx)2 +M2δy2 δx4 + ..., (3.2)

where the ... are higher order terms. Similarly, there are interactions between the fermionic

components of X and the fermionic components of Y , and these two sets of interactions

will communicate the SUSY breaking to Y . The structure of these interactions is governed

by the underlying supersymmetry, which is spontaneously broken by X, and this structure

dictates the effect that δy interactions can have on δx correlators.

In our setup, the higher spin sector is analogous to Y while the inflationary sector is

analogous to X. It is the above sense in which the HS sector in our setup has on-shell

supersymmetry. This can be used to enumerate the interactions and estimate the amplitude

of correlation functions. However, this is not the full story: The next puzzle piece is the

embedding of supersymmetry and supergravity into cosmological spacetimes.

This can be done via the framework of de Sitter supergravity [50, 51, 52]. This theory

describes the spontaneous breaking of supersymmetry with no field content other then the

gravity multiplet and the goldstino of supersymmetry breaking. The latter can be expressed

as a chiral superfield, S, satisfying a constraint equation,

S2 = 0. (3.3)

5For this simple example, also the scalar component of X is massless, but it can be made massive via an addition to the
Kahler potential δK = (XX̄)2/Λ. The fermionic component of X has mass set by M .



27

This constraint removes the scalar degree of freedom from S, leaving the fermionic component

as the only propagating degree of freedom. The most general superpotential is given by,

W = W0 +MS, (3.4)

since any additional terms involving S vanish by the nilpotency constraint. Supersymmetry

is broken by DSW = M , and the resulting scalar potential, for a minimal Kahler potential

K = SS̄, is a cosmological constant given by

Λ ≡ V =M2 − 3W 2
0 , (3.5)

which is positive for M >
√
3W0, giving a de Sitter spacetime.

Any additional matter sectors in de Sitter supergravity can easily be sequestered from the

breaking of supersymmetry. For example, endowing S with a non-trivial Kahler geometry

[68, 69] and taking W0 = 0,

W =MS , K = eT T̄SS̄ + T T̄ , S2 = 0, (3.6)

supersymmetry-breaking is purely in the S-direction provided that DTW = 0 in vacuum,

which is guaranteed to be the case since DTW ∝ S = 0, leaving the fermionic component of

T massless. Meanwhile, SUSY is broken by S, DSW = M , and the potential is a constant

vacuum energy V = Λ = M , leaving the scalar components of T massless. Thus again, T

retains on-shell supersymmetry.

To connect this with observational cosmology, and anisotropies in the cosmic microwave

background radiation, it is necessary to consider fluctuations. Inflation models can be con-

structed in de Sitter supergravity along the lines of [68, 69, 70, 71]. Consider a superfield Φ

with the real part of the scalar component of Φ identified as the inflaton φ. The fluctuations

of φ in spatially flat gauge are related to the curvature perturbation on uniform density
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hypersurfaces ζ in uniform field gauge via [72]

ζ =
H

φ̇
δφ =

1√
2ϵmpl

δφ, (3.7)

where ϵ ≡ −Ḣ/H2 is the inflationary slow-roll parameter. This defines the primordial power

spectrum, in dimensionless form,

∆2
ζ ≡

k3

2π2
|ζk|2, (3.8)

where ζk is a Fourier mode of the field ζ(x, t).

The curvature perturbation ζ can in turn be related to the Goldstone boson of sponta-

neously broken time-translation invariance, using the machinery of the effective field theory

of inflation [49]. This starts from the realization that the time-dependence of the inflaton

φ(t) breaks the time diffeomorphisms. The Goldstone boson can be included in the theory

by a redefinition of the time-coordinate,

t→ t− π(t, x), (3.9)

with π(t, x) the Goldstone boson. This induces a field fluctuation,

φ(t) → φ(t)− φ̇π(t, x) (3.10)

and thus corresponds to a curvature perturbation,

ζ = −Hπ. (3.11)

This also generates a fluctuation to the 00 component of the metric,

δg00 = −2π̇. (3.12)

The interactions of π, and hence ζ, are dictated by the symmetry structure of the action,

which is broken to invariance under spatial rotations. This allows δg00 to appear explicitly
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in the action, while δgij can only appear with all indices contracted.

Similarly, the interactions of π, and hence ζ, with any additional fields are dictated

by symmetry considerations. For fields with arbitrary spin, σµ1...µs , this leads to effective

interactions of the form [23, 24]

Lint ⊃
λs

Λs−3
∂i1 ...∂isζσ

i1...is +
gs

Λs−2
ζ̇∂i1 ...∂isζσ

i1...is , (3.13)

where indices i runs over spatial directions: 1, 2, 3, and Λ is a UV scale. These terms descend

from higher-dimension operators built out of the metric and its derivatives, and have coupling

constants that are a priori free parameters of the effective field theory. For example, in the

spin-2 case, these terms arise from a coupling of a spin-2 field σ to the extrinsic curvature,
√
−gKµνσµν . The first term in (3.13) descends from δKµνσµν while the second term arises

from including the metric perturbation δg00δKµνσµν [24]. There can also be additional terms

at higher order in π and σ and terms with different distribution of derivatives (up to total

derivatives).

We now arrive back at the tripartite marriage: We wish to connect the higher spin inter-

actions in a quasi-dS space to supersymmetry. To do this, one could simply operate along

effective field theory lines, and introduce interactions consistent with unbroken spatial rota-

tions. However, an interesting possibility is to consider what we can learn from higher spin

supersymmetry, and use this as guidance in constructing our effective field theory describing

the interactions of the higher spin fermions. Towards this end, we now develop the machinery

of higher spin supersymmetry.

3.3 Supersymmetric Higher Spins

The first Lagrangian description of supersymmetric, massless, higher spins in 4D Minkowski

space was done in [73, 74], using components with on-shell supersymmetry. A natural ap-

proach to the off-shell formulation is to use the superspace and superfield methods (see

e.g.[75, 76]). A superfield description of free supersymmetric massless, higher spin theories
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was presented for the first time in [34, 35, 36] for both Minkowski and AdS spaces. This

approach has been further explored in [37, 38, 39, 40]. Later studies of free supersymmetric,

massless higher spin supermultiplets include [41, 42, 43, 44].

On the other hand, the Lagrangian description of 4D massive supersymmetric spins for

arbitrary values of spin is only known in the component formulation with on-shell super-

symmetry [45, 46], whereas the off-shell, superspace description has been developed up to

superspin Y = 3/2 supermultiplet [47, 48]. Nevertheless, independently of what the proper

Lagrangian description is, we know that there are two types of such irreps (i) the integer

superspin Y = s supermultiplets and (ii) the half integer superspin Y = s+ 1/2 supermulti-

plets. Moreover we know that on-shell they describe two bosonic and two fermionic massive

higher spin particles with spin values j = Y+ 1/2, j = Y, j = Y and j = Y− 1/2. The half

integer superspin Y = s+ 1/2 supermultiplet, consisting of components

Y = s+ 1/2 : (s+ 1, s+ 1/2, s+ 1/2, s) (3.14)

and its on-shell, superspace description is given in terms of a real, bosonic superfieldHα(s)α̇(s)
6

with the following on-shell conditions:

DαsHα(s)α̇(s) = 0 , 2Hα(s)α̇(s) = m2Hα(s)α̇(s) , (3.15)

where Dαs is the superspace covariant derivative. Alternatively, the massive, integer Y = s

superspin supermultiplet, comprised of components,

Y = s : ( s+ 1/2, s, s, s− 1/2) (3.16)

has an on-shell superspace description in terms of a fermionic superfield Ψα(s)α̇(s−1) with the

6The notation α(s) signifies a string of s undotted indices α1α2...αs which are symmetrized. This type of indices are the
spinorial indices of a Weyl spinor of one chirality and take values 1 and 2 in 4D. Similarly for α̇(s), where α̇ are the spinorial
indices of the opposite chirality Weyl spinor and take also two values 1̇ and 2̇ in 4D.
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on-shell equations:

DαsΨα(s)α̇(s−1) = 0 , D̄α̇s−1Ψα(s)α̇(s−1) = 0 , i∂αs

α̇sΨ̄α(s−1)α̇(s) +mΨα(s)α̇(s−1) = 0 . (3.17)

We start with the assumption that the higher spin sector respects supersymmetry and

therefore can be organized into higher spin supermultiplets. This is extremely useful because

supersymmetry will guide us to the introduction of higher spin fermions which have been

neglected so far. Once their contribution is better understood, one may choose to drop the

assumption of supersymmetry and study these fermionic contributions independently.

The strategy for finding the fermionic higher spin contributions is: (a) Start with the

family of effective actions that lead to (3.13) after breaking the time translation invariance,

and elevate them to superspace. This will automatically introduce all fermionic partners.

(b) We project back down to a component description to reveal the interactions of the higher

spin fermions. (c) Finally, we break supersymmetry appropriately in the inflaton sector.

The first step is to embed the bosonic, massive spin s particle in a massive higher spin

supermultiplet described by some higher spin superfield. As we have seen, there are two

ways of doing that, we can either use the integer or the half-integer superspin supermultiplet,

with components (3.16) and (3.14) respectively. For concreteness, we make the latter choice

(Y = s + 1/2) which means that our spin s particle will be accompanied by one bosonic

higher spin particle j = s + 1 and two more fermionic higher spin particles j = s + 1/2. In

this choice the highest propagating spin is s + 1. Similarly we embed the scalar curvature

perturbation field in a scalar supermultiplet, which will of course introduce its fermionic

superpartner, which we refer to as the inflatino 7. A simple choice to describe such a scalar

supermultiplet is to use a chiral superfield Φ.

Secondly, using superspace, we write quadratic and cubic interaction terms, between

Hα(s)α̇(s) and Φ which are linear in the higher spin superfield. The family of such superspace

7In general the fermionic partner of the curvature perturbation field can be identified as a linear combination of the inflatino
and other fermions in the theory.
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effective Lagrangians takes the form:

L = Hα(s)α̇(s)Iα(s)α̇(s) + Hα(s)α̇(s)Jα(s)α̇(s) (3.18)

where Iα(s)α̇(s) is linear in Φ and generates the quadratic interactions part, whereas Jα(s)α̇(s) is

quadratic in Φ and generates the cubic 8 part of the interactions. The most general ansatzes

for Iα(s)α̇(s) and Jα(s)α̇(s) are,

Iα(s)α̇(s) = ∂(s)(b Φ + b∗ Φ̄), (3.19)

and

Jα(s)α̇(s) =
s∑

p=0

{
dp ∂

(p)Φ ∂(s−p)Φ̄ + fp ∂
(p)DΦ ∂(s−p−1)D̄Φ̄ + gp ∂

(p)Φ ∂(s−p)Φ + g∗p ∂
(p)Φ̄ ∂(s−p)Φ̄

}
.(3.20)

Using this as a starting point, one can project the superspace Lagrangian to components

and find the corresponding field theory (see [75, 76] and detailed examples can be found in

[40, 80]). The result will include the entire spectrum of fields of the supersymmetric theory.

In addition to the propagating spins, this includes the set of auxiliary fields required by su-

persymmetry in order to balance the bosonic and fermionic degrees of freedom and also make

the symmetry manifest. However, these auxiliary fields do not have any dynamics and can

be integrated out. By doing so, we obtain an effective theory with on-shell supersymmetry

which includes two copies of the previously discussed bosonic higher spin interactions. That

is because there are two higher spin bosons, one with spin s and one with spin s + 1. Ad-

ditionally, we obtain terms that depend on the higher spin fermions (ψα(s+1)α̇(s), ξα(s+1)α̇(s))

and the ‘inflatino’ (χα). The interactions are given by,

LBosonic = hα(s+1)α̇(s+1)

[
λs+1

Λs−2 ∂
(s+1)ζ +

s+1∑
p=0

κs+1
p

Λs−2 ∂
(p)ζ ∂(s+1−p)ζ + ...

]
(3.21)

8The reason why we are considering massive higher spin supermultiplets is a consequence of the Higuchi bound [77, 78] plus
the possibility of higher order mass-like interaction terms for the higher spin superfields, which we do not consider in this work.
If that was not the case one should take into account the gauge symmetry of the higher spin (super)fields. The result of that
would be that, the spectrum of the half integer supermultiplet will collapse from (s+1, s+1/2, s+1/2, s) to (s+1, s+1/2)
and more importantly the generator of cubic interactions Jα(s)α̇(s) in (3.18) will become conserved higher spin supercurrents.
Such supercurrents have been found in [79, 80, 81, 82, 83, 84, 85, 86, 87] and their structure is consistent with (3.20).
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+hα(s)α̇(s)

[
λs

Λs−3 ∂
(s)ζ +

s∑
p=0

κs
p

Λs−3 ∂
(p)ζ ∂(s−p)ζ + ...

]

LFermionic = ψα(s+1)α̇(s)

[
rs

Λs−1 ∂
(s)χα + λs

Λs−1 χα∂
(s)ζ +

s∑
p=1

vp
Λs−1 ∂

(p)χ ∂(s−p)ζ + ...

]
+ h.c.(3.22)

+ξα(s+1)α̇(s)

[
ts

Λs−1 ∂
(s)χα + λs

Λs−1 χα∂
(s)ζ +

s∑
p=1

wp

Λs−1 ∂
(p)χ ∂(s−p)ζ + ...

]
+ h.c.

where ... indicates additional and higher-order terms.

As discussed in section 3.2, on-shell supersymmetry should be preserved only in the higher

spin sector, and not in inflaton sector which breaks supersymmetry with the inflationary

vacuum energy H2. In our effective Lagrangian this information can be entered by hand

by removing any correlation between the coupling constants of the inflatino and those of

the inflaton. For example we can assign the inflatino χ a mass mχ ≳ H. Typically one

would then integrate out the inflatino, thereby eliminating all the contributions at linear

order in the higher spin fermions (3.22). However it is the inclusion of such heavy fields

that we are explicitly after in this work. Indeed, the higher spin fields themselves have mass

m >
√
s(s− 1)H by the Higuchi bound [77, 78]. The breaking of supersymmetry will also

induce differing loop corrections to the on-shell couplings of ζ to bosonic (3.22) and fermionic

(3.22) higher spin fields. Depending on the precise details of the model, there may also be

classical corrections to these parameters, for example, from a quartic interaction involving

an additional scalar field that gains a VEV in the SUSY-breaking vacuum. For our analysis,

we assume for simplicity that there are no such classical corrections, and that these couplings

are equal at tree level. This does not alter the analysis in any way other then the overall

prefactor of the result.

To make contact with the framework of effective field theories within we have to work,

as presented in section 3.2, we must break the time translations part of the Poincaré group

and write interaction terms which include fermionic higher spin particles up to linear order.

From equation (3.22), and taking into account contributions coming from the
√
−g part of
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the action, one has to consider the following fermionic interaction Lagrangian for a spin-

s+ 1/2 field:

L ⊃ λs
Λs−1

∂i1...isζχ̄ψ
i1...is +

gs
Λs
ζ̇∂i1...isζχ̄ψ

i1...is +
κs
Λs
ζ̇∂i1...isχ̄ψ

i1...is + c.c., (3.23)

where the coupling to ζ̇ enters from the metric perturbation δg00, as in equation (3.13).

The full fermionic interaction Lagrangian is composed of copies of (3.23) for the appropriate

fermions in the supermultiplet. Armed with this, we can now return to the cosmological

collider.

3.4 Higher Spin Supersymmetry at the Cosmological Collider

The statistical correlations of temperature fluctuations in the cosmic microwave background

descend from the initial conditions prepared for it by inflation. This can be computed via

the Schwinger-Keldysh formalism, colloquially called the ‘In-In’ formalism, in which the

choice of integration contour allows for ignorance as to the future evolution of the universe.

Introduced to cosmology in [88], there are now many excellent reviews on this topic, see e.g.

[89, 90, 91], and see [92] for a textbook treatment of the field theory aspects.

Correlation functions can be computed in this framework by splitting the Hamiltonian

into a free Hamiltonian H0 and interaction Hamiltonian Hint. From this, one can define

the interaction picture fields as having propagator determined solely by H0, and correlation

functions of operators built from the full fields can be computed as contractions of the

interaction picture fields with the interaction Hamiltonian.

More precisely, the expectation value of an operator W is given by,

⟨W (t)⟩ = ⟨
[
T̄ei

∫ t
−∞(1−iϵ) H

I
int(t

′)dt′
]
W I(t)

[
Te−i

∫ t
−∞(1+iϵ) H

I
int(t

′′)dt′′
]
⟩, (3.24)

where HI
int and W

I are the interaction Hamiltonian and the operator W built out of interac-

tion picture fields. The simplest quantity one can compute from this is the expectation value

given a single insertion of the interaction Hamiltonian. In that case, the above expression
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reduces to

⟨W (t)⟩ = −2Re ⟨ iW I(t)

∫ t

−∞(1−iϵ)

HI
int(t

′)dt′ ⟩+ ..., (3.25)

where the ... corresponds to additional insertions of Hint.

For the case of the curvature perturbation 3-point function, W = ζ3, this picks out the

intrinsic non-Gaussianity, first computed in [88]. This is the 3-point function induced by the

self-interactions of ζ in an inflationary background. The result is given by

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ = (2π)3δ(k1 + k2 + k3)
H4

m4
pl

1

(k1k2k3)3
1

4ϵ2

·

[
η

8

∑
k3i +

ϵ

8

(
−
∑

k3i +
∑
i ̸=j

kik
2
j +

8

k1 + k2 + k3

∑
i>j

k2i k
2
j

)]
. (3.26)

This is typically expressed in the limit that one of the momenta is much smaller than the

other two, in what is referred to as ‘squeezed limit’. The result then takes a simplified form

lim
k1→0

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ = (2π)3fNLδ(k1 + k2 + k3)
H4

16ϵ2m4
pl

1

(k1k2k3)3

∑
k3i , (3.27)

which corresponds to ‘local shape’ non-Gaussianity [93] with amplitude fNL given by

fNL =
η

2
+ ϵ. (3.28)

The inflationary slow-roll conditions ϵ, η ≪ 1 thus imply the intrinsic non-Gaussianity in

single-field slow-roll inflation is extremely small, fNL ≪ 1.

Additional insertions of Hint capture the effect of particle exchange. Given the slow-roll

suppression of the intrinsic non-Gaussianity, this can easily be the dominant effect. It is in

this sense that CMB non-Gaussianity is a particle detector, with inflation as the cosmological

collider.

In this work we are concerned with the non-Gaussianity induced via the exchange of a

higher spin particle, as described by the insertion of two interaction Hamiltonians. This is
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(a) Exchange of a higher spin Fermion (b) Exchange of a higher spin boson

Figure 3.1: In-In formalism Feynman Diagrams for exchange of a single higher spin particle.

captured by the quadratic terms in the expansion of (3.24), see e.g. [94],

⟨W (t))⟩ =
∫

dt′
∫

dt′′⟨HI(t′)W (t)HI(t′′)⟩ − 2Re

∫
dt′
∫

dt′′⟨W (t)HI(t′)HI(t′′)⟩,(3.29)

with appropriate iϵ prescriptions in the integrations.

3.4.1 Effective Action and Relevant Interactions

We consider an effective action describing the interactions of a scalar ζ, a massive spin-

1/2 field χ, and the propagating component fields of the massive, half-integer superspin

Y = s+ 1/2 supermultiplet, as they have been discussed previously. We consider our action

as an expansion in higher spin fields, keeping up to linear order terms. We consider

L = Lζ + Lχ + Lhs +O(hs2)... (3.30)

In this work we are particularly interested in the impact of the fermionic higher spin

particles, which has thus far been left unstudied. Motivated from the discussion in section 3

and (3.23), we take the Lagrangian of one fermionic spin-s+1/2 particle ψ interacting with

a dimensionless scalar ζ and the spin-1/2 particle χ,

L ⊃ λs
Λs−1

∂i1...isζχ̄ψ
i1...is +

gs
Λs
ζ̇∂i1...isζχ̄ψ

i1...is + c.c., (3.31)



37

where λs and gs are dimensionless coupling constants, Λ is a UV cutoff, and fermionic indices

are contracted between χ̄ and ψ. For simplicity we have taken κs = 0 in (3.23), which leads

to the same angular dependence for ⟨ζζζ⟩ as the two terms above. The relevant Feynman

diagrams, or rather their equivalent in the Schwinger-Keldysh (“in-in” formalism) are shown

in Figure 3.1.

3.4.2 Higher Spin Fields in de Sitter Space

To evaluate the three-point function in the Schwinger-Keldysh formalism, we first must have

expressions for the free fields in de Sitter space.

To begin with, a scalar field ϕ is quantized in curved space as,

ϕ(x, t) =

∫
d3k

(2π)3
ϕkake

ik·x + h.c. . (3.32)

The coefficients ϕk(k, t) are referred to as “mode functions”. The field ϕ(x) and mode

functions ϕk are related to two-point correlation functions as follows. The position-space

two point function of a free-field ϕ is given by,

⟨ϕ(x)ϕ(y)⟩ =
∫

d3k

(2π)3
⟨ϕkϕk⟩ eik(x−y) =

∫
d log k

k3

2π2
|ϕk|2 eik(x−y) ≡

∫
d log k∆2

ϕ(k) e
ik(x−y).

(3.33)

The last equality defines the dimensionless power spectrum, ∆2
ϕ(k) ≡ k3

2π2 |ϕk|2. A special case

of the above is a scale-invariant spectrum. In this case, ∆2
ϕ(k) is a constant, which owes its

name to the implied scaling symmetry of the two-point function, ⟨ϕ(x)ϕ(y)⟩ = ⟨ϕ(λx)φ(λy)⟩.

During inflation, this scaling symmetry of a massless scalar has its origins in the dilatation

symmetry at late times in de Sitter space.

An important example is the curvature perturbation on uniform density hypersurfaces,

ζ. This has mode function given by,

ζk ≃
H

mpl

√
4ϵk3

(1− ikη)eikη, (3.34)



38

where ϵ = −Ḣ/H2 ≪ 1 is the inflationary slow-roll parameter, and η is conformal time

dη ≡ a−1dt, which in de Sitter space is given by η = −1/(aH). This solution is found by

explicitly solving the Klein-Gordon equation in de Sitter space. Inflation is a small deviation

from de Sitter space, which converts the scaling with k to k−3/2+(ns−1)/2, where ns defines

the spectral index of the power spectrum,

∆2
ζ ≡

k3

2π2
|ζk|2 ∝ kns−1. (3.35)

Another important example is massless spin-2, e.g. the graviton. Expanded in helicity states

λ = ±2, the mode functions are given by [65]

γλk =

√
2H

mpl

1√
k3

(1 + ikη)e−ikη, (3.36)

which, importantly, differs from the curvature perturbation (3.34) in part by an factor of

1/
√
ϵ. The power spectrum of primordial gravitational waves on large scales kη → 0 is then

given by [65],

∆2
γ ≡

∑
λ

k3

2π2
|γλk | =

2

π2

H2

m2
pl

, (3.37)

which is a direct probe of the energy scale of inflation [95]. The ratio of the tensor power

spectrum (3.37) to scalar power spectrum, termed the ‘tensor-to-scalar ratio’, is given by

r ≡
∆2

γ

∆2
ζ

= 16ϵ, (3.38)

where again ϵ≪ 1 is the inflationary slow-roll parameter.

In contrast with these two examples, for massive particles the two-point function and

hence mode functions are suppressed on large scales and at late times. For a minimally-

coupled massive scalar field σ, the two-point function has the exact solution[96]

⟨σk(η)σk(η′)⟩ =
π

4
H2(ηη′)3/2e−πµH

(1)
iµ (−kη)H(1)∗

iµ (−kη′), (3.39)

where µ ≡
√
m/H2 − 9/4, andH

(1)
iµ is the Hankel function of the first kind. This corresponds
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to a mode function σk ∼ Hη3/2e−πµ/2 = a(η)−3/2e−πµ/2/
√
H, the latter equality using η =

−1/aH during inflation.

Now we turn to massive particles with spin. These are constrained by the Higuchi bound

to have mass satisfying m2 ≥ s(s−1)H2. As for scalars, the isometries of dS fixes the scaling

of the two-point correlation function of spinning fields [23], which takes the form

⟨Os(k)Os(k)⟩ ∝ k2∆−3, (3.40)

where all Lorentz indices are contracted with s copies of a null vector, and ∆ is the scaling

dimension of the field,

∆ =
3

2
− iµs , µs =

√
m2

H2
−
(
s− 1

2

)2

. (3.41)

For heavy fields, or more precisely the “principle series” [96], one has Re∆ = 3/2, and the

mode function is simply

⟨Os(k)Os(k)⟩ ∝ k−2iµs . (3.42)

The prefactors follow from dimensional analysis, and intuition from solving the Klein-Gordon

equation for heavy fields, which leads to an additional e−πµs suppression. Importantly, this

applies to general operators with spin, and not to just to bosonic (integer spin) operators, but

to fermionic (half-integer spin) as well, and the two-point function of half-integer operators

is similarly constrained to scale as k2∆−3 as in (3.40).

In this work we will focus on the angular dependence of correlation functions. Given this,

for simplicity we ignore the eiµs phase, though we note that this can lead to oscillations in

k-space [24], and thus is of potential interest. Dropping this phase, the mode functions for

spin-s and spin-(s+ 1/2) are at late times given by

Os(k, η) ≃
a(η)−3/2

√
H

e−πµs/2 , Os+1/2(k, η) ≃ a(η)−3/2e−πµs+1/2/2. (3.43)



40

The scaling with a(η) follows from solving the mode-function equation of motion explicitly9,

while the differing factors of H follow from dimensional analysis10. This matches with the

known result for a heavy spin-1/2 particle in de Sitter space[97]: a spin-1/2 fermion χ with

mass m > H has mode function given by,

χk ≃ a(η)−3/2e−πmχ/2H . (3.45)

Now we can make this more precise. A massive spin-s boson may be split into helicity

components as,

σµ1...µs =
s∑

λ=−s

σλ
µ1...µs

, (3.46)

and then decomposed into fields of n polarization directions by projecting the spinning field

σµ1...µs onto spatial slices, i.e. via the decomposition

σi1...inη...η =
∑
λ

σλ
n,sε

λ
i1...in

, (3.47)

where η is the time coordinate. Here, the s index refers to the spin, n refers to the ‘spatial

spin,’ and λ is the helicity of the field. Thus ελis...in is a normalized, totally symmetric tensor

with spin s and helicity λ. The σλ
n,s satisfy σ

λ
n,s = 0 for n < |λ| [24].

The quantity that appears in scattering with scalars is λ = 0 and n = s (for more details

see [24] or Appendix 3.A), i.e. the quantity σ0
s,s. Explicitly solving for the mode function,

one finds [24]

σ0
s,s(k, η) ≃

a(η)s−3/2

√
H

e−πµs/2. (3.48)

9In solving the Klein-Gordon equation explicitly, the scaling with a(η) depends on the number of upper vs. lower indices, but
this dependence cancels when all indices are contracted insider of correlation functions. For example, mode functions defined
with respect to Os with all lower indices are

Oi1....is (k, η) ∝
a(η)s−3/2

√
H

(3.44)

See (B.76) and (C.7) of [96]: Using η=1/(aH) and Nλ=(1/
√
k)(k/H)s−1, one finds that

Nλ(kη)
3/2−s=(1/

√
k)(k/H)s−1(k/aH)3/2−s =as−3/2/

√
H.

10Bosons are defined as having mass term m2(Ob(x))2 and hence mass dimension 1 while fermions are defined as having mass
term mŌf (x)Of (x) and hence mass dimension 3/2. The corresponding mode functions have dimension −1/2 and 0
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Moreover, for the above λ = 0 helicity state, one has the important relation,

q̂i1 q̂i2 ...q̂isε
λ=0
i1...is

(k̂, ε) = Ps( cos θ), (3.49)

with θ defined as the angle between q̂ and k̂. This follows from more general relations for

spin-s polarization vectors, which are detailed in the thesis [96], and given in Appendix 3.A.

Similar to the bosonic case, a massive spin-(s + 1/2) 4-component fermion may be split

into helicity components as,

ψα
µ1...µs

=
∑
λ

ψλα
µ1...µs

, (3.50)

where α is a fermionic index and µ1...µs are bosonic indices, and projected onto spatial slices

via the decomposition,

ψα
i1...inη...η

=
∑
λ

ψλ
n,sϵ

λα
i1...in

, (3.51)

where again η is the time coordinate. We construct the spin-(s + 1/2) polarization vectors

as a tensor product of spin-1/2 and spin-s. That is, we decompose,

ϵλαi1...is =
∑
λ′

ξαλ′ελi1...is , (3.52)

with ξλ′ a spin-1/2 eigenspinor of helicity λ′ and ελ the spin-s polarization vector of helicity

λ. The general decomposition of the fermion field can then be written as,

ψα
i1...inη...η

=
∑
λ,λ′

ψλλ′

n,s ϵ
λ
i1...in

ξλ
′α. (3.53)

Similar to the bosonic case, the fermions can be split into helicity states, and it is the

helicity 0 ± 1/2 which contributes to the loop in Figure 3.1a. More explicitly, the relevant

mode function has the form,

ψ0λ′

s,s ≃ a(η)s−3/2e−πµs/2. (3.54)

One can use this, along with the mode functions (3.45) and (3.34), and the interaction

Lagrangian (3.31), to compute correlation functions of ζ involving intermediate states of
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fermions.

3.4.3 Non-Gaussianity from higher spin Particle Exchange

The correlator we wish to compute is of three ζ(k, η) at lates times, η → 0, and in the limit

that one of the momenta is small k1 ≪ k2, k3, i.e. the quantity,

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩, (3.55)

given the insertion of interaction vertices between the scalar ζ and higher spin fields. The

result for exchange of a higher spin boson are given in [23, 24]. While [23] focused on the

scaling and angular dependence, [24] explicitly solved the Klein-Gordon equation for higher

spin bosonic fields and from this was able to compute all expressions exactly. In our analysis

we will follow [23] and focus on the amplitude and angular dependence.

The 3-point function resulting from higher spin boson exchange, diagram 3.1b, is given

by[24],

lim
k1≪k3,η→0

⟨ζ(k1)ζ(k2)ζ(k3)⟩
∆4

ζ

= αs∆
−1
ζ × Ps(k̂1 · k̂3)× I(s)(µs, cπ, k1, k3, k3)δ(

∑
ki) + (k2 ↔ k3) ,

(3.56)

where I(s)(µs, cπ, k1, k3, k3) is a complicated function of momenta given in the Appendices

of [24], and Ps the Legendre polynomial. This is characterized by a dimensionless coupling

αs, which in the notation of our (3.13), and taking the Goldstone boson parameters of [24]

to be cπ = 1 and fπ = mpl, is given by,

αs = λsgs

(
Λ

mpl

)6(
H

Λ

)2s+1

. (3.57)

This corresponds to a non-Gaussianity parameter of

fNL ≡ 5

18

⟨ζkζkζk⟩
Pζ(k)2

∼ e−πµsαs∆
−1
ζ , (3.58)
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with shape function

lim
k1≪k3

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ ∝
1

k31k
3
3

(
k1
k3

)2

, (3.59)

and a characteristic angular dependence,

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ ∝ Ps(cos θ), (3.60)

with θ the angle between k1 and k3.

We now turn to the fermions. Before we proceed, it is important to further clarify and em-

phasize the procedure. We approximate the fermionic mode functions by their super-horizon

scaling (3.54), which neglects the sub-horizon oscillatory behavior of the exact solution (see

[24] for the bosonic results). This is sufficient to compute the angular dependence of the

3-point function, as is our aim, but not the k-dependence and thus not the shape function.

Additionally, we regulate the fermionic loop of Figure 3.1a by imposing a UV cutoff, which

we choose to be the Hubble scale for self-consistency with our approximate form of the mode

functions. The choice of cutoff does not qualitatively affect the result, and can be undone

by a simple replacement H → ΛUV in the loop integral.

To compute the fermion diagram Figure 3.1a there are two interaction Hamiltonians,

which follow from the Lagrangian (3.31), given by

Hint1 =
λs

Λs−1

∫
d3x

1

a2s−3
∂i1...isζ χ̄ ψ i1...is + h.c., (3.61)

and

Hint2 =
gs
Λs

∫
d3x

1

a2s−2
ζ ′∂i1...isζ χ̄ ψ i1...is + h.c., (3.62)

with i indices summed over, and where ′ indicates a derivative with respect to conformal

time. The 3-point function of three ζ(k, η), at late times η → 0, is given by

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ = Re4⟨
[
ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)

∫
a(η′)dη′Hint1(η

′)

∫
a(η′′)dη′′Hint2(η

′′)

]
⟩,

(3.63)
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where we focus on the second term in (3.29), which has the same angular dependence as

the first term, the two terms differing in calculation only by the distribution of complex

conjugation among the resulting ζ mode functions. The additional factor of 2 as compared

to (3.29) is due to the two possibilities of time-ordering H1 and H2.

To compute this we expand Hint1 and Hint2 in momentum space, which results in 7

momentum integrals, d3q1....d
3q7. We define the momenta as follows: let k1 be the ζ in the

left interaction vertex of Figure 3.1a, and ℓ the momentum of χ in the loop and ℓ + k1 the

momentum of ψ in the loop. The ‘outgoing’ ζ momenta are defined as k2 and k3; under

Wick contractions we will need to sum over k2 → k3.

