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Abstract

Risk score models are simple scoring systems that map patient characteristics to the

probability of an outcome occurring. These models are popular with clinicians because

they are easy to memorize and can be quickly calculated by hand. Risk score models

can be created by rounding the estimated coefficients from a logistic regression model,

though rounding can reduce the performance of the models. We introduce a new cyclical

coordinate descent algorithm to estimate integer risk score models, expanding on recent

work that has aimed to directly solve for the maximum likelihood with integer constraints.

By offering an associated R package, we aim to foster wider accessibility and utilization

in the medical research community. In a simulation study, our algorithm demonstrates

comparable performance to the current state-of-the-art methods while being substantially

more efficient. Further, we highlight our method with two applications in tuberculosis

(TB) research. First, we develop a risk score model for TB diagnosis in sub-Saharan Africa

that shows higher validation AUC than previous rounding methods. Second, we develop a

novel model for TB treatment non-adherence of adolescents in Peru. Our risk score model

identifies key characteristics influencing non-adherence, aligning with previous qualitative

research findings. This study showcases the effectiveness and efficiency of our algorithm in

constructing integer risk score models.
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1 Introduction

Machine learning is increasingly implemented in healthcare to make predictions about pa-

tient outcomes. However, black box machine learning models do not explain how variables

are being used to make a prediction. In a domain such as medicine where accurate pre-

diction can directly influence treatment plans and outcomes, the ability to understand

and trust the reasoning behind a model’s predictions is critical. Transparent models allow

clinicians to validate, refine, and make informed choices that are aligned with their exper-

tise. Risk score models are one way to generate predictions that contain transparent and

interpretable reasoning [1].

Risk scores are sparse linear models that map an integer linear combination of covari-

ates to a probability of an outcome occurring. They are a popular predictive model in

healthcare because they are easy to use and interpret, allowing clinicians to calculate a

patient’s risk for a given outcome by hand. Risk score models are typically sparse and

involve small integer coefficients and dichotomous covariates. These characteristics are

important because they allow risk score predictions to be easily computed by adding or

subtracting a few small numbers. Additionally, these characteristics result in a transparent

and interpretable model that clearly defines the individual effect of each variable on the

risk score prediction.

Many common risk score models in healthcare were developed by first identifying

predictors through regression analysis and then manually assigning point scores to each

predictor using expert knowledge and the relative coefficient values (e.g. TIMI score for

the risk of heart-related mortality [2]; HAS-BLED score for the risk for increased bleeding

[3]; qSOFA score for the risk of sepsis [4]; and the CHA2DS2-VASc score for stroke risk

for patients with atrial fibrillation [5]). As an example, the HAS-BLED risk score model

is presented in Table 1. While these simple models allow clinicians to quickly calculate

risk at the bedside, they were not developed using a standardized or optimized method,
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making them difficult to reproduce in different contexts or update with new information.

Rudin et al. [1] consider the optimization of integer risk score models as one of the top ten

challenges in interpretable machine learning.

Table 1: The HAS-BLED risk score model estimating the 1-year risk of major bleeding
in patients with atrial fibrillation.

Score

H: Hypertension +1
A: Abnormal liver or renal function +1 each
S: Stroke history +1
B: Bleeding tendency +1
L: Labile INRs +1
E: Elderly (> 65 yrs) +1
D: Drugs or alcohol +1 each

Max 9 pts

Scaling and rounding coefficients is a common method used to convert logistic regres-

sion models into simple integer risk score models [6, 7]. However, scaling and rounding

regression coefficients results in notable decreases in model performance [8]. In contrast to

rounding logistic regression models, optimization approaches can directly include an integer

constraint to find the maximum likelihood integer risk model among all possible integer

solutions. Optimization approaches can also include penalties that encourage sparsity,

another important characteristic of risk score models.

Ustun and Rudin [9] introduce an optimization approach to learn risk scores by solving

a mixed-integer nonlinear program (MINLP). This model, called RiskSLIM, ensures rank

accuracy by minimizing the logistic loss function. At the same time, the model promotes

sparsity by incorporating a penalty for the L0-norm, effectively reducing the number of

features in the final model. Additionally, the model constrains coefficient values to small

integers by including these constraints in the MINLP formulation, which is solved using

a cutting plane algorithm. They demonstrate that the RiskSLIM method outperforms

penalized logistic regression, naive rounding (rounding each penalized logistic regression

2



coefficient to the nearest integer), and rescaled rounding (applying rescaling to coefficients

before rounding) [9].

Liu et al. [10] expand upon the work of Ustun and Rudin [9] by introducing a scaling

parameter to the optimization problem to expand the search space of possible solutions and

introducing a new algorithm called FasterRisk to solve this optimization problem. In their

experiments, FasterRisk outperforms RiskSLIM in both accuracy and speed. However,

the authors note that the algorithm scales poorly with the number of covariates. As the

current state-of-the-art method, FasterRisk uses a beam-search algorithm to identify a pool

of continuous solutions with low logistic loss and then identifies a multiplier that maintains

low logistic loss after rounding. Rather than using an L0-norm penalty, FasterRisk ensures

sparsity by constraining the number of nonzero coefficients to a value set by the user [10].

The development of risk score models is related to another body of research on sparse

integer classifiers which seek to directly classify points based on an integer combination

of features [11–18]. In another approach, Xie et al. [19] and Li et al. [20] use machine

learning variable importance measures to do variable selection before using a rounded

logistic regression model including the selected covariates to create an integer risk score

model. A key limitation of these methods is that they do not predict a corresponding risk

probability and don’t quantify the uncertainty in the estimates.

Although both RiskSLIM and FasterRisk models have improved performance over

rounding methods, both algorithms are still relatively slow, especially with a larger number

of candidate variables. Further, both methods require Python and RiskSLIM requires the

use of the commercial optimization software CPLEX. We introduce a new method, called

RiskCD, that uses cyclical coordinate descent to minimize logistic loss under regularization

and integer constraints. Coordinate descent has been shown to be an effective and efficient

optimization method for other sparse or regularized regression applications [21, 22]. Our

method is available in an accessible R package to broaden the clinical audience. Further, in
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our simulation study, our algorithm demonstrates comparable performance to FasterRisk

with improved computational efficiency.