This gives, approximating the mode functions by their forms given in section 3.4.2,

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ =
λsgs
Λ2s−1

Re 8ζk1(0)ζk2(0)ζk3(0)

∫
dη′

a(η′)s−1

∫
dη′′

a(η′′)s
ζ∗k1(η

′)ζ
′∗
k2
(η′′)ζ∗k3(η

′′)

·|k1|s|k3|se−πµse−πmχ/Hδ(
∑

ki)

∫
d3ℓ

(2π)3
Ps(k̂1 · q̂)Ps(k̂3 · q̂)

(∑
λ

ξλ(ℓ̂)ξ†λ(q̂)

)2

+ k2 ↔ k3,(3.64)

where q⃗ ≡ ℓ⃗+ k⃗1. We can factorize this into three pieces:

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ ≡ ReI1I2I3, (3.65)

with time-integrals,

I1 ≡ ζk1(0)ζk2(0)ζk3(0)

∫
dη′

a(η′)s−1

∫
dη′′

a(η′′)s
ζ∗k1(η

′)ζ
′∗
k2
(η′′)ζ∗k3(η

′′), (3.66)

momentum integrals,

I2 ≡
∫

d3ℓ

(2π)3
Ps(k̂1 · q̂)Ps(k̂3 · q̂)

(∑
λ

ξλ(ℓ̂)ξ†λ(q̂)

)2

, (3.67)

and an overall prefactor of

I3 ≡
λsgs
Λ2s−1

8|k1|s|k3|se−πµse−πmχ/Hδ(
∑

ki). (3.68)
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The loop integral I2 is UV-divergent, and we apply a cutoff at H,

I2 ≃ H3

∫
dΩPs(k̂1 · q̂)Ps(k̂3 · q̂)

(∑
λ

ξλ(ℓ̂)ξλ(q̂)

)2

, (3.69)

with q̂ now given by

q̂ =
Hℓ̂+ k1k̂1√
H2 + k21

≃ ℓ̂, (3.70)

where the latter equality follows working in the limit k1 → 0. This simplifies the sum over

spin-1/2 helicities, as the ξ(k̂) are normalized to 1. Thus we have,

I2 ≃ H3

∫
dΩ

(2π3)
Ps(k̂1 · q̂)Ps(k̂3 · q̂). (3.71)

The remaining integral over angles can be performed analytically. Defining k1 as making

angle θ1 = 0 in the {x, y} plane, and k3 as making angle θ13, such that k̂1 · k̂3 = cos θ13,

q̂ · k̂1 = cos θ, q̂ · k3 = cos(θ − θ13), the integral can be written as,

I2 ≃
H3

8π2

∫
d cos θ Ps(cos θ)Ps(cos(θ − θ13)). (3.72)

We then use the identity11,

Pℓ(cos(a− b)) =
ℓ∑

m=−ℓ

Pm
ℓ (cosa)Pm

ℓ (cosb)
(ℓ−m)!

(ℓ+m)!
, (3.73)

from which one can evaluate the integral explicitly. The result is

I2 =
H3

8π2

s∑
m=−s

cmP
m
s (cos θ13), (3.74)

with coefficients

cm =
(s−m)!

(s+m)!

∫ 1

−1

dxPs(x)P
m
s (x) =


2(−1)m/2 s!(2s)!

(1+2s)!(s+m)!
, if m even

0, ifm odd.

(3.75)

11Using the spherical harmonics addition theorem with ϕ1 = ϕ2 = 0.
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Finally we can perform the time integration. Using the explicit ζ mode function (3.34), one

can analytically compute these integrals to find,

I1 =
H2s+5

m6
pl(4ϵ)

3

1

(k1k2k3)3
(1 + s)Γ(s)Γ(2 + s)

k32
ks1(k2 + k3)s+3

(
1 + (s+ 3)

k3
k2

)
. (3.76)

Putting the pieces together, we find for the non-Gaussianity,

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ ≃
1

64π
λsgs

H6

m6
plϵ

3
(1 + s)Γ(s)Γ(2 + s)

(
H

Λ

)2s−1

e−πµse−πmχ/H

· δ(
∑
ki)

(k1k2k3)3
ks3

(k2 + k3)s
k32H

3

(k2 + k3)3

(
1 + (s+ 1)

k3
k2

) s∑
m=−s

cmP
m
s (k̂1 · k̂3) + k2 ↔ k3 (3.77)

which can be brought to a canonical form,

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ ≃ As+1/2
∆ζ(k)

4

k6
S(k1, k2, k3)δ(

∑
ki)

s∑
m=−s

cmP
m
s (k̂1 · k̂3) + k2 ↔ k3,

(3.78)

where ∆2
ζ is the dimensionless primordial power spectrum, S(k1, k2, k3) is a function of the

ratios of ki, and A is all remaining prefactors.

The angular dependence of the non-Gaussianity is given by,

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩ ∝
s∑

m=−s

cmP
m
s (k̂1 · k̂3). (3.79)

with the coefficients cm given by (3.75). The schematic form of the shape function S can be

read off from (3.77), but the exact expression requires solving for the exact mode-functions

of the higher spin particles in de Sitter space.

The corresponding non-Gaussianity parameter is given by,

fNL ≃ λsgs(1 + s)Γ(s)Γ(2 + s)

(
H

Λ

)2s−1

e−πµse−πmχ/H∆2
ζ , (3.80)

where the factor Γ(s)Γ(2 + s) is a relic of not having normalized the mode functions; we

expect that as in the bosonic case, equation (A.77) of [24], the normalization of the exact
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solution of the mode functions scales with 1/Γ(s)2, cancelling the Γ(s) dependence of the 3-

point function. The robust result is the scaling with the couplings λs, gs, the ratio H/Λ, and

the Boltzmann suppression due to both the higher-spin fermion and the spin-1/2 fermion,

e−πµse−πµχ .

3.4.4 The predictions of Higher Spin Supersymmetry

We can now read-off result for the three-point function ⟨ζζζ⟩ given the higher spin super-

multiplet. We simply add the contributions from the particle content of the half-integer

superspin Y = s + 1/2 supermultiplet (3.14), given the non-Gaussianity from each spin

derived in the previous section. The result is

⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩HS−SUSY = ⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩s+1

+2× ⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩s+1/2

+⟨ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)⟩s (3.81)

∝ Ps+1(k̂1 · k̂3) ,
s∑

m=−s

Pm
s (k̂1 · k̂3) , Ps(k̂1 · k̂3)(3.82)

where the last line indicates that the three terms in (3.81) have angular dependence given

by Ps+1,
∑

m P
m
s , and Ps respectively. The relative amplitudes are determined by the mass

spectrum of the theory.

The quantitative amplitude of this signal is, as in the non-supersymmetric bosonic case

[24], generally small fNL ≲ O(1). The primary obstruction making fNL any larger than this

is perturbativity of the interaction strength, which at the very least, requires λs(H/Λ)
s−1 ≪ 1

and gs(H/Λ)
s ≪ 1, as these are the effective interaction strengths, e.g. appearing in (3.64).

Non-Gaussianity of this size is not what would traditionally be referred to as ‘large’, but it

can be considerably larger than the slow-roll suppressed single-field slow-roll value, and is

within reach for CMB-S4 [95].

The analysis can be repeated for the case of embedding the higher spin particles inside

the integer superspin supermultiplet (3.16) instead of the half integer one we have used as
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an example. In that case the particle contained is ( s+1/2, s, s, s− 1/2) therefore one can

immediately read off the result. The known Ps(cos θ) dependence of spin-s bosons [23, 24]

is accompanied by two towers of associated Legendre polynomials,
∑

m P
m
s and

∑
m P

m
s−1,

from the s+ 1/2 and s− 1/2 fermions respectively.

3.5 Discussion

Precision measurements of the cosmic microwave background provide an unprecedented op-

portunity to search for new physics in the early universe. The 3-point function of primordial

curvature perturbations, ⟨ζζζ⟩, colloquially referred to as the non-Gaussianity, is sensitive to

any new degrees of freedom, including those that are naively too heavy to be excited. One of

the most striking results of this research program is the non-Gaussianity due to higher spin

particles, and in particular the angular dependence ⟨ζζζ⟩ ∝ Ps(cos θ) due to the exchange of

a single spin-s boson [23]. This prompted a flurry of activity, and possibilities for observing

[98, 99, 100, 101, 102, 103, 104, 105, 106] the signature of higher spin particles.

Higher spin fermions have heretofore been left out of this discussion, but insofar as

higher spin theory is understood as a limit of quantum gravity, namely superstring the-

ory, fermions are built into the theory. This is required by the supersymmetric nature

of the theory, which is itself a powerful tool for the incorporation of fermions into string

theory, e.g. the construction of fermionic D-brane actions is accomplished by relying on

the underlying supersymmetry of the theory [107, 108, 109, 110]. Guided by this, and

building on recent developments in the construction of supersymmetric higher spin theories

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48], we have studied the imprint of higher

spin supersymmetry at the cosmological collider.

The main result of this chapter is a characteristic pattern of the angular dependence of

⟨ζζζ⟩ due to the exchange of higher spin superpartners. We find the Ps(cos θ) signature of

higher spin boson exchange, with θ the angle between the short and long wavelength modes,

comes along with a Ps+1(cos θ) and a tower of associated Legendre polynomials, arising from
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a spin-s+1 boson and a pair of spin-s+1/2 fermions. For a variant description of higher spin

supermultiplet, the partner contributions can be instead two towers of associated Legendre

polynomials. The amplitude of the signal is generically not large by comparison to other

known sources (e.g. [111, 112]), as already known for the non-supersymmetric bosonic case

[24], so it is indeed the angular dependence which gives this signal its elevated status. Given

this, in this work we have not endeavored to do a rigorous and precise calculation of the

shape-function, which requires explicitly solving the mode-functions and computing involved

integrals [24]. This latter difficulty motivated the development of the cosmological bootstrap

[113], which might be a promising direction to take this work as well.

Remarkably, we have been able to derive these results despite not having a complete

theory or model realization of higher spin supergravity inflation. Progress despite incomplete

knowledge is a familiar situation in theoretical physics, for example, supersymmetry and

the Green-Schwarz mechanism, all work to date pertaining to M-theory [114, 115], or in a

more recent context, Double Field Theory [116]. To overcome this, we have constructed an

effective theory that combines higher spin supersymmetry with de Sitter supergravity and

the effective field theory of inflation, to describe a higher spin sector minimally coupled to

the inflationary sector such that the higher spin sector retains on-shell supersymmetry. This

allowed us to use supersymmetry considerations to deduce the field content and interactions

of the higher spin fields with the curvature perturbation.

There are a number of ways forward from here. We have not considered yet the in-

teractions with the graviton, or for that the matter, the gravitino. The former of these,

corresponding to primordial gravitational waves γ, itself can lead to an interesting three

point function, ⟨γζζ⟩, probed by cross-correlation with CMB B-mode polarization [117].

Starting from an effective field theory guided guess for the relevant interaction,

LγHS =
λ̂s

Λs−2
∂i1...is−2 γ̇is−1isχ̄ψ

i1...is + h.c., (3.83)

the ⟨γζζ⟩ computed can be straight-forwardly worked out in a fashion similar to section 4.
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We provide the calculations for this in Appendix 3.B, and here we give the result:

lim
k1≪k2,k3

⟨γλ(k1)ζ(k2)ζ(k3)⟩ = λ̂sgs

(
H

Λ

)2s−2
H6

m6
pl

√
2

(4ϵ)2
e−πmχ/He−πµsδ(

∑
ki)

·S(k1, k2, k3)
∫

dΩ

(2π)3
Ps−2(k̂1 · q̂)ελij(k̂1)

∑
λ′=±2

ελ
′ij(q̂)P̂ λ′

s (k̂3 · q̂)Eλ′

2 (k̂3 · q̂) + k2 ↔ k3,

(3.84)

where λ = ±2 is the helicity of the external graviton, ϵij is the spin-2 polarization tensor,

P̂ λ
s (x) ≡ (1 − x2)−λ/2P λ

s (x) and Eλ
2 (k̂1 · k̂3) = ϵλij(k̂1)k̂

i
3k̂

j
3 as in [24], and we have put all

k-dependence in the function S. This result is characterized by an angular dependence that

is an integral over Legendre and associated Legendre polynomials,

⟨γλζζ⟩ ∝
∑
λ′=±2

∫
d cos θq Ps−2(k̂1 · q̂)ελij(k̂1)ελ

′ij(q̂)P̂ λ′

s (k̂3 · q̂)Eλ′

2 (k̂3 · q̂), (3.85)

where θq is the angle q̂ makes in the plane. In the supersymmetric context, this would be

joined with contributions from additional interactions. This requires careful consideration

of the gravity multiplet, as is the focus of the supersymmetric EFT of inflation [53]. We

postpone this analysis to future work.

On the theoretical front, an important next step is to construct the full theory of sponta-

neously broken supersymmetry (as in de Sitter supergravity and the supersymmetric EFT of

inflation) and interacting higher spin fields. From this one can generalize the analysis here

to situations where the higher spin fields themselves contribute to the supersymmetry break-

ing, or perhaps even drive inflation. We leave this possibility, and a host of observational

implications, to future work.

As a concluding remark, we would like to express and share our enthusiasm for the work

of scientists who are searching for signals of supersymmetry in the cosmos, a sentiment

expressed by one of the authors in [118]. As argued for in this work, the non-Gaussianity of

the CMB may prove to be a powerful tool of discovery, and with some good fortune, perhaps

more and different such tools will later emerge for the SUSY search at the Cosmic Collider.
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3.A Spin-s polarization vectors

This appendix discusses some relevant preliminaries and definitions relating to the free theory

of higher spin fields in de Sitter space, which can also be found in [24]. Following [24], vectors

will be denoted here in boldface, e.g. k.

It is convenient to project the spinning field, σµ1...µs onto spatial slices, which we can then

write as

σi1...inη...η =
∑
λ

σλ
n,sε

λ
i1...in

. (3.86)

Here, the s index refers to the spin, n refers to the ‘spatial spin,’ and λ is the helicity of the

field. ελis...in is a normalized, totally symmetric tensor with spin s and helicity λ. It must

satisfy:

ελi1...is = ελ(i1...is) , ελiii3...is = 0 , k̂i1 ...k̂irε
λ
i1...is

= 0 for r > s− |λ|, (3.87)

corresponding to the symmetric, traceless, and transverse properties. These properties of the

polarization tensor imply that we can decompose it into transverse and longitudinal parts

as,

ελi1...is(k̂, ε) = ελ(i1...iλ(ε)fiλ+1...is)(k̂), (3.88)

where ελi1...iλ is a maximally transverse polarization tensor, constructed out of polarization

vectors ε± that are perpendicular to k̂. We must have that ε+ = (ε−)∗, so that ελi1...iλ can be

specified, up to a phase, by a single polarization vector ε. We have also defined fiλ+1...is as the

longitudinal part of the associated Legendre polynomial, after contraction with momenta.

We then define,

F λ
s = qi1 ....qisε

λ
i1...is

(k), (3.89)

The symmetry properties of ε imply that F λ
s takes the form [24], in d=3 spatial dimensions,

F λ
s ∝ zP̂ λ

s , (3.90)
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where z ≡ qi1 ...qiλε
λ
i1....iλ

, and P̂ defined via

P λ
s (θ, ϕ) = sinλ θP̂ λ

s (θ, ϕ), (3.91)

where P λ
s is the associated Legendre polynomial. For the special case of λ = 0, which

appears in the calculation of 3-point functions after enforcing momentum conservation, the

othonormality of differing helicity states λ and λ′, and the transverse property (3.87), one

has

qi1 ....qisε
0
i1...is

(k̂) ∝ Ps(q̂ · k̂), (3.92)

with magnitude |q1|s, leading to the characteristic angular dependence of the three-point

function for spin-s boson exchange. Moreover, the transverse property also implies that the

only σ0
n,s that enters the correlation function is n = s.

3.B Details of ⟨γζζ⟩ Calculation

In this appendix, we further explicate the derivation of the tensor-scalar-scalar correlation

function. We will limit our analysis to the single-exchange diagram shown in Figure 3.2.

This diagram has the same form as Figure 3.1a, however now we have an external graviton

carrying momentum k1 instead of ζ. The relevant interaction Lagrangian we will consider is

L =
λ̂s

Λs−2
∂i1...is−2 γ̇is−1isχ̄ψ

i1...is +
gs
Λs
ζ̇∂i1...isζχ̄ψ

i1...is + h.c., (3.1)

which corresponds to two interaction Hamiltonians

Hint1 =
λ̂s

Λs−2

∫
d3x

1

a2s−2
∂i1...is−2γ

′
is−1is

χ̄ψi1...is + h.c., (3.2)

Hint2 =
gs
Λs

∫
d3x

1

a2s−2
ζ ′∂i1...isζχ̄ψ

i1...is + h.c.. (3.3)

As in the ⟨ζζζ⟩ calculation, we would like to expand in Fourier modes. The graviton can be
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expanded in helicity modes as given in [24]:

γij(k, η) =
∑
λ=±2

ελij(k)γ
λ
k (η)b(k, λ) + h.c., (3.4)

where the graviton mode function, γλk , is given by

γλk (η) =

√
2H

mpl

1√
2k3

(1 + ikη)e−ikη. (3.5)

Figure 3.2: Diagram contributing to ⟨γζζ⟩.

With the mode functions in hand we can compute the tensor-scalar-scalar three point

function ⟨γζζ⟩. As before, we would like to expand each interaction Hamiltonian in momen-

tum space and compute the correlator. Much of the calculation remains the same as in the

⟨ζζζ⟩ case, however, there are some subtleties. The angular dependence due to Hint2 remains

largely the same, however now due to the fact that λ ̸= 0, we have Hint2 ∝ Eλ
2 (k̂3 · q̂)P̂ λ

s (k̂3 · q̂),

rather than simply Ps(k̂3 · q̂) as in the ⟨ζζζ⟩ case. This arises from the definition (3.90), and

we have defined Eλ
2 (k̂3 · q̂) = ελij(k̂3)q̂

iq̂j. The angular dependence of Hint1 is similarly com-

plicated due to the contraction with γis−1,is .

After expanding in momentum space and following a similar procedure as in the ⟨ζζζ⟩
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calculation, we obtain

⟨γλζζ⟩ = 8
λ̂sgs
Λ2s−2

Reγλk1(0)ζk2(0)ζk3(0)

∫
dη′

a(η′)2s−3

∫
dη′′

a(η′′)2s−3

∫
d3ℓ

(2π)3

·γλ∗′k1
(η′)ζ∗

′

k2
(η′′)ζ∗k3(η

′′)χ̄ℓ(η
′)χℓ(η

′′)
∑
λ′=±2

ψλ′

s,s,ℓ+k1
(η′)ψ̄λ′

s,s,ℓ+k1
(η′′)

·|k1|s−2|k3|sPs−2(k̂1 · q̂)ελij(k̂1)ελ
′ij(q̂)P̂ λ′

s (k̂3 · q̂)Eλ′

2 (k̂3 · q̂)δ(
∑

ki),

(3.6)

where we have defined E as in [24] as Eλ
2 (k̂1 · k̂3) = ϵλij(k̂1)k̂

i
3k̂

j
3, and where q⃗ ≡ ℓ⃗ + k⃗1. The

mode functions for χ remain the same as in the previous calculation, given by (3.45), and we

approximate that ψ±2
s,s by their super-horizon scaling, which is the same as (3.54). Plugging

in the explicit expressions for the mode functions and substituting a(η) = − 1
Hη

, we have ,

⟨γλζζ⟩ = λ̂sgs
Λ2s−2

H2sH
6

m6
pl

2
√
2

(4ϵ)2
1

k31k
3
2k

3
3

e−πmχ/He−πµs |k1|s−2|k3|sδ(
∑

ki)

·Re
∫
dη′η′s(k21η

′)eik1η
′
∫
dη′′η′′s(k22η

′′)(1 + ik3η
′′)e−i(k2+k3)η′′∫

d3ℓ

(2π)3
Ps−2(k̂1 · q̂)ελij(k̂1)

∑
λ′=±2

ελ
′ij(q̂)P̂ λ′

s (k̂3 · q̂)Eλ′

2 (k̂3 · q̂) + k2 ↔ k3.

(3.7)

where P̂ λ
s (x) ≡ (1− x2)−λ/2P λ

s (x) as in [24].

For ease of notation, let us denote this as,

⟨γλζζ⟩ = J1J2J3, (3.8)

where J1 is the prefactor, J2 are the time integrals and J3 is the momentum integral.

Performing the time integration and keeping only the real part yields

J2 =
k−s
1 k22(k2 + k3(s+ 3))Γ(s+ 2)2

(k2 + k3)s+3
. (3.9)

In J3 we can perform the integration over ℓ, enforcing a cutoff at H, leaving only the angular
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integral. Putting everything together, we obtain,

lim
k1≪k2,k3

⟨γλ(k1)ζ(k2)ζ(k3)⟩ =
λ̂sgs
Λ2s−2

H2s+6

m6
pl

2
√
2

(4ϵ)2
e−πmχ/He−πµsδ(

∑
ki)

· H3k−2
1 k32k

s
3

(k1k2k3)3(k2 + k3)s+3

(
1 +

k3
k2

(s+ 3)

)
Γ(s+ 2)2

·
∫

dΩ

(2π)3
Ps−2(k̂1 · q̂)ελij(k̂1)ελij(q̂)P̂ λ

s (k̂3 · q̂)Eλ
2 (k̂3 · q̂) + k2 ↔ k3.

(3.10)

In a canonical form we can write this as,

lim
k1≪k2,k3

⟨γλ(k1)ζ(k2)ζ(k3)⟩ = λ̂sgs

(
H

Λ

)2s−2
H6

m6
pl

2
√
2

(4ϵ)2
e−πmχ/He−πµsδ(

∑
ki)

·S(k1, k2, k3)
∑
λ′=±2

∫
dΩ

(2π)3
Ps−2(k̂1 · q̂)ελij(k̂1)ελ

′ij(q̂)P̂ λ′

s (k̂3 · q̂)Eλ′

2 (k̂3 · q̂) + k2 ↔ k3.

(3.11)

The angular dependence is given by

⟨γλζζ⟩ ∝
∑
λ′=±2

∫
d cos θq Ps−2(k̂1 · q̂)ελij(k̂1)ελ

′ij(q̂)P̂ λ′

s (k̂3 · q̂)Eλ′

2 (k̂3 · q̂), (3.12)

where θq is the angle q̂ makes in the plane.



Chapter 4

Higher Spin Dark Matter

4.1 Introduction

In the last chapter, we discussed the implications for higher spin fields (in the context of

higher-spin supersymmetry) on the non-gaussianity of the cosmic microwave background.

Given that these higher spin particles can be produced during inflation, it is a natural

progression to then as whether the dark matter could be made up of higher spin particles,

which we now discuss in this chapter. The precise identity of dark matter (DM) remains a

mystery, despite decades of theorizing and detection efforts. Observations suggest that the

dark matter does not interact with the standard model, or does so extremely weakly, creating

significant room for model builders. Taken at face value, the observational evidence is at

odds with the conventional origin story of dark matter, namely a thermal history, wherein

the dark matter was initially in a state of thermal equilibrium with the standard model,

sustained by interactions.

There are now many alternative dark matter origin stories. A particularly compelling

possibility, by virtue of its simplicity, is the genesis of dark matter via gravitational particle

production (GPP) in the early universe [119, 120, 121, 122, 123], e.g., during cosmic infla-

tion. A generic feature of inflation is that the exponential expansion acts as a gravitational

amplifier for particle production. While many of these particles would be redshifted, some,

depending on their intrinsic properties such as mass and spin, can survive as a relic after

56
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inflation ends. This idea was introduced in the context of superheavy ‘WIMPzilla’ dark

matter, characterized by dark matter masses greater than the Hubble scale at the end of

inflation (mDM > H) [119, 124, 120, 121, 122, 123], and has since been explored in a variety

of cosmological contexts (see e.g. [125, 126, 127, 128, 129, 130]).

On the other hand, inflation is known to exhibit a UV sensitivity [131], motivating the

search for a UV completion of inflation in theories beyond the standard model, such as

string theory. In this context we may ask which states could be generically produced in an

inflationary model that is connected to string theory. That massive higher spin particles

are a natural consequence of string theory, and that generic cosmological inflation models

induce particle production, is suggestive of the potential implications for connections to

other physics, namely the dark matter problem. Moreover, the Higuchi bound on the mass

of higher spin fields, m2 ≥ s(s− 1)H2, which must be satisfied at all times during an early

universe genesis mechanism, naturally suggests dark matter in the superheavy regime, and

hence, in light of [119, 120, 121, 122, 123], a gravitational origin of higher spin dark matter.

Despite the natural candidacy of higher spin fields as dark matter (and potentially an infi-

nite tower of such fields), there has been little work done on investigating the feasibility of any

such model beyond spin-3/2 [132, 133, 134], spin-2 [135, 136, 137, 138] and spin-3 [139, 140],

aside from the suggestion in [141], and no work in a superheavy, gravitational production

context. Additionally, there has been significant recent interest in the ‘cosmological collider

physics’ program [142, 21, 22] (see also the related ‘cosmological bootstrap’ [113, 143, 144])

of studying the imprint in the cosmic microwave background (CMB) of fields with masses

heavier than the Hubble scale during inflation, see e.g. [145, 146, 147, 148, 149, 150, 151].

This formalism has been applied to higher spin bosons [142, 24, 94], as well as higher spin

fermions [152], and supersymmetric higher spin theory ([153, 154, 155, 156, 157]) [152].

However, thus far, no connections have been made between the massive higher spin particles

produced by the cosmological collider and dark matter.

In this chapter we consider inflationary production and cosmological implications of higher

spin particles and find that they can naturally serve as 100 percent of the dark matter: Higher
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Spin Dark Matter (HSDM). We consider the implications of a small interaction of HSDM

with the standard model, and find a characteristic angular dependence of nuclear recoil

events for direct detection experiments. This mirrors the angular dependence in the cosmic

microwave background non-Gaussianity that is predicted due to the the production of higher

spins during inflation [142, 24, 152].

The structure of this chapter is as follows: in Section 6.2 we introduce the relevant

higher spin formalism. In Section 6.3 we calculate the gravitational production of higher

spin dark matter (HSDM) and show that there is a parameter space such that higher spin

particles can account for all the dark matter. In Section 6.4 we discuss the possibilities

for directional direct detection and show that there is a spin dependent contribution to the

double differential recoil rate. Lastly, in Section 6.5 we speculate on other possible observable

avenues and conclude with a discussion in Section 4.6.

4.2 Higher Spin Field Theory

The Standard Model of particle physics comprises particles with s = 0, 1/2 and 1, while

gravity has spin s = 2. No fundamental particle with s > 2 has ever been observed in

nature. However, there is a long history of the study of higher spins (HS). Beginning shortly

after the advent of relativistic quantum field theory [25], the theory of higher spins has been

developing for a century, notably [158, 159, 160, 153, 154, 161, 162, 163, 164, 165]; for recent

work see e.g. [166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 33, 180,

181, 182, 183, 184].

There are well known ‘no-go’ theorems that significantly limit the interactions of HS

particles in a self-consistent quantum field theory. Generally, such theorems make it the case

that in flat space, massless HS particles are forbidden from interacting with electromagnetism

or gravity1 [185, 186, 187, 188, 189, 190]. Two notable ‘no-go’ theorems are Weinberg’s

theorem [185], which necessitates that, in flat space, there are no long range interactions

with spin greater than two, and the Coleman-Mandula theorem [186], which demonstrates

1Note that both during inflation and in the present day, the universe is de Sitter space
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that, assuming an S-matrix and finite degrees of freedom, there can be no conserved higher

spin charges associated with particles of s > 2.

A caveat to these arguments is massive higher spin theories. The mass term explicitly

breaks the higher spin gauge invariance, such that there is no conserved current, and hence no

conflict with the Coleman-Mandula theorem. As such, massive higher spins are not plagued

by the same restrictions due to no-go theorems [191]. Indeed, massive higher spin excitations

are intrinsic to string theory, and comprise the Regge trajectories. Higher spin fields have

been considered in studies of inflation in string theory [26, 27, 192], and in the AdS/CFT

correspondence [158, 160, 193]. It is thought that the tensionless limit of string theory is

a higher spin field theory [194, 195, 196, 197, 198], and it has been suggested that string

theory itself is a symmetry broken phase of a HS field theory [199, 200, 158, 201].

While the full theory of higher spins is not known, progress can be made by enumerating

the irreducible representations of the spacetime symmetry group, thereby identifying the

building the blocks of the theory. Although the representation theory of HS fields in a general

Freidmann-Robertson-Walker spacetime is not known, the representations are known for flat

space and (A)dS.

For cosmological purposes, in particular during inflation, we may make use of the results

for de Sitter space. In this context, a lower bound on the higher spin mass is given by the

Higuchi bound: m2 ≥ s(s − 1)H2 [77, 78]. Beyond this, fields can be organized into three

categories of unitary, irreducible representations of the spacetime isometry group [202, 203].

They are the principal series:

m2

H2
≥
(
s− 1

2

)2

, (4.1)

the complementary series:

s(s− 1) <
m2

H2
<

(
s− 1

2

)2

, (4.2)

and the discrete series:

m2

H2
= s(s− 1)− t(t+ 1). (4.3)
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In addition, In this work, we focus on the complementary series and principal series repre-

sentations.

The evolution of HS fields in de Sitter space was derived in [24], which we summarize

below. The spin-s generalization of Klein-Gordon equation is the Casimir eigenvalue equation

of the de Sitter group [24],

(
2−m2 + (s2 − 2s− 2)H2

)
σµ1...µs = 0 (4.4)

This is supplemented by constraint equations corresponding to transverse and traceless con-

ditions on σ. To solve this equation, we expand the field σµ1···µs into its different helicity

components,

σµ1···µs =
s∑

λ=−s

σ(λ)
µ1···µs

. (4.5)

A mode of helicity λ and n polarization directions can be written as,

σ
(λ)
i1···inη···η = σλ

n,sε
λ
i1···in , (4.6)

where σλ
n,s = 0 for n < |λ|. The polarization vector ελi1···in is symmetric, transverse, and

traceless; for details, see [24].

The helicity-λ mode function with n = |λ| number of polarization directions satisfies,

σλ
|λ|,s

′′ − 2(1− λ)

η
σλ
|λ|,s

′
(4.7)

+

(
k2 +

m2/H2 − (s+ λ− 2)(s− λ+ 1)

η2

)
σλ
|λ|,s = 0 .

This admits an exact solution, given by [24],

σλ
|λ|,s = AsZ

λ
s (−kη)3/2−λH

(1)
iµs

(k|η|) , (4.8)
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where µs is defined as

µs =

√
m2

H2
−
(
s− 1

2

)2

. (4.9)

The normalization coefficients are given by,

As = eiπ/4e−πµs/2 (4.10)

and

(Zλ
s )

2 =
1

k

(
k

H

)2s−2

(Zλ
s )

2, (4.11)

with

(Zλ
s )

2 =
π

4

[(2λ− 1)!!]2s!(s− λ)!

(2s− 1)!!(s+ λ)!
(4.12)

·Γ(1/2 + λ+ iµs)Γ(1/2 + λ− iµs)

Γ(1/2 + s+ iµS)Γ(1/2 + s− iµs)
.

The other mode functions can then be obtained iteratively from the recursion relation:

σλ
n+1,s = − i

k

(
σλ
n,s

′ − 2

η
σλ
n,s

)
−

n∑
m=|λ|

Bm,n+1σ
λ
m,s , (4.13)

where,

Bm,n ≡ 2nn!

m!(n−m)!(2n− 1)!!

Γ[1
2
(1 +m+ n)]

Γ[1
2
(1 +m− n)]

. (4.14)

Care should be taken when considering these mode functions, since they are normalized

with respect to σ with all lower indices. The quantity of physical interest is the two point

function of two contracted σ, i.e.,

⟨σi1...isσis....is⟩ = 1

a2s
⟨σi1...isσis....is⟩. (4.15)

More generally, for σλ
n,s, we are interested in the two-point correlation function,

⟨σλ
n,sε

λ
i1....in

σλ
n,sε

λi1....in⟩ = 1

a2n
⟨σλ

n,sε
λ
i1....in

σλ
n,sε

λ
i1....in

⟩. (4.16)
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The remaining contraction of polarization vectors can be computed from [24]

ελi1···isε
λ∗
i1···is =

(2s− 1)!!(s+ λ)!

[(2λ− 1)!!]2s!(s− λ)!
, (4.17)

where we have used the normalization εsi1···isε
s∗
i1···is = 2s [24].

4.3 Gravitational Production of Higher Spin Dark Matter

The Higuchi bound m2 > s(s − 1)H2 [77, 78] suggests that higher spin fields as realized

in nature, insofar as they can be described by a single effective field theory in both the

very early universe and in the late universe, should be cosmologically heavy. Guided by

past literature [119, 120, 121, 122, 123], it is logical then to consider gravitational particle

production as a genesis mechanism for higher spin dark matter. With this in mind, our

first goal is to make a conservative estimate of the gravitational production of higher spin

particles in the very early universe. This will serve as a proof of principle of gravitational

particle production (GPP) as a genesis mechanism for higher spin dark matter (HSDM).

We will consider only the gravitational production during inflation, and not the transition

between inflation and the radiation dominated phase that is the usual focus of works on

GPP of dark matter [119, 120, 121, 122, 123, 127, 128]. This simplification is not made

for convenience, but rather due to the limited knowledge of higher spin field theories as

discussed previously. Our calculation provides a lower bound on the production, suitable for

a demonstration that early universe GPP can provide enough higher spin particles to explain

the observed DM abundance. We expect a more detailed analysis (e.g., directly from string

theory) to change slightly the quantitative relationship between s, m, and H, that leads to

the correct relic density, but not the qualitative result.

We focus on HS fields that during inflation are in either the complementary or principal

series, defined by Eqs. (4.2) and (4.1) respectively. We make use of the fact that cosmic

history is thought to be book-ended by de Sitter phases: cosmic inflation in the first moments

and dark energy in the present. The full structure of the higher spin theory is not known in
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for the intervening time period. However, post-inflation we are left with a collection of non-

relativistic particles that simply redshift as matter, and hence we do not need to consider

the detailed field theory dynamics. This negates the need to have complete knowledge of

higher spin theories.

In general, gravitational particle production occurs when the field mass, including all con-

tributions from quantum and gravitational effects, changes non-adiabatically. The canonical

example is the primordial curvature, ζ, which obeys the equation of motion (in exact dS

space)

v′′k +

(
k2 − 2

η2

)
vk = 0. (4.18)

Adiabaticity is violated when k =
√
2/|η| ≃ aH, i.e., when a given mode exits the horizon.

The resulting particle production can be thought of as Hawking radiation emitted by the de

Sitter horizon [204], see e.g. the discussion in [205], and indeed computed using conventional

particle production methods [206, 207]. Alternatively, the equation of motion can be solved

exactly at all times as a function of kη, see e.g. [208].

For a massive scalar field the effective mass is similarly given by [208]

ω2
k = k2 − 2− (m/H)2

η2
. (4.19)

For m/H ≫ 1, adiabaticity is violated at k ≃ µ/|η| = µaH where µ ≡ m/H [128]. The

scale k∗ = µaH defines an effective horizon, and all modes which have k > k∗ at the end of

inflation, i.e. which have exited this effective horizon, have undergone particle production

during inflation.

This is the principle behind superheavy dark matter. The total energy density in a massive

scalar can be computed as

ρφ = m2
φ⟨δφ2⟩ ≃ m2

φ

∫ k∗

0

d3k |δφk|2, (4.20)
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corresponding to a particle number, n = ρφ/mφ,

n = mφ

∫ k∗

0

d3k |δφk|2. (4.21)

The phenomenology of superheavy dark matter is thus determined by the dark matter mass

and the energy scale of inflation. Due to the decay outside the horizon of the heavy field,

along with the phase space suppression in the limit k → 0, the integral is dominated by the

contribution from the upper bound. The number density scales with H3, where H is the

Hubble constant during inflation. The relic density can be tuned to the observed value by

tuning the mass mDM as a function of H; for the canonical super-heavy dark matter, one

finds mDM ≳ H leads to the observed density [119, 120, 121, 122, 123].

The generalization of this to the energy density of a bosonic higher spin field σ produced

gravitationally during inflation is given by,

ρσ ≃ m2⟨σ2⟩ = m2
∑
n,λ

ελi1···inε
λ∗
i1···in

∫
d3k

|σλ
n,s|2

a2n
, (4.22)

where the sum is over all values of n and λ, and the contraction of polarization vectors is

given by Eq. (4.17).

To evaluate this we begin from the equation of motion Eq. (4.8). To put this in a more

familiar form, we rescale σ in Eq. (4.8) as σ̂ = η1−λσ. This removes the first-derivative term,

leading to,

σ̂λ
|λ|,s

′′ +

(
k2 − s(s− 1)− µ2

s

η2

)
σ̂λ
|λ|,s = 0, (4.23)

which describes a simple harmonic oscillator with a time-dependent mass. We can see that

the λ dependence has cancelled identically, and the effective mass is given by,

m2
eff = µ2

∗H
2 ≡ (s(s− 1)− µ2

s)H
2, (4.24)

where we define the quantity µ∗ ≡ s(s− 1)− µ2
s, with µs given by Eq. (4.9).

In analogy with a massive scalar, adiabaticity is maximally violated (|ω̇k|/ω2
k is peaked)
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when k =
√
2µ∗aH ≃ µ∗aH. Thus, we take the UV cutoff of the energy density integral to be

this scale of adiabaticity violation. Incidentally, this cutoff is also the dividing line between

relativistic and non-relativistic particles. Thus, independent of discussions of adiabaticity

violation, this approach is equivalent to considering only those perturbations which become

non-relativistic already during inflation and thus can be treated as non-relativistic at all

times following inflation.

In principle, Eq. (4.22) involves the sum over all excitations of the spin-s field σ. However,

the dominant excitation of a spin-s field near the Higuchi bound is σ0
s,s. This can be seen

qualitatively from Eqs. (4.8) and (4.13). Eq. (4.8) will have a maximum value at λ = 0

and all other modes with λ > 0 will be suppressed in comparison. It can then be seen from

Eq. (4.13) that the dominant contribution will be the n = s state, due to the contribution

from Bm,n. Curiously, this is the same mode which is considered in the ‘cosmological collider

physics’ program [142, 21, 22], leading to the characteristic Legendre polynomial angular

dependence of 3-point functions [142, 24, 152].

Given the subdominance of all other modes, we approximate the full density as that which

comes from σ0
s,s. We use the recursion relation Eq. (4.13) to explicitly numerically calculate

the mode functions, σ0
n,s. We then calculate the density of excitations at the end of inflation

using

ρσ0
s,s
(ti) = m2 (2s− 1)!!

s!

∫ aµ∗H

0

d3k a−2s|σ0
s,s|2, (4.25)

where ti denotes the end of inflation, and µ∗ is given by Eq. (4.24). The factorial prefactors

come from evaluating the contraction of λ = 0, n = s, polarization vectors.

The integral is again dominated by the contribution from the upper bound, and in the

numerics that follow we make use of this approximation. Further, since µ∗ ≳ s > 1, by the

Higuchi bound, the DM density is dominated by particles that are still sub-horizon at the end

of inflation (k/a < H) and those which re-enter the horizon immediately following inflation

k/a ∼ H. Since m/H is greater than 1 for all subsequent times, we can approximate these

particles as non-relativistic for all times post-inflation. From this we define the present DM
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density as,

ρtoday =
ρinflation
a(ti)3

, (4.26)

where ρinflation is defined by the integral Eq. (4.25), and a(ti) is the scale factor of the universe

at the end of inflation (we normalize a = 1 today).

The acceptable parameter space for our HSDM model will be that for which the relic

density Eq. (4.26) matches the observed dark matter abundance. The observed dark matter

density is given by ρDM0 = 3m2
plH

2
0ΩCDM where ΩCDM is the abundance observed to be

ΩCDMh
2 ≃ 0.12 [209], and H0 ≡ 100h km/s/Mpc = 2.13h × 10−33eV with h ≃ 0.7. From

this we find ρDM0 evaluates to ρDM0 = 3.95 × 10−11eV4. Meanwhile, the redshift factor in

Eq. (4.26) can be simplified by expand a(ti) as a ratio of redshifts,

a(ti) =
1 + zeq
1 + zi

1

1 + zeq
, (4.27)

where eq refers to matter-radiation equality. We have zeq ≃ 3400 and (1+z) ∝ T for z ≳ zeq.

Taking Teq ≃ 0.8eV ≃ 1eV and instant reheating Tre ≃ (g∗π
2/30)−1/4

√
Hmpl, with g∗ ∼ 100,

the above becomes a(ti) = 1.43× 10−18
√

eV
H
.

Putting things together, we find that the DM density after inflation must satisfy,

ρ(ti) = 1.17× 1037
(
H

eV

)3/2

eV4, (4.28)

with ρ(ti) given by Eq. (4.25).

To gain intuition as to the range of masses that can provide the correct relic density, we

note the peculiar case of the complementary series, which occupies a narrow range of masses

just above the Higuchi bound. At the saturation limit of the Higuchi bound, we approach

partial masslessness and states become gauge redundancies [94]. To avoid this we deform

away from the Higuchi bound by a small amount 2δ and consider m2/H2 = s(s − 1) + 2δ.

In this limit, µs, Eq. (4.9), becomes

µs →
i

2
(1− 4δ) . (4.29)



67

One can appreciate from the above that µs is purely imaginary. This is a feature of the

complementary series Eq. (4.2), which corresponds to 0 < δ < 1/4. It follows that the

exponential suppression, which one might anticipate for excitations of a heavy field, and is

encoded in Eq. (4.10), becomes a phase factor – i.e., is not a suppression at all.

In Fig. 4.1 we illustrate the values of s andH for which the correct relic density of particles

is produced. By varying the mass, points in the colored regions can achieve the correct relic

density. The colors pink and blue denote masses in the complementary series and principle

series respectively.

The lower and upper dashed lines of Fig. 4.1 denote the lower edge of the complementary

series (the Higuchi bound) and upper edge of the complementary series. The parameter

space below the lower edge is ruled out: the DM particle mass cannot be lower than the

Higuchi bound, and decreasing H while leavingm/H fixed will lead to an underproduction of

DM during inflation. The upper bound of this band represents the upper limit on particles

with masses in the complementary series. If m/H and s remain fixed, increasing H will

lead to an overproduction of the DM. A simple way out is to increase m/H, leaving the

complementary series, and thereby generating an exponential suppression of the amount of

DM, which is denoted by the light blue portion of Figure 4.1.

By considering masses slightly in the principal series we are able to obtain the correct

relic density over the entire blue region of Fig. 4.1. This imposes a relation between m and

H, at fixed values of s, as shown in Fig. 4.2. From left to right, fixed curves from s = 2− 8,

respectively show that for any spin, there is a continuous range of allowed H values with

increasing mass. The allowed parameter space is bounded by the Planck mass, above which

is forbidden and denoted by the grey shaded region. Although we have only explicitly shown

up to s = 8, one can appreciate that there is a much larger space where solutions will be

present, up to m/H = 1018 and correspondingly increasing spin. This allows for a wide

range of H and s values, which makes HSDM amenable to a variety of inflation models.
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Figure 4.1: Regions of of {s,H} values that give the observed density of higher spin dark matter, with mass
in the complementary series (pink) or principal series (blue). The dashed lines denote the boundaries of the
complementary series, i.e., assuming a mass that differs from the Higuchi bound by a fractional difference
δ = 0.001 and δ = 0.2499 as the lower and upper bounds, respectively. The blue region extends up to Planck
scale, H = Mpl.
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Figure 4.2: Sample parameter space for particles in the principal series. Lines of fixed s indicate allowable
H values as a function of the HSDM mass. Each curve is truncated at the lower boundary of the principal
series, i.e., the top dashed line of Fig. 4.1. The black curve corresponds to masses m equal to the Planck
mass, m = Mpl, and the grey region is super-Planckian masses m > Mpl.
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4.4 Directional Direct Detection

Direct detection is a prominent detection strategy for dark matter. In this approach, one

hopes to observe nuclear recoil events generated by scattering of incoming dark matter

particles. As realized early on [210], a signature prediction of the motion of the earth

through the enveloping dark matter halo is a preferred direction of nuclear recoil events,

suggesting an approach known as directional direct detection [211]. More recently, it has

been demonstrated [212, 213, 214] that the angular dependence of the directional direct

detection signal can distinguish between spin-0, and spin-1/2, and spin-1 dark matter. It is

logical, therefore, to consider the directional direct detection signature of higher spin dark

matter.

Any such direct detection signal is premised upon an interaction of dark matter with the

standard model. As discussed in Sec. 6.2, while higher spin interactions are naively strongly

constrained, this is relaxed for massive higher spins. The interactions of massive higher spin

fields can be understood as a low energy effective field theory, with a UV completion given

by string theory. The possible interactions have been studied in detail and enumerated in

e.g. [174, 178, 175, 179].

We will consider a simple interaction between a higher spin boson and a standard model

nucleus, eg., Xenon, that we model as a Dirac fermion. We construct an interaction through

a derivative coupling of the higher spin boson to the fermion vector current. We consider

the low energy effective interaction Lagrangian,

Lint =
gs
Λs
∂µ1...µs(ψ̄γ

µψ)σµ1...µs
µ + h.c., (4.30)

where Λ is a UV scale that corresponds to the cutoff of the massive higher spin theory, and

gs is a coupling constant. Note that here σ refers to a spin-(s+ 1) field, rather than spin-s.

We compute the nuclear recoil scattering cross section in App. 4.A. We obtain,

dσ

dEr

≃ m3

πv2
1

(2s+ 1)

g4s
Λ4s

[
p′sPs(k̂

′ · p̂′) + ksPs(k̂
′ · k̂)

]2
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·
[
psPs(k̂ · p̂)

]2
· 32k2

(p · k)2
, (4.31)

where p and p′ and k and k′ refer to the ingoing and outgoing momenta of the SM nucleus

and DM, respectively, v is the relative velocity of the incoming DM particle, and Ps are the

Legendre polynomials. The details of the computation of the cross section can be found in

App. 4.A.

The quantity relevant to direct directional detection is the double differential rate of

nuclear recoil events [212, 213]. This is given in standard notation by

d2R

dERdΩ
= κDM

∫
d3vδ(v ·w − wq)f(v + v⊕(t))v

2 dσ

dER

. (4.32)

Here, v is the relative velocity of the incoming DM particle relative to the target nucleus,

κDM is related to the local halo density of DM near the earth (ρDM ≃ 0.3 GeV/cm3), f is the

velocity distribution of DM in the galactic halo, which is dependent on v as well as v⊕, the

time dependent Earth velocity in the galactic rest frame. We also define w as a unit vector

pointing in the direction of nuclear recoil, wq = q/(2µ). We will follow the methods in [213],

outlined below, to obtain an expression for our particular case.

Following [213], we assume a Maxwell-Boltzmann velocity distribution f(v), truncated

at the galactic escape velocity, which we take to be vesc = 544 km/s. The most probable

speed is v0 = 220 km/s, which is the circular speed of the local standard of rest. This can

be written as

f(v⃗) =
1

N
e−(v⃗+v⃗2e)/v

2
0 , (4.33)

where

|v⃗ + v⃗e| ≤ vesc. (4.34)

Here v⃗e is the Earth velocity in the galactic rest frame, which is generally a function of time,

but for simplicity can be taken to be its constant magnitude, v⃗e = 232 km/s. The overall
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normalization N is a constant given by

N = πv20

[√
πv0 erf

(
vesc
v0

)
− 2vesce

−v2esc/v
2
0

]
. (4.35)

We can then break up the velocity integral into two parts:∫
d3v =

∫ vesc−ve

vmin

dvv2
∫ 1

−1

dcosθ

∫ 2π

0

dϕ

+

∫ vesc+ve

vesc−ve

dvv2
∫ v2esc−v2−v2e

2vve

−1

dcosθ

∫ 2π

0

dϕ.

(4.36)

For simplicity here we focus on the first term; the resulting spin and angular dependence is

the same in both cases. We make use of the identity,

δ

(
v⃗ · q̂ − q

2µ

)
=
δ(v − v̄)

|v̂ · q̂|
, (4.37)

where

v̄ =
q

2µ(v̂ · q̂)
, (4.38)

where v̂ is a unit vector in the direction of the incoming dark matter velocity, q̂ is a unit

vector in the recoil direction, and µ is the reduced mass of nucleon-DM system, µ = mNmDM

mN+mDM
.

Then, performing the integral over the Dirac delta function we obtain,

d2R

dERdΩ
=

ρDM

2NπmmN

∫ 1

−1

dcosθ

∫ 2π

0

dϕ
v̄4

|v̂ · q̂|
e−(v̄+ve)2/v20

· dσ
dER

(v̄)Θ(v̄ − vmin)Θ((vesc − ve)− v̄), (4.39)

where we have taken the dark matter mass to be m. Now let us define the angles α, β, θ,

and ϕ, such that

q̂ = (sinαcosβ, sinαsinβ, cosα), (4.40)

v̂ = (sinθcosϕ, sinθsinϕ, cosθ) (4.41)
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and

v̂′ =
v

v′
v̂ +

q

mv′
q̂, (4.42)

where v̂ is the direction of the incoming DM particle, q̂ is the direction of nuclear recoil, v̂′

is the direction of the outgoing HS DM particle, and p̂ is the unit vector in the direction of

the incoming nucleus, which we will take to be in the ẑ direction. One can deduce v′ from

conservation of momentum.

Substituting into Eq. (4.39) the cross section Eq. (4.31), we find the double differential

recoil rate,

d2R

dERdΩ
≃ 32ρDMg

4
sm

2
N

2N(2s+ 1)π2Λ4sm

∫
dΩ′fSI(v)

·
[
qsPs(v̂

′ · q̂) +msv̄sPs(v̂ · v̂′)
]2

·
[
psPs(p̂ · v̂)

]2
,

(4.43)

where dΩ′ is the integration over incoming momenta, and fSI(v) is the spin-independent

contribution to the scattering rate, given by,

fSI(v) =
v̄4

|v̂ · q̂|(p · v̄)2
· e−(v̄2+v2e+2v̄ve cos θ)/v20

·Θ(v̄ − vmin)Θ((vesc − ve)− v̄).

(4.44)

Finally, in the limit that the dark matter mass is larger than the momentum transfer, i.e.,

m≫ q, the term proportional to mv̄ in the second line will be dominant over the first.

The final result is then given by,

d2R

dERdΩ
=

N
Λ4s

∫
dΩ′fSI(v)

[
msv̄sPs(v̂ · v̂′)

]2[
psPs(p̂ · v̂)

]2
, (4.45)

where the prefactor N is defined as,

N =
32ρDMg

4
sm

2
N

2N(2s+ 1)π2m
. (4.46)

Here, note the distinct dependence on the Legendre polynomials, Ps. The angular depen-

dence in fSI(v) is spin-independent and is present in conventional WIMP models.
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The angular dependence on the Legendre polynomials, one the other hand, is a direct

consequence of considering higher spins. This generalizes previous works (see e.g. [212, 213,

214, 215]) that considered the imprints of spin-0, 1/2, and 1 DM in the double differential

recoil rate,leading to ring-like features. Our HSDM model modulates the bosonic signal

further, with an added angular dependence on Legendre polynomials, Ps, due to scattering

of a spin-s+ 1 boson.

This avenue for direct detection is complementary to work that has been done within the

‘cosmological collider physics’ program, which predicts that higher spin particles produced

during inflation will leave behind a distinctive signature in the cosmic microwave background,

proportional to Legendre polynomials [21, 24, 152]. An implication of our results is the

potential for a dual ‘smoking gun’ signature and relationship between CMB experiments

and dark matter direct detection experiments. We see that the angular dependence on

Legendre polynomials in the CMB non-gaussianity is mirrored by the appearance of Legendre

polynomials in the double differential recoil rate.

4.5 Other Observable Windows

Aside from direct detection, one might wonder what signature higher spin dark matter may

leave at the other pillars of dark matter detection: collider production, and indirect detection

(e.g., at the galactic center [216]). To this end, we consider the other possible interactions

that could couple higher spin dark matter candidate to the Standard Model.

The simplest possibility is to directly couple a higher spin boson to the Standard Model

Higgs boson. For example, an interaction of the form,

LσHH =
1

Λs−1
σ(s)∂(s)|H|2, (4.47)

where ∂(s) denotes s number of derivatives. From this interaction, a high energy Higgs boson,

e.g. generated at a collider, could radiate a spin-s boson σ. At quadratic order in σ, one

could have a σ2|H|2 interaction, allowing 2 ↔ 2 scattering of the Higgs and HS boson.
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The field content of the standard model is not restricted to bosons, and nor are higher

spin field theories. Higher spin fermions are interesting in their own right, and may serve

as their own dark matter candidate. Unfortunately, a relic density computation as has been

done here is not readily repeated for fermions, since the exact solution of HS fermions in

dS space is not known. Nonetheless, one may expect a higher spin fermon dark matter

candidate to couple to the standard model fermions via 4-fermion interactions, e.g., of the

form,

L4f =
1

Λ2
Ψ̄µ1...µsΨµ1...µsff̄ , (4.48)

where Ψ is a spin-s + 1/2 fermion, and f is a standard model fermion. Such an interac-

tion allows for signatures at precision electroweak experiments, and via annihilation of HS

fermions into standard model fermions, a signature in the galactic center [216].

Finally, there is the possibility that the higher spin bosons and higher spin fermions could

be organized into multiplets, that is, into super-multiplets of a supersymmetric theory of

higher spin fields [155, 156, 157] (for recent work, see e.g. [166, 167, 168, 169, 171, 173, 174,

175, 176, 178, 179, 33, 180]). Supersymmetry constrains both the spectrum of the theory

and the interactions, as discussed in a cosmological context in [152]. Even if supersymmetry

is broken at a high scale, one would expect some remnant of this structure to remain at

energies accessible by terrestrial experiments.

The cosmological collider analysis of higher spin supersymmetry [152] revealed correlated

signals, with the usual Ps(cos θ) angular dependence accompanied by superpartner contri-

butions that scale as Ps+1(cos θ) and
∑

m P
m
s (cos θ). It will be interesting to compute the

dual signal in directional direct detection.

4.6 Discussion

In this work we have considered gravitationally produced massive higher spin particles as

a model of dark matter. We have shown that there is a wide range of parameter space for
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superheavy particles with s > 2 for which the correct relic density of dark matter is pro-

duced. We have also explored a potential directional direct detection signature, showing that

there is distinctive spin dependent angular dependence in the double differential recoil rate.

This enters in the form of Legendre polynomials and is complementary to the ‘cosmological

collider’ signature in the cosmic microwave background.

This opens up opportunities to explore a wide range of new models and parameter spaces

to aid in the search for dark matter. We have mentioned several possibilities, but there

is certainly much that is still unknown. In future work we will perform a more rigorous

numerical exploration of our results in the context of directional direct detection, in order

to show more explicitly the impact of the higher spin angular dependence in the double

differential recoil rate. It would also be of interest to build a similar model for fermionic

HSDM and build connections to HS supersymmetry. We leave these explorations and others

to future work.

Comment added: During the final preparation of this manuscript on which this chapter

is based we became aware of recent work [217] with thematic overlap to this paper. The

effective field theory approach taken there is promising and may yield further directional

direct detection signatures in addition to that considered here. There is no overlap in the

content of the papers.

4.A Matrix Element Calculation

We here show technical details of the differential cross section used in Section 6.4. To

calculate the differential cross section for a HSDM particle scattering off a SM fermion,

there are several subtleties that must be considered. The vertex factor for scattering with

σ0
s,s is given by

V = −i gs
Λs

[
s∑

n=0

(
s

n

)
k
i1...is−n

1 kin...is2

]
γµ, (4.49)

where we have considered all possible combinations of derivatives on ψ̄ψ, and k1 and k2

correspond to the momenta of the standard model nucleons. We assume that the incoming
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nucleon is at rest, therefore the only terms that contributes to the vertex will be those which

have either ks1 or k
s
2. The helicity state of the higher spin particle is λ. Thus, this expression

can be simplified as

V = −i gs
Λs

(k1i1...is + k2i1...is )γ
µ. (4.50)

Each higher spin external leg carries a factor of the spin-s+1 polarization tensor ϵ
[λ′′]i1...is
µ (k3).

This can be decomposed into a spin-1 component and a spin-s component as follows:

ϵ[λ
′′]i1...is

µ (k3) = ϵ[λ
′]

µ (k3)ϵ
[λ]i1...is(k3), (4.51)

where λ′ = −1, 0, 1 and λ = −s...s are the possible helicity states of the spin-1 and spin-s

components, respectively. Lastly, note that generally, working in an expanding background

will lead to additional factors of the scale factor, a(t). However, for the remainder of the

calculation we normalize a(t) = 1, to account for the insensitivity of particle physics exper-

iments today to the previous expansion of the universe. The matrix element can easily be

found in analogy with standard QED computations, and with the use of the relation

q̂i1 ...q̂isϵ
λ
i1...is

≡ Eλ
λ (θ, ϕ)P

λ
s (cos θ), (4.52)

where cos θ = q̂ · k̂, cosϕ = q̂ · ϵ and Eλ
λ and P λ

s are the transverse and longitudinal parts

of the spherical harmonics, respectively [24, 94], where for the λ = 0 modes we simply have

q̂i1 ...q̂isϵ
λ
i1...is

= Ps(cos θ). Then, we find the matrix element to be

|M|2 = g4s
Λ4s

[
p′sPs(k̂

′ · p̂′) + (p+ k)sPs(k̂
′ · ˆ(p+ k))

]2
·
[
psPs(k̂ · p̂) + (p+ k)sPs(k̂ · ˆ(p+ k))

]2
· (2m)2

(2p · k)2
(16p2 + 64p · k + 32k2),

(4.53)

where k and k′ refer to the incoming and outgoing HSDM particle, respectively,p and p′ refer

to the standard model nucleus, and we note ˆ(p+ k) ≡ (p⃗ + k⃗)/|p⃗ + k⃗|. From the matrix
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element, one can find the differential scattering cross section given by

dσ

dER

=
2m

πv2
1

(2J + 1)(2sχ + 1)
|M|2. (4.54)

We will simplify this by noting that in our construction, we assume that the standard model

nucleus is stationary and the incoming HS particle has a much larger momentum, k ≫ p. In

this limit, we can also take k′ · (p + k) = k′ · k. Thus, keeping only the relevant dominant

terms in k, we obtain for the cross section

dσ

dER

≃ m3

πv2
1

(2s+ 1)

g4s
Λ4s

[
p′sPs(k̂

′ · p̂′) + ksPs(k̂
′ · k̂)

]2
·

[
psPs(k̂ · p̂)

]2
· 32k2

(p · k)2
. (4.55)
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Chapter 5

Gravity Waves in Parity-Violating

Copernican Universes

5.1 Introduction

In this section, we move to the late universe and begin by exploring the propagation of

gravitational waves in modified theories of gravity. We begin with such a theory with a

dynamical cosmological constant, Λ. The cosmological constant, Λ, and the Copernican

principle are two cornerstones of modern cosmology. In this paper we explore the implications

of the fact that their story may be more intricate than it is usually assumed. That the

cosmological “constant” does not actually need to be constant in theories with torsion has

been noted, for example, in [218, 219]. It is not new that torsion can change dramatically the

perspective of many problems (for a selection of examples see [220, 221, 222, 223, 224, 225,

226, 227, 228, 229, 230, 231]). It has also been noted [222, 232] that under the shadow of

torsion, homogeneity and isotropy do not imply parity invariance. The Copernican principle

therefore has a choice between incorporating parity invariance or not. Parity odd solutions

in homogeneous and isotropic models employ a geometrical structure which has been known

since the inception of General Relativity: Cartan’s spiral staircase [222, 233]. Thus, a

varying Lambda may go hand in hand with parity violating Copernican models, creating an

79
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interesting synergy.

Within the theories considered in [218, 232] the inverse of Lambda becomes canonically

conjugate to the Chern-Simons invariant1 [237, 238]. The radical implications of this fact in

quantum cosmology were examined in [238] (see [239, 240] for the background problem). In

the context of classical solutions, the dynamics are then ruled by two topological invariants,

of which the Chern-Simons functional is the density. Depending on whether one considers

the real or imaginary parts of the Chern-Simons term, these are the Pontryagin and the Euler

(or Gauss-Bonnet) invariants. Since these terms appear in the action multiplied by Λ−1, they

are only topological invariants if Λ is a constant. The variability of Lambda disrupts their

topological nature, and so they are quasi-topological terms (to use the terminology of [218]).

The theories considered in [218, 219, 232] have the virtue that they do not add new

parameters to gravity with respect to Einstein’s theory with a cosmological constant. The

coefficient of the Euler term is fully fixed by the Bianchi identities (from solutions without

matter), so that the only true new parameter is the numerical coefficient of the Pontryagin

term, should we consider it. However, for these theories Λ is longer a free parameter, as it

is in Einstein’s theory. Hence, a theory with the Euler term alone would have fewer free

parameters than General Relativity, as argued in [218]. As explained in [219] such a theory

conflicts dramatically with basic Hot Big Bang cosmology (it refuses to accept a radiation

epoch). The introduction of the Pontryagin term allows for a viable expansion history (as

studied in [232]), leaving the working theory with the same number of free parameters as

General Relativity.

It was found in [232] that the parity-even and parity-odd Copernican solutions belong

to separate branches of the dynamics. Indeed, a Hamiltonian analysis revealed a different

structure of constraints and consequently a different number of degrees of freedom. We are

therefore talking about different phases of the same non-perturbative theory. The underlying

gauge symmetry associated with the new constraint of the theory is a form of conformal

invariance (generalized for theories with torsion). Lambda appears to be pure gauge with

1Models where Λ is directly conjugate to the Chern-Simons invariant (or similar quantities) have been considered within the
context of unimodular gravity [234, 235, 236].
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regards to this symmetry in the parity-even branch (in the absence of matter). The parity-

odd branch breaks conformal invariance even in the absence of matter, giving a varying

Lambda a physical meaning. Non-conformal matter does the same in the parity-even branch,

but then Lambda becomes a slave to matter (much in the spirit of [241]). It is interesting

to note that the (odd parity) Pontryagin term is only relevant for the homogeneous and

isotropic dynamics in the parity-odd branch of the solutions.

A preliminary investigation [232] revealed that phenomenology in these theories (which,

we stress, often have fewer free parameters than General Relativity, and rarely can be made

to have more) shows a preference for the parity-odd branch in the presence of Pontryagin

dynamics. These considerations concerned only the background solution, which is already

very rich in the parity-odd branch. The next obvious step is to investigate the propagation

of gravitational waves in the same branch. Such is the purpose of the current investigation.

The plan of this chapter is as follows. In Section 5.2 we start by reviewing previous results

that will be needed in this paper, translating them into the notation we found most useful

for establishing a perturbation calculation. In Section 5.3 we set up the tensor perturbation

variables and work out the linearized equations in various forms (tetrad index and space-time

index forms, and then decomposed in Fourier and helicity modes). The equations in general

look ominous: we have to contend with first order equations in three variables – metric, and

parity even and odd components of the connection – but in subsection 5.3 we condense them

in a more aesthetically pleasing form, and lay out a strategy for their solution.

The rest of the chapter is spent on working out solutions for various parameter settings. In

Section 5.4 we briefly discuss general properties of the perturbed equations. Next we discuss

a number of limiting cases of interest. As a sanity check we find the General Relativity

limit in Section 5.5, with reassuring results. In Section 5.6 we consider the case where the

dynamics are ruled purely by an Euler pseudo-topological term. We unveil our first surprise:

the tensor mode perturbation is left entirely undetermined by the equations of motion. This

could well signify that they have become a gauge degree of freedom in this case.

The introduction of the Pontryagin term changes the picture. Physical propagating tensor
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modes now do exist, but they are endowed with chiral modified dispersion relations. We

concentrate on two limiting forms - in Section 5.7 the propagation of gravitational waves in

the late universe is discussed, whilst in Section 5.8 their propagation at earlier stages when

the evolution is dominated by matter and radiation components is discussed. Finally in

Section 5.9 we summarize our results and discuss prospects for further development.

5.2 Review of previous results

Here we shall review some results, adapting the notation in previous literature to the notation

that shall be more useful in this chapter. Specifically, we shall use the following conventions

for indices:

• A,B,C,D: SO(1, 3) gauge indices.

• I, J,K, L: SO(3) gauge indices.

• µ, ν, α, β: spacetime coordinate indices.

• t: time coordinate index.

• i, j, k, l,: spatial coordinate indices.

5.2.1 The full theory and its equations

The theories we analyze can be written as:

Sg[e, ω,Λ] = −
∫

3

2Λ

(
ϵABCD +

2

γ
ηACηBD

)(
RAB − Λ

3
eAeB

)(
RCD − Λ

3
eCeD

)
−2

γ

∫
TATA.

(5.1)

whereRAB ≡ dωAB+ωA
Cω

CB, TA ≡ deA+ωA
Be

B and unless otherwise stated, multiplication

of differential forms is via the wedge product 2.The action can be rewritten as proportional

2If the parameter γ → ∞ and Λ is constrained to be a constant, the resulting theory is the Einstein-Cartan theory alongside
an Euler boundary term; the particular coefficient of this boundary term has been found to be associated with interesting
properties of Noether charges in gravity [242, 243]
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to four terms Sg = SPal + SEul + SNY + SPont, with

SPal =

∫
ϵABCD

(
eAeBRCD − Λ

6
eAeBeCeD

)
, (5.2)

SEul = −3

2

∫
1

Λ
ϵABCDR

ABRCD, (5.3)

SNY =
2

γ

∫
eAeBRAB − TATA, (5.4)

SPont = −3

γ

∫
1

Λ
RABRAB. (5.5)

The first term is the Palatini action, though differs from that of the Einstein-Cartan theory

in that we allow Λ vary as a dynamical field rather than fixing it to be a constant. The

second term is the quasi-Euler term of [218]. The third term is the Nieh-Yan topological

invariant (replacing the Holst term should there be torsion). The last term is the quasi-

Pontryagin term studied in [232]. We stress that the connection proposed here between γ

and the pre-factor of the quasi-Pontryagin term can be broken, and is not strictly needed.

More generally, we could also look at theories with arbitrary numerical factors in front of

the quasi-Euler and quasi-Pontryagin terms.

As usual, matter can be added to the gravitational action, to yield a total action:

S =
1

2κ
Sg(e, ω,Λ) + SM(Φ, e, ω,Λ), (5.6)

where Φ denote matter fields. The full gravitational equations of motion of this theory are

then:

ϵABCD

(
eBRCD − 1

3
ΛeBeCeD

)
= −2κτA (5.7)

T [AeB] +
3

2Λ2
dΛRAB − 3

4γΛ2
ϵABCDdΛRCD = κSAB (5.8)

ϵABCD

(
RABRCD − 1

9
Λ2eAeBeCeD

)
+

2

γ
RABRAB = −2κJ (5.9)

where κ ≡ 8πG and we have defined energy momentum 3-form τA = 1
2
δSM

δeA
, the spin-current

3-form SAB ≡ −(1/2)ϵABCDδSM/δω
CD and the Λ-source 4-form J ≡ (2/3)δS/δΛ. They are
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obtained by varying (5.1) together with the action for matter with respect to e, ω and Λ,

respectively. A key property of these models is that Einstein’s equation (5.7) takes the same

form in the Einstein-Cartan formulation of gravity (where Λ = cst.). Any dynamics for Λ

will arise from the gravitational field ωAB rather than via the addition of explicit kinetic

terms for Λ in the Lagrangian.

In this chapter we will confine ourselves to situations where the quantities SAB and J both

are negligible. For standard ‘minimal’ coupling between fermions and the spin connection,

the quantity SAB is sourced by the axial spinor current; much of our focus will be on the

behaviour of certain cosmological perturbations in ‘recent’ post-recombination cosmological

history where this quantity is expected to be negligible [220]. The assumption that J is

negligible must be regarded as a simplifying assumption and more detailed analysis is needed

to determine its expected coupling to matter. For the particular cosmological consequences

of the theory examined here, it will suffice to that the matter content is describable in

terms of perfect fluids. By way of example, a perfect fluid with density ρ, pressure p and

four-velocity Uµ = eµAU
A will have stress-energy 3-form:

τA = −1

6
(ρ+ p)UAϵBCDEU

BeCeDeE − 1

6
pϵABCDe

BeCeD (5.10)

5.2.2 The background solution

We now look at the behaviour of the theory in situations where spacetime has Friedmann-

Robertson-Walker (FRW) symmetry. This symmetry is widely considered to well approxi-

mate the geometry of the universe on large scales and there exist strong constraints on the

evolution of the universe within this framework. We will henceforth refer to possible solu-

tions with this symmetry as ‘background’ solutions as later we will consider the behaviour

of small perturbations around them. It is important then to demonstrate that the combined

action (5.6) yields solutions that are consistent with these constraints.