Importantly, we also apply our method to two applications related to tuberculosis

(TB) diagnosis and treatment to highlight how directly solving for an integer risk score

model yields better calibration and discrimination compared to rounding. This adds to

past evidence that rounding methods limit model performance [8, 9].

In Section 2, we introduce the risk score optimization problem and our coordinate de-

scent algorithm RiskCD. In Section 3, we demonstrate how to use the associated riskscores

package to run the RiskCD algorithm. In Section 4, we present our simulation study and

results to demonstrate the efficacy and efficiency of our method. In Section 5, we compare

RiskCD to existing methods using publicly available datasets. In Section 6 we develop a

risk score model for TB diagnosis in sub-Saharan Africa that shows higher validation AUC

than previous rounding methods [23]. In Section 7 we develop a novel model for TB treat-

ment non-adherence among adolescents in Peru. Last, in Section 8 we discuss limitations

to the current work and possible extensions.

2 Methods

2.1 Risk Score Objective Function

We consider a regression setting with a binary outcome and p covariates. Suppose that we

have data (xi, yi) for observations i = 1, 2, . . . , n where xi = (1, xi1, x
i
2, . . . , x

i
p) is a vector

consisting of an intercept term plus p covariates and yi ∈ {0, 1} is a binary indicator for

whether or not each observation experienced the outcome. We consider setting coefficients

β = [β0, β1, . . . , βp] ∈ Rp+1 and scalar γ ∈ R such that the estimated probability for the

outcome is given by

Pr(y = 1|x) =
exp
(
γβTx

)
1 + exp(γβTx)

. (1)
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For γ = 1, this corresponds to standard logistic regression. However, we add further

restrictions to the β coefficients. In particular, we restrict βj to be integer-valued and

within the range [lj , uj ]. The limits l and u allow the user to ensure that the scores remain

easy to calculate by hand (reasonable limits for the integer coefficients might be [−10, 10]

or [−5, 5]). Our goal is to set β and γ to maximize the likelihood of the observed data,

equivalent to minimizing the negative log-likelihood. This optimization problem is given

in Equation 2.

min
γ,β

− 1

n

n∑
i=1

(
yi log

(
exp
(
γβTxi

)
1 + exp(γβTxi)

)
+ (1− yi) log

(
1

1 + exp(γβTxi)

))

s.t. lj ≤ βj ≤ uj ∀j = 1, 2, . . . , p

βj ∈ Z ∀j = 1, 2, . . . , p

β0, γ ∈ R

(2)

The scale parameter γ ∈ R in the optimization problem rescales the linear term which

is restricted by the constraints on β. That is, γ maps the parameter space of the linear

term from integers between l and u to all real numbers. We can rewrite the optimization

problem to highlight the underlying risk scores. We let zi =
∑p

j=1 βjx
i
j be the risk score for

observation i. Since βj ∈ Z, each score is an integer combination of the covariates. Given

these scores, we can rewrite this optimization problem as in Equation 3. This shows that

the risk score optimization problem can be written as a simple logistic regression problem

on the estimated risk scores with corresponding coefficients γβ0 and γ. While the risk score

itself must be an integer combination of covariates, we allow for a non-integer mapping of

these coefficients to the estimated probabilities using a logit link function.
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min
γ,β

− 1

n

n∑
i=1

(
yi log

(
exp(γβ0 + γzi)

1 + exp(γβ0 + γzi)

)
+ (1− yi) log

(
1

1 + exp(γβ0 + γzi)

))

s.t. zi =

p∑
j=1

βjx
i
j ∀i = 1, 2, . . . , n

lj ≤ βj ≤ uj ∀j = 1, 2, . . . , p

βj ∈ Z ∀j = 1, 2, . . . , p

β0, γ ∈ R

(3)

Last, we expand upon the optimization problem above by adding an optional regu-

larization penalty to further improve interpretability and reduce potential overfitting. In

the optimization in Equation 4, we include an L0 penalty term on the number of included

covariates but the algorithm presented in Section 2.2 easily extends to include L1 or L2

norm penalties. The penalty coefficient λ0 controls the amount of regularization – a larger

value of λ0 will result in fewer non-zero coefficients. We call the optimization problem in

Equation 4 the Risk Score Optimization problem (RISK-OPT).

min
γ,β

− 1

n

n∑
i=1

(
yi log

(
exp
(
γβTxi

)
1 + exp(γβTxi)

)
+ (1− yi) log

(
1

1 + exp(γβTxi)

))
+ λ0

p∑
j=1

βj

s.t. lj ≤ βj ≤ uj ∀j = 1, 2, . . . , p

βj ∈ Z ∀j = 1, 2, . . . , p

β0, γ ∈ R
(4)
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2.2 Cyclical Coordinate Descent Algorithm

We now introduce a heuristic algorithm to solve RISK-OPT. The optimization problem in

Equation 4 is a mixed integer nonlinear optimization problem. The integer constraints on

βj make the risk score optimization problem difficult to solve directly. Coordinate descent

algorithms are a popular derivative-free optimization method for NP-hard optimization

problems [24]. This type of algorithm has proved efficient in practice and allows for penalty

and integer constraints, outperforming more complex methods in other sparse or regularized

regression applications [21, 22].

In each iteration of coordinate descent, we have a current solution γ and β and consider

fixing all values except for a single βj where j ∈ {1, 2, . . . , p}. We then solve the reduced

optimization problem of finding the optimal value of βj to maximize the objective function.

If we ignore the penalty term for the number of non-zero coefficients, minimizing the

negative log-likelihood is a convex optimization problem with a single constrained integer

variable. To exploit this structure, we use bisection search to find the optimal value, β̂j .

We then use the full objective function with the penalty term to compare setting βj = β̂j

with setting βj = 0. Given the binary nature of the penalty, the optimal of the two is the

optimal value for βj . These steps are outlined in Algorithm 1.

We repeat this process over all βj until convergence, updating γ and β0 between each

step by running a simple logistic regression model on the current estimated risk scores.

The RiskCD algorithm is summarized in Algorithm 2.

Note that Algorithm 2 requires an initial starting solution. To find this starting solu-

tion, we relax our constraints and find an initial solution using logistic regression. Let βLR

be the optimal coefficients found when we set γ = 1 and remove all constraints on β. We

then set the scalar

γ = min
j=1,2,...,p

|βLR
j |

1(βLR
j < 0) · |lj |+ 1(βLR

j ≥ 0) · |uj |+ 0.5

7



Algorithm 1 Bisection Search for Optimization of βj

Require: Numeric data (xi, yi), i = 1, 2, . . . , n where yi ∈ {0, 1}.
Require: Penalty parameter λ0 ≥ 0.
Require: Current solution γ, β.
Require: Integer bounds l, u.
Require: Index value j, where j ∈ {1, 2, . . . p}.

Define f(β) =
∑n

i=1

(
yi log

(
exp(γβTxi)

1+exp(γβTxi)

)
+ (1− yi) log

(
1

1+exp(γβTxi)

))
Define g(β) = f(β) + λ0

∑p
j=1 βj

while (u− l) > 1 do
Set m← l+u

2 .
Set βl ← β where βj = l.
Set βu ← β where βj = u.
Set βm ← β where βj = m.
if ∂

∂βj
f(βm) = 0 then

Set l← m
Set u← m

else if ∂
∂βj

f(βm) has the same sign as ∂
∂βj

f(βl) then

Set l← m
else if ∂

∂βj
f(βm) has the same sign as ∂

∂βj
f(βu) then

Set u← m
end if

end while
Set βl ← β where βj = l.
Set βu ← β where βj = u.
Set β0 ← β where βj = 0.
if g(β0) ≤ g(βl) and g(β0) ≤ g(βu) then

Return β̂j = 0.
else if g(βl) ≤ g(βu) then

Return β̂j = l.
else if g(βu) ≤ g(βl) then

Return β̂j = u.
end if
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Algorithm 2 Cyclical Coordinate Descent for Risk Score Optimization (RiskCD)

Require: Numeric data (xi, yi), i = 1, 2, . . . , n where yi ∈ {0, 1}.
Require: Penalty parameter λ0 ≥ 0.
Require: Initial solution γ, β.
Require: Maximum iterations maxiter ∈ Z.

Shuffle the indices {1, 2, . . . , p} to obtain a random permutation P .
for Iteration it = 1, 2, . . . ,maxiter do

Set βold ← β.
for j ∈ P do

Find optimal βj fixing all other variables using bisection search in the range [lj , uj ].
Calculate current risk scores z.
Update γ and β0 using logistic regression of y on current risk scores z

end for
if βold = β then

Break.
end if

end for

to ensure the the coefficients will be between l and u. Then, we convert βLR to a solution

satisfying the bounded integer constraints by multiplying the logistic regression coefficients

by γ and rounding to the nearest integer. The resulting β satisfies the bound and integer

constraints and can be used as the initial solution for the RiskCD algorithm.

βj =


βLR
j /γ j = 0

round(βLR
j /γ) otherwise

(5)

In our corresponding R package, we also include a function to implement cross-validation

to tune λ0. Additionally, our implementation offers the ability to run the cross-validation

folds in parallel given a parallel environment. To expand the solution space explored, we

also offer an option to initialize RiskCD with a random solution rather than the rounded

logistic regression solution. Using this option, the user specifies a number of random

starts nstart and the algorithm is run nstart times, each starting from a random β vector

generated by sampling values in {−1, 0, 1}. We then return the solution that minimizes
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RISK-OPT.

3 Package Demonstration

In this section, we demonstrate how the RiskCD algorithm is run using the riskscores

package in R. In this example, we develop a risk score model that predicts whether a

breast tissue sample is malignant using features recorded during a biopsy. We use the

“breastcancer” dataset, originally accessed from the UCI Repository [25], which can be

loaded directly from the riskscores package.

library(riskscores)

data("breastcancer")

This dataset contains 683 observations and 9 covariates. Our goal is to develop a risk

score model that predicts whether a breast tissue sample is benign using nine (or fewer)

features recorded during a biopsy: clump thickness, uniformity of cell size, uniformity

of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, and mitoses. Each covariate is integer-valued and ranges from 1 to 10.

The dataset needs to be split into a design matrix with the covariates (X) and a vector

with the outcome data (y). The first column in this dataset contains the outcome variable.

X <- as.matrix(breastcancer[,-1])

y <- breastcancer[,1]

3.1 Cross-Validation

We use cross-validation to find a λ0 value that minimizes the model deviance. Ideally,

each cross-validation fold should contain an approximately equal proportion of cases. The

riskscores package contains the function stratify_folds() that creates fold IDs with an

equal proportion of cases in each fold.
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foldids <- stratify_folds(y, nfolds = 5, seed = 1)

The cv_risk_mod() function runs cross validation for a grid of possible λ0 values. If

the user does not specify the vector of λ0 values to test, the program constructs this λ0

sequence. The maximum λ0 in this sequence is the smallest value such that all coefficients

in the logistic regression model are zero. The minimum λ0 in the sequence is calculated

using the user-defined lambda_ratio argument. If n > p, the default lambda_ratio value

is 0.0001, close to zero. If n < p, the default is 0.01. The λ0 grid is created by generating

nlambda values linear on the log scale from the minimum λ0 to the maximum λ0. Here, we

set nlambda to 25, so the program constructs an appropriate sequence of 25 λ0 values to

test using cross validation. The fold IDs that we generated above can be entered into the

cv_risk_mod() function under the foldids parameter. Otherwise, cv_risk_mod() will

set random fold IDs.