We shall denote all background quantities by a bar over the respective variable. For
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simplicity we assume that the background spatial curvature is zero, so that we can use

Cartesian coordinates with

ē0 = N(t)dt (5.11)

ēI = a(t)δIi dx
i (5.12)

where N(t) is the lapse function (N = 1 for proper time) and a(t) is the expansion factor.

Note that ēIi = aδIi and ēiI = a−1δiI . Then, the spin connection will be given by:

ω̄0I = g(t)a(t)δIi dx
i (5.13)

ω̄IJ = −P (t)a(t)ϵIJKδKk dxk (5.14)

where g and P are its parity even and odd components, respectively. A connection of the

form (5.14) was considered by Cartan as an extension to Riemannian geometry, with parallel

transport according to this connection yielding a rotation of vectors with a ‘handedness’

dictated by the sign of P . This effect has been termed Cartan’s spiral staircase and we will

see that all parity violating effects in this gravitational model appear only when P ̸= 0. The

torsion associated with (5.13) and (5.14) is given by:

T̄ 0 = 0 (5.15)

T̄ I = T ēI ē0 + PϵIJK ēJ ēK (5.16)

with the parity even component T related to g by:

T =

(
g − 1

N

ȧ

a

)
. (5.17)

The field strength is:

R̄0I =
1

N

(
ġ +

ȧ

a
g

)
ē0ēI + gPϵIJK ēJ ēK (5.18)
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R̄IJ =
1

N

(
Ṗ + P

ȧ

a

)
ϵIJK ē

K ē0 +
(
g2 − P 2

)
ēI ēJ . (5.19)

It can be shown that with this “Copernican” ansatz, equations (5.7) to (5.9) become:

g2 − P 2 =
Λ+ κρ

3
(5.20)

(ag).

a
=

Λ

3
− κ

6
(ρ+ 3p) (5.21)

T =
Λ̇

2Λ2

(
Λ + κρ− 6

γ
gP

)
(5.22)

P =
3Λ̇

Λ2

(
gP +

Λ+ κρ

6γ

)
(5.23)

(Λ + κρ)
(
Λ− κ

2
(ρ+ 3p)

)
− Λ2 = 18gP

(aP ).

a

+
9

γ

(
Λ + κρ

3

(aP ).

a
+

2

3

(
Λ− κ

ρ+ 3p

2

)
gP

)
(5.24)

As shown in Appendix 5.A, this system can be cast in the form of a first-order system of evo-

lution equations for {a, g,Λ, P} plus a constraint (the Hamiltonian constraint/Friedmann’s

equation). Reference to these background equations will be made at several points in this

paper, to simplify the perturbation equations.

5.2.3 Background evolution

We now discuss solutions to equations (5.20)-(5.24) with an emphasis on solutions that

appear likely to be most consistent with the observed expansion history of the universe.

Care must be taken here as many probes of background quantities are additionally sensitive

to details of cosmological perturbations. For example, the position of the first peak of

temperature anisotropies in the cosmic microwave background (CMB) is sensitive to both the

distance to last scattering (a background quantity) and the sound horizon at last scattering

(a quantity which additionally depends on the form of equations describing cosmological

perturbations) [244].

The system of equations (5.20)-(5.24) is rather complicated and must be solved numeri-

cally. However, relevant approximate solutions do exist, which we will now discuss.
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Early times

There is strong evidence that the universe has undergone an early period (‘the radiation era’)

where relativistic species (such as photons and relativistic neutrinos) dominate the evolution

of the universe for a time before the universe cools down enough such that the gravitational

effect of near-pressureless/dustlike matter (baryons and dark matter) dominates (‘the matter

era’), before eventually a new source of energy - typically termed dark energy - begins to

dominate and cause the expansion of the universe to accelerate [245]. We will look to

see whether the theory (5.6) permits this kind of cosmological history, whilst ascribing the

recent cosmological acceleration to - now dynamical - Λ. An important part of this is that

the gravitational effect of new degrees of freedom quantities such as Λ and the torsion P do

not contradict the above picture.

It can be shown that when |γ| ≪ 1, to first order in γ there exists a solution for the field

P in the limit Λ → 0

P = P(ρ) =
γ

3

√
κρ

3
(5.25)

We see then that when this solution holds, the torsion field P is proportional to γ and

so a smaller value of γ suppresses torsion in the cosmological background. Neglecting the

contribution of Λ is expected to be a good approximation in the earlier universe where the

‘dark energy’ is a sub-dominant contributor to the universe’s expansion. When (5.25) holds

it may be shown that the Friedmann equation can be recovered in approximation:

3

(
ȧ

a

)2

=

(
1− γ2

9

)
κρ+O(γ3) (5.26)

where we have adopted the N = 1 spacetime gauge. Hence the solution (5.25) acts to rescale

the bare Newton’s constant G during times when the effect of Λ is negligible. The degree to

which this effect is observable depends on how the value of Newton’s constant GN measured
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in tabletop experiments is related to G. If G ̸= GN , then the rate of expansion ȧ/a due to a

given ρ will be different from as is the case in General Relativity and so in principle γ could

be constrained by probes of the expansion rate during big bang nucleosynthesis [246].

However, importantly, the solution (5.25) is not stable. By way of illustration, we may

consider the evolution of small, homogeneous perturbations P = P(ρ)(1 + δP (t)). It can

be shown that deep in the radiation era where κρ/3 ∼ H2
0Ωr/a

4 - where H0 is the Hubble

constant today - that

P(ρ) =
γ

3a2
H0

√
Ωr (5.27)

δP = Ca3 (5.28)

Therefore δP grows as a increases. By way of example, if δP ≪ 1 at a ∼ 10−15 then for it to

remain smaller than unity at a ∼ 10−5 we must have δP (a = 10−15) < 10−30. This indicates

that significant fine-tuning of initial data is required for the spiral staircase field P to find

itself following the solution (5.25).

If P deviates considerably from the tracking solution, the tendency is for P to evolve to

dominate the evolution of the universe. In this case it may be shown that P = P0/a where

P0 is a constant and a ∼ (1+γ)(t−t0) - here the evolution of the universe due to P resembles

a General-Relativistic empty universe with negative spatial curvature. It is hard to see how

such a universe could be consistent with experiment. This is the case even if P is initially

negligible. Therefore, the phenomenological viability of the model rests on P being able to

initially find itself sufficiently close to the form (5.25) to avoid dominating the evolution of

the universe.

Late times

During late time cosmological evolution for realistic cosmologies we expect that universe to

begin accelerating and we look to ascribe this to Λ and P beginning to dominate cosmic
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evolution. Again assuming |γ| ≪ 1 and now assuming P 2 ≪ Λ and taking the limit ρ → 0

we have the following evolution equations for Λ and P :

dP

d ln a
= −3P,

dΛ

d ln a
= 2

√
3γP

√
Λ (5.29)

which possess solutions

P =
Pi

a3
(5.30)

Λ = Λ0 −
2γ√
3a3

Pi

√
Λ0 (5.31)

So, asymptotically for large a, Λ → Λ0 and P → 0, leading to a confluence with the

current standard cosmological picture of the late-time universe’s evolution being dominated

by a cosmological constant of magnitude Λ0. The contribution of P to the Hamiltonian

constraint goes as ∼ P 2 so we see that in this regime P evolves like a shear component,

its energy density diluting as a−6. For realistic cosmologies a typical value for Pi will be

given by its value when Λ begins to dominate the evolution of the universe at a scale factor

a ∼ ai following a period of matter domination during which P ∼ (γ/3)H0a
−3/2
i (from the

solution (5.25)). We expect then Pi ∼ (γ/3)H0a
3/2
i . This has important implications: if

phenomenologically viable cosmologies involve P staying on the tracking solution (5.25) for

an appreciable amount of time, this means that fixing γ fixes the size of P during matter

domination, and the size of Pi as the cosmological constant begins to dominate.

We now discuss the evolution of Λ. It can be seen from (5.25) that the tracking solution

can exist if sign(P ) = sign(γ). Recall that the Λ equation of motion is Λ̇ = 2γΛ2P/(6γgP +

Λ + κρ) and therefore in the earlier universe if κρ is initially greater than Λ it will tend to

suppress time variation of Λ. Furthermore, we will have Λ̇ > 0 throughout, meaning that Λ

must be of smaller magnitude in the past than today. A typical evolution of Λ and P are

shown in Figure 5.1.
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Figure 5.1: The numerical evolution of various quantities for the parameter choice γ = 10−5. In the upper
plot the evolution of Λ is shown; it can be seen that the field changes by roughly one part in 109 over cosmic
history. In the middle plot the solid line shows the exact evolution of the torsion field P whilst dashed line
shows the solution (5.25) and the dotted line shows the solution (5.30). The lower plot shows evolution of Ω
quantities (here defined as fractional contributions to g2 in the Hamiltonian constraint) and P (solid lines)
as a function of ln a for a realistic universe. Subscripts d and r denote dust and radiation-like components
of the universe. The scale factor is fixed to be a = 1 at the present moment, and units where the present
day Hubble parameter H0 is set to unity are used.
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In summary then, numerical exploration suggests that unless P finds itself on the tracking

solution (5.25) for much of cosmic history, it will tend to dominate the evolution of the

universe and therefore very likely in conflict with cosmological data. This requires fine

tuning of the initial value of P so that it begins close to the tracking solution. During the

tracking stage, the effect of P is to rescale Newton’s constant G. We will find later that

deviations of gravitational wave speed from unity tend to be of order γ2. This justifies our

assumption that |γ| ≪ 1 and - in conjunction with recent constraints on the speed of gravity

- restricts the fractional rescaling of G to be O(10−15), which is well within bounds that will

be placed by BBN constraints for the foreseeable future [246]. Additionally we see that a

smaller value of γ tends to lower the total time variation of Λ over cosmic history, making

it more difficult to distinguish from a genuine cosmological constant.

5.3 The perturbed equations of motion for tensor modes

We now look at the evolution of small perturbations to the cosmological background. We

perturb the tetrad and connection as:

δe0 = 0 (5.32)

δeI =
1

2
HIJ ēJ (5.33)

δω0I =
1

2
EIJ ēJ (5.34)

δωIJ =
1

2
ϵIJKBKLēL (5.35)

where H[IJ ] = E [IJ ] = B[IJ ] = 0 and HI
I = EI

I = BI
I = 0. In addition we apply the

restriction of looking at tensor (transverse traceless) modes, so that we impose:

β̇IHIJ = β̇IEIJ = β̇IBIJ = 0. (5.36)

where D̄I ≡ ēiID̄i and D̄i is the covariant derivative according to ω̄IJ
i. Note the field

P does not contribute to the expressions (5.36) and so the equations are equivalent to
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ēiI∂iHIJ = ēiI∂iEIJ = ēiI∂iBIJ = 0.

Given a quantity YIJ that represents a small perturbation, it can be converted into a tensor

Yij in the spatial coordinate basis via Yij ≡ ēIi ē
J
j YIJ . Given our assumption of vanishing

spatial curvature, a ‘co-moving’ tensor Ỹij = Yij/a
2 can further be constructed.

The linearly-perturbed form of equations (5.7)-(5.9) can be written as linear partial differ-

ential equations in (t, xi) and they are written in this form in Appendix 5.C. For simplicity

we decompose these perturbations into plane-wave Fourier components labelled by wave

number k. As a further simplification we decompose each co-moving tensor mode Fourier

mode into helicity eigenstates:

H̃ij =
∑
±

H±(k, t)eikix
iP̃±

ij (5.37)

Ẽij =
∑
±

E±(k, t)eikix
iP̃±

ij (5.38)

B̃ij =
∑
±

B±(k, t)eikix
iP̃±

ij . (5.39)

Here P̃±
ij are co-moving polarization tensors for + and − helicity components. For a plane-

wave perturbation with wavenumber ki we have the important identities, ikmϵ̃ l
im P̃±

lj = ±kP̃±
ij

and P̃λ
ijP̃λ′ij = 2δλλ

′
where λ = +,− and ϵ̃ijk is the co-moving three dimensional Levi-Civita

symbol. Indices of co-moving tensors are taken to be raised and lowered with the Kronecker

delta symbol.

After some algebra, it can be shown that the spin connection equations of motion yield

the following equations:

( B±

E±

)
=

1

A2 +B2

(
A B

−B A

)( −k±PH±

Ḣ± +

(
2 ȧ
a
− g

)
H±

)
(5.40)
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where here and subsequently we choose the spacetime gauge N = 1 (proper time) and where

A =1− 3Λ̇

Λ2

(
g − k±P γ

−1

)
(5.41)

B =
3Λ̇

Λ2

(
k±P + gγ−1

)
(5.42)

We have introduced the polarization-dependent torsion-adjusted proper wavenumber k±P ac-

cording to:

k±P ≡ ±k
a
− P (5.43)

For reference, in the usual Einstein-Cartan theory we have A = 1, B = 0; in that case,

B± is related to spatial derivatives of H± and E± is related to time variations of H±. All

modifications to the relation between {E±,B±} and H± stem from non-constancy of Λ.

Hence the connection equations imply that in general the parity even and odd components

of the connection (E and B) can be obtained from their Einstein-Cartan expressions via a

rotation, with an angle θ satisfying:

tan θ =
B

A
=

3Λ̇
Λ2 (g + γk±P )γ

−1

1− 3Λ̇
Λ2 (g − k±P γ

−1)
(5.44)

followed by a dilatation by 1/
√
A2 +B2.

Then we may look to find the “second order” evolution equation for H± by inserting the

solution (5.40) for B± and E± into the Einstein equation:

0 = Ė± +

(
ȧ

a
+ g

)
E± − k±PB

±

−
(
2

3
Λ +

κ

6
(ρ− 3p)

)
H± (5.45)

We now look at solutions to the system (5.40) and (5.45).
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5.4 General features

Generally, if the solution (5.40) is inserted into (5.45) then the resulting coefficient of Ḧ± is

proportional to:

(
1 +

6P

Λ + κρ
k±P

)
. (5.46)

We see that the coefficient is not positive-definite and hits zero when k = k±∗ :

k±∗ = ∓ a

6P

(
Λ + κρ− 6P 2

)
(5.47)

signalling a divergence in the frequency. For example in the very late universe we may expect

Λ ∼ Λ0 = cst. to dominate the evolution of the universe hence then:

k±∗ ∼ ∓ a

6P
Λ0 (5.48)

where we’ve assumed that P 2/Λ0 ≪ 1.

Following the arguments proposed in Subsections 5.2.3 and 5.2.3, we have that k±∗ ∼

∓2a4Λ0/γ for realistic cosmologies. Reaching k±∗ will correspond to ω2
±(k, t) and f±(k, t)

diverging and therefore likely signals a breakdown in the applicability of linear perturbation

theory. As for the case of P (t), we see that a key parameter for the size of k±∗ is γ.

When k ̸= k±∗ and with the important exception of the limit |γ| → ∞ (see Section 5.6),

it is possible to write the Einstein equation (5.45) in the following form :

Ḧ± = −ω2
±(k, t)H± − f±(k, t)Ḣ± (5.49)

For arbitrarily values of γ, the form of ω2
±(k, t) and f±(k, t) will be extremely complicated

and so we will concentrate in detail on how (5.49) looks in relevant, limiting cases.
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5.5 The Einstein-Cartan limit

We start by finding the Einstein-Cartan limit of these theories, noting that when γ is finite

and ρ = p = 0 there are solutions where P = 0, g = ȧ/a and Λ is constant [232]. Taking

these background solutions we should obtain the Einstein-Cartan limit for our theory, which

is equivalent to General Relativity in this situation. Inserting these conditions into the

formalism just developed, we find Λ̇ = 0, and so A = 1 and B = 0, as already announced in

the previous Section. The connection equations are therefore:

B± = −k±PH
± (5.50)

E± =

(
d

dt
+
ȧ

a

)
H±. (5.51)

Note that since P = 0 we have k±P = ±k/a, and so for gravity waves in Einstein-Cartan

theory, the parity-odd connection perturbation, B, is a spatial gradient of the metric, whereas

the parity-even component, E , is a time derivative of the metric (cf. Eqs (5.35) and (5.34)).

Inserting these expressions into the Einstein equation (5.45), as prescribed, we find:

Ḧ± + 3
ȧ

a
Ḣ± +

(
ġ + 2g2 − 2

3
Λ

)
H± + (k±P )

2H± = 0 (5.52)

where the dot denotes derivative with respect to the background proper time. In the Einstein-

Cartan theory we have T = 0 in the absence of background sources of torsion, so g = ȧ/a,

and the background equations of motion read (see (5.20) and (5.21)):

g2 =
Λ

3
(5.53)

ġ +
ȧ

a
g = ġ + g2 =

Λ

3
. (5.54)

Therefore we find:

Ḧ± + 3
ȧ

a
Ḣ± = −(k±P )

2H±
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= −
(
k

a

)2

H± (5.55)

Thus, our formalism for gravity waves reduces to the textbook equations for gravity waves

in General Relativity in this limit.

5.6 Euler theory (γ → ∞) in a parity-odd background (P ̸= 0)

Our first surprise arises when we consider a theory with the Euler pseudo-topological term

only, by letting γ → ∞, but with a background with P ̸= 0. Then, as the background

Equation (5.23) shows (with P ̸= 0 and γ → ∞), we must have 3Λ̇g = Λ2. Therefore, the

definitions of A and B (Eqns. (5.41) and (5.42)) lead to:

A = 0, B =
k±P
g

(5.56)

These are orthogonal to the Einstein-Cartan values, in the sense that for the latter the matrix

(5.40) is diagonal, whereas here the matrix is purely off-diagonal. Indeed the rotation part

of the transformation is now θ = π/2. This is reflected in the way the connection is related

to the metric. the Einstein-Cartan case (cf. Eqns. (5.50) and (5.51)) we have:

E± = gH± (5.57)

k±PB
± = g

(
Ḣ± +

(
2ȧ

a
− g

)
H±
)

(5.58)

Inserting into the Einstein equation (5.45) we find that not only does this imply an absence

of second order time derivatives for H±, but the first time derivatives cancel out. In addition

the algebraic equation obtained is

(
1

2
ġ + g2 − g

2

ȧ

a
− Λ

3
+

1

12
(3p− ρ)

)
H± = 0 (5.59)
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The term in brackets in (5.59) vanishes due to the equations of motion, therefore the tensor

mode perturbation is H± completely undetermined by the perturbed equations of motion 3.

One may wonder to what extent this is a result of the particular choice for our action.

For example, if the coefficient −3
2
in the term (5.3) is replaced by − 3

2ξ
then it can be shown

that Einstein’s equation instead becomes:

1

ξ

(
1− ξ

)(
4Λ + ρ− 3p

)
H± = 0 (5.60)

Thus in the case when Λ ̸= 0, ρ ̸= 3p and ξ ̸= 1, the perturbation H± is not undetermined

but fixed to vanish. It appears that the presence of the Euler term in the absence of the

Pontryagin term is sufficient to nullify the dynamics of the perturbation H± with the special

case ξ = 1, which leaves them undetermined by the perturbed equations of motion. Note

that the case of simultaneous vanishing of the Euler and Pontryagin term (ξ → ∞) does

not correspond to General Relativity. In fact such limit yields a rather exotic background

solution a = 0 due to Λ being a dynamical field.

5.7 The leading order solution for the general case in the late

universe

We now consider a general finite value of γ and look at the perturbed equations in a regime

where the evolution of the universe is dominated by Λ. We define a dimensionless parameter

ϵP ≡ P/
√
Λ which is expected to be of magnitude much smaller than unity in the late

universe. Furthermore we assume that |γ| ≪ 1. Inserting the solutions for E± and B± from

(5.40) into the Einstein equations and keeping only terms up to second order in {ϵP , γ} we

find:

Ḧ± = −ω2
±(k, t)H± − f±(k, t)Ḣ±

3This would appear to contradict the result found in [247] which says that tensor modes propagate luminally as in General
Relativity in a model with tensor mode perturbation equations that should be mappable to the ones considered here.



98

ω2
±(k, t) ≡

[
4Λϵ2P ∓ 4

√
ΛϵP

(
k

a

)
+

(
1 +

(κΛρ− 3κΛp− κ2ρ2 − 3κ2pρ)

(κρ+ Λ)2
γ2

+
8
(√

3Λ5/2 +
√
3κΛ3/2ρ−

√
3κ2

√
Λρ2 − 3

√
3κ2

√
Λpρ− 3

√
3κΛ3/2p

)
(κρ+ Λ)5/2

γϵP (5.61)

+
42 (2Λ2 − κΛρ− 3κΛp)

(κρ+ Λ)2
ϵ2P

)(
k

a

)2]
+O(ϵP , γ)

3 (5.62)

f±(k, t) ≡
√

3(Λ + κρ)

±
[4√3

√
Λ
√
κρ+ Λ(2Λ− κρ)ϵP + κρ(κρ− Λ)γ + 3κp

(
(κρ+ Λ)γ − 4

√
3
√
Λ
√
κρ+ ΛϵP

)
(κρ+ Λ)2

](
k

a

)
+O(ϵP , γ)

2 (5.63)

where it is assumed that |k| ≪ k∗. Roughly speaking, positivity of both ω2
±(k, t) and f±(k, t)

imply that H± evolves in a stable manner.

We immediately see from (5.61) that novel features are generally present in the propaga-

tion of H±. In the limit k → 0 we see that

lim
k→0

ω2
±(k, t) = 4Λϵ2P ≡ M2

G(P ) (5.64)

i.e. the non-Riemannian background curvature provided by the spiral staircase field P gives

what may be interpreted as contributing to a non-zero effective mass to the graviton.

At non-zero k we see that there exist terms linear in k in ω2
±(k, t) alongside the term

proportional to k2 familiar from General Relativity present in equation (5.55). We may

consider the wavenumber k(ω)12 at which the term linear in k is of comparable size to the

term quadratic in k2. It can be calculated to be, to leading order in small quantities:

k±(ω)12 ≡ ±4aϵP
√
Λ = ±4aP (5.65)
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For realistic background cosmologies we expect in this regime that P ≈ (γ/3)H0a
3/2
i a−3 so

k±(ω)12 ≈ ±4(γ/3)a
3/2
i a−2H0, where ai will be the scale factor where Λ begins to dominate

the evolution of the universe. As |γ| ≪ 1 then k±(ω)12 is expected to be on scales far larger

than the characteristic cosmological horizon scale kH ≡ H0 today. We note that the mass

term and chirality-dependent leading term linear in k are due to the tensor perturbation Hij

coupling to the parity-violating torsionful generalization of the Laplacian operator.

Following [248] (see also [249, 250, 251]) the speed of monochromatic tensor modes today

c±T (taking a = 1) is given by c±T = ω±
k
. In general our expression for cT will be rather

complicated but it is instructive to detail the order of magnitude of terms appearing in its

expressions. Given how we expect P (t) to scale with γ from the results of Section 5.2.3 we

find that:

c±T ∼ 1±O
(
H0

k
γ

)
+O

(
γ2
)
+O

(
H2

0

k2
γ2
)

±O
(
H3

0

k3
γ3
)
±O

(
k

k∗
γ2
)
+O

(
k2

k2∗
γ2
)
+ . . . (5.66)

The above shows the leading contribution to each k dependence; these get further corrections

by higher powers of γ as appropriate. Note that the terms involving k∗, which are important

in terms of telling us when breakdown happens for higher k, appear at leading order cubic

in {ϵP , γ} and that the next-to-leading contribution to c±T involving k∗ is a factor (k/k∗)

smaller than the leading one, implying that the leading term is the dominant one as long

as |k/k∗| ≪ 1. Constraints from the LIGO experiment roughly constrain the deviation of

c±T from unity by approximately 10−15. This will generally imply that each of the terms

in (5.66) that cause deviations from unity should be no bigger than 10−15. If we take a

typical wavelength of gravitational waves probed by LIGO to be λLIGO ∼ 1000km then

kLIGO = 2π/λLIGO ∼ 6 × 10−3km−1. Taking a value H0 ∼ (2/3)10−23km−1 (corresponding

to H0 ∼ 70km/s/Mpc) we have H0/kLIGO ∼ 10−21. As we expect γ2 < 1, the leading H0/k

chirality-dependent modification ot the speed of gravity is not constrained by existing data.
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The constraint on the speed of gravitational wave speed then places the following restriction

on γ:

γ2 ≲ O(10−15) (5.67)

Given this constraint and the small value of H0/kLIGO, the remaining immediate constraint

from c±T is that

|k±∗ | ≫ O(kLIGO) (5.68)

which is necessary for the consistency of our use of the linearly perturbed equations of motion;

as the breakdown of the applicability of these equations is approached, significant deviations

of c±T from unity are expected. We can translate this into a constraint on γ by assuming as

above that P ∼ (γ/3)H0a
3/2
i a−3 and so using equation 5.47 we have k±∗ ∼ ∓H0/γ and so

|γ| ≪ O(10−21) (5.69)

5.8 Perfect fluid domination

In this limit, we consider the evolution of perturbations on a background where the evolution

is dominated by a combination of perfect fluids. It was shown in 5.2.3 that there exist

solutions where Λ ∼ 0 and P 2 = γ2κρ/27 with γ ≪ 1 and that these seem to be the solutions

that yield a realistic cosmology. Assuming that these solutions hold then to quartic order in

the small parameter γ we have that:

Ḧ± = −ω2
±(k, t)H± − f±(k, t)Ḣ± (5.70)
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ω2
±(k, t) ≡

[
4

27

(
1− 1

9
(1 + 3w)γ2

)
γ2κρ∓ 4

3

√
κρ

3
γ

(
k

a

)
+

(
1 +

1

9
(1 + 3w)γ2 +

12

243
(1 + 3w)γ4

)(
k

a

)2

∓ 2

9
(1 + 3w)

√
3

κρ
γ3
(
k

a

)3

+
20

27

(1 + 3w)

κρ
γ4
(
k

a

)4]
+O(γ5) (5.71)

f±(k, t) ≡
[√

3κρ

(
1− 1

18
γ2 +

217

1944
γ4 +

13

162
wγ4

)
∓ 1

9
(1 + 3w)

(
1 + 4γ2

)
γ

(
k

a

)
+ (1 + 3w)

√
3

κρ

2

9

(
1 +

16

9
γ2
)
γ2
(
k

a

)2

∓ 4

9

(1 + 3w)

κρ
γ3
(
k

a

)3

+
8

27
(1 + 3w)

√
3

(κρ)3/2
γ4
(
k

a

)4]
+O(γ5) (5.72)

where w ≡ p/ρ. Note that as in the case of the late time solution discussed in Section 5.7 the

leading term in ω2
± to leading order in γ2 as k → 0 corresponds to M2

G = 4P 2, and this term

grows more quickly than (k/a)2 as the scale factor a decreases. By numerical inspection, ω2
±

to arbitrary order in γ has a minimum during fluid domination (if a = 1 today)

a ∼
2
(
γ2H2

0Ωd +
√
γ4H4

0Ω
2
d + 9γ2H2

0k
2Ωr

)
9k2

(5.73)

where k > 0 for the + polarization, and k < 0 for the − polarization where we’ve defined

Ωd and Ωr for dust and radiation respectively via κρd/3 ≡ H2
0Ωd/a

3 and κρr/3 ≡ H2
0Ωr/a

4.

This behaviour can be seen for ω2
+ in Figure 5.2 and appears to mark a brief transition

between ω2
+ being dominated by the mass term at earlier times and the more familiar (k/a)2

term at later times. Indeed, one can see that generally the effective mass term in (5.71) -

proportional to ρ- grows more quickly than (k/a)2 as a decreases so will tend to dominate

at early times.

5.9 Outlook

In this chapter we revisited models of the Universe where the cosmological constant is allowed

to vary as a result of a balancing torsion. Such theories potentially have fewer free parameters

than General Relativity, but we need to consider parity violating backgrounds so that they



102

10 5 10 3 10 1 101 103

a

10 23

10 18

10 13

10 8

10 3

102

107
4P2

2
+
2

Figure 5.2: Plot of the exact forms of ω2
+ and ω2

− (correct up to any order in γ) and 4P 2 for the background
cosmology depicted in Figure 5.1 and with k = 10−3H0, γ = 10−5. It can be seen that both ω2

+ and ω2
−

asymptote at early times to the 4P 2, whereas at later times each evolves as (k/a)2.
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display acceptable late time phenomenology even at the level of background cosmological

evolution [232]. Going beyond the homogeneous and isotropic approximation, the most

obvious question concerns the propagating modes of the theory, specifically gravitational

waves. We found that indeed dramatic results and severe constraints arise in this respect.

We developed the required perturbation theory within the first order formulation, taking

into account that the connection has parity-odd and -even components, with both potentially

receiving zeroth order terms. We also proposed a strategy for solving the more involved

equations one has to contend with in this setting. We recovered the usual result for gravity

waves if we assume the Einstein-Cartan theory (or solutions to our theory that reduce to it).

For a theory with a pure Euler term we found a remarkable result that the linearly perturbed

equations of motion leave the tensor perturbations either entirely undetermined (or fixed to

vanish, if the term has a factor different from the one imposed by self-duality). This may well

be hinting at the fact that gravity waves become ‘pure gauge’ in this case (in analogy with

what happens for a varying Lambda in the parity even branch of the background solutions).

In the more general case, with a Pontryagin-type quasi-topological term, the situation

is more promising. There are exotic effects, but these need not contradict observations in

particular if we restrict ourselves to viable background solutions that may be currently in-

distinguishable from the standard ΛCDM cosmological mode. At the level of perturbations,

results will necessarily differ from General Relativity for some wavenumbers k, with the speed

of tensor modes in the late universe receiving large modifications as |k| ∼ γH0 (the scale

of the graviton mass) and as |k| ∼ H0/γ (the scale k∗ ∼ H0/γ where linear perturbation

theory is expected to break down in these models). As one approaches each of these values,

the speed of gravity is predicted to diverge substantially from unity in a chirality-dependent

manner. All these effects occur only when the parity-violating torsion field P (t) ̸= 0 and -

via equation 5.76 - equivalently when the time derivative of Λ(t) is non-zero.

Thus, our results are potentially very useful as a new model relating observations on the

accelerating Universe (possibly implying of a non-constant deceleration parameter) and other

gravitational observations. But even more originally, our conclusions may be of great value
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for in phenomenological quantum gravity. Modified dispersion relations are a major feature

of phenomenological approaches to quantum gravity (see, for example, [252, 253, 254, 255]).

Our work has added a layer to this approach by introducing chiral modified dispersion

relations. It has been speculated that the concept of parity requires severe revision at the

Planck scale [256]. Furthermore, our results supplement existing findings regarding how

parity violation in theories of gravity involving to extensions to Riemannian geometry can

affect the propagation of gravitational waves (for example see [247, 257] for cases where the

gravitational connection field has torsion and non-metricity respectively).

A number of open questions remain. Firstly, we have only considered tensor perturbations

in this theory. It is expected that in the vector mode sector, there will be no new degrees

of freedom present - as in the tensor mode case, a relic of the polynomial nature of the

new ΛRR terms in the Lagrangian is that modifications will always only be enabled by a

non-zero time derivative of Λ(t) which concomitantly implies that time derivatives of the

spin-connection perturbation will not appear. In the scalar sector, a new scalar degree of

freedom δΛ(xi, t) is expected to propagate and it will be important to see its effect on the

cosmic microwave background CMB) and the growth of large scale structure.

There are also several avenues to study further observational signatures of this parity

violation. The gravitational wave waveform will show deviations from General Relativity in

both the amplitude and phase, due to amplitude and velocity birefringence effects, respec-

tively, which both arise as a result of parity violation [258, 259]. Some of these effects could

potentially be constrained in second generation gravitational wave detectors, and it would

be interesting to derive the modifications to the waveform due to these effects. In addition

to observable signatures in propagation, there is potential to detect parity violation at the

gravitational wave source through study of various types of astrophysical binary systems as

proposed by [260, 261]. It has also been suggested that parity violation in the gravitational

sector could leave distinct signatures in the CMB to be detected with future experiments

(see e.g., [262, 263, 264, 265, 266, 267, 268]), which could also be worth further exploration

in the context of our theory.
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It remains to understand our results in the light of a Hamiltonian analysis of the theory to

second order, or even non-perturbatively, to all orders. A clear direction of further develop-

ment would be to present the Hamiltonian structure of the full theory, with an examination

of its number of degrees of freedom. It is curious that the mini-superspace approximation

reveals two branches with different symmetries and degrees of freedom. We have now dis-

covered that the fluctuations about them have rather exotic properties. In particular, the

under-determination of the perturbed tensor equations of motion for a theory with a pure

Euler term hints that a novel type of gauge symmetry may exist.