cv_results <- cv_risk_mod(X, y, foldids = foldids, nlambda = 25)

Running plot() on a cv_risk_mod object creates a plot with the mean deviance

for each λ0 value in the grid. The number of nonzero coefficients that are produced

by each λ0 value when fit on the full data are listed at the top of the plot. The λ0

value with the lowest mean deviance (“lambda min”) is indicated in red, and its stan-

dard deviation is marked with a red dashed line. Its precise value can be accessed by

calling cv_results$lambda_min. If we want a sparser model, we could increase λ0 to

“lambda 1se”, the largest value whose mean deviance is within one standard error of

“lambda min”. This value can be accessed by calling cv_results$lambda_1se. In our

example, “lambda min” creates a model with 8 non-zero coefficients and “lambda 1se” cre-

ates a model with 3 non-zero coefficients. To view a dataframe with the full cross-validation

results (including both deviance and accuracy metrics), run cv_results$results.
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plot(cv_results)

cv_results$lambda_min

[1] 0.0008453613

cv_results$lambda_1se

[1] 0.0575938

3.2 Fitting a RiskCD Model

After running cross-validation, we fit a risk score model on the full data using the function

risk_mod(). We use the “lambda 1se” value determined by cross-validation as the λ0

parameter.

mod <- risk_mod(X, y, lambda0 = cv_results$lambda_1se)

The integer risk score model can be viewed by calling mod$model_card. An individual’s

risk score can be calculated by multiplying each covariate response by its respective number
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of points and then adding all points together. In our example below, a patient with a

ClumpThickness value of 1, a BareNuclei value of 5, and a BlandChromatin value of 10

would receive a score of 10(1) + 7(5) + 8(10) = 125.

mod$model_card

Points

ClumpThickness 10

BareNuclei 7

BlandChromatin 8

Each score can then be mapped to a risk probability. The mod$score_map dataframe

maps an integer range of scores to their associated risk. For this example dataset, mod$score_map

includes a range of integer scores from 25 to 200, which are the minimum and maximum

scores predicted from the training data. We can see that a patient who received a score of

125 would have a 77.9% risk of their tissue sample being malignant.

mod$score_map

Score Risk

1 25 0.0006

2 50 0.0054

3 75 0.0446

4 100 0.2886

5 125 0.7788

6 150 0.9683

7 175 0.9962

8 200 0.9996

The function get_risk() can be used to calculate the risk from a given score (or a

vector of scores). Likewise, the function get_score() calculates the score associated with

a given risk (or vector of risk probabilities).
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get_risk(mod, score = 125)

[1] 0.7787763

get_score(mod, risk = 0.7788)

[1] 124.9976

The function get_metrics() returns the accuracy, sensitivity, and specificity of the

risk score model under different thresholds. The user can input either probability thresholds

or score thresholds. Here, we evaluate score thresholds between 100 and 120 above which

samples would be predicted malignant. This dataset has a strong relationship between the

predictors and the outcome and the resulting model makes predictions close to 0 and 1.

Therefore, we don’t observe large changes in the sensitivity and specificity as the threshold

changes.

get_metrics(mod, threshold = seq(100, 120, 5), threshold_type = "score")

threshold_risk threshold_score accuracy sensitivity specificity

1 0.289 100 0.9648609 0.9665272 0.9639640

2 0.385 105 0.9648609 0.9539749 0.9707207

3 0.491 110 0.9648609 0.9497908 0.9729730

4 0.597 115 0.9619327 0.9372385 0.9752252

5 0.696 120 0.9604685 0.9205021 0.9819820

3.3 Applying Generic Functions to RiskCD

Many generic functions that are used on glm objects can also be used on risk_mod objects,

such as summary(), coef(), predict(), and plot().

summary(mod)

Intercept: -110.4395
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Non-zero coefficients: .

ClumpThickness 10

BareNuclei 7

BlandChromatin 8

Gamma (multiplier): 0.08643598

Lambda (regularizer): 0.0575938

Deviance: 143.9915

AIC: 163.9915

coef(mod)

(Intercept) ClumpThickness

-110.4395 10.0000

UniformityOfCellSize UniformityOfCellShape

0.0000 0.0000

MarginalAdhesion SingleEpithelialCellSize

0.0000 0.0000

BareNuclei BlandChromatin

7.0000 8.0000

NormalNucleoli Mitoses

0.0000 0.0000

We can map our integer score model to an equivalent logistic regression model by

multiplying the integer and coefficients by γ (saved as $gamma in the risk_mod object).

mod$beta * mod$gamma

(Intercept) ClumpThickness

-9.5459487 0.8643598
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UniformityOfCellSize UniformityOfCellShape

0.0000000 0.0000000

MarginalAdhesion SingleEpithelialCellSize

0.0000000 0.0000000

BareNuclei BlandChromatin

0.6050519 0.6914879

NormalNucleoli Mitoses

0.0000000 0.0000000

Running predict() on a risk_mod object allows for three types of prediction, as the

type parameter can be set to either “link”, “response”, or “score”. These first two options

are the same as when predict() is run on a logistic glm object. The added “score” option

returns each subject’s score, as calculated from the integer coefficients in the risk score

model.

The table below compares the three possible prediction types for five example subjects.

The first three columns contain data for clump thickness, bare nuclei, and bland chromatin,

respectively.
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The “score” is a linear combination of the covariates and their integer coefficients:

score = 10(CT) + 7(BN) + 8(BC)

The “link” is a linear combination of the covariates using the full logistic regression

equation:

link = −9.54 + 0.86(CT) + 0.61(BN) + 0.69(BC)

The “response” converts these link values to probabilities:

response = elink/(1 + elink)

Finally, the relationship between scores and risk can be visualized by calling plot()

on a risk_mod object.

plot(mod, score_min = 25, score_max = 200)
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4 Simulation Study

4.1 Set Up

In this section, we evaluate the performance of our algorithm compared to rounding meth-

ods and the current state-of-the-art method FasterRisk [10]. We simulate data with differ-

ent dimensions, proportion of covariates associated with the outcome, and signal-to-noise

ratios. We also consider building models with and without regularization.