5.A Alternative form of the background equations of motion

It is possible to write down the field equations (5.7)-(5.9) as a system of first-order ordinary

differential equations for variables {P, g,Λ, a} along with a constraint equation:

Ṗ =
−6Pκρ (6γPg2 + 3g (Λ + 2P 2)− ΛγP ) + κ2ρ(6P (3gp+ γPρ) + γΛκ(ρ− 3p))− γκ3ρ2(3p+ ρ)

6κρ(6γPg + Λκ+ ρ)

(5.74)

ġ = − 6 (γ2 + 1) g2P 2

6γPg + Λ+ κρ
− g2 + gγP +

Λ

3
− κ

6
(ρ+ 3P ) (5.75)

Λ̇ =
2γPΛ2

6γPg + Λ+ κρ
(5.76)

ȧ = a

(
6 (γ2 + 1) gP 2

6γPg + Λ+ κρ
+ g − γP

)
(5.77)

Λ

3
= g2 − P 2 − κ

ρ

3
(5.78)

It can be checked via differentiation of the constraint equation that ρ̇ = −3 ȧ
a
(ρ+p) as in the

case of a perfect fluid in General Relativity. Using the constraint equation we can rewrite

the evolution equation as Λ̇ = (2/3)γPΛ2/(g2 − P 2 + 2gγP ). From this perspective, the

dynamics for Λ can be seen as arising from the spin connection components g and P .
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5.B Linearly perturbed field strength and torsion

Central objects in the field equations (5.7)-(5.9) are the curvature and torsion two-forms

RAB and TA. Their linearly-perturbed forms around the cosmological background are found

to be:

δR0I = −ϵIJKgBJ
Lē

LēK +

(
1

N

∂

∂t
EIJ +

1

N

ȧ

a
EIJ

)
ē0ēJ

+ D̄KEIJ ēK ēJ + PEI
Jϵ

JKLēK ēL (5.79)

δRIJ = 2gE [I
L ē|L|ēJ ] + ϵIJK

((
1

N

∂

∂t
BKL +

1

N

ȧ

a
BKL

)
ē0ēL

+ (D̄LBKM)ēLēM + PBK
P ϵ

PMN ēM ēN

)
(5.80)

δT I =

(
1

N

∂

∂t
HIM +

1

N

ȧ

a
HIM − EIM

)
ē0ēM

+
(
β̇LHIJ + PHI

Kϵ
KLJ + ϵIJKBKL

)
ēLēJ (5.81)

where β̇I ≡ eiI β̇i where β̇i is the covariant derivative according to ω̄IJ .

5.C Perturbed equations of motion

For completeness we provide the full form of the perturbed equations of motion for the fields

{HIJ ,BIJ , EIJ}:

−
(
β̇KHIMϵ J

KM + 2PHIJ

)
−
(
Λ + 12P 2

Λ + 6gγP

)
BIJ = − 3

Λ2
Λ̇

(
D̄KEIMϵ J

KM + 2PEIJ

)
− 3

Λ2γ
Λ̇

(
gEIJ − D̄KBIMϵKMJ

)
(5.82)
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−
(
∂

∂t
HIJ +

(
2
ȧ

a
− g

)
HIJ

)
+

(
Λ + 12P 2

Λ + 6gγP

)
EIJ = − 3

Λ2
Λ̇

(
D̄KBIMϵ J

KM + 2PBIJ

)
− 3

Λ2γ
Λ̇

(
gBIJ + D̄KEIMϵKMJ

)
(5.83)

∂

∂t
EIJ +

(
ȧ

a
+ g

)
EIJ =

2

3
ΛHIJ + D̄KB(I

Lϵ
J)KL + 2PBIJ

+

(
2

3
Λ +

κ

6

(
ρ− 3p

))
HIJ (5.84)

where ϵIJK is the three-dimensional Levi-Civita symbol and we have chosen the N = 1

spacetime gauge.



Chapter 6

Probing Noncommutative Gravity

with Gravitational Wave and Binary

Pulsar Observations

6.1 Introduction

We now turn to another modified theory of gravity; noncommutative gravity. Since the

advent of gravitational wave astronomy with the detection of gravitational waves (GWs) by

the LIGO/Virgo collaboration (LVC), the theory of general relativity (GR) has been directly

testable to greater precision than previously possible. Although no observations have yet

indicated any compelling deviations from GR, we are able to study modifications to GR,

alternative theories of gravity and other fundamental physics using gravitational waves as

a probe [269, 270, 271, 272, 273, 274]. Particularly, non-GR effects are highly constrained

by GW observations, which can be used to explore many different theories. This has been

done, for example for Einstein-Aether theory [275], Einstein-dilaton-Gauss-Bonet gravity

[276, 277], dynamical Chern-Simons gravity [276] and others [278, 279].

In addition to gravitational waves, pulsar timing observations are valuable tool in probing
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modifications to GR. The system that we will be using to place constraints via pulsar obser-

vations is the double pulsar binary system PSR J0737-3039A/B. This system is quite unique,

as both neutron stars are radio pulsars, which allows for extremely precise measurements

and provides a rich background for tests of general relativity and modified theories of gravity

[280, 281].

In this chapter, we will employ a combination of gravitational wave and pulsar analysis

to introduce two independent constraints on noncommutative theories. Various noncommu-

tative theories have been proposed previously, originally introduced as a method of quan-

tizing spacetime [282]. The introduction of noncommutative geometry [283] allowed this

idea to be applied more broadly, with a focus on noncommutative quantum field theories

[284, 285] as well as multiple formulations of a noncommutative extension to the Standard

Model [286, 287, 288, 289]. The idea of noncommutative gravity stems from these theo-

ries. Non-commuting conjugate variables are a cornerstone of quantum mechanics, and it

seems natural that one could apply the same conventions that give rise to, for example, the

Heisenberg uncertainty principle in quantum mechanics, to a gravitational setting [284, 285].

Noncommutative gravity also has string theory implications [290, 291] and thus we have a

wide range of motivations for its study. The version that we will be focused on is character-

ized by promoting spacetime coordinates to operators which satisfy the following canonical

commutation relation

[x̂µ, x̂ν ] = iθµν . (6.1)

Here, θµν introduces a new fundamental quantum scale which represents the “quantum

fuzziness” of spacetime, in analogy to ℏ in quantum mechanics.

Previous work [292] has placed a bound on the time component of the noncommutativity

scale θ0i using GW150914. The authors worked in the post-Newtonian (PN) formalism, in

which quantities are expanded in powers of (v/c)n with v representing the relative veloc-

ity of the binary constituents, which are considered order (n/2)PN [293]. Reference [292]

found corrections entering at 2PN in the acceleration and the waveform phase. The authors
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introduce the notation

Λθi =
θ0i

lptp
, (6.2)

where θi represent the components of a three-dimensional unit vector θ, which acts as a

preferred direction that induces precession of the orbital plane. For calculational simplicity,

the authors assumed that the orientation of the θ is orthogonal to the orbital plane as to

place an approximate upper bound on
√
Λ, which was found to be

√
Λ ≲ 3.5, at the order

of the Planck scale (see [294, 295] for related works).

In this work we extend and generalize the above analysis by considering the general case

for the orientation of the preferred direction θ with respect to the orbital plane by adopt-

ing orbital averaging. We then place constraints by employing posterior samples from the

GWTC-1 catalog as in [276], rather than explicitly using the bound on the non-GR pa-

rameter at 2PN order found by LVC [269] as done in [292]. This new approach properly

accounts for the uncertainties in the masses. We derive bounds from four different gravita-

tional wave events with relatively small masses, namely GW151226, GW170608, GW170814

and GW170817.

We also place constraints on the the time component of the noncommutative tensor

using the binary pulsar system PSR J0737-3039A/B to act as an independent check on

the gravitational wave constraints. In the binary pulsar system, the noncommutativity

induces an additional contribution in the pericenter precession beyond GR at 1PN, due

to the preferred direction θ that is induced by the inclusion of noncommutative terms.

Corrections to other observables, such as the mass ratio and Shapiro delay, enter at higher

PN orders. Thus, we use the latter to determine the masses of the double pulsar binary and

use the pericenter precession to constrain the theory (see e.g. [296] for a related work on

constraining noncommutative gravity from the pericenter precession of binary pulsars). We

find that such bounds are slightly weaker than the ones from gravitational wave events.

The structure of the chapter is as follows. In Section 6.2 we derive the lowest order 2PN

noncommutative corrections to the binary system acceleration, beginning from the energy-

momentum tensor. We proceed to constrain the noncommutative parameter with LVC data
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in Section 6.3 by computing the 2PN non-commutative correction to the gravitational wave-

form. We then use posterior samples for two different waveform templates to constrain the

noncommutativity parameter,
√
Λ, in terms of the quantity L̂ · θ. In Section 6.4 we then

independently constrain
√
Λ as a function of L̂ · θ, where L̂ is a unit vector orthogonal to

the orbital plane, by computing the noncommutative correction to the GR pericenter pre-

cession and using the binary pulsar event PSR J0737-3039A/B. Finally, In section 6.5, we

summarize our results, and provide some concluding remarks as well as directions for future

work. We work in the geometric units c = G = 1.

6.2 Noncommutative Corrections to the Acceleration and Energy

In GR, one can approximate a binary system as two point masses which have an energy

momentum tensor given by

T µν
GR
(x, t) = m1γ1(t)v

µ
1 (t)v

ν
1 (t)δ

3[x− y1(t)] + 1 ↔ 2. (6.3)

Here, mi are the masses of each body, yi the positions and v
µ
i the four velocities. γi is given

by

γi =
1√

gi(gαβ)i(vαi v
β
i /c

2)
, (6.4)

where gµν is the metric, g its determinant and i = 1, 2 [293]. It was previously shown in [292]

that noncommutative corrections to the expression 6.3 can be found by considering that the

black holes are sourced by a massive real scalar field ϕ and incorporating the noncommuting

operators x̂µ by replacing the product of any two functions with a Moyal product. It was

found that the energy-momentum tensor, including noncommutative corrections, can be

written as

T µν
NC
(x, t) = mγL(t)v

µ(t)vν(t)δ3[x− y1(t)] +
m3γ3L
8

vµvνΘkl∂k∂lδ
3[x− y1(t)]

+(ηµmηνn∂m∂n − ηµν∂i∂
i)

(
ℏ2

4mγL
+
mγLℏ2

32
Θkl∂k∂l

)
δ3[x− y1(t)],

(6.5)
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where γL is the Lorentz factor and we define

Θkl =
θ0kθ0l

l2pt
2
p

+ 2vp
θ0kθpl

l3ptp
+ vpvq

θkpθlq

l4p
. (6.6)

Here, θ is the noncommutativity parameter defined by Eq. (6.1) while lp and tp are the

Planck length and time respectively. The second term in Eq. (6.5) is suppressed by a factor

of ℏ2 and can be neglected. We will consider the contribution from the first term in Eq.

(6.6), which using the convention that a term of order (v/c)n is of order (n/2)PN, enters

as a correction at the second Post-Newtonian order (2PN). We will consider only lowest

order noncommutative corrections, and thus can make the approximation γL = 1. Then,

for a binary system which considers only the lowest order noncommutative corrections, the

energy-momentum tensor simplifies to

T µν
NC
(x, t) = m1γ1(t)v

µ
1 (t)v

ν
1 (t)δ

3(x− y1(t))

+
m3

1Λ
2

8
vµ1 (t)v

ν
1 (t)θ

kθl∂k∂lδ
3(x− y1(t)) + 1 ↔ 2,

(6.7)

where we have defined a normalization of the noncommutative tensor, Λ as in Eq. 6.2.

In analogy to [292], we follow the standard procedure to arrive at the acceleration, where

we consider only the leading order GR contribution and the lowest order noncommutative

correction entering at 2PN:

ai = (ai)GR −
15M3(1− 2ν)Λ2

8r4
θkθln̂ikl. (6.8)

Here, M = m1 +m2 is the total mass, ν = m1m2/M
2 is the symmetric mass ratio, and r

is the binary separation r = |y1 − y2| . We have also introduced the quantity n such that

n = (y1 − y2)/r to define

n̂ikl = ninknl −
1

5
(δklni + δilnk + δkinl). (6.9)
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From the acceleration we can also determine the correction to the GR Lagrangian

L = LGR +
3M3µ(1− 2ν)Λ2

8r3
θkθln̂kl, (6.10)

and the conserved energy:

E = EGR −
3M3µ(1− 2ν)Λ2

8r3
θkθln̂kl. (6.11)

Here, µ = m1m2/M is the reduced mass and

n̂kl = nknl −
δkl
3
. (6.12)

In these expressions for the acceleration, conserved energy and Lagrangian, the vector

θ acts as a preferred direction and will in general induce precession in the orbital plane.

Previous work simplified these expressions for the acceleration, Lagrangian and conserved

energy by assuming a constrained case in which the orbital plane is perpendicular to the

preferred direction, θ[292]. Given that each binary is expected to be oriented randomly

with respect to the preferred direction, the chance of the above assumption being satisfied is

extremely low. To overcome this, we perform an orbital averaging procedure as is typically

done for precessing [297, 298] and magnetized [299] binaries. We will consider the following

relation as an orbital average over the unit vector n and the preferred direction θ as follows:

(n · θ)(n · θ) = 1

2

(
1− (L̂ · θ)2

)
. (6.13)

Here, L̂ is a unit vector orthogonal to the orbital plane, as the projection of the angular

momentum of the binary system. L̂ · θ = 1 corresponds to the limiting case in which the

preferred direction is perpendicular to the orbital plane. Employing the orbital averaging

procedure, we obtain for the acceleration and conserved energy:

ai =(ai)GR −
15M3(1− 2ν)Λ2

8r4
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×
(
ni(n · θ)2 − 1

5
ni −

2

5
θi(n · θ)

)
, (6.14)

and

E = EGR −
M3µ(1− 2ν)Λ2

16r3

(
1− 3(L̂ · θ)2

)
. (6.15)

6.3 Gravitational Wave Constraints

In this section, we study bounds on noncommutative gravity with gravitational wave ob-

servations. We first derive corrections to the gravitational waveform phase. We then find

bounds on
√
Λ using posterior samples of selected gravitational wave events produced by

LVC.

6.3.1 Gravitational Waveform

From the acceleration and the conserved energy, we can compute noncommutative corrections

to the gravitational waveform to constrain the theory. We focus on a quasicircular orbit such

that r is a constant. Defining the relative position y(t) = y1(t)− y2(t), we can rewrite Eq.

(6.14) as

a = −Ω2y+O(1/c5). (6.16)

In order to find the leading noncommutatice correction to the waveform, we keep only the

leading GR and 2PN NC term. The angular velocity Ω is given by

Ω2 =
M

r3

[
1 +

3(1− 2ν)Λ2

16
(1− 3(L̂ · θ)2)γ2

]
, (6.17)

where we have defined the quantity

γ =
M

r
. (6.18)
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Similarly, taking into account both the explicit 2PN contribution to the energy as well as

the 2PN correction to Ω2 in the leading order GR contribution, we have

E = −µγ
2

[
1− 1

16
(1− 2ν)Λ2

(
1− 3(L̂ · θ)2

)
γ2
]
. (6.19)

Then, inverting Eq. (6.17) and defining the quantity x = (MΩ)2/3 which corresponds to

relative velocity squared, we can rewrite the conserved energy in terms of x:

E = −µx
2

[
1− 1

8
(1− 2ν)Λ2

(
1− 3(L̂ · θ)2

)
x2
]
. (6.20)

To determine the lowest order noncommutative corrections to the energy radiated by

gravitational waves, we assume the energy balance equation

dE

dt
= −L. (6.21)

Here, L is the gravitational wave luminosity, which is defined by

L =

[
1

5

d3Iij
dt3

d3Iij
dt3

+O(1/c2)

]
, (6.22)

where Iij is the traceless mass quadrupole moment. There are two noncommutative correc-

tions to the quadrupole moment. The explicit 2PN noncommutative contribution is time

independent, as shown in [292], and will not contribute to the gravitational wave luminosity.

Thus, we only need to consider the Newtonian part of Iij, which will lead to noncommuta-

tive corrections through the acceleration. For the leading order and 2PN noncommutative

corrections to the third derivative of the quadrupole moment, we find

...
I ij = −8νM2

r3

(
yivj + viyj

2

)
×

[
1 +

15

8
Λ2(1− 2ν)

(
(n · θ)2 − 1

5

)
γ2

]

+
9νM4

4r4
Λ2(1− 2ν)(n · θ)(θivj + θjvi).

(6.23)
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Squaring and keeping only the relevant lowest order terms, we find after orbital averaging

and inserting the result into Eq. (6.22) that the full expression for the luminosity is

L =
32

5
ν2x5

[
1 +

Λ2(1− 2ν)

32

(
23− 39(L̂ · θ)2

)
x2
]
. (6.24)

It is then straightforward to determine the evolution of the orbital phase of the binary

system. We define a new parameter

Θ ≡ ν

5GM
(tc − t), (6.25)

where tc is the coalescence time, such that the energy balance equation can be written as

dE

dx

dx

dΘ
=

5M

ν
L. (6.26)

This can then be solved order by order to find

x =
1

4
Θ−1/4

{
1− Λ2(1− 2ν)

1024
[35− 75(L̂ · θ)2]Θ−1/2

}
. (6.27)

We then invert this expression for x to find Θ,

Θ =
1

256x4

{
1− Λ2(1− 2ν)

16

[
35− 75(L̂ · θ)2

]
x2
}
. (6.28)

Θ is related to the orbital phase by the following

dϕ

dΘ
= −5

ν
x3/2, (6.29)

which can easily be solved to find

ϕ = −x
−5/2

32ν

{
1− 5

32
Λ2(1− 2ν)

[
35− 75(L̂ · θ)2

]
x2
}
. (6.30)

Then, as we have assumed that the velocity of each binary component is small compared

to c, we may use the stationary phase approximation (SPA) [300], under which the phase of
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the waveform in Fourier domain can be written as

ψ(f) = 2πftf −
π

4
− Φ(tf ). (6.31)

tf is the time such that dΦ(tf )/dt = f . It can be found from (6.28), and Φ(tf ) is found from

(6.30) to obtain the full expression for the inspiral phase including the leading order term

and explicit 2PN noncommutative correction:

ψI(f) = 2πftc − ϕc −
π

4
+

3

128ν
(πMf)−5/3

×
{
1− 5

16
Λ2(1− 2ν)

[
35− 75(L̂ · θ)2

]
(πMf)4/3

}
.

(6.32)

This expression follows the standard PN waveform format,

ψI(f) = 2πftc − ϕc −
π

4
+

3

128ν

4∑
j=0

φj (πMf)(j−5/3) . (6.33)

We will be interested in the φ4 coefficient, which enters at 2PN. With the NC correction

and the full 2PN GR contribution [301], φ4 is

φ4 =
15293365

508032
+

27145

504
ν +

3085

72
ν2

− 5

16
Λ2(1− 2ν)

[
35− 75(L̂ · θ)2

]
. (6.34)

We can then define the fractional deviation from GR as

δφNC

4 ≡φ
NC

4

φGR

4

=
158760(1− 2ν)

4353552ν2 + 5472432ν + 3058673

×
[
−7 + 15(L̂ · θ)2

]
Λ2. (6.35)

We now employ this result to constrain the quantity
[
−7 + 15(L̂ · θ)2

]
Λ2 from gravitational

wave events.
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6.3.2 Bounds on
√
Λ

Now that we have obtained the expression for the noncommutative correction to φ4, it is

straightforward to compute bounds. However, one issue we still face is the presence of

ν, the symmetric mass ratio, in the expression δφNC
4 . One could simply take the central

values given for each binary component mass to compute ν, however this method lacks in

precision, as it does not take into account the uncertainties in the binary masses. As an

alternative, we will follow the method outlined in [276] and make use of the LVC posterior

samples for multiple events in order to obtain 90% confidence bounds on the noncommutative

parameter. This follows from the LVC approach [273, 274] in which Markov-Chain Monte-

Carlo simulations are performed to obtain posterior distributions of the binary parameters.

This theory-independent approach allows one to test GR and constrain non-GR theories in

a systematic way.

We use posterior samples from the GWTC-1 catalog for gravitational wave events GW

151226, GW170608 and GW170814 [302, 273], as well as the binary neutron star event

GW170817, for which posterior samples are also available [3, 274]. Data for events GW150914

and GW170104 are also available, however these two events are characterized by large masses

and thus a short inspiral period. This makes it difficult to reliably probe non-GR effects

through corrections to the waveform [269], thus we do not include constraints from these

events.

Inverting Eq. (6.35) allows us to obtain an expression for
(
−7 + 15(L̂ · θ)2

)
Λ2 in terms

of δφ4, m1 and m2. Then, using posterior samples for the two waveform templates IM-

RPhenomPv2 (IMRP) and SEOBNRv4 (SEOB), we are able to plot the histograms and

probability distribution functions (PDFs) for each event, shown in Fig. 6.1.

From the PDFs for each event, we calculate 90% constraints on Λ2[−7+ 15(L̂ · θ)2] as an

upper and lower bound. We can then use these upper and lower bounds to constrain
√
Λ as a

function of L̂·θ. These constraints are shown in Fig. 6.2 for both waveform templates. From

Fig. 6.2, we see that there is a region of the L̂ · θ plane in which we cannot constrain the

noncommutativity parameter, specifically when L̂ · θ =
√

7/15. However, given that we are
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Figure 6.1: Posterior distributions of Λ2(−7+ 15(L̂ · θ)2) for various gravitational wave events derived from
the posterior samples using the IMRP (left) and SEOB (right) waveform templates.
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Figure 6.2: Constraints on the noncommutative parameter Λ for each gravitational wave event from SEOB
(dashed) and IMRP (solid) waveform templates.
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considering multiple gravitational wave events and L̂ · θ varies from one binary to another,

statistically the chance that each of those events would be specifically at L̂ · θ =
√
7/15 is

low, thus we expect we can still place meaningful bounds. In total, we can see that the 90%

confidence constraints on
√
Λ as a function of L̂ · θ is constrained to be of order unity, in

agreement with [292].

6.4 Binary Pulsar Constraints

We now turn to constraints on the noncommutativity tensor from the double pulsar bi-

nary system PSR J0737-3039A/B [280]. We first derive noncommutative corrections to the

pericenter precession. We then find bounds on
√
Λ using the double pulsar system.

6.4.1 Pericenter Precession

Beginning from the acceleration, Eq. (6.14), we can easily calculate the correction to the

pericenter precession to provide another independent bound on
√
Λ. We will treat the

noncommutative correction to the acceleration as a perturbing acceleration δa. We can then

define the orbital parameters following a standard formulation of osculating orbits explained

e.g. in [303] and find the correction to the pericenter precession, given by

dω

dt
=

1

e

√
p

M

[
− cos fR+

2 + ecosf̄

1 + e cos f̄
sin f̄S

−e cot ιsin(ω + f̄)

1 + e cos f̄
W

]
.

(6.36)

The relevant orbital elements here are the eccentricity e, the inclination ι, the nodal angle

Ω, the pericenter angle ω and the semilatus rectum p, defined by p = a(1 − e2) where a is

the semi-major axis. Then, ϕ is the orbital phase as measured from the ascending node, and

f̄ is the true anomaly, defined by f̄ ≡ ϕ − ω. Here the noncommutative correction to the

radial, cross-track and out-of-plane components of the perturbing acceleration, R,S, and W
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are given by

RNC = −9M3(1− 2ν)Λ2

8r4

(
(n · θ)2 − 1

3

)
, (6.37)

SNC =
3M3(1− 2ν)Λ2

4r4
(λ · θ)(n · θ), (6.38)

WNC =
3M3(1− 2ν)Λ2

4r4
(ĥ · θ)(n · θ), (6.39)

where λ is defined as ∂n/∂ϕ and ĥ = n×λ. Expanding out these expressions in Cartesian

coordinates in the equations of motion yields a complicated expression that can be further

simplified as in [304] by introducing the variables

eP ≡ n|ϕ=ω = eΩ cosω + e⊥ sinω, (6.40)

eQ ≡ λ|ϕ=ω = −eΩ sinω + e⊥ cosω, (6.41)

ĥ ≡ eP × eQ = eΩ × e⊥. (6.42)

Here, eP is a unit vector pointing towards the pericenter and eQ = ĥ × eP . eΩ is a unit

vector which points along the ascending node, and e⊥ = ĥ×eΩ. n and λ can be analogously

translated into the P , Q, and h coordinates.

Next, we integrate Eq. (6.36) from 0 to 2π to find the noncommutative correction to ∆ω.

We find

∆ωNC =− 3πM2Λ2(1− 2ν)

8p
[2− 3θ2P − 3θ2Q + 2(L̂ · θ) cot ι]

× (θp cosω + θQ sinω). (6.43)

In this expression there is both explicit ω dependence, as well as implicit ω dependence in

θp and θQ. Thus, it is more enlightening to express everything in terms of eΩ and e⊥. We

can then expand ω = ω0 + ω′ϕ and integrate over ϕ. For ω′, it is sufficient to consider

the GR contribution only since ∆ωNC above is already proportional to Λ2. Noting that

θ2Ω + θ2⊥ + (L̂ · θ)2 = 1 and that for the J0737-3039A/B system, ι ≈ π/2, we obtain the
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correction to the pericenter precession as

∆ωNC =
3πM2Λ2(1− 2ν)

8p2

[
1− 3(L̂ · θ)2

]
. (6.44)

Then, the noncommutative correction to the observable quantity of pericenter precession ω̇,

which can be found by dividing ∆ω by the orbital period, Pb is

ω̇NC =
3

16

M4/3

(1− e2)2

(
Pb

2π

)−7/3

Λ2(1− 2ν)
[
1− 3(L̂ · θ)2

]
, (6.45)

where we have used Kepler’s law to write p2 in terms of the orbital period. Adding this to

the GR expression for ω̇ [305] we obtain

ω̇ =3

(
Pb

2π

)−5/3
M2/3

1− e2

{
1 +

1

16

1

1− e2

(
Pb

2πM

)−2/3

×Λ2(1− 2ν)
[
1− 3(L̂ · θ)2

]}
. (6.46)

For completeness, we present the noncommutative corrections to other orbital elements in

Appendix 6.A.

6.4.2 Bounds on
√
Λ

We now derive constraints on
√
Λ with the double pulsar system PSR J0737-3039A/B. We

wish to use ω̇ to constrain the theory. To do so, we need to determine the masses from other

observables. Here, we use the Shapiro delay s, masss ratio R, and the mass functions fA.

The noncommutative correction to these observables enter through the Kepler’s law at 2PN

or higher (see [306] for a similar analysis when the metric is modified at 1PN order within

the parameterized PN formalism), while the one in ω̇ in Eq. (6.46) enters at 1PN order.

This justifies us to use the GR expressions for s, R and fA to determine the masses and use

ω̇ to test the noncommutative gravity.

Figure 6.3 shows these observables plotted as a function of the pulsar masses. The GR
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expressions for R, s, and the region for which sin ι (obtained from the mass function mea-

surements) is less than one are plotted. The overlapping shaded region corresponds to the

allowed mass parameter space from these measurements. Any correction to ω̇ must remain

within the region of overlap. The upper and lower bounds for ω̇ correspond to variations

in the expression Λ2
[
1− 3(L̂ · θ)2

]
such that the ω̇ curve marginally passes through the

overlapping region. The thickness in each of the curves corresponds to the uncertainty

in the ω̇ measurement and the two curves correspond to the upper and lower bounds on

Λ2
[
1− 3(L̂ · θ)2

]
. We find that the acceptable range for the noncommutative contribution

is

− 15600 ≲ Λ2
[
1− 3(L̂ · θ)2

]
≲ 1100. (6.47)

Then, as we did in the gravitational wave analysis, taking this upper and lower bound, we

can plot
√
Λ as a function of (L̂ ·θ) as in Fig. 6.4. We can see that there is again a particular

value of (L̂ ·θ) =
√

1/3 that we are not able to place a constraint as was the case for the GW

analysis, however we are still able to place bounds for the rest of the range. We find that

the binary pulsar bounds are actually less stringent than those found from the gravitational

wave events by approximately an order of magnitude. However, these constraints remain

consistent with the general statement that the noncommutativity parameter must be of order

unity.

6.5 Conclusion

We have explored noncommutative gravity in light of observations from LVC gravitational

wave events as well as the binary pulsar system J0737-3039A/B. We have focused on the

lowest order noncommutative effects entering at 2PN in the binary system acceleration.

The time component of the noncommutative tensor, θ0i enters as a 2PN correction to the

acceleration. When this effect is propagated through, we find that there is a phase shift in

the gravitational waveform again entering at 2PN, shifting the φ4 coefficient. Similarly, in

the case of binary pulsar dynamics, we find that the correction to the acceleration leads to
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Figure 6.3: Testing noncommutative gravity with the double pulsar binary. The two masses are determined
from the mass ratio R, the Shapiro delay parameter s and sin ι < 1 using the GR expressions (since the
noncommutative corrections to these observables enter at higher PN orders than that for ω̇), with the
allowed region shown by the green shade. We then vary the noncommutative parameter Λ in ω̇ such that
it is consistent with the green shaded region to determined the bound on Λ. The thickness of ω̇ in blue
corresponds to the measurement error on ω̇.
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Figure 6.4: Bounds on
√
Λ as a function of (L̂ · θ) for the double pulsar binary.
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a noncommutative contribution to the pericenter precession.

An updated and more rigorous analysis than in previous work has been performed to use

gravitational wave events and the binary pulsar system PSR J0737-3039A/B to constrain the

space-time component of the noncommutativity tensor. We find that the gravitational wave

events including GW151226, GW170608, GW170814 and GW170817 are more constraining

than the binary pulsar event PSR J0363-3039A/B by approximately an order of magnitude.

However, the more stringent GW constraints are consistent with previous results, findng

that the the quantity
√
Λ is constrained to be of order unity.

A few different avenues exist for future work. For example, it would be interesting to

constrain the theory from the preferred frame effect [304]. It would also be of interest to

investigate the effects of the spatial component of the noncommutative tensor, θij, which

enters at 3PN and has potential implications for e.g. string theory. Additionally, it would

be valuable to explore the model dependence of the effects that we have discussed, and work

towards a more general understanding of how noncommutative gravity may come into play

with these observables.

6.A Noncommutative Corrections to Osculating Orbits

In addition to the noncommutative correction to the pericenter precession, ω̇, the noncom-

mutative correction to the acceleration also induces corrections to the other orbital param-

eters, p, e, i, and Ω, described in Section 6.4. The “Lagrange planetary equations” for these

quantities are [303]

dp

dt
=2

√
p3

M

S
1 + e cos f̄

, (6.48)

de

dt
=

√
p

M

[
sin f̄R+

2 cos f̄ + e+ e cos2 f̄

1 + e cos f̄
S
]
, (6.49)

dι

dt
=

√
p

M
W
(
r

p

)
cosϕ, (6.50)

dΩ

dt
=

√
p

M
W
(
r

p

)
sin θ

sin ι
. (6.51)
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Plugging in the expressions for S,W , and R obtained in Section 6.4, it is straightforward to

obtain

∆pNC =0, (6.52)

∆eNC =0, (6.53)

∆ιNC =
3πM2Λ2(1− 2ν)

4p
(L̂ · θ)(θp cosω − θQ sinω), (6.54)

∆ΩNC =
3πM2Λ2(1− 2ν)

4p
(L̂ · θ)(θp cosω + θQ sinω) csc i.

(6.55)

As in ∆ω there is both explicit and implicit ω dependence in these expressions. Using the

same expansion method, we obtain for the noncommutative contributions to the orbital

parameters:

∆pNC =0, (6.56)

∆eNC =0, (6.57)

∆ιNC =
3πM2Λ2(1− 2ν)

4p2
(L̂ · θ)θΩ, (6.58)

∆ΩNC =
3πM2Λ2(1− 2ν)

4p2
(L̂ · θ)θ⊥ csc i. (6.59)
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Chapter 7

The Chern-Simons Caps for Rotating

Black Holes

7.1 Introduction and outline

In this last section, we turn towards a discussion of black holes in modified gravity. We

consider another string theory inspired modified gravity theory, dynamical Chern-Simons

gravity. Dynamical Chern-Simons (dCS) gravity [307, 308] modifies the Einstein-Hilbert

action with the addition of a parity-violating Chern-Simons form coupled to a derivative of

a pseudo-scalar field. dCS gravity is not an arbitrary extension of general relativity (GR),

but rather has physical roots in particle physics [309] and string theory [310, 311, 312].

dCS gravity naturally emerges as an anomaly-canceling term through the Green-Schwarz

mechanism [313]. It is often the case that the scale at which the dCS term becomes significant

is inseparable from the scale where other higher dimensional terms become significant, too.

In this work we regard the stand-alone dCS action as a low energy effective field theory. In

order for us to be able to keep the dCS term in the action, while neglecting an infinite number

of the Planck mass suppressed terms, we require that the scale where the CS term becomes

relevant is much smaller than the Planck mass. We specify a field theory mechanism that

can lead to such a hierarchy of scales without unnatural fine tunings, and discuss a broad
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range of the parameter space where our approach is justified. The above discussions are

presented in Section 2.

Within the range of validity of the effective field theory we then look for certain novel

characteristics of rotating black hole solutions in Section 3. Previous work has shown that

dCS gravity admits some solutions of GR without any obstruction, while predicting modifi-

cations to GR solutions that lack a sufficiently high degree of symmetry [314, 315, 316, 317].

In particular, the dCS theory supplies an additional term in the Einstein equation, which

can be thought of as a new ”stress-energy tensor” in the right-hand side of the equation.

Since this new term descends from a quantum anomaly, it does not have to obey the classical

positivity conditions. The latter feature manifests itself in the properties of the solutions of

the theory that have a nonzero new “stress-energy tensor.” Such are the rotating black hole

solutions carrying dCS pseudoscalar hair [318, 319, 320].

We show, in Section 3, that the rotating black holes possess a novel geometric structure

due to the dCS term. In particular, the solutions get endowed with two, cap-like domains,

emanating from the north and south poles of the black holes expressed in the standard

Boyer-Lindquist coordinates. These new domains, referred to here as “CS caps,” extend

out to a distance that is approximately a few percent of the black hole’s size. The CS caps

have an unusual equation of state, which leads to the violation of the focusing condition for

geodesics.

While the CS caps of the rotating black holes may have some interesting observational

consequences (to be investigated in subsequent works), the fact that they violate the focusing

condition calls for rethinking of the Hawking-Penrose (HP) theorem [321, 322], as we discuss

in Section 4. According to our findings, the HP theorem cannot be applied to geodesics of

external probe matter placed within the CS caps, where the focusing condition is violated.

While this fact itself says nothing about the singularity (non)formation for external matter

in those domains, it nevertheless represents an existence proof of a stable spatial domains

where the main condition of the HP theorem is not fulfilled.
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We use the following conventions in this chapter: we work exclusively in four space-

time dimensions with signature (−,+,+,+), with Latin letters (a, b, . . . , h) ranging over all

spacetime coordinates; round and square brackets around indices denote symmetrization

and anti-symmetrization respectively, namely T(ab) :=
1
2
(Tab + Tba) and T[ab] :=

1
2
(Tab − Tba);

partial derivatives are sometimes denoted by commas, e.g. ∂θ/∂r = ∂rθ = θ,r. The Einstein

summation convention is employed unless otherwise specified.

7.2 DCS as an Effective Field Theory

Let us begin by defining the action of dCS gravity [314]:

S =

∫
d4x

√
−g
[
κR +

σ

4µ
∗RR− 1

2
(∇aσ) (∇aσ)

]
, (7.1)

where κ = (16πGN)
−1, g is the determinant of the metric, the integral extends over all

spacetime, R is the Ricci scalar, and the pseudo-scalar field σ couples to the Pontryagin

invariant ∗RR, defined as follows

∗RR := ∗Ra
b
cdRb

acd , (7.2)

where the dual Riemann-tensor is given by

∗Ra
b
cd :=

1

2
ϵcdefRa

bef , (7.3)

with ϵcdef the 4-dimensional Levi-Civita tensor1. The Pontryagin term [Eq. (8.3)] can be

expressed as the divergence

∇aK
a =

1

4
∗RR (7.4)

of the Chern-Simons topological current (Γ is the Christoffel connection),

Ka := ϵabcd
(
Γn

bm∂cΓ
m

dn +
2

3
Γn

bmΓ
m

clΓ
l
dn

)
. (7.5)

1We prefer to work with tensors rather than with tensor densities, so some expressions might appear to differ by factors of√
−g from [307].
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Hence, the interaction term of σ can be rewritten, up to a total derivative, as follows

− 1

µ

∫
d4x

√
−g gab ∂aσKb . (7.6)

We will use interchangeably the term in Eq. (7.6) with its counterpart in Eq. (7.1), keeping

in mind that there is a total derivative distinguishing the two. Note that the action in

Eq. (7.6) makes the shift symmetry of the pseudoscalar field manifest, σ → σ + const. In

this formulation, the shift symmetry current on a non-interacting theory, ∂bσ, couples to the

Chern-Simons current, Kb, thus the name “Chern-Simons modified gravity”2.

General Relativity is not a renormalizable theory, and hence, the action in Eq. (7.1) could

only be part of an effective field theory that contains an infinite number of higher curvature

terms, proportional to R2, R3 and so on, and their derivatives, suppressed by the respective

powers of the Planck mass, MP = 1/
√
GN . In order for the higher dimensional terms to be

negligible as compared to the term σ ∗RR/(4µ) kept in Eq. (7.1), we should require

µ << MP . (7.7)

Since the term σ ∗RR/(4µ) is not renormalizable either, its presence would then imply some

new physics at the scale µ << MP . The new physics would generate the term σ ∗RR/(4µ)

at low energies, E << µ, while above the energy scale µ, the term σ ∗RR/(4µ) would ascend

to certain renormalizable terms.

In particular, the term σ ∗RR/(4µ) can be generated by the gravitational axial anomaly

[323]. At energies above µ, one starts with a gravitational theory of a massless fermion Ψ,

coupled to a complex scalar field Σ with strength set by a Yukawa coupling λ,

λ (Ψ̄LΣΨR + Ψ̄RΣ
+ΨL) . (7.8)

Furthermore, the complex scalar has its own conventional kinetic term and a quartic poten-

tial. All these term are symmetric with respect to a global U(1) axial Peccei-Quinn (PQ)

2If ∇aKa is converted into 1/
√
g ∂a(

√
gKa) the results (2.4) and (2.5) of [307] are recovered.
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transformations

Σ → eiβΣ, ΨR → e−iβ/2ΨR, ΨL → eiβ/2ΨL . (7.9)

The PQ symmetry is spontaneously broken by a nonzero vacuum expectation value of the

scalar ⟨Σ⟩ = µ, due to the symmetry breaking scalar potential. Both the fermion and

modulus of the scalar, ρ =
√
Σ+Σ, acquire their masses due to the vacuum expectation

value ⟨Σ⟩ = µ. These masses are proportional to the respective coupling constants and

the energy scale µ. Furthermore, these massive field can be integrated out below their mass

scales. However, the phase of the scalar field, σ, remains massless as it is a Nambu-Goldstone

(NG) mode of the spontaneously broken PQ symmetry. At low energies only this massless

state is kept, and its low energy action can be deduced by substituting Σ = µexp(σ/µ) and

calculating the anomalous diagrams, giving rise to the term proportional to σ ∗RR/4µ.

We have already specified that µ is considered to be much smaller than the Planck mass.

The question though is how small can µ be. The fermion Ψ and the scalar ρ have masses

proportional to µ and would have been accessible to accelerator experiments for µ < TeV ;

however, the fermion and scalar do not couple to any other fields besides gravity, and can

only be produced in the accelerators via gravity mediated processes, which are very much

suppressed at energies below TeV .

For low values of µ one may worry about nonlinear interactions of gravitons becoming

strong at energies much lower that the Planck mass due to the new vertices introduced by

Eq. (7.6). For instance, the four graviton scattering amplitude of GR will be amended by a

set of new diagrams using the exchange of σ due to the cubic vertex given by Eq. (7.6). To

get a sense of the magnitude of these corrections, we expand over a flat spacetime metric,

gab = ηab + hab, and rescale h → h/MP , to normalize canonically h’s kinetic term. As a

result, we get from Eq. (7.6) the scaling of the new cubic vertex

∂σ(∂h)(∂∂h)

µM2
P

. (7.10)
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Thus, the strong scale is given by

Λs = (µM2
P )

1/3 . (7.11)

Furthermore, the dCS term in Eq. (7.6) will generate higher order vertices, such as the one

containing ∂σ and three powers of ∂h, but those terms will be suppressed by the scale,

(µM3
P )

1/4, which is higher than Λs. All other higher vertices obtained from Eq. (7.6) will

give even higher scales, and hence, Λs is the lowest one to worry about.3

For the value of µ as astonishingly small as the present day Hubble constant, µ ∼ H0 ∼

10−33 eV , the corresponding value of the strong scale is Λs ∼ 5 · 107 eV . The latter is much

higher than the scale of 10−2eV , up to which precision gravity measurements have so far

probed deviations from conventional gravity.

What is the range of µ in dCS that is allowed by non perturbative physics? The most

stringent constraint on dCS gravity to date was established in Ref. [325], which used the

gravitational wave data obtained by the LIGO/Virgo collaboration for the merger of two

neutron stars [3], as well as the X-ray data obtained by the NICER collaboration for the

pulse profile emitted by a rotating neutron star [326, 327]. This constraint requires that µ ≳

4× 10−50eV (or α1/2 ≲ 8.5km, in the notation of the next section) to 90% confidence. Note

in passing that binary pulsar observations cannot yet be used to place stringent constraints

on dCS gravity because such binaries are widely separated, and thus, the Pontryagin source

to the pseudo-scalar field is too small [328].

Before moving on, let us make a final comment about the mass of the pseudoscalar field σ.

There is no mass or potential terms associated with the pseudoscalar field σ in Eq. (7.1), since

σ is a NG boson of spontaneously broken PQ symmetry. In the perturbative approximation,

quantum corrections will not generate a nonzero mass and potential for σ because of the

shift symmetry, σ → σ + const. However, this symmetry is expected to be broken by non-

perturbative quantum gravity effects and the pseudoscalar field would then acquire a mass

[329]. The induced mass can be estimated; when the saddle-point approximation for the

3One can also realize the Chern-Simons term from a BF theory perspective, see e.g. [324].
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quantum gravity path integral is justified, the induced mass ends up being small by an

exponential factor, e−x with x >> 100 and µ << MP [329]. In what follows we will consider

distance scales much shorter than the inverse of the induced pseudoscalar mass, and hence

we will ignore the small induced mass term in the action.

7.3 CS Caps for Rotating Black Holes

Let us rescale the σ field in Eq. (7.1) as σ =MP ϑ, and pull out the overall factor of M2
P in

front of the action; having done that, let us set MP = 1/
√
GN = 1. In these geometric units

the dCS gravity action reads [314]:

S =

∫
d4x

√
−g
[
κR +

α

4
ϑ ∗RR− 1

2
(∇aϑ) (∇aϑ)

]
, (7.12)

where κ = (16π)−1, and α ≡ 1/(µMP ). Therefore, although µ has units of energy in natural

units, α has units of km2 in geometric units.

The modified field equations can be obtained by varying the action in Eq. (8.2) with

respect to the metric:

Gab +
α

κ
Cab =

1

2κ
Tab , (7.13)

where Gab is the Einstein tensor, and the traceless ‘C-tensor’ is defined as

Cab = (∇cϑ) ϵ
cde(a∇eR

b)
d + (∇c∇dϑ)

∗Rd(ab)c . (7.14)

The stress-energy tensor for the scalar is

Tab := (∇aϑ) (∇bϑ)−
1

2
gab (∇cϑ) (∇cϑ) , (7.15)

and we will assume that apart from this scalar field the spacetime is empty. Variation of the
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action with respect to the scalar field yields its evolution equation

□ϑ = − α

4κ
∗RR , (7.16)

where □ stands for the d’Alembertian operator.

The field equations are given by Eqs. (8.7) and (8.10), but they simplify somewhat in

trace-reversed form:

Rab = 8πT̄ab − 16παCab, (7.17)

because the C-tensor is traceless, Ca
a = 0, where

T̄ab := (∇aϑ) (∇bϑ) , (7.18)

is the trace-reversed stress-energy tensor of the scalar field. From this formulation, it is clear

that in the pure vacuum case, i.e. when T̄ab = 0, then the pseudo-scalar field must be a

constant and dCS gravity reduces continuously to GR.

When the so-called Pontryagin constraint holds on a subspace of solutions, i.e. when

∗RR = 0 on shell, then dCS gravity simplifies significantly. One can show that ∗RR = 0 for

any spherically symmetric spacetime, regardless of whether it is static or not [317, 330]. If

so, the pseudo-scalar field then satisfies an unsourced wave equation, □ϑ = 0. If one imposes

a “no-cosmological scalar field” boundary condition, i.e. ∇aϑ = 0 at spatial infinity, then

Tab = 0 = Cab for stationary solutions. In this case, all spherically symmetric, stationary,

spacetimes must be Ricci flat, and one concludes that all spherically symmetric, vacuum

solutions in dCS gravity must be identical to those in GR [317]. In particular, this implies

that the Schwarzschild metric continues to be a solution of dCS gravity.

When we consider spacetimes that break spherical symmetry, however, then the Pon-

tryagin density does not vanish and GR solutions will not be solutions of dCS gravity. For

example, when considering spacetimes that are stationary but axisymmetric, then the Pon-

tryagin density sources a non-trivial scalar field, which then back-reacts on the metric to

induce non-GR modifications. Such an analysis can be carried out to find slowly-rotating
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black hole solutions in dCS gravity, as done first in [318], and then extended to second-order

and fifth order in rotation in [319] and [320] respectively.

Let us consider the dCS gravity solution that represents a stationary and axisymmetric

spacetime [318, 319, 320] valid to fifth order in a slow-rotation expansion in Boyer-Lindquist-

like coordinates, with ADM angular momentum JADM = Ma and ADM mass MADM = M .

To leading order in a/M ≪ 1, the modified rotating black-hole solution in dCS gravity using

Boyer-Lindquist-like coordinates (t, r, θ, ϕ) is

ds2=ds2K+
5

4
ζMχ

M4

r4

(
1 +

12

7

M

r
+

27

10

M2

r2

)
sin2θdtdϕ , (7.19)

where ds2K is the Kerr solution of general relativity, χ = a/M is the dimensionless spin

parameter, and

ζ =
16πα2

(GNM)4
, (7.20)

is a dimensionless coupling parameter. The higher order in spin terms introduce modifica-

tions to all other components of the metric that can be found in [320], but their expressions

to O(a5/M5) are long and un-illuminating, so we will not present them here.

Let us us consider the behavior of both null and timelike geodesics in this spacetime.

First, consider a static timelike observer in this spacetime. The tangent to such an observer’s

geodesic is ka
st
= γst[1, 0, 0, 0] and γst is a normalization constant to ensure kst

a k
a
st
= −1. With

that in hand, employing Maple and the GRTensorIII software [331], we calculate the quantity

whose sign defines whether the geodesic congruences are converging or diverging:

Rab k
a
st
kb

st
=

45

4
ζχ2 f

γ8

M2

[
1 + 2c2θ +

40γ

15

(
1 +

3

4
c2θ

)
+6γ2

(
1 +

1

3
c2θ

)
− 312

5
γ3c2θ

]
+O(ζχ4) , (7.21)

where f := 1 − 2γ, γ := M/r, and cθ := cos θ. Similarly, consider a null observer with

tangent vector la = [l, g(r, θ), 0, 0], where g(r, θ) is a function such that the null condition
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lal
a = 0 is satisfied. In this case we have:

Rab l
alb =

25

32
ζχ2 f

γ6

M2

[
c2θ + 4γc2θ +

72

5
γ2
(
1 +

43

24
c2θ

)
+
192

5
γ3
(
1 +

13

32
c2θ

)
+

432

5
γ4
(
1− 1

15
c2θ

)
−19872

25
γ5c2θ

]
+O(ζχ4) , (7.22)

One can check by direct evaluation that both of these quantities are positive definite almost

everywhere. In those regions the geodesics will be focusing. However, there are regions where

the quantities in Eq. (7.21) and Eq. (7.22) are negative. In particular, when one looks at

spacetime regions near the polar axis (i.e. near θ = 0) and close to the horizon, one finds that

the above contractions changes their signs. Note that, as we will show below, the location of

the ergosphere coincides with the location of the event horizon along the polar axis in this

solution, just like it does for the Kerr metric, so static observers do exist right outside the

horizon along the polar axis.

Let us discuss these unusual regions further. The considered solution is known to have

an event horizon located at

rEH = rEH,K − ζM

[
915

28672
χ2 +

351479

13762560
χ4 +O(ζχ6)

]
, (7.23)

and an ergosphere whose outer edge is located at

rergo = rergo,K − ζM

[(
915

28672
+

709

7168
s2θ

)
χ2+(

351479

13762560
− 336421

2408448
s2θ +

151229

1605632
s4θ

)
χ4

+O(ζχ6)
]
, (7.24)

where sθ := sin θ, while rEH,K = M +M(1 − χ2)1/2 and rergo,K = M +M(1 − χ2c2θ)
1/2 are

the locations of the event horizon and the outer-edge of the ergosphere for the Kerr metric

respectively [318, 319, 320]; notice that the outer edges of the ergosphere coincide on the
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polar axis θ = 0.

�(χ�)

�(χ�)

���� ���� ���� ���� ���� ���� ���� ����

�

��×��-�

��×��-�

��×��-�

��×��-�

��×��-�

�/�

�
�
�
��
��
��

������
���

�����/�

-��� -��� ��� ��� ���

����

����

����

����

����

����

θ

�/
�

Figure 7.1: (color online) Dimensionless contraction of the Ricci tensor with the tangent vector of timelike
(top) and null (bottom) congruences M2E[k] = M2Rabk

akb and M2E[k] = M2Rabl
alb computed along the

(θ = 0) polar axis (left panels) and in the r–θ plane (right panels). In the left panels, the red and blue
curves denote M2E[k] calculated with a BH solution in dCS gravity to third- and fifth-order in rotation,
respectively, both for a black hole with dimensionless spin χ = 0.1 and dimensionless dCS coupling ζ = 0.1.
In the right panels, we present M2E[k] computed with a fifth-order in rotation dCS BH metric (blue shaded
region) assuming χ = 0.1 and ζ = 0.1, and for comparison, we also present the outer edge of the ergosphere
in dCS gravity. Observe that the contractions Rabk

akb and Rabl
alb switch sign close to the horizon, in a

cup-shaped region around the polar axis. Note that the x-axis on the right panels is given in θ, not in r/M .

The top left panel of Fig. 7.1 shows the contraction Rabk
akb (timelike geodesics) to third-

and to fifth-order in the slow-rotation approximation on the polar axis close to but outside

of the event horizon. Observe that this contraction flips sign, regardless of the order of the

slow-rotation approximation used for the metric. Extending this analysis to all θ, we see that

indeed there is a cone shaped region near the horizon extending from the pole up to ∼ 20◦

on either side where the sign of the contraction Rabk
akb flips and becomes negative. This is

shown in the top right panel of Fig. 7.1 (blue region) with a metric valid to to O(χ5), where

we also include the location of the outer edge of the ergosphere (black curve) for comparison.

The bottom left and right panels show the contraction Rabl
alb (null geodesics) on the
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polar axis to third- and fifth-order in rotation, and extended to all θ, respectively. We see

that there is a similar, much smaller region close to the horizon where the null contraction

flips sign. Note that in order to obtain the negative region, one must go to O(ζχ5) in

perturbation. We expect that going to higher orders in the perturbative expansion will yield

small corrections and will not change the negative result.

The size of the regions of interest do not depend on the value of ζ, which is proportional

to the coupling α2, see Eq. (7.20). In order to remain in the regime of validity of the slow

rotation approximation, we must have ζ ≪ 1, so we have taken ζ = 0.1 as a representa-

tive example in Fig. 7.1. Varying this value changes the magnitude of negativity for the

contractions Rabk
akb and Rabl

alb in the CS caps, but it does not change the boundaries of

the caps. That is, we have explored versions of Fig. 7.1 evaluated with various values of

ζ (e.g. ζ = (10−3, 10−2, 10−1)) and in all cases the change in sign occurs roughly along the

boundary of the same caps shown in the right panel of that figure (although how negative

the contraction is does scale with ζ).

This technical point – that we are necessarily constrained to consider small values of ζ

because of the lack of an exact solution – also forces us to consider black holes that are not

too small To see this, let us use the definition in Eq. (7.20), and require that ζ ≤ 0.1 to find

M ≥ 3M⊙

( α

1 km

)1/2
, (7.25)

or restoring the powers of the Planck mass

M ≥ 2M⊙

(
10−47 eV

µ

)1/2

. (7.26)

If Nature is described by dCS gravity as an effective theory, then depending on Nature’s

value of µ (or α), our calculations would be valid for black holes of a different mass. More

specifically, for our calculations to be valid, the smaller Nature’s µ is (or the larger Nature’s

α is), the heavier the black holes we can consider would have to be.

The above limitation on the BH mass is a result of our small coupling approximation
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(ie. ζ ≪ 1) when finding slowly rotating BH solutions. However, it might well be that

the CS caps are universal for all rotating black holes in the dCS theory. Such an outcome

is not ruled out by general arguments of continuity in the value of the parameter ζ, and

by the considerations of the focusing theorem in the next section showing that the dCS

can in general permit negative values for the contraction in Eq. (7.21), irrespective of the

approximation used.

One may be worried that the curvatures close to the horizon are so large that we are

exploring these slowly-rotating solutions outside of the regime of validity of the effective

field theory, where these solutions are calculated in the first place. The cut-off scale of the

theory, i.e. the scale inside which the small-GR-deformation approximation of effective field

theory breaks down, can be approximated by computing the Pontryagin density with the

approximate black hole solutions. Figure 7.2 presents the Pontryagin density computed with

the Kerr metric and with the dCS metric for a slowly-rotating black hole. Observe that the

dCS correction to the Pontryagin density, i.e. the term proportional to α2 in the calculation

of R∗R with the dCS metric, exceeds the GR value only deep inside the event horizon for

r/M < 0.75, and nowhere near the regime where the contraction, Rabk
akb flips sign (which

from Fig. 7.1 we recall occurs for 2.06 ≲ r/M ≳ 2 for timelike geodesics).4

An agreement emerges between our result and both analytic [318, 319, 320] and numeri-

cal [332, 333] studies that have found black hole spacetimes. Those studies found stationary

and axisymmetric solutions in dCS gravity that differ from the Kerr spacetime everywhere

on the manifold, leading for example to dCS corrections to the location of the event horizon

and the ergosphere. These solutions agree with the Kerr metric in that they both posses

spacetime regions inside their respective event horizons where curvature invariants diverge,

which is why we say these solutions represent black holes. The dCS corrections to the metric,

however, become dominant over the GR terms inside the event horizon, as shown in Fig. 7.2,

and in particular before reaching the singularity. As usual, the curvature singularities in

these modified solutions are outside the validity of the effective theory. It is entirely possible

4Even though we are working here in Boyer-Lindquist coordinates, the statement that the curvature becomes large only
deep inside the horizon is also true in horizon-penetrating coordinate systems.
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Figure 7.2: (color online) Dimensionless Pontryagin density of a slowly-rotating black hole solution computed
to fifth order in slow rotation in GR (blue), in dCS gravity (black) and using only the α2 correction to the
GR solution in dCS gravity (red) for a black hole with spin χ = 0.1 and dCS coupling ζ = 0.1. Observe that
the α2 correction to the Pontryagin density is much smaller than the GR contribution outside the horizon
(r/M ≳ 2), which is precisely where Rabk

akb becomes negative.
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that these singularities could then be cured by higher order terms in the action that have

been neglected. It would be interesting to see if higher curvature corrections related to a

stringy excitations in higher dimensions may become relevant near the singularity to resolve

it, in the spirit of topological stars [334].

7.4 Geodesic (de)focusing and dCS Gravity

7.4.1 Focusing and the Hawking-Penrose Theorem

To review the well-known focusing theorem [335], one starts from the Ricci identity,

(∇a∇b −∇b∇a)k
a = Ra

cabk
c, (7.27)

and derives the Raychaudhuri equation [335],

Θ̇ = −σabσab − 1

3
Θ2 − E[k] , (7.28)

for vorticity-free congruences of non-intersecting world lines. The quantity σab is the shear

tensor of this congruence, while Θ = ∇ck
c is the expansion scalar, and E[k] := Rcdk

ckd,

where kc is the timelike or null tangent vector field of the congruence.

The focusing theorem for timelike geodesics states that if the strong-energy condition

T̄abk
akb > 0 holds, then vorticity-free geodesics will focus in GR. This result is established

directly from the Raychaudhuri equation presented above, upon the use of the Einstein

equations to write E[k] = 8πT̄cdk
ckd, where T̄ab is the trace-reversed stress-energy tensor.

Using the Einstein equations and the strong-energy condition, it is obvious that the right-

hand side of the Raychaudhuri equation is negative because E[k] > 0, which then means that

the rate of change of the expansion scalar with respect to the geodesic’s affine parameter is

negative, and the worldlines will focus within a finite value of the affine parameter, reflecting

the attractive nature of gravity. An analogous argument holds for null geodesics, provided

that the null energy condition is satisfied.
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The focusing theorem leads to the Hawking-Penrose singularity theorem as follows. Con-

sider two events A and B in a globally hyperbolic spacetime which contains a trapped surface,

that are connected via a timelike or null curve. If this is the case, there must exist a geodesic

of maximal length γ that connects these two points, on which there are no conjugate points.

The focusing theorem, however, establishes that all geodesics emanating from A will focus

in finite affine parameter, leading to conjugate points. Intuitively, a geodesic cannot be ex-

tended beyond a conjugate point, and therefore one cannot reach point B, so the spacetime

must be geodesically incomplete. In summary [322]:

Theorem 1(Hawking-Penrose singularity theorem).If a globally-hyperbolic spacetime con-

tains a non-compact Cauchy hypersurface Σ and a closed future-trapped surface, and if the

convergence condition, Rabu
aub ≥ 0 holds for null ua, then there are future incomplete null

geodesics.

Einstein’s theory of general relativity predicts that singularities are unavoidable, since the

energy momentum tensor along timelike or null geodesics, will be positive definite according

to the Einstein field equations if the strong energy condition holds. On the other hand,

consistent modifications of general relativity that violate the strong energy condition can

lead to violations of the focusing theorem, and therefore the evasion of singularities. Clearly,

if the discriminant E[k] < 0, then it could be that Θ̇ > 0, which would imply that geodesics

defocus, leading to gravitational repulsion and the possibility of an evasion of singularities.

We have shown in Section 8.2.1 that the slowly rotating dCS solution contains geodesics for

which E[k] < 0 close to the black hole. Note, however that due to the smallness of the dCS

caps, both the null and strong average energy conditions [336] remain satisfied. In what

follows, we show that dCS gravity naturally has the mathematical and physical features

needed to violate the conditions of the focusing theorem.

7.4.2 The Focusing and Hawking-Penrose Theorems in dCS Gravity

Recall that both the focusing and Hawking-Penrose theorem rely on satisfying the constraint

Rabk
akb ≥ 0 with Rab the Ricci tensor and ka the tangent to a timelike or a null geodesic
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congruence. Using the modified field equations in dCS gravity, this condition becomes,

T̄abk
akb ≥ 2αCabk

akb , (7.29)

and we see that in general this need not be satisfied allowing for the possibility that timelike

or null congruences will defocus, avoiding a singularity.

When precisely do we have a violation of the focusing theorem? Using the definition of

the scalar-field stress-energy tensor and the C-tensor, this occurs when

2α (∇cϑ) ϵ
cdea

(
∇eR

b
d

)
kakb

+ 2α (∇c∇dϑ)
∗Rdabckakb > (∇aϑ) (∇bϑ) k

akb , (7.30)

where we have removed the symmetrization parenthesis in the C-tensor because we are

contracting it with the symmetric tensor kakb. We recognize the right-hand side as a total

square of the directional derivative of the scalar field in the direction of the tangent to the

congruence. Therefore, a sufficient (but not necessary) conditions for the Hawking-Penrose

theorems to be violated is simply

(∇c∇dϑ)
∗Rdabckakb > (∇cϑ) ϵ

dcea
(
∇eR

b
d

)
kakb , (7.31)

where we have eliminated the minus sign through a permutation of the indices in the Levi-

Civita tensor.

The above inequality is the best one can do without using additional approximations.

Note that the equation of motion for the scalar field cannot be used to simplify the left-hand

side of the above equation, because the double covariant derivative acting on the scalar field

is not contracted into a d’Alembertian operator. A simplification one can do, however, is

to work in an effective field theory approach. In the latter, one can substitute the modified

field equations into the right-hand side of the above equations to find

(∇c∇dϑ)
∗Rdabckakb > (∇cϑ) kakb ϵ

dcea
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×∇e

(
8πT̄ b

d − 16παCb
d

)
, (7.32)

The right-hand side of this equation is quadratic in α because because the equation of motion

of the scalar field ϑ is linear in α. Therefore, to leading order in α, the condition to ensure

the Hawking-Penrose theorem is violated reduces to

(∇c∇dϑ)
∗Rdabckakb > 0 . (7.33)

There is no reason to expect that the left-hand side of the above equation will have a

definite sign. Thus, in general, it would seem the assumptions required in the Hawking-

Penrose theorem do not hold. Notice, moreover, that in the above derivation, we never used

the fact that ka is the tangent vector to a timelike geodesic congruence, and so, this result

also applies to null geodesic congruences. We then conclude that the usual proof of the

Hawking-Penrose theorem does not go through in dCS gravity.

The lesson we have learned from this first study is that timelike and null geodesics can,

and in general will defocus in dCS gravity, yielding a violation of the conditions required

by the Hawking-Penrose singularity theorem. By itself, this does not however mean that

dCS gravity resolves the black hole singularity. At shorter distances, the dCS term would

transform into the terms that gave rise to it in the low-energy approximation, as was was

discussed in Section 2. To fully understand this, we plan to study Oppenheimer-Snyder-like

collapse of a rotating dust ellipsoid and neutron star collapse in dCS gravity and its short-

distance completion to see if, when and how a singularity forms [337]. Moreover, in another

upcoming study we will analyze solutions, including dynamical black hole and cosmological

solutions, that obey the Rabk
akb < 0 condition, and explore the prospect of what new

physical effects this violation is signaling, including a potential new regime of super-radiance

outside the rotating black holes [338].



Chapter 8

Black Hole Superradiance in

Dynamical Chern-Simons Gravity

8.1 Introduction

The discussion in the previous chapter showed that rotating black holes in dCS become

endowed with ‘caps’ which have a unique equation of state that leads to a violation of the

null and strong energy conditions. As a next step, it is of interest to consider the behavior of

matter close to such black holes. One obvious process to consider is black hole superradiance,

which is the focus of this chapter. Dynamical Chern-Simons (dCS) gravity [307, 308] is an

extension of general relativity (GR) in which the parity-violating Chern-Simons form coupled

to a pseudo-scalar field is added to the Einstein-Hilbert action of GR. This addition is well

motivated from particle physics [309] and string theory [310, 311, 313, 312] perspectives.

While non-rotating black holes in dCS gravity possess the same properties as those in GR

[317, 330], those which are rotating are subject to corrections to the metric that are sourced

by the Chern-Simons pseudo-scalar [318, 319, 320]. As such, dCS gravity provides a vast

playground on which to study deviations from GR and has been considered in a wide variety

of gravitational and astrophysical contexts [339, 340, 341, 342, 343, 344, 345, 346, 347, 348,

328, 349, 332, 350, 351]. The most stringent constraints on dCS gravity arise from combining

148
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gravitational wave observations and X-ray observations of isolated pulsars [325], while solar

system experiments and pure gravitational wave observations or binary pulsar tests generally

have so far left the theory unconstrained [352, 328, 276, 353].

DCS gravity can be reliably treated as a low-energy effective field theory (EFT) valid

below a certain energy scale, µ, that can be near, or below the Planck scale [354]. In the

past and present work we consider µ to be below the Planck scale by at least a few orders

of magnitude, µ ≪ MP. The dCS term itself is the first leading term among an infinite

number of terms of the EFT. All these terms can be obtained from a conventional high-

energy quantum field theory of a complex scalar and fermion which are coupled to each

other in a specific way and also coupled to gravity. The quantum field theory is valid above

µ and below the Planck scale (see [354]). The anomalous triangle diagram of this high energy

theory is what is responsible for generating the dCS term in the low energy approximation.

The above comments should make it clear that certain classical solutions – which emerge

in dCS theory due to the higher derivative nature of its equations of motion – are connected

to physics at the scale µ, and therefore, cannot be justified since they would be modified

by the infinite number of higher dimensional terms, if the latter were kept in the theory.

Likewise, any statement about ghost states of mass µ, inferred from the dCS theory would

not be justified. Moreover, the high energy theory that completes dCS at the scale µ does

not have such ghost states in its spectrum [354]. The solutions that can reliably be discussed

within dCS theory are the ones present in GR but now modified due to the dCS term treated

as a small correction. We will continue to be interested only in these solutions.

Recently, we showed that dCS gravity naturally possesses a mathematical structure that

leads to the violation of the conditions for geodesic focusing. More precisely, slowly rotating

black holes in the theory become endowed with two “cap-like” structures at the north and

south poles in which the focusing theorem is violated [354]. It is thus of significant interest

to investigate the behavior of matter or fields near these black hole regions. While these

caps are small regions compared to the size of the black hole, if they alter the behavior of

matter in a meaningful way, it may be possible to point to observable signatures that could
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be distinct from those in GR.

One obvious physical process that might lead to deviations from GR is black hole super-

radiance. In general, superradiance describes a radiative enhancement process that applies

to many areas in physics, first put forth by Dicke, who coined the term “superradiance”

in describing coherent radiation [355]. Zeldovich then showed that superradiant scattering

could also be sourced by a rotating surface [356, 357]. In particular, ultralight scalar fields

can exhibit superradiance when they scatter off a rotating black holes, leading to a growing

instability of this field. The latter can lead to “clouds” around the rotating black hole that

have a variety of observable implications.

Mathematically, the study of the superradiant growth of a massive scalar field around a

rotating black hole requires the solution to the Klein-Gordon equation on a rotating black

hole background. The machinery for finding these solutions was first developed by Starobin-

sky [358]. Black hole superradiance has since been studied for a wide range of cases, including

for scalars in a variety of limits [359, 360, 358, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370,

371], as well as for vector and tensor fields [372, 373, 374, 375, 376, 377, 378, 379]. Superra-

diance has also been studied in a range of modified theories of gravity [380, 381, 382, 383],

however a full analytical analysis of black hole superradiance in dCS gravity is missing from

the literature until now.

Black hole superradiance is an example of the Penrose process, in which energy and

angular momentum can be extracted from a rotating black hole [384]. As such, it provides

a landscape to probe unseen scalar sectors. In particular, superradiance is a powerful tool

that can be used to constrain ultra-light dark matter (see e.g. [385] for a review). The

hypothesis here is that dark matter is perhaps an ultralight scalar field that grows around

rotating black holes, leading to a scalar cloud that spins black holes down as it grows. This

process leads to two observational consequences, the first of which arises from the emission

of monochromatic gravitational waves from the dissipation of the scalar cloud, as discussed

in [366, 386, 387, 388, 376, 389, 390]. The second is the spin-down of the black hole, in which

the amplification of the scalar field reduces the black hole spin and mass [391, 392, 369].
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These processes can be a key tool to investigate the existence of massive particles and one

could ask whether one could use them to distinguish between a Kerr black hole and a slowly

rotating dCS black hole.

In what follows, we will study a dCS black hole that is accompanied by an ultra-light scalar

field in addition to the massless dCS pseudo-scalar. As an approximation, we will be working

in the “probe” limit, in which the backreaction of the ultra-light scalar onto the spacetime

itself, as well as the backreaction onto the massless dCS pseudo-scalar, can be neglected.