Suppose we have a fixed number of observations n, number of covariates p, proportion

of noise predictors (PNP), and signal to noise ratio (SNR). We first generate n observations

with p covariates by generating xi where xij ∼ Bernoulli(pj) where pj ∼ Unif(0.1, 0.9). We

also generate test data with 10 ·p observations using the same data generating mechanism.

Next, to generate the outcome, we select a subset S of p′ = ⌈(1−PNP) ·p⌉ random columns

to be associated with the outcome. Further, we randomly partition S into S1 and S2 such
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that |S1| = ⌊0.75 · p′⌋. We then set coefficients

βj =


∼ Unif(0.2, 1.5) j ∈ S1

∼ Unif(2, 5) j ∈ S2

= 0 otherwise

. (6)

This ensures that the coefficients include mostly small to moderate effects with a few large

effects, a scenario that impacts rounding methods.

Last, we generate y for both our training and validation data using β. Let υ =

1
n

∑n
i=1 β

Txi. We generate y from a Bernoulli distribution

y ∼ Bernoulli

(
p =

exp
(
−υ + βTxi + ϵ

)
1 + exp(−υ + βTxi + ϵ)

)
, (7)

where ϵ ∼ N(0, σ2) where σ =
√

Var(βTx)/SNR). This term controls the signal-to-noise

ratio of the linear predictor. A lower value for SNR means that there is less signal to learn

from. The offset term υ ensures that the signal is centered.

We simulate data with the number of observations n in the training set ranging from

100 to 5000, the number of candidate predictors p ranging from 10 to 50, the proportion of

noise predictors PNP ranging from 0% to 50%, and the signal-to-noise ratio SNR ranging

from 1 to 3 (48 unique scenarios, Table 2). Each scenario is simulated 10 times, resulting

in 480 total datasets.

Table 2: Values for each simulation parameter. For all possible combinations of parame-
ters, we generate 10 datasets.

Number of training observations (n) 100, 500, 1000, 5000

Number of candidate predictors (p) 10, 25, 50

Proportion of noise predictors (PNP) 0.0, 0.5

Signal-to-noise ratio (SNR) 1, 3
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For each simulated dataset, we compare several methods.

• Logistic Regression We fit a standard logistic regression model for y containing all

p covariates. The resulting model does not generate an integer risk score model since

the estimated coefficients are not guaranteed to be integer valued. However, since we

generated the data using a logistic form, we include this model as an oracle.

• Rounded Logistic Regression Using the estimated coefficients from the logistic

regression model β̂LR, we scale the coefficients by the maximum absolute value of β̂LR

divided by 10. We divide by 10 within the scalar to restrict the resulting coefficients

to values between −10 and 10. We then create a risk score model by rounding the

estimated coefficients

round

(
β̂LR

1
10 max |β̂LR|

)
.

• Rounded Lasso We use the glmnet package [21] to fit a lasso regression model,

tuning the L1 penalty term λ1 using 5-fold cross-validation. We then round the

estimated coefficients β̂L1 to obtain a risk score model

round

(
β̂L1

1
10 max |β̂L1|

)
.

• FasterRisk [10] We run the FasterRisk algorithm with parameters with range [−10, 10]

and no sparsity constraint (k = p).

• FasterRisk-CV [10] We run the FasterRisk algorithm with range [−10, 10], tuning

the sparsity constraint k using 5-fold cross-validation. Note that cross-validation is

not built into the FasterRisk package. We do not report results when p = 50 and

n ≥ 500 because cross-validation timed out at this data size (≥ 30 minutes per

dataset).
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• RiskCD We run our cyclical coordinate descent algorithm with λ0 = 0 and range

[−10, 10] for all β’s using our rounded starting solution.

• RiskCD-CVWe run our cyclical coordinate descent algorithm, tuning the L0 penalty

term λ0 using 5-fold cross-validation to estimate the test deviance.

Each method was evaluated using the AUC on the test dataset, computation time

(seconds), and the number of non-zero coefficients. Out of the 40 datasets in each unique

scenario of n and p, we calculate the percentage that each method achieved the highest

test AUC (“% Best”). The experiments were run using R on a Apple 2020 13.3” Macbook

Air, M1 chip: 8GB unified memory; 8-core CPU (4 performance, 4 efficiency); 7-core GPU;

16-core Neural Engine.

4.2 Results

Table 3 reports the average performance metrics for all values of n and p for risk score

models that do not use cross-validation to tune regularization parameters (rounded logistic

regression, FasterRisk with k = p, and RiskCD with λ0 = 0). We observe no patterns in

which method performed best across different values for PNP and SNR. All methods have

similar test AUCs across all simulation scenarios and no method consistently outperforms

the others. For n = 100, we observe the best performance for FasterRisk. However, we

also observe higher average test AUC compared to logistic regression, indicating a possible

need for regularization.

FasterRisk is less efficient than rounded logistic regression and RiskCD. Figure 1 plots

the average computation time of FasterRisk and RiskCD in seconds. RiskCD is consider-

ably faster than FasterRisk and the computation time did not substantially increase as n

and p increased as it did for FasterRisk. This indiciates that RiskCD scales better as the

data size increases.

Table 4 compares the performance of the methods that use cross-validation to tune
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Table 3: Performance of each risk score model without regularization across different data
dimensions n and p. Each row corresponds to the average across 40 datasets, 10 datasets
for each combination of the proportion of noise predictors (PNP) and signal-to-noise ratios
(SNR). We report the average AUC, the average number of non-zero coefficients, and the
percentage of instances on which each method achieved the highest validation AUC.