As long as µM ≪ 1 this approximation scheme is valid, so we will restrict our analysis to

the parameter space in which this inequality is satisfied. We consider a scenario in which

an ultra-light scalar field is amplified by the rotation of the black hole, which itself contains

a massless pseudo-scalar cloud sourced by the parity-violating Pontryagin density. Working

with the same machinery developed by Detweiler [363], we solve the Klein-Gordon equation

on the dCS background through a procedure of matching asymptotic expansions. We find

that additional modes of the ultralight massive scalar are amplified as compared to the

solution for a ultralight massive scalar field on a Kerr background; we obtain contributions

from ℓ, ℓ + 2, and ℓ − 2 modes for every ℓ. The ultralight massive scalar field does indeed

possess an instability that is significantly dominated by the ℓ = 1,m = 1, n = 0 mode, in

agreement with the GR case. Lastly, we comment on how the addition of these extra modes,

while small, may impact future observable endeavors.

The structure of this chapter is as follows. In Sec. 8.2, we review dCS gravity and the

properties of the ultralight scalar field. In Sec. 8.3, we review the known studies of black hole

superradiance in GR, focusing particularly on the well-known solution by Detweiler [363].

We then extend this analysis to dCS gravity in Sec. 8.4 and discuss specific properties of the

solution in Sec. 8.5. Finally, conclude with a discussion of implications and future work in

Sec. 8.6. Throughout the paper, we use the following conventions. We work in four space-

time dimensions with signature (-,+,+,+). Latin letters (a,b,...,h) range over all spacetime

indices with round and square brackets denoting symmetrization and antisymmetrization,

respectively. We work in geometric units such that G = 1 = c, unless otherwise specified.
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8.2 dCS Black Hole With an External Scalar Field

We will be considering a slowly-rotating dCS black hole which is accompanied by an ultralight

scalar field in addition to the massless pseudo-scalar field associated with dCS gravity. We

emphasize that this massless pseudo-scalar field is distinct from the ultralight scalar, which

we will probe for superradiant behavior. The full action is as follows:

S = SEH + SdCS + Sϑ + Sφ, (8.1)

where SEH is the Einstein-Hilbert action of GR, SdCS contains the Chern-Simons term, Sϑ is

the action for the dCS pseudo-scalar ϑ, and Sφ is the action of the external ultralight scalar

field φ. In the following, we will review the basics of dCS gravity in vacuum, as well as

rotating black holes in dCS gravity, and the ultralight scalar separately, before considering

the dCS black hole and scalar together.

8.2.1 Dynamical Chern-Simons Gravity in Vacuum

The vacuum action of dCS gravity is given by Svac = SEH + SdCS + Sϑ. Explicitly,

Svac =

∫
d4x

√
−g
[
κR +

α

4
ϑ ∗RR− 1

2
(∇aϑ) (∇aϑ)

]
, (8.2)

where κR is the usual Einstein-Hilbert term with κ = (16π)−1 and R the Ricci scalar

[307, 308]. The Chern-Simons term consists of a dynamical pseudo-scalar field, ϑ, which

couples to the Pontryagin density of the spacetime. The Pontryagin density is defined as

∗RR := ∗Ra
b
cdRb

acd , (8.3)

where the Hodge dual to the Riemann tensor is

∗Ra
b
cd :=

1

2
ϵcdefRa

bef , (8.4)
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and ϵcdef is the Levi-Civita tensor. The Pontryagin density can also be written in terms of

divergence of the Chern-Simons topological current,

∇aK
a =

1

4
∗RR, (8.5)

where

Ka := ϵabcd
(
Γn

bm∂cΓ
m

dn +
2

3
Γn

bmΓ
m

clΓ
l
dn

)
, (8.6)

giving rise to the name “Chern-Simons gravity”. Varying the action, Eq. (8.2) yields the

modified vacuum field equations,

Gab +
α

κ
Cab =

1

2κ
Tab , (8.7)

which include a modification from the C-tensor, defined as

Cab = (∇cϑ) ϵ
cde(a∇eR

b)
d + (∇c∇dϑ)

∗Rd(ab)c . (8.8)

The total energy-momentum tensor Tab is the sum of any matter stress-energy tensor (as-

sumed in this subsection to be zero) and the stress-energy tensor of the pseudo-scalar ϑ,

which is given by

T
(ϑ)
ab = (∇aϑ) (∇bϑ)−

1

2
gab (∇cϑ) (∇cϑ) . (8.9)

The pseudo-scalar field ϑ itself obeys the following vacuum equation of motion

□ϑ = − α

4κ
∗RR , (8.10)

which can be obtained by varying the action, Eq. (8.2), with respect to ϑ.
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8.2.2 Slowly Rotating Black Holes in dCS gravity

For spherically symmetric spacetimes, one can show that the Pontryagin density, ∗RR must

vanish [317, 330]. If this is the case, and the spacetime is assumed to be static, then the

scalar, ϑ must be a constant, which implies Tab = 0 = Cab. Then, all dCS solutions must

reduce to the static and spherically symmetric solutions of GR, and more precisely, must

reduce to the Schwarzschild spacetime [317], which is a solution of dCS gravity. However,

spacetimes which lack spherical symmetry, such as the Kerr solution of GR for rotating black

holes, are no longer solutions of dCS gravity, even if they are stationary; this is because the

Pontryagin density is nonzero in non-spherically symmetric spacetimes, and thus, it sources

a non-trivial pseudo-scalar field by Eq. (8.10).

The first such solution was found by Yunes and Pretorius [318], by considering a black

hole in a slow rotation expansion. This solution has since been extended to second order

[319] and fifth order in rotation [320]. An extremal solution for the scalar field was found

in [393], and a non-perturbative numerical solution for the metric was found in [332]. The

leading order correction to the metric in the slowly rotating solution is as follows:

ds2=ds2K+
5

4
ζMχ

M4

r4

(
1 +

12

7

M

r
+

27

10

M2

r2

)
sin2θdtdϕ , (8.11)

where M is the ADM mass, ζ is related to the CS coupling α by

ζ =
α2

κM4
, (8.12)

χ is the dimensionless spin parameter, defined in terms of the ADM angular momentum via

|S| =Ma =M2χ, so that χ = a/M is dimensionless, and ds2K is the usual line element of the

Kerr metric in Boyer-Lindquist coordinates. Explicit forms for the higher-order corrections

to all terms in the metric can be found in [319, 320], but for simplicity we will not write

them here. The associated pseudo-scalar to leading order in rotation is

ϑ =
5

8
αχ

cos θ

r2

(
1 + 2

M

r
+

18

5

M2

r2

)
. (8.13)
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At O(ζχ2), this solution has an event horizon, r+ and an inner apparent horizon, r- given by

r± = r±,K ∓ 915

28672
Mζχ2, (8.14)

where r±,K denotes the outer and inner Kerr horizons, respectively. The location of the

ergosphere is given by

rergo = rergo,K − 915

28672
Mζχ2

(
1 +

2836

915
sin2 θ

)
. (8.15)

For the remainder of the paper we will be considering the slowly rotating dCS metric up to

O(ζχ2), given by

gµν = gKµν + gdCS

µν

[
O(ζχ2)

]
, (8.16)

where gKµν is the Kerr metric in Boyer-Lindquist coordinates and gdCS

µν [O(ζχ2)] is the dCS

metric correction up to quadratic order in the rotation[319].

This metric is a valid approximation sufficiently far away from the black hole event hori-

zon, since otherwise the O(ζ) term in Eq. (8.11), which decays as 1/r4, would dominate

over the GR term, which decays as 1/r3. However, close to the horizon we must take into

account that its location is slightly shifted from its location in the Kerr spacetime, as we

can see in Eq. (8.14). This shift leads to spurious divergences of Eq. (8.16) at the location

of the Schwarzschild and Kerr horizons, which we will address by resumming the metric in

χ. There are in principle an infinite number of ways in which the metric can be resummed,

so long as the resummed metric:

1. identically reduces to the non-resummed metric, order by order in χ, when expanded

in small χ≪ 1,

2. has each component remain finite everywhere outside the dCS horizon, e.g. that there

are no divergences at the Schwarzschild or Kerr horizon.
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One way to perform the resummation is to consider a transformation ∆ → ∆̄, where

∆̄ = ∆ +
915

14336
M2ζχ2, (8.17)

which we have found by demanding that ∆̄(r = r+,dCS) = 0. By taking ∆ → ∆̄ and the

Schwarzschild factor f → ∆̄/r2 in the metric of Eq. (8.16), and expanding in χ≪ 1, we find

that the two counterterms that we need to add in order to retain the desired asymptotic

behavior are

δgrr =
915

14336

M2r2ζχ2

∆̄2
, (8.18)

and

δgtt =
915

14336

M2ζχ2

r2
. (8.19)

We also obtain counterterms for the gtϕ and gϕϕ components, which are

δgtϕ = − 915

14336

M3 sin2 θζχ3

r2
, (8.20)

δgϕϕ =
915

14336

M4 sin4 θζχ4

r2
. (8.21)

We include these terms for completeness, but note that they are O(ζχ3) and O(ζχ4) and

will not contribute to our resummed metric, which we limit to O(ζχ2). The gθθ term is

unaffected by the resummation. Then, our full resummed metric is

gtt,resum = gtt,K(∆ → ∆̄) + gtt,dCS(f → ∆̄/r2) + δgtt ,

grr,resum = grr,K(∆ → ∆̄) + grr,dCS(f → ∆̄/r2) + δgrr, (8.22)

where gtt/rr,K are the usual components of the Kerr metric in Boyer-Lindquist coordinates

and gtt/rr,dCS is the O(ζχ2) dCS correction described previously. All other metric components

remain unchaged at O(ζχ2)
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8.2.3 dCS gravity Coupled to an Ultralight Scalar Field

In this paper, we will not be concerned with the vacuum field equations, but rather with

those arising in the presence of an additional massive scalar field φ. The action is then as

given in Eq. (8.1), where the action of the massive scalar field is

Sφ =

∫
d4x

√
−g
[
−1

2
gab∇aφ∇bφ− 1

2
µ2φ2

]
, (8.23)

with µ the mass of the scalar. The energy-momentum tensor associated with the massive

field is then

T
(φ)
ab = (∇aφ)(∇bφ)−

1

2
gab(∇aφ∇aφ+ µ2φ2), (8.24)

which must be added to the pseudo-scalar stress-energy tensor T
(ϑ)
ab to compose the total

energy-momentum tensor Tab. The massive scalar field φ obeys the Klein-Gordon equation,

(2+ µ2)φ = 0 , (8.25)

where 2 = ∇a∇a is the d’Alembertian operator.

In what follows, we will neglect any backreaction of the ultra-light scalar onto both the

metric and the dCS pseudo-scalar, working in the probe limit. Previous work [394, 395] has

considered the inclusion of these backreaction effects for scalar and vector fields for near-

extremal black holes in GR using numerical methods. However, we will be working in the

slow rotation and µM ≪ 1 limit in which these effects are negligible. The equation of motion

for the scalar field then becomes

(2vac + µ2)φ = 0 , (8.26)

where the d’Alembertian operator 2vac is that associated with the vacuum dCS spacetime

solution discussed in the previous subsection.
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8.3 Superradiance in GR

For completeness and to make more clear the methods we will use in Sec. 8.4, we will first

review Detweiler’s solution for the superradiant behavior of an ultralight scalar field in a

Kerr background [363]. We will specifically work in the ωM ≪ 1 and µM ≪ 1 limit in order

to obtain an analytical solution and determine what parameters lead to the presence of the

superradiant instability, which will be determined by the imaginary part of the frequency of

the radiating modes.

We begin by considering a massive scalar field which obeys the Klein-Gordon equation,

(2K − µ2)φK(t, r, θ, ϕ) = 0, (8.27)

where µ is the field mass, and 2K and φK denote the d’Alembertian operator and scalar

field, respectively for a Kerr black hole. The Klein-Gordon equation on a Kerr background

is well studied to be separable in the ωM ≪ 1 and µM ≪ 1 limit by making an ansatz

φK(t, r, θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

φK
ℓ,m, (8.28)

where

φK
ℓ,m = e−iωteimϕSK

ℓ,m(θ)R
K
ℓ,m(r). (8.29)

We can see from this expression that if the frequency, ωK, has a positive, imaginary contribu-

tion then this expression will exponentially increase; this is the key component for the field

to possess a superradiant instability. Upon applying the ansatz and separating Eq. (8.27),

we find that the resulting differential equation for SK
ℓ,m(θ) gives S

K
ℓ,m(θ) = Pm

ℓ (cos θ), where

Pm
ℓ (cos θ) are associated Legendre polynomials.

In order to analytically solve the radial differential equation arising from the separation

of variables, we will perform a matching of asymptotic expansions. We will consider two

zones: the far zone, where r ≫ M and the near zone, where r − rH,K ≪ max(ℓ/ω, ℓ/µ). We

emphasize here that our use of the label “near zone” is distinct from the definition of the



159

near zone in post-Newtonian theory. With the solutions in both zones in hand, we will then

match the expansions of the solutions in each zone in the opposite limit inside a buffer zone,

where both expansions are simultaneously valid.

Figure 8.1: (Color online) Schematic diagram showing the relevant geometry. The black hole is denoted by
the black circle at the center, the near zone (NZ) is in red, the far zone (FZ) is in blue and the intermediate
buffer zone, where the expansions can be asymptotically matched, is shown in the purple striped region.

Figure 8.1 shows a schematic diagram of the three zones; this figure is meant to be an

illustrative example of each of the zones, so it does not exactly represent the geometry of

the black hole spacetime. The black circular region in Fig. 8.1 represents the black hole.

The far zone (FZ), defined as the region in which r ≫ M , is denoted in blue, and the near

zone (NZ), defined by the region in which r− rH,K ≪ max(ℓ/ω, ℓ/µ), is denoted in red. The

intermediate buffer zone (BZ) is the purple striped region and is characterized by r ≫ M
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and r− rH,K ≪ min(ℓ/ω, ℓ/µ) such that near-horizon expansion of the far zone solution and

the large radius expansion of the near-horizon zone solution are both simultaneously valid

and can thus be asymptotically matched.

First, we will consider the far zone, r ≫M . Solving the radial part of the Klein-Gordon

equation in this zone and taking the appropriate boundary conditions at infinity, i.e., that

the wave must be outgoing, we obtain

RK,FZ

ℓ = xℓe−x/2U(ℓ+ 1− ν, 2ℓ+ 2, x), (8.30)

where U is a confluent hypergeometric function [396] and we have defined

x = 2kr, (8.31)

ν =Mµ2/k, (8.32)

k2 = µ2 − ω2, (8.33)

ω = σ + iγ. (8.34)

Now consider the near zone, r − rH,K ≪ max(ℓ/ω, ℓ/µ). Let us define the quantity

zK =
r − r+,K

r+,K − r-,K
, (8.35)

where r+,K and r-,K are the outer and inner Kerr horizons respectively, so that the defining

relation of the near zone becomes zK ≪ max(ℓ/ω, ℓ/µ). The solution to the radial part of

the Klein-Gordon equation in the near zone is then

RK,NZ

ℓ,m =

(
zK

zK + 1

)iPK

2F1(−ℓ, ℓ+ 1, ℓ− 2iPK, zK + 1), (8.36)

where again we have imposed appropriate boundary conditions at the horizon in order to

obtain a single independent solution. Here, 2F1 is the ordinary hypergeometric function and

PK is a constant, defined as

PK =
am− 2Mr+,Kω

r+,K − r-,K
, (8.37)
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where recall that a is the (dimensionful) spin parameter for a Kerr black hole.

Now, we can consider the intermediate buffer zone region. Defining the small-x expansion

of the far zone solution in Eq. (8.30) as R̃K,FZ

ℓ , and the large-z expansion of the near-horizon

solution in Eq. (8.36) as R̃K,NZ

ℓ,m , asymptotic matching then requires that

R̃K,FZ

ℓ ∼ R̃K,NZ

ℓ,m , (8.38)

inside the buffer zone, where the ∼ symbol here means “asymptotic to.” This condition

can only be satisfied by a set of frequencies that ensures both expressions are matched in

the buffer region, and this, in turn allows us to determine the superradiance spectrum of

perturbations.

Let us now carry out this matching in detail. First, following Detweiler [363], we introduce

the ansatz

ν =
Mµ2√
µ2 − ω2

= ℓ+ 1 + n+ δν, (8.39)

where the first equality comes from Eqs. (8.32)–(8.33), and δν is a function to be determined.

With this ansatz, we use Eqs. (8.32)–(8.34) to find that this function must be related to the

imaginary part of the frequencies γ via

δν = iMγ

(
µM

l + 1 + n

)−3

. (8.40)

Using our knowledge that γ scales as (µM)8 (which we will prove in the following), it is clear

that δν = O(µ5M5), and since µM ≪ 1, then δν ≪ 1. Assuming that O(δν) = O(x2ℓ+1)

(which we will also prove in the following), we then have that the small x and δν expansion

of Eq. (8.30) is

R̃K,FZ

ℓ ≈ (−1)n
(2ℓ+ 1 + n)!

(2ℓ+ 1)!
(2kKr)

ℓ

+(−1)n+1(2ℓ)!n!(2kr)−ℓ−1δνK, (8.41)
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For the near-horizon solution, expanding in z ≫ 1 gives

R̃K,NZ

ℓ,m ≈ (−1)ℓΓ(1 + 2ℓ)Γ(1− 2iPK)

Γ(ℓ+ 1)Γ(ℓ+ 1− 2iPK)

(
r

r+,K − r-,K

)ℓ

+
(−1)ℓ−1Γ(−1− 2ℓ)Γ(1− 2iPK)

Γ(−ℓ)Γ(−ℓ− 2iPK)

(
r

r+,K − r-,K

)−ℓ−1

. (8.42)

We can now match these two asymptotic expansions to each other. That is, given two

asymptotic expansions of the form f̃ ∼ A rl + B r−l−1 and g̃ ∼ C rl +D r−l−1 inside some

common buffer zone, then asymptotic matching f̃ ∼ g̃ requires that A = C and B = D.

Using this to asymptotically match R̃K,FZ

ℓ and R̃K,NZ

ℓ,m we find relations for the coefficients of

the rℓ and r−ℓ−1 terms that allow us to solve for δνK, namely

δνK = (2iPK) [2k(r+,K − r-,K)]
2ℓ+1 (2ℓ+ n+ 1)!

n!

×
[

ℓ!

(2ℓ+ 1)!(2ℓ)!

]2 l∏
j=1

(j2 + 4P 2
K). (8.43)

Observe that indeed, as we expected, δνK = O(x2ℓ+1).

In order to find the dominant contribution to the superradiant spectrum, we need to

consider the maximum positive value of δν. In GR, this occurs when ℓ = 1, m = 1, and

n = 0, corresponding to

γK ≈ µ
(µM)8

24
(a/M − 2µr+,K) , (8.44)

and a growth time of

τK ≈ 24(µM)−8µ−1 (a/M − 2µr+,K)
−1 . (8.45)

Observe that indeed, as we expected, γK = O[(µM)8].
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8.4 Superradiance in dCS gravity

Having reviewed the superradiant instability for a Kerr black hole, we now turn to an in-

vestigation of superradiance in dCS gravity. We will consider the slowly rotating black hole

solution in dCS gravity [318, 319, 320] up to second order in the spin, O(ζχ2), appropriately

resumed as explained in Sec. 8.2.2. We will follow Detweiler’s method [363] as described in

the previous section, and determine the behavior of the scalar field by solving the Klein-

Gordon equation in both the far and near zones, as defined in Fig. 8.1, but now the metric

will be given by the dCS black hole solution. We will then perform asymptotic matching on

the asymptotic expansions of the approximate solutions to find the relevant frequencies for

the spectrum of superradiant perturbations.

8.4.1 The Far Zone

We first consider the Klein-Gordon equation in the far zone, r ≫M . The metric is given in

Eq. (8.16) because the resummed metric reduces to this equation in the far zone. With this,

the Klein-Gordon equation becomes

(2K +2dCS − µ2)φ = 0, (8.46)

to leading order in the dCS deformation, where 2K is the d’Alembertian operator of the Kerr

background, 2dCS is a modification induced by the dCS corrections to the metric, and µ is

again the mass of the ultralight scalar field. The full expression for 2dCS is rather complicated

and can be found in Appendix 8.C.

Given that the dCS contribution itself is a small correction that is subdominant to the

GR contribution, we can perform an asymptotic expansion of 2dCS in the far zone and simply

consider the leading order contribution. This leading order contribution, acting on a function

g(t, r, θ, ϕ) = e−iωteimϕg(r, θ) is

2dCSg(t, r, θ, ϕ) ≈
603

1792
χ2ζ

M3ω2

r3

(
cos2 θ − 1

3

)
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× g(r, θ)e−iωteimϕ (8.47)

to leading order in r ≫ M . Observe that 2dCSg ∼ ζχ2/r3, where the O(ζχ) term does not

show up because it decays as r−6.

In order to solve the wave equation in Eq. (8.46), we will consider a perturbative solution

such that

φFZ = φ0,FZ + δφFZ, (8.48)

where φ0,FZ is simply the solution on the unperturbed Kerr background and δφ is the dCS

correction. We take δφFZ to be O(ζχ2) to match the expansion order of the metric and of

the d’Alembertian operator. From [363] and the discussion in Sec. 8.3, we know that φ0,FZ

is given by Eq. (8.28). We can thus make a similar ansatz for δφFZ:

δφFZ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
δφFZ

ℓ,m + δφFZ

ℓ+2,m

)
+

∞∑
ℓ=2

ℓ∑
m=−ℓ

δφFZ

ℓ−2,m, (8.49)

where

δφFZ

ℓ,m = e−iωteimϕfFZ

ℓ,m(r, θ), (8.50)

δφFZ

ℓ+2,m = e−iωℓ+2teimϕfFZ

ℓ+2,m(r, θ), (8.51)

δφFZ

ℓ−2,m = e−iωℓ−2teimϕfFZ

ℓ+2,m(r, θ). (8.52)

We will show soon that the solution is indeed made up of a linear combination of the ℓ, ℓ+2

and ℓ − 2 modes, but one could also foresee that this must be the case due to the cos2 θ

dependence of Eq. (8.47), which will act as a source term. Note that in order to separate

Eq. (8.46) in our perturbative expansion, the time dependence in δφFZ must be the same as

that of φ0,FZ, namely e−iωt, where the frequency ω remains the same as in the background

case. In order to ensure that there is matching of the solutions and that this construction is

valid, we will explicitly solve for the frequencies of the perturbed contribution via asymptotic

matching and show that this is the case.
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With the ansatz in Eq. (8.48), the Klein-Gordon equation reduces to

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂fFZ

ℓ,m(r, θ)

∂θ

)
−m2 csc2 θfFZ

ℓ,m(r, θ)

]
+ r2

∂

∂r

[
r2
∂fFZ

ℓ,m(r, θ)

∂r

]
+
(
ω2r4 − µ2r4 + 2Mµr3

)
fFZ

ℓ,m(r, θ)

+ r2

[
1

sin θ

∂

∂θ

(
sin θ

∂fFZ

ℓ+2,m(r, θ)

∂θ

)
−m2 csc2 θfFZ

ℓ+2,m(r, θ)

]
+ r2

∂

∂r

[
r2
∂fFZ

ℓ+2,m(r, θ)

∂r

]
+
(
ω2
ℓ+2r

4 − µ2r4 + 2Mµr3
)
fFZ

ℓ+2,m(r, θ)

+ r2

[
1

sin θ

∂

∂θ

(
sin θ

∂fFZ

ℓ−2,m(r, θ)

∂θ

)
−m2 csc2 θfFZ

ℓ−2,m(r, θ)

]
+ r2

∂

∂r

[
r2
∂fFZ

ℓ−2,m(r, θ)

∂r

]
+
(
ω2
ℓ−2r

4 − µ2r4 + 2Mµr3
)
fFZ

ℓ−2,m(r, θ)

= −201M3

1792
rω2(3 cos2 θ − 1)Pm

ℓ (cos θ)RFZ

K,ℓ(r)ζχ
2, (8.53)

where RK,ℓ(r) is given by Eq. (8.30). In order to fully separate this equation, we will make

use of the Legendre polynomial recurrence relation to rewrite the angular dependence on the

right-hand side of Eq. (8.53) as a linear combination of modes ℓ, ℓ+ 2 and ℓ− 2 modes. We

thus make the following ansatzes:

fFZ

ℓ,m(r, θ) = Aℓ,m P
m
ℓ (cos θ)gℓ(r)

fFZ

ℓ−2,m(r, θ) = Bℓ,m P
m
ℓ−2(cos θ)gℓ−2(r)

fFZ

ℓ+2,m(r, θ) = Cℓ,m P
m
ℓ+2(cos θ)gℓ+2(r), (8.54)

where gℓ,ℓ±2(r) describes the radial dependence of each mode and Aℓ,m, Bℓ,m, and Cℓ,m are

constants given by

Aℓ,m =
(ℓ+ ℓ2 − 3m2)

4ℓ(ℓ+ 1)− 3
,

Bℓ,m =
3(ℓ− 1 +m)(ℓ+m)

8ℓ2 − 2
,

Cℓ,m =
3(ℓ+ 1−m)(2 + ℓ−m)

8ℓ(2 + ℓ) + 6
. (8.55)
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These constants can be derived from the recurrence relation, shown in detail in Appendix

8.A. Then, Eq. (8.53) separates into three separate equations for the ℓ, ℓ+2 and ℓ−2 modes.

We will only explicitly show the solution for the ℓ mode, as the others trivially follow by

substituting ℓ→ l + 2 and Aℓ,m → Bℓ,m or ℓ→ l − 2 and Aℓ,m → Cℓ,m.

The radial equation for the ℓ mode becomes

d2

dr2
[rgℓ(r)] +

[
ω2 − µ2 +

2Mµ2

r
− ℓ(ℓ+ 1)

r2

]
rgℓ(r)

= − 201

1792

M3ω2ζχ2

r2
RFZ

K,ℓ(r) . (8.56)

We will again define x and ν as in Eqs. (8.31) and (8.32) and for convenience, let us write

the confluent hypergeometric function U in terms of a WhittakerW function W. Doing so,

the radial equation for the ℓ mode becomes

d2[xgℓ(x)]

dx2
+

[
−1

4
+
ν

x
− ℓ(ℓ+ 1)

x2

]
xgℓ(x)

= − 402

1792

M3ω2kζχ2

x2
W(ν, ℓ+ 1/2, x)

x
,

= −ζχ2ΩFZ

1

W(ν, ℓ+ 1/2, x)

x3
, (8.57)

where we have defined the overall prefactor ΩFZ

1 = 402M3ω2k/1792.

The solution to this differential equation is the sum of the homogeneous solution and a

particular solution, the later of which we shall call gp,ℓ(r). The homogeneous solution is the

same as in GR, and thus, we drop it so as to not double-count the background solution. The

particular solution is the dCS correction to the GR solution, and thus, solving Eq. (8.57)

with a Green functions method, we find

gpℓ =
ΩFZ

1 ζχ
2

x

[
W(ν, ℓ+ 1/2, x)

∫
I1dx

−M(ν, ℓ+ 1/2, x)

∫
I2dx

]
, (8.58)

where W and M refer to the WhittakerW and WhittakerM functions, respectively, and the
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integrands, I1 and I2 are

I1 =
M(ν, ℓ+ 1/2, x)W(ν, ℓ+ 1/2, x)

x2
[
W(ν, ℓ+ 1/2, x)M(1 + ν, ℓ+ 1/2, x)(1 + ν + ℓ) + M(ν, ℓ+ 1/2, x)W(1 + ν, ℓ+ 1/2, x)

] ,
(8.59)

I2 =
W(ν, ℓ+ 1/2, x)2

x2
[
W(ν, ℓ+ 1/2, x)M(1 + ν, ℓ+ 1/2, x)(1 + ν + ℓ) + M(ν, ℓ+ 1/2, x)W(1 + ν, ℓ+ 1/2, x)

] ,
(8.60)

Equation (8.58) describes the radial behavior of φ in the far zone for the ℓ mode. Analogous

expressions can be found for the ℓ ± 2 modes by taking ℓ → l + 2 and Aℓ,m → Bℓ,m or

ℓ→ l − 2 and Aℓ,m → Cℓ,m.

8.4.2 The Near Zone

Let us now investigate the dynamics of the scalar field in the near zone region. We will

again generally follow the same method as in [363], however we now must use the resummed

metric described in Sec. 8.2 to account for the shift in the horizon location of the dCS black

hole and avoid spurious divergences. Given the use of the resummed metric, we now also

must account for the fact that the background solution is no longer strictly Kerr, but is the

leading order contribution from the full resummed metric.

With this in mind, we investigate the near zone ansatz

φNZ = φ0,NZ + δφNZ. (8.61)

where φ0,NZ is the background solution and δφNZ is a perturbation. In order to find the

background solution, we will consider the Klein-Gordon equation

{
2resum

[
O(ζ0)

]
− µ2

}
φ0,NZ = 0 , (8.62)
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where we use the decomposition

φ0,NZ = e−iωteimϕSℓ,m(θ)G
0,NZ

ℓ,m , (8.63)

for some background angular functions Sℓ,m and some background radial functions G0,NZ

ℓ,m .

The background Klein-Gordon equation can be separated into

1

sin θ

d

dθ

(
sin θ

dSℓ,m(θ)

dθ

)
+

(
M2χ2(ω2 − µ2) cos2 θ − m2

sin2 θ
+ λ

)
Sℓ,m(θ) = 0,

∆̄
d

dr

(
∆̄dG0,NZ

ℓ,m (r)

dr

)
+
[
ω2(r2 +M2χ2) +M2χ2m2 − ∆̄(µ2r2 +M2χ2ω2 + λ)

− 2Mχmω(r2 +M2χ2 − ∆̄)
]
G0,NZ

ℓ,m (r) = 0. (8.64)

Then, working in the Mω ≪ 1 and Mµ ≪ 1 limit once again gives Legendre polynomials

for the angular functions. For the radial functions, we first define z such that

z =
r − r+

r+ − r-
, (8.65)

where r+ and r- are the locations of the outer and inner horizons in the dCS solution,

explicitly given in Eq. (8.14). Then, substituting for z and taking the appropriate limits,

µM ≪ 1, ωM ≪ 1, and r−r+ ∼ z ≪ max(ℓ/ω, l/µ), and near-horizon boundary conditions,

we find that the O(ζ0) radial solution is

G0,NZ

ℓ,m =

(
z

z + 1

)iP

2F1(−ℓ, ℓ+ 1, ℓ− 2iP, z + 1), (8.66)

where P is now defined with the dCS horizon as

P =
am− 2Mr+ω

r+ − r-
, (8.67)

and 2F1 is again the ordinary hypergeometric function. Note that this solution has the same

form as Eq. (8.36), but z and P are now defined with the horizon locations of the dCS black

hole rather than the Kerr solution, so it is slightly shifted from the near zone GR solution.
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Now, with the background solution in hand we can consider the full perturbative solution

at O(ζχ2). We will consider the wave equation in the near zone using the resummed metric,

Eq. (8.22), for which the d’Alembertian operator separates as

2 = 2resum

[
O(ζ0)

]
+2dCS

[
O(ζχ2)

]
, (8.68)

where for any function f(t, r, θ, ϕ) we have

2dCSf(t, r, θ, ϕ) ≈ −27ω2M2ζχ2

r6
+
∆̄2

(
M − r+

2

) [
MÂ(r+) cos

2 θ + B̂(r+)
]
f(r, θ)

− ω2M2χ2ζ

150528∆̄2r7
+

[
Ĉ(r+) cos

2 θ + D̂(r+)
]
f(r, θ)

(
r − r+

r+ − r-

)
(r+ − r-). (8.69)

and the coefficients are

Â(r+) = −149M5r+

2016
+

445M4r2
+

2016
+

235M3r3
+

1568
+

3725M2r4
+

21168
+

67Mr5
+

896
+M6 +

67 r6
+

2688
,

(8.70)

B̂(r+) = −M
7

3
− 733M6r+

6048
−

155M5r2
+

2016
−

2785M4r3
+

254016
−

11075M3r4
+

508032
−

97M2r5
+

16128
+

37Mr6
+

32256
+

305 r7
+

64512
,

(8.71)

Ĉ(r+) = 24385536M8 − 11662560M7r+ + 4189248M6r+
∗2 + 481680M5r+

3

+ 821280M4r+
4 − 53688M3r+

5 + 50652Mr+
7, (8.72)

D̂(r+) = −8128512M8 + 924000M7r+ − 264768M6r+
2 + 335040M5r+3

− 132640M4r 4 + 19856M3r 5 − 16884Mr 7 + 19215 r+8. (8.73)

Let us now consider the ansatz for the perturbation

δφNZ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(
δφNZ

ℓ,m + δφNZ

ℓ+2,m

)
+

∞∑
ℓ=2

ℓ∑
m=−ℓ

δφNZ

ℓ−2,m, (8.74)

with

δφNZ

ℓ,m = e−iωℓteimϕfNZ

ℓ,m(r, θ), (8.75)
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δφNZ

ℓ+2,m = e−iωℓ+2teimϕfNZ

ℓ+2,m(r, θ), (8.76)

δφNZ

ℓ−2,m = e−iωℓ−2teimϕfNZ

ℓ−2,m(r, θ). (8.77)

Then, the full Klein-Gordon equation becomes

1

∆̄Σ

{[
(M2χ2 + r2)2 −M2χ2∆̄ sin2 θ

]
ω2 − 2Mχmω(M2χ2 + r2 − ∆̄)

−
(
∆̄ csc2 θ − χ2M2

)
m2 + ∆̄∂2θ + ∆̄2∂2r + ∆̄ cot θ∂θ + 2(r −M)∆̄∂r

}
fNZ

ℓ,m(r, θ)

+
1

∆̄Σ

{[
(M2χ2 + r2)2 −M2χ2∆̄ sin2 θ

]
ω2
ℓ+2 − 2Mχmωℓ+2(M

2χ2 + r2 − ∆̄)

−
(
∆̄ csc2 θ − χ2M2

)
m2 + ∆̄∂2θ + ∆̄2∂2r + ∆̄ cot θ∂θ + 2(r −M)∆̄∂r

}
fNZ

ℓ−2,m(r, θ)

+
1

∆̄Σ

{[
(M2χ2 + r2)2 −M2χ2∆̄ sin2 θ

]
ω2
ℓ−2 − 2Mχmωℓ−2(M

2χ2 + r2 − ∆̄)

−
(
∆̄ csc2 θ − χ2M2

)
m2 + ∆̄∂2θ + ∆̄2∂2r + ∆̄ cot θ∂θ + 2(r −M)∆̄∂r

}
fNZ

ℓ−2,m(r, θ)

+ µ2(fNZ

ℓ,m + fNZ

ℓ+2,m + fNZ

ℓ−2,m)(r, θ) =
27ω2M2ζχ2

r6
+
∆̄2

(
M − r+

2

) [
MÂ(r+) cos

2 θ + B̂(r+)
]
Pm
ℓ (cos θ)G0,NZ

ℓ,m (r)

+
ω2M2ζχ2

150528∆̄2r7
+

[
Ĉ(r+) cos

2 θ + D̂(r+)
]( r − r+

r+ − r-

)
(r+ − r-), P

m
ℓ (cos θ)G0,NZ

ℓ,m (r) (8.78)

Using our intuition about the angular dependence on the right-hand side being a linear

combination of ℓ, ℓ+ 2 and ℓ− 2 modes, we can now make the ansatzes

fNZ

ℓ,m(r, θ) = hℓ,m(r)P
m
ℓ (cos θ)

fNZ

ℓ−2,m(r, θ) = hℓ−2,m(r)P
m
ℓ−2(cos θ)

fNZ

ℓ+2,m(r, θ) = hℓ+2,m(r)P
m
ℓ+2(cos θ), (8.79)

which allows us to separate the equation. More details can be found in Appendix 8.A.