Logistic
Regression

Rounded
Logistic Regression

RiskCD FasterRisk

n p AUC AUC # Nonzero % Best AUC # Nonzero % Best AUC # Nonzero % Best
100 10 0.783 0.780 8.8 47.5 0.780 8.8 35.0 0.782 8.7 40.0
100 25 0.762 0.768 22.2 27.5 0.769 22.1 32.5 0.773 22.0 40.0
100 50 0.654 0.654 45.0 0.0 0.668 44.5 2.5 0.704 44.2 97.5
500 10 0.804 0.803 8.3 45.0 0.802 8.2 40.0 0.803 8.1 52.5
500 25 0.827 0.825 21.1 37.5 0.824 21.1 27.5 0.826 20.9 45.0
500 50 0.828 0.826 41.9 37.5 0.827 41.4 37.5 0.826 41.6 30.0
1000 10 0.809 0.809 8.3 57.5 0.807 8.3 50.0 0.808 8.2 37.5
1000 25 0.845 0.844 20.6 35.0 0.844 20.3 25.0 0.845 20.3 57.5
1000 50 0.846 0.845 41.2 42.5 0.844 40.9 37.5 0.845 41.0 27.5
5000 10 0.816 0.814 7.3 57.5 0.813 7.2 45.0 0.814 7.2 52.5
5000 25 0.848 0.847 19.1 45.0 0.846 19.0 32.5 0.847 19.0 40.0
5000 50 0.859 0.858 38.4 47.5 0.858 38.0 32.5 0.858 38.0 32.5

regularization parameters (rounded lasso, RiskCD-CV, and FasterRisk-CV). In this setting,

RiskCD-CV typically has a slightly higher average test AUC than rounded lasso. FasterRisk

typically has a higher average test AUC than RiskCD and is the better method for a higher

percentage of simulations. However, FasterRisk-CV is notably less efficient than RiskCD-

CV, even when the time spent in the cross-validation step is not considered. With large

datasets (p = 50 and n ≥ 500), running cross-validation with FasterRisk is not feasible,

as it takes over 30 minutes to complete cross-validation on a single dataset. Average

computation times across all integer methods are reported in Table 5. Overall, FasterRisk

and FasterRisk-CV are considerably slower than rounding and RiskCD methods.

Last, Figure 2 visualizes how well each model is able to detect noise predictors (i.e.

variables with true coefficients of zero). For simulated data with 50% noise predictors, all

three regularized integer methods have similar accuracy. However, when the simulated data

were generated with 0% noise predictors, the rounded lasso models are not able to detect

22



Figure 1: Comparison of FasterRisk and RiskCD computation time (seconds) across data
dimensions n and p.

these true nonzero coefficients and underestimate the number of predictors. RiskCD-CV

and FasterRisk-CV are better able to identify these nonzero coefficients, resulting in a

higher accuracy.
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Table 4: Performance of each risk score model with regularization across different data
dimensions n and p. Each row corresponds to the average across 40 datasets, 10 datasets
for each combination of the proportion of noise predictors (PNP) and signal-to-noise ratios
(SNR). We report the average AUC, the average number of non-zero coefficients, and
the percentage of instances on which each method achieved the highest validation AUC.
For FasterRisk-CV, cross-validation for the sparsity parameter timed out for p = 50 and
n ≥ 500.

Lasso Rounded Lasso RiskCD-CV FasterRisk-CV
n p AUC AUC # Nonzero % Best AUC # Nonzero % Best AUC # Nonzero % Best
100 10 0.784 0.759 3.2 45.0 0.751 4.2 32.5 0.772 5.2 45.0
100 25 0.784 0.747 6.0 47.5 0.645 3.0 7.5 0.764 10.5 50.0
100 50 0.713 0.663 5.7 35.0 0.666 39.1 12.5 0.711 18.0 57.5
500 10 0.803 0.789 4.8 17.5 0.799 6.5 42.5 0.802 6.7 52.5
500 25 0.829 0.823 12.1 40.0 0.823 14.7 27.5 0.824 15.2 32.5
500 50 0.833 0.825 19.7 62.5 0.820 17.6 37.5 – – –
1000 10 0.808 0.803 5.4 27.5 0.807 7.2 35.0 0.809 7.2 47.5
1000 25 0.845 0.840 12.9 35.0 0.843 17.4 35.0 0.843 16.3 30.0
1000 50 0.847 0.842 24.0 45.0 0.844 29.4 55.0 – – –
5000 10 0.816 0.811 6.0 30.0 0.814 7.2 40.0 0.813 7.0 37.5
5000 25 0.848 0.845 15.9 25.0 0.846 18.5 30.0 0.847 17.9 47.5
5000 50 0.860 0.857 31.0 50.0 0.858 35.8 52.5 – – –

Figure 2: Model accuracy in detecting noise predictors when 50% of true coefficients were
zero (top) and when 0% of true coefficients were zero (bottom). Accuracy was defined as
the proportion of model coefficients that were correctly assigned a nonzero value plus the
proportion of coefficients that were correctly assigned a zero value.
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Table 5: Average computation time (in seconds) of the three integer non-regularized
method and the three integer regularized methods. Each row corresponds to the average
across 40 datasets, 10 datasets for each combinations of the proportion of noise predictors
(PNP) and signal-to-noise ratios (SNR). For regularized methods, the times do not include
cross-validation for parameter tuning. For FasterRisk-CV, cross-validation for the sparsity
parameter timed out for p = 50 and n ≥ 500.

Non-Regularized Regularized

n p
Rounded
Logistic

Regression
RiskCD FasterRisk

Rounded
Lasso

RiskCD-CV FasterRisk-CV

100 10 0.00 0.03 0.76 0.04 0.04 0.18
100 25 0.00 0.07 8.06 0.11 0.13 2.52
100 50 0.01 0.28 42.76 0.09 0.65 12.15
500 10 0.00 0.05 1.20 0.04 0.08 0.37
500 25 0.01 0.17 37.97 0.07 0.19 18.41
500 50 0.01 0.32 265.77 0.11 0.52 –
1000 10 0.01 0.06 6.01 0.08 0.10 1.22
1000 25 0.01 0.19 58.32 0.14 0.29 65.46
1000 50 0.02 0.58 299.38 0.19 0.81 –
5000 10 0.02 0.34 12.83 0.33 0.48 17.15
5000 25 0.04 1.02 105.66 0.59 1.98 118.82
5000 50 0.14 2.23 661.44 1.05 5.30 –

5 Experiments with Test Bed Datasets

We evaluate the performance of the RiskCD method using publicly available datasets that

were also used by the authors of RiskSLIM [9] and FasterRisk [10] (Table 6).

For each dataset, we develop risk score models using the following non-regularized

integer risk score methods: (1) rounded logistic regression; (2) RiskCD (λ0 = 0, l = −10,

u = 10); (3) FasterRisk (k = p, l = −10, u = 10). Each dataset is split into a training set

(70% of observations) and a test set (30% of observations). The training and test sets are

split to include equal proportions of each outcome class.

Performance of each model is evaluated using the test AUC, the number of nonzero

coefficients in the final model, and the computation time in seconds. Model performance

results are reported in Table 7. Although FasterRisk has the highest test AUC (or tied
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Table 6: Names, dimensions, and sources for the public datasets used for compar-
ison. Available on the UCI Repository, accessed from https://github.com/ustunb/

risk-slim/tree/master/examples/data.

Dataset n p Event Fraction Source

adult 32,561 36 24.1% [26]
bank 41,188 57 11.3% [27]

breastcancer 683 9 35.0% [25]
compas 7,214 6 45.1% [28]
mammo 961 14 46.3% [29]

mushroom 8,124 113 48.2% [30]
spambase 4,601 57 11.3% [31]

for highest) for six of the seven datasets, it has a considerably slower computation time.

Across the seven datasets, FasterRisk is 17 to 231 times slower than RiskCD.

Table 7: Non-regularized model performance on test bed datasets. Maximum point value
refers the maximum integer coefficient in the model (absolute value). Maximum point
values above 10 are marked in red. Computation times above 100 seconds are marked in
red.

Logistic
Regression

Rounded
Logistic Regression

RiskCD FasterRisk

Dataset AUC AUC # Nonzero Seconds AUC # Nonzero Seconds AUC # Nonzero Seconds
adult 0.889 0.877 23 0.80 0.874 21 22.25 0.890 25 1513.34
bank 0.781 0.675 9 1.91 0.769 30 65.16 0.773 28 3751.82
breastcancer 0.997 0.997 9 0.01 0.995 9 0.16 0.995 8 13.27
compas 0.680 0.681 6 0.03 0.682 6 0.12 0.682 6 2.05
mammo 0.874 0.873 10 0.01 0.881 13 0.59 0.883 10 15.96
mushroom 1.000 1.000 27 2.58 1.000 64 44.67 1.000 45 2569.79
spambase 0.764 0.935 44 0.42 0.968 43 3.53 0.968 35 817.18

6 Application to Tuberculosis Diagnosis in Sub-Saharan Africa

Now we reproduce an existing model that estimates risk of tuberculosis (TB) among symp-

tomatic patients. Baik et al. [23] developed a risk score model using symptom, demo-

graphic, and identified risk factor data to estimate a patient’s risk of having TB while

awaiting microbiological results. Early diagnosis allows for earlier treatment and helps
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prevent pretreatment loss to follow-up.

The given model was derived on data from rural South Africa and validated using

data from urban Uganda. The data include only patients that presented with a classic TB

symptom at the health clinic (cough, fever, night sweats, or weight loss). The derivation

data include 1,407 participants, 702 of which tested positive for TB (49.9%). The vali-

dation data include 387 participants, 106 of which tested positive for TB (27.4%). Each

dataset contains information typically collected at health clinics, including the patient’s age

group, sex, self-reported HIV status, diabetes status, past TB diagnoses, smoking status,

education, number of TB symptoms, and length of time experiencing TB symptoms.

Baik et al. [23] develop their risk score model using rounded lasso regression coef-

ficients. To round the lasso coefficients, they identify clusters of coefficients that have

similar associations with the outcome, and then round each coefficient by the median value

in the coefficient cluster. They also alter coefficients manually to increase usability (i.e.

the number of TB symptoms is equivalent to the point score for that variable). The final

coefficients are reported in Table 8 under Baik2020.
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Table 8: Estimated risk score model coefficients predicting TB diagnosis including those
reported in Baik et al. [23], our replication using a rounded lasso model, and the results of
RiskCD-CV.

Lasso
Rounded
Lasso

Baik2020 RiskCD-CV

Age 15-24 0.000 0 0 0

Age 25-34 0.270 0 1 2

Age 35-44 0.045 0 1 1

Age 45-54 0.000 0 0 0

HIV-positive 0.766 1 2 2

Diabetes mellitus 0.000 0 1 0

Ever smoked 0.000 0 0 0

Previous TB diagnosis 0.000 0 0 0

Male 0.495 1 1 2

High school education or less 0.000 0 0 1

Duration of TB symptoms >2 weeks 0.668 1 1 2

Reports 1 TB symptom 0.000 0 1 0

Reports 2 TB symptoms 0.168 0 2 1

Reports 3 TB symptoms 1.214 2 3 4

Reports 4 TB symptoms 1.618 3 4 5

We reproduce the Baik2020 model and compare the performance to a rounded lasso

regression model where each coefficient is divided by the median coefficient and rounded to

the nearest integer, and a RiskCD-CV model using our algorithm with a logistic regression

start and coefficient bounds between -5 and 5.