The functions hℓ,m and hℓ±2,m describe the radial behavior of the perturbation. As before,

let us focus on the ℓth mode solution, since the ℓ±2 solutions can be found by taking ℓ→ ℓ±2
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and the appropriate coefficients. Decoupling the three equations and writing everything in

terms of z, we obtain

z(z + 1)
d

dz

[
z(z + 1)

dhℓ,m(z)

dz

]
+
[
P 2 − ℓ(ℓ+ 1)z(z + 1)

]
hℓ,m(z)

= ΩNZ

1 Ãℓ,m + ΩNZ

2 Āℓ,mz)ζχ
2 [z(r+ − r-) + r+]

2

z(z + 1)

(
z

z + 1

)iP

2F1([−ℓ, ℓ+ 1], [1 + 2iP ],−z),

(8.80)

where the prefactors have been defined as ΩNZ

1 = 27ω2M2/[r6
+
(r+−r-)4], ΩNZ

2 = ω2M2/(150528r7
+
(r+−

r-)
4), and Ã and Ā are constant coefficients which are derived from the Legendre polynomial

recurrence relation given by

Ãℓ,m = B̂(r+) + Â(r+)
(−ℓ+ 2ℓ(1 + ℓ)− 2m2)

−3 + 4ℓ(ℓ+ 1)
, (8.81)

Āℓ,m = D̂(r+) + Ĉ(r+)
(−ℓ+ 2ℓ(1 + ℓ)− 2m2)

−3 + 4ℓ(ℓ+ 1)
, (8.82)

whose derivations can be found in Appendix 8.A along with the relevant coefficients for

the ℓ ± 2 modes. Solving Eq. (8.80) again gives a homogeneous solution, which is just the

background solution at O(ζ0), Eq. (8.66), and we thus discard to avoid double counting.

The particular solution at O(ζχ2), hp,ℓ, is

hpℓ,m(z) = ζχ2(4P 2 + 1)

(
z

z + 1

)iP

2F1([−ℓ, ℓ+ 1], [1 + 2iP ],−z)
∫

J1dz

− ζχ2(4P 2 + 1)
[
z(z + 1)

]−iP

2F1([−ℓ− 2iP, ℓ+ 1− 2iP ], [1− 2iP ],−z)
∫

J2dz,

(8.83)

where

J1 =
1

DNZ

2F1

(
[−ℓ, ℓ+ 1], [1 + 2iP ],−z

)
2F1

(
[−ℓ− 2iP, ℓ+ 1− 2iP ], [1 + 2iP ],−z

)
×
[
z(r+ − r-) + r+

]2 (
ΩNZ

1 Ãℓ,m + zΩNZ

2 Āℓ,m

)
, (8.84)
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J2 =
2F1

(
[−ℓ, ℓ+ 1], [1 + 2iP ],−z

)2
[z(z + 1)]iP ziP (z + 1)−iP

[
z(r+ − r-) + r+

]2 (
ΩNZ

1 Ãℓ,m + zΩNZ

2 Āℓ,m

)
DNZ

.

(8.85)

and the denominator is

DNZ = 8z2(z + 1)3

{
iPz

[
P 2 +

1

4
(ℓ2 + ℓ+ 1) +

1

8
(ℓ2 + ℓ)

]
2F1

(
[−ℓ, ℓ+ 1], [1 + 2iP ],−z

)
× 2F1

(
[−ℓ− 2iP + 1, ℓ+ 2− 2iP ], [2− 2iP ],−z

)
−
[
−z(ℓ+ 1)(iP − 1/2)ℓ

4
2F1

(
[−ℓ+ 1, ℓ+ 2], [2 + 2iP ],−z

)
+ iP

(
P 2

+
1

4
2F1

(
[−ℓ, ℓ+ 1], [1 + 2iP ]

)
× 2F1

(
[−ℓ− 2iP, ℓ+ 1− 2iP ], [−2iP + 1],−z

)}
. (8.86)

We have thus obtained the radial behavior of solution for the scalar field in the near zone,

Eq. (8.83).

8.4.3 Asymptotic Matching

With the near and far zone solutions, given by Eqs. (8.83) and 8.58, in hand, we now move on

to matching them asymptotically in the buffer zone. In general, both of these solutions are

complicated integral expressions. In order to perform these integrals and find the conditions

on the frequency to obtain the superradiant instability, we focus on an intermediate regime

of overlap, the ‘buffer zone,’ as described previously in Figure 8.1. As long as r ≫ M and

r−rH,dCS ≪ min(ℓ/ω, ℓ/µ), both the large-z expansion of Eq. (8.83) and the small-x expansion

of Eq. (8.58) will be valid. As long as ωM ≪ 1 and µM ≪ 1, there exists a region where

this is the case and the two solutions will be asymptotic to each other.

First, let us consider the two asymptotic expansions of the approximate solution, begin-

ning with the far zone solution. Defining δνℓ in analogy to Eq. (8.39), expanding Eq. (8.58)



173

in small x and small δνℓ, recalling that δνℓ ≪ 1, and performing the integral, we obtain

g̃pℓ (x) ≈
(1 + ℓ)Γ(−2ℓ− 2)

ℓΓ(−1− 2ℓ− n)
xℓ−1ΩFZ

1 ζχ
2 +

(−1)1+nℓn!Γ[2ℓ]

1 + ℓ
δνℓx

−ℓ−2ΩFZ

1 ζχ
2 (8.87)

For details of this expansion, see Appendix 8.B. Let us now focus on the near zone solution.

Similarly simplifying and expanding Eq. (8.83) in large z, we can perform the integration to

obtain

h̃pℓ,m(z) ≈

[
−22ℓ−1(r+ − r-)

2Γ(ℓ+ 1/2)Γ(1 + 2iP )

ℓ(1 + 4P 2)
√
πΓ(1 + l + 2iP )

zℓ−1

+
(r+ − r-)

2Γ(−2ℓ− 1)Γ(ℓ+ 1)Γ(1 + 2iP ) sin(ℓπ)

(1 + 4P 2)πΓ(−ℓ+ 2iP )
z−ℓ−2

]
×ΩNZ

2 Āℓ,mζχ
2 (8.88)

The details of this expansion can also be found in Appendix 8.B. Both asymptotic expansions

of the approximate solutions are suppressed by an overall factor of r relative to the asymptotic

expansions of the GR solutions, in addition to the suppression due to the expansion in small

ζχ2.

Asymptotic matching requires that in the buffer zone g̃(r) ∼ h̃(r). Using Eqs. (8.87)

and (8.88), we can then match coefficients to find δνℓ, namely

δνℓ = 2iP [2k(r+ − r-)]
2ℓ+1 (2ℓ+ n+ 1)!

n!

[
ℓ!

(2ℓ+ 1)!(2ℓ)!

]2 ℓ∏
j=1

(j2 + 4P 2), (8.89)

where we have made use of the well-known identity Γ(1+x) = xΓ(x) and variations thereof.

For details of this matching, see Appendix 8.B.

As expected, this expression yields the same result as for the background solution. The

ℓth contributions are maximized for ℓ = 1,m = 1 and n = 0 and have a dominant imaginary

frequency contribution and growth rate of

γmax

ℓ ≈ µ
(µM)8

24
(χ− 2µr+)
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τmax

ℓ ≈ 24(µM)−8µ−1 (χ− 2µr+)
−1 . (8.90)

The (ℓ − 2)th contributions are maximized for ℓ = 3,m = 1, and n = 0 and have the same

dominant frequency and growth rate as the ℓ = 1 ℓth contribution such that γmax

ℓ−2 = γmax

ℓ and

τmax

ℓ−2 = τmax

ℓ . The (ℓ + 2)th contribution is again maximized for ℓ = 1,m = 1, and n = 0,

but will be highly suppressed for all ℓ. The maximum imaginary frequency contribution and

growth time are

γmax

ℓ+2 ≈ µ
(µM)16

129024000
(χ− 2µr+)

τmax

ℓ+2 ≈ 129024000(µM)−16µ−1 (χ− 2µr+)
−1 . (8.91)

8.5 Properties of the Superradiant Instability in dCS Gravity

Let us now consider the specific ways in which the solution found in Sec. 8.4 differs from

the standard GR solution found in [363] and discussed in Sec. 8.3. Let us then recap the

solution as

φ = φ0 + δφ , (8.92)

where

φ0 =
∑
ℓ=0

ℓ∑
m=−ℓ

φ0
ℓ,m(r, θ, ϕ)e

−iωℓt , (8.93)

is the background solution (which itself has dCS modification) and

δφ =
∑
ℓ=0

ℓ∑
m=−ℓ

[
δφℓ,m(r, θ, ϕ)e

−iωℓt + δφℓ+2,m(r, θ, ϕ)e
−iωℓ+2,mt

]
+
∑
ℓ=2

ℓ∑
m=−ℓ

δφℓ−2,m(r, θ, ϕ)e
−iωℓ−2t. (8.94)

The first question one may look to answer is which of these terms dominates the growth

of the ultralight scalar. The larger ℓ is, the smaller the frequency ωℓ, and thus, the slower

the mode will grow. Therefore, the dominant contributions come from the most rapidly
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growing modes, which have the largest frequencies and thus the smallest ℓs. The fastest

growing mode in φ0 is simply the ℓ = 1 one, just as in the GR case. The fastest growing

mode in δφ is given by the ℓ = 1 mode of δφℓ (δφℓ+2 is always subdominant) and the ℓ = 3

mode of δφℓ−2. This can be seen in Fig. 8.2, which shows the Im(ω) as a function of µM

for various values of dimensionless spin parameter χ = a/M , and for the ℓth mode (solid

line), (ℓ + 2)th mode (dot-dashed line) and the (ℓ − 2)th mode (dotted line), when ℓ = 1

(left panel) and ℓ = 3 (right panel). When ℓ = 1 (left panel), the dominant contribution is

given by the ℓth mode, since the ℓ + 2 mode is suppressed. When ℓ = 3 (right panel), the

dominant contribution is given by the (ℓ − 2)th mode, since the other two are suppressed.

Therefore, in general, the (ℓ− 2)th mode will dominate, except when it is not present in the

spectrum (ie. when ℓ = 1 or ℓ = 2).
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Figure 8.2: (Color online) Imaginary part of the frequency of the dCS contribution, Im(ω) for ℓ = 1 (right)
and ℓ = 3 (left). The solid lines correspond to ℓ, the dot-dashed lines correspond to ℓ + 2, and the dotted
lines correspond to ℓ− 2. Note the different scaling of the two axes.

Another question one may wish to ask is whether the angular spectrum is modified in

dCS gravity. Because we know that the dCS contribution excites additional modes (i.e. the

Pm
ℓ±2(cos θ) as well as P

m
ℓ (cos θ)), we expect the angular spectrum to change. The traditional

behavior of the superradiant instability in GR leads to two clouds emanating from the equator

of the black hole in analogy to the p-orbital of an electron. In Figure 8.3, we show the angular

dependence of φ0 and δφ evaluated in the buffer zone (Eq. (8.29) and Eq. (8.52) respectively)

for the l = 1 and l = 3 modes. As expected, the solution is dominated by the ℓ = 1 part

of φ0, leading to a cloud that is still shapped like a p-orbital of an electron. There will
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Figure 8.3: (Color online) Angular dependence of the magnitude of the solution for |φ0| (black) compared
to |δφ| (red), where φ0 is given by Eq. (8.29) and δφ is given by Eq. (8.41). For the radial dependence, we
consider the buffer zone expansion of the far zone solution, Eq. (8.49) for φ0 and Eq. (8.87) for δφ. We show
the solutions for ℓ = 1 (left panel) and ℓ = 3 (right panel). We take ζ = .1, χ = .1,M = 1, µM = .02, and
r = 5M . For illustrative purposes we take t/M = 1, but note that the actual timescale of the instability will
be much greater.

be corrections to this, in the form of additional lower order harmonics introduced by δφ,

but these will be subdominant. Note that the amplitude of |δφ| is significantly suppressed

compared to that of |φ0|. This can be seen from considering the solution in Eq. (8.87)

and observing that in addition to the suppression by ζχ2 and the additional factor of r−1

compared to the background solution, there is an overall factor of ω2k in the coefficient ΩFZ

1 .

This factor is O(µ3). All together, this gives an overall suppression of O(10−9) for the chosen

values of µ, ζ and χ, which is what we observe for the ℓ = 1 mode, shown on the left.

Lastly, we consider the time evolution of the solution. Taking the same buffer zone

approximation discussed above, Fig. 8.4 compares the growth of φ0 to that of δφ on the

equator for the ℓ = 1 (left panel) and ℓ = 3 (right panel) modes. Observe that in the

ℓ = 1 case the growth of the instability is dominated by φ0. The ℓ = 3 mode is smaller

than the ℓ = 1, but it becomes dominated by δφ at some finite time, because the (ℓ− 2)th

contribution to δφ dominates over the ℓth contribution of φ0. Although not shown in the

figure, there is a large time (about t/M ∼ 1022, corresponding to t ∼ 109 years, or roughly

10% of a Hubble time, for a M = 106M⊙ black hole) at which δφ dominates over φ0 and

our perturbative expansions cease to be valid. This, however, will typically occur after the

superradiant instability is quenched due to the draining of spin angular momentum from the
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Figure 8.4: (Color online) Time evolution of the magnitude of the solution for |φ0| (black) compared to |δφ|
(red), where φ0 is given by Eq. (8.29) and δφ is given by Eq. (8.41). For the radial dependence, we consider
the buffer zone expansion of the far zone solution, Eq. (8.49) for φ0 and Eq. (8.87) for δφ. We show the
solutions for ℓ = 1 (left panel) and ℓ = 3 (right panel). We take ζ = .1, χ = .1,M = 1, µM = .02, r = 5M ,
and θ = π/2.

background black hole.

8.6 Discussion and Conclusions

We have calculated the superradiance spectrum of perturbations for a slowly rotating black

hole in dCS gravity. We have found that the spectrum is composed of two contributions:

one that is similar to the usual GR contribution from an (ℓ,m, n) mode, and another that

includes additional contributions from the ℓth, the (ℓ+2)th and the (ℓ−2)th modes. The ℓth

and (ℓ+2)th modes are dominated by the (ℓ = 1,m = 1, n = 0) mode, and the (ℓ−2)th mode

is dominated by the (ℓ = 3,m = 1, n = 0) mode. The dCS corrections are subdominant to

the leading order ℓ = 1 GR contribution, and thus the angular dependence and overall shape

of the scalar field cloud have small corrections which induce small deviations from GR.

Despite the lack of macroscopic distinction of the angular dependence of the scalar cloud

between dCS gravity and GR, there are still many possible avenues toward determining

potential observable signatures and placing constraints on dCS gravity. In general, superra-

diance can be used as a probe of ultralight scalars. These probes can equivalently be used to

test dCS gravity by extending the analysis done for ultralight scalar superradiance sourced

by a Kerr black hole to include the dCS corrections. In particular, it would be of interest to
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determine the energy extraction due to the amplification of the scalar field and the resulting

impact on the black hole Regge plane. It has also been suggested in [392] that including

multiple modes in the analysis of the superradiant instability can impact the evolution of

the scalar cloud. Presumably, the dCS activation of multiple modes would have a similar

effect. This activation, in turn, could lead to stronger spontenous emission of gravitational

waves, as the scalar cloud transitions between energy levels. These ideas could be interesting

avenues for future exploration.

A puzzling finding of our results is that presence of the Chern-Simons caps do not seem

to have an effect on the superradiant instability for the dCS black hole. One might expect

that the behavior of the scalar field near the black hole would be altered due to the unique

properties of the caps; however, we have found that the angular behavior of the scalar field

in dCS gravity is similar to that in GR. One possible explanation is that the caps are located

at the north and south poles of the black hole and extend out to about twenty degrees on

each side. Superradiance is a process that is sourced by the rotation of the black hole, which

is minimized at the poles where the effects of the caps are at a maximum. Due to this non-

overlap of regions, the caps appear to be not relevant to the presence of the superradiant

instability.

There are other avenues for future work related to superradiance in dCS gravity. One

such avenue is to consider whether fermionic superradiance arises in dCS gravity. Fermions

have been extensively studied in dCS gravity, in e.g. [341]. Given that fermions do not

exhibit superradiant behavior in GR [397], the presence of fermionic superradiance would

be an excellent test of dCS gravity from which one could potentially obtain an observable

signature. One could also explore other couplings and interactions of the scalar field, such as

a conformal coupling, or coupling between the Chern-Simons pseudo-scalar and the external

ultralight scalar field. Lastly, now that we have determined that Chern-Simons caps do

not play a role in the superradiance process in dCS, it may be of interest to explore other

phenomena in which the caps impact the dynamics of matter near dCS black holes.
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8.A Legendre Polynomial Recurrence and Coefficients

Here we provide details of the Legendre polynomial reccurrence relation and the derivation

of the constant coefficients in Eq. (8.54) and Eq. (8.80).

8.A.1 Far Zone

In Eq. (8.53) on the right-hand side of our expression for the far zone, we have angular

dependence (3 cos2 θ − 1)Pm
ℓ (cos θ). Employing the recurrence relation

(2ℓ+ 1) cos θPm
ℓ (cos θ) = (ℓ−m+ 1)Pm

ℓ+1(cos θ)

+ (ℓ+m)Pm
ℓ−1(cos θ). (8.95)

twice to the first term and collecting coefficients, we find that

(3 cos2 θ − 1)Pm
ℓ (cos θ) =

(ℓ+ ℓ2 − 3m2)

4ℓ(ℓ+ 1)− 3
Pm
ℓ (cos θ)

+
3(ℓ− 1 +m)(ℓ+m)

8ℓ2 − 2
Pm
ℓ−2(cos θ)

+
3(ℓ+ 1−m)(2 + ℓ−m)

8ℓ(2 + ℓ) + 6
Pm
ℓ+2(cos θ). (8.96)

We then define

A =
(ℓ+ ℓ2 − 3m2)

4ℓ(ℓ+ 1)− 3
, (8.97)

B =
3(ℓ− 1 +m)(ℓ+m)

8ℓ2 − 2
, (8.98)

and

C =
3(ℓ+ 1−m)(2 + ℓ−m)

8ℓ(2 + ℓ) + 6
. (8.99)
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8.A.2 Near-Horizon Zone

First, note that the constant coefficients in the expression for 2dCS for the resummed metric

are

Â(r+) = −149M5r+

2016
+

445M4r2
+

2016
+

235M3r3
+

1568
+

3725M2r4
+

21168
+

67Mr5
+

896
+M6 +

67 r6
+

2688
,

(8.100)

B̂(r+) = −M
7

3
− 733M6r+

6048
−

155M5r2
+

2016
−

2785M4r3
+

254016
−

11075M3r4
+

508032
−

97M2r5
+

16128
+

37Mr6
+

32256
+

305 r7
+

64512
,

(8.101)

Ĉ(r+) = 24385536M8 − 11662560M7r+ + 4189248M6r+
∗2 + 481680M5r+

3

+ 821280M4r+
4 − 53688M3r+

5 + 50652Mr+
7, (8.102)

D̂(r+) = −8128512M8 + 924000M7r+ − 264768M6r+
2 + 335040M5r+3

− 132640M4r 4 + 19856M3r 5 − 16884Mr 7 + 19215 r+8. (8.103)

Then, in Eq. (8.78), we have terms on the right-hand side proportional to Pm
ℓ (cos θ) and

cos2 θPm
ℓ (cos θ). We perform the same procedure for the near-horizon zone in the previous

section. Using the recurrence relation, we find the following coefficients:

Ã = B̂(r+) + Â(r+)
(−ℓ+ 2ℓ(1 + ℓ)− 2m2)

−3 + 4ℓ(ℓ+ 1)
, (8.104)

B̃ = Â(r+)
(ℓ− 1 +m)(ℓ+m)

−1 + 4ℓ2
, (8.105)

C̃ = Â(r+)
(1 + ℓ−m)(2 + ℓ−m)

3 + 4ℓ(2 + ℓ)
, (8.106)

Ā = D̂(r+) + Ĉ(r+)
(−ℓ+ 2ℓ(1 + ℓ)− 2m2)

−3 + 4ℓ(ℓ+ 1)
, (8.107)

B̄ = Ĉ(r+)
(ℓ− 1 +m)(ℓ+m)

−1 + 4ℓ2
, (8.108)

C̄ = Ĉ(r+)
(1 + ℓ−m)(2 + ℓ−m)

3 + 4ℓ(2 + ℓ)
. (8.109)

B̃, B̄, C̃, and C̄ are the analogous coefficients to Ã and Ā for the l − 2 and l + 2 solutions,

respectively.
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8.B Details of Asymptotic Matching

Here we give further detail about the expansions presented in Section 8.4 C.

8.B.1 Far Zone

We will begin from Eq. (8.58). First, note that the Whittaker functions can be written in

terms of ordinary and confluent hypergeometric functions as follows:

W (ν, ℓ+ 1/2, x) ≈ e−x/2xℓU(ℓ+ 1− ν, 2ℓ+ 2, x)

M(ν, ℓ+ 1/2, x) ≈ e−x/2xℓ2F1(ℓ+ 1− ν, 2ℓ+ 2, x). (8.110)

We then want the small-x expansions of these expressions. Let us call the small-x expansion

of the confluent hypergeometric Ũ and note that the ordinary 2F1 is approximately one in

the small-x limit. The relevant expansions in U are

Ũ(ℓ+ 1− ν, 2ℓ+ 2, x) ≈ Γ(−1− 2ℓ)

Γ(−ℓ− ν)
+ x−1−2ℓ Γ(2ℓ+ 1)

Γ(1 + ℓ− ν)
, (8.111)

Ũ(ℓ− ν, 2ℓ+ 2, x) ≈ Γ(−1− 2ℓ)

Γ(−1− ℓ− ν)
+ x−1−2ℓΓ(2ℓ+ 1)

Γ(ℓ− ν)
(8.112)

Then, the integrals become:

I1(x) ≈
Ũ(ℓ+ 1− ν, 2ℓ+ 2, x)

Ũ(ℓ+ 1− ν, 2ℓ+ 2, x)(1 + ℓ+ ν) + Ũ(ℓ− ν, 2ℓ+ 2, x)

=
1

1 + 2ℓ
+ x2ℓ+1Γ(−1− 2ℓ)Γ(1 + ℓ− ν)

Γ(2 + 2ℓ)Γ(−ℓ− ν)
, (8.113)

and

I2 ≈
Ũ(ℓ+ 1− ν, 2ℓ+ 2, x)2

Ũ(ℓ+ 1− ν, 2ℓ+ 2, x)(1 + ℓ+ ν) + Ũ(ℓ− ν, 2ℓ+ 2, x)

=
2γ(−1− 2ℓ)

(1 + 2ℓ)Γ(−ℓ− ν)
+ x−2ℓ−1 Γ(2ℓ+ 1)

(1 + 2ℓ)Γ(1 + ℓ− ν)

+ x2ℓ+1Γ(−1− 2ℓ)2Γ(1 + ℓ− ν)

Γ(2 + 2ℓ)Γ(−ℓ− ν)2
. (8.114)
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We then perform the integrals and simplify the full expression to obtain

gpℓ ≈ (1 + ℓ)Γ(−2ℓ− 2)

ℓΓ(−ℓ− ν)
xℓ−1 +

ℓΓ(2ℓ)

(1 + ℓ)Γ(1 + ℓ− ν)
x−ℓ−2. (8.115)

Lastly, we define ν = n+ 1 + ℓ+ δν and expand in small δν to obtain Eq. (8.87).

8.B.2 Near Zone

Now we will consider the large r expansion of the near zone solution. From Eq. (8.83), we

note that the integrands J1 and J2 each have a common overall factor of complicated hy-

pergeometric functions each multiplied by a different hypergeometric. We take the common

factor, expand in large z and simplify. Then, expand each of the leftover hypergeometric

functions as

2F1([−ℓ, ℓ+ 1], [1 + 2iP ],−z) ≈ Γ(1 + 2ℓ)Γ(1 + 2iP )

Γ(1 + ℓ)Γ(1 + ℓ+ 2iP )
zℓ +

Γ(−1− 2ℓ)Γ(1 + 2iP )

Γ(−ℓ)Γ(−ℓ+ 2iP )
z−ℓ−1,

(8.116)

2F1([−ℓ− 2iP, ℓ+ 1− 2iP ], [1− 2iP ],−z) ≈ Γ(1 + 2ℓ)Γ(1− 2iP )

Γ(1 + ℓ)Γ(1 + ℓ− 2iP )
zℓ +

Γ(−1− 2ℓ)Γ(1− 2iP )

Γ(−ℓ)Γ(−ℓ− 2iP )
z−ℓ−1.

(8.117)

Then, performing the integrals, collecting terms and simplifying yields Eq. (8.88).

8.B.3 Matching

Using well known properties of the Γ function, we now provide the details of simplifying the

resulting expression from the matching condition. From the matching, we obtain

δνℓ ≈
21−2ℓ(−1)1−n[k(r+ − r-)]

2ℓ+1 sin(πℓ)Γ(−2ℓ− 1)2Γ(ℓ+ 2iP + 1)

Γ
(
ℓ+ 1

2

)2
Γ(n+ 1)Γ(−2ℓ− n− 1)Γ(2iP − ℓ)

. (8.118)

We have the relations:

Γ(−z − n) = (−1)n+1Γ(−z)Γ(1 + z)

Γ(1 + n− z)
, (8.119)
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π

sin(πz)
= Γ(1− z)Γ(z), (8.120)

Γ(n+ 1/2) =
(2n)!

√
π

4nn!
. (8.121)

We also have the following:

Γ(1 + ℓ+ 2iP ) = Γ(2iP )
ℓ∏

j=0

(j + 2iP ), (8.122)

Γ(−ℓ+ 2iP ) = Γ(2iP )
ℓ∏

j=1

(−j + 2iP )−1, (8.123)

(8.124)

which leads to

Γ(1 + ℓ+ 2iP )

Γ(−ℓ+ 2iP )
= 2iP (−1)ℓ

ℓ∏
j=1

(j2 + 4P 2), (8.125)

Putting all of this together and simplifying Eq. (8.118) , we obtain Eq. (8.89).

8.C Full d’Alembertian Operators

Here, for completeness we show the full expression for 2dCS for the general Kerr + dCS

metric.

Consider the metric

gµν = gKµν + gdCS

µν

[
O(ζχ2)

]
. (8.126)

We have that

2f(t, r, θ, ϕ) =
{
2K +2dCS(O [ζχ)] +2dCS

[
O(ζχ2)

] }
f(t, r, θ, ϕ).

2K is just the usual expression for the Kerr d’Alembertian, and we then have at O(ζχ)

2dCS [O(ζχ)] f(t, r, θ, ϕ) =
M5 (189M2 + 120Mr + 70 r2) ζ χ

56 r6∆(r)

∂2f (t, r, θ, ϕ)

∂t∂ϕ
.
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At O(ζχ2), we have the following:

2dCS [O(ζχ)] f(t, r, θ, ϕ) =
27M3ζχ2

2r12∆(r)2 sin2 θ

[
−27 sin2 θr∆(r)2

8

(
− 40∆(r)

9

(
cos2 θ − 1

3

)
A(r) +Mr2B(r)

)
∂2f

∂r2

+ 2 sin2 θr6

(
sin2 θM3∆(r)

8
C(r) +

(
M − r

2

)
cos2 θD(r) + E(r)

)
∂2f

dt2

− 2 sin2 θr∆(r)2
(
cos2 θ − 1

3

)
F (r)

∂2f

∂θ2

− 2r∆(r)

(
G(r) cos2 θ∆(r) +H(r)∆(r)− sin2 θr3M3

8
I(r)

)
∂2f

∂ϕ2

− sin2 θ∆(r)

(
− 15r

(
cos2 θ − 1

3

)
J(r)∆(r) +

(
M − r

2

)
r2
(
K(r) cos2 θ + L(r)

)d∆(r)

dr

+ 8∆(r)
(
M(r)∆(r) cos2 θ +N(r)∆(r) + rO(r) cos2 θ + rP (r)

))∂f
∂r

+ 2 sin θ cos θr∆(r)

(
− 17M cos2 θ∆(r)

2
Q(r) +R(r)∆(r)−

(
M − r

2

)
sin2 θrS(r)

)
∂f

∂θ
,

(8.127)

where the coefficients are given by

A(r) =M6 +
5623M5r

30240
+

379M4r2

6048
− 2579M3r3

42336
− 125M2r4

15876
− 1459Mr5

362880
− 67 r6

40320
,

(8.128)

B(r) =M5 − 523M4r

10206
− 55M3r2

972
− 805M2r3

8748
− 25Mr4

5832
− 25 r5

17496
, (8.129)

C(r) =M2 +
40Mr

63
+

10 r2

27
(8.130)

D(r) =M6 − 149M5r

2016
+

445M4r2

2016
+

235M3r3

1568
+

3725M2r4

21168
+

67Mr5

896
+

67 r6

2688
, (8.131)

E(r) = −M
7

3
+

275M6r

6048
− 197M5r2

12096
+

1745M4r3

63504
− 4145M3r4

254016
+

1241M2r5

254016
+

67Mr6

16128
+

67 r7

16128
,

(8.132)

F (r) =M6 +
481M5r

2016
+

5615M4r2

28224
+

185M3r3

6048
+

4727M2r4

84672
+

355Mr5

12096
+

67 r6

5376
,

(8.133)

G(r) =M6 +
229M5r

2016
+

375M4r2

3136
− 95M3r3

6048
+

4727M2r4

84672
+

355Mr5

12096
+

67 r6

5376
, (8.134)



185

H(r) = −M
6

3
+

275M5r

6048
+

1105M4r2

84672
+

655M3r3

18144
− 4727M2r4

254016
− 355Mr5

36288
− 67 r6

16128
,

(8.135)

I(r) =M2 +
40Mr

63
+

10 r2

27
, (8.136)

J(r) =M6 +
5623M5r

30240
+

379M4r2

6048
− 2579M3r3

42336
− 125M2r4

15876
− 1459Mr5

362880
− 67 r6

40320
,

(8.137)

K(r) =M6 − 149M5r

2016
+

445M4r2

2016
+

235M3r3

1568
+

3725M2r4

21168
+

67Mr5

896
+

67 r6

2688
, (8.138)

L(r) = −M
6

3
+

9473M5r

6048
+

4115M4r2

6048
+

17285M3r3

63504
− 2255M2r4

63504
− 1459Mr5

72576
− 67 r6

8064
,

(8.139)

M(r) =M7 − 1157M6r

2304
+

1039M5r2

5376
+

5575M4r3

225792
+

8555M3r4

169344
− 2237M2r5

451584
− 67Mr6

21504
− 67 r7

43008
,

(8.140)

N(r) = − 67 r6

43008
− 6035M5r

12096
− 1381Mr5

290304
− 1975M4r2

10752
− 11135M2r4

1016064
+

45265M3r3

338688
− 57M6

16
,

(8.141)

O(r) =M7 − 1157M6r

2304
+

1039M5r2

5376
+

5575M4r3

225792
+

8555M3r4

169344
− 2237M2r5

451584
− 67Mr6

21504
− 67 r7

43008
,

(8.142)

P (r) = −9931M6r

6912
+

283M5r2

5376
+

156175M4r3

2032128
+

8825M3r4

127008
+

6157M2r5

1354752

+
953Mr6

580608
+

67 r7

129024
− M7

3
, (8.143)

Q(r) =M5 +
139M4r

672
+

220M3r2

2499
− 3575M2r3

79968
− 13Mr4

34272
− 13 r5

137088
, (8.144)

R(r) = −67 r6

8064
+

19343M5r

12096
− 2957Mr5

145152
+

26065M4r2

42336
− 10273M2r4

254016
− 101705M3r3

254016
+

47M6

6
,

(8.145)

S(r) =M6 − 149M5r

2016
+

445M4r2

2016
+

235M3r3

1568
+

3725M2r4

21168
+

67Mr5

896
+

67 r6

2688
. (8.146)



Chapter 9

Concluding Remarks

In this thesis, we have discussed a range of non-standard cosmological and gravitational

theories and their theoretical applications. We began in the early universe, considering cos-

mological implications for higher spin fields in the context of the cosmological collider as well

as dark matter. We then moved to the late universe and studied the impact of modified grav-

ity theories on gravitational waves, binary pulsars, and black holes. This work has discussed

many promising directions for future probes of such theories in both the cosmological and

gravitational realms. There are still many open questions to be answered and much more to

learn, but the work contained in this thesis represents the author’s beginning contributions

to the field.

Fin.
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