Coefficients of the resulting models are reported in Table 8. Although we followed

the data pre-processing steps outlined by Baik et al. [23], our lasso regression coefficients

differed than those reported by Baik et al. [23]. Thus, our rounded lasso model differs from

the Baik2020 model. The RiskCD-CV model identifies many of the same covariates as the

lasso model. However, while rounding the lasso model converts the smallest coefficients to

zero, these variables are retained in the RiskCD-CV model. The RiskCD-CV model has

higher AUC values than the other models in both the derivation and validation datasets.
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RiskCD-CV achieves higher derivation and validation AUC values than lasso regression

and the rounded methods (Table 9). The RiskCD-CV model has similar calibration as

the Baik2020 model (Figure 3). In practice, Baik et al. [23] recommends adjusting for the

sampling fraction of TB in a given population, which would counteract the underestimation

observed for the validation set.

Table 9: Risk score model performance (AUC) on derivation and validation datasets for
TB diagnosis.

Derivation Data AUC
(95% CI)

Validation Data AUC
(95% CI)

Lasso 0.804 (0.782, 0.827) 0.743 (0.688, 0.798)

Rounded Lasso 0.789 (0.767, 0.812) 0.741 (0.686, 0.795)

Baik2020 0.799 (0.776, 0.822) 0.728 (0.673, 0.783)

RiskCD-CV 0.806 (0.784, 0.829) 0.756 (0.702, 0.810)
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Figure 3: Baik2020 and RiskCD-CV model calibration on the derivation and validation
datasets. Calibration is visualized by fitting a logistic regression model of the observed
outcomes against the estimated risk. The 90% confidence intervals are also shown. If a
model is well calibrated, the fitted curve should align with the diagonal line.

Through this example, we demonstrate that RiskCD-CV is a viable alternative to

existing risk score methods that is standardized, simple to implement, and doesn’t require

manual manipulation of coefficients. This gives clinicians a more principled approach to

producing risk score models.
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7 Application to Tuberculosis Treatment Adherence in Peru

Next, we apply our method in a novel setting to estimate risk of non-adherence to treatment

regimens among adolescents with TB in Peru.

7.1 Background

Despite advancements in TB diagnosis and treatment, medication adherence remains a

critical challenge in TB management, especially among adolescents [32, 33]. Suboptimal

treatment adherence leads to worse outcomes for those with TB, as well as increased

transmission within their community. Understanding the determinants of adolescent med-

ication adherence is critical to identifying patients requiring additional support. Prior

quantitative research on TB treatment adherence has used surveillance data rather than

psychosocial and clinical data [34]. Qualitative research suggests that family relationships,

mental health, and type of treatment administration contribute to an individual’s adher-

ence [35, 36], suggesting that these data should be considered when assessing risk.

Chiang et al. [34] collected demographic and socioemotional data from 249 TB-positive

adolescents aged 10-19 years in Lima, Peru. They applied k-means cluster analysis, group-

ing the participants into three clusters. They analyzed the characteristics of each cluster

to identify factors that were associated with sub-optimal adherence. However, it may be

difficult to directly apply these results to assess risk in new patients. An integer risk score

model offers an alternative that is highly interpretable and usable. Clinic workers with

a validated risk score model could quickly estimate a new patient’s risk of sub-optimal

adherence and respond appropriately.

7.2 Data Processing

We use the data collected by Chiang et al. [34] to develop risk score models to predict

medication non-adherence. We exclude subjects with missing covariate data, leaving 210
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participants. In total, 31 covariates are included as candidates, with continuous variables

converted to categorical variables according to cutoffs based on knowledge of the measure-

ment (e.g. using a cutoff of 10 for the depression score, the value that separates none/mild

depression from moderate/severe depression) or at the midpoint of possible values (e.g.

a cutoff of 12 for the self-efficacy score, which has a possible range of 4 to 20). The full

list of candidate variables with descriptions is available in Appendix A.1. The outcome,

medication adherence, was measured as the percentage of doses taken on time. Although

using a cutoff of below 90% adherence to classify sub-optimal adherence would align with

established TB medication research [37], only 17 participants in this study had medica-

tion adherence below 90%. Given the limited data size at this cutoff, we define a patient

as “non-adherent” when their medication adherence is less than 95%. Using this cutoff,

we observe 39 “non-adherent” participants (19%). Population summaries for candidate

variables by adherence status are reported in Appendix A.2.

7.3 Rounded Lasso Model

To compare RiskCD to a popular integer risk score method, we first fit a rounded lasso

model. Lasso regression, run according to the description in Section 4.1, results in seven

nonzero coefficients among the 31 candidate covariates (Table 10). Living with a single

dad, needing to take more pills, having a family that dislikes their friends, and anticipating

stigma at receiving TB care are identified as features that increase risk of non-adherence.

Past studies identify pill burden and TB stigma as barriers to TB medication adherence

in adolescents [35, 36].

Family support, in-person directly observed therapy (DOT) with family supervision,

and a higher health services score are identified as factors that decrease risk of non-

adherence. Five types of treatment administration were measured: in-person DOT, family

supervision only, in-person DOT with family supervision, no supervision, and virtual DOT

with family supervision. Only in-person DOT with family supervision is selected in the
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lasso regression model. Past studies identify family support and adherence support ser-

vices as facilitators to TB medication adherence in children, adolescents, and young adults

[35, 36]. We create the “Rounded Lasso” model in Table 10 according to the method

described in Section 4.1.

Table 10: Non-zero coefficients from Lasso and Rounded Lasso models predicting TB
medication non-adherence.

Lasso
Rounded
Lasso

Lives with single dad (0/1) 0.170 10

Number of pills (scale from 1 to 5) 0.009 1

Family dislikes friends (scale from 1 to 5) 0.023 1

Family support (scale from 1 to 5) -0.023 -1

In-person DOT + family supervision (0/1) -0.058 -3

Health services (scale from 1 to 5) -0.001 0

Total stigma score > 30 (0/1) 0.014 1

7.4 RiskCD Model

The Rounded Lasso model does not optimize over all possible integer solutions. We present

RiskCD as a method to convert the lasso coefficients to integer scores by optimizing over

an objective function that includes integer constraints. We use the rounded lasso model as

a “warm start”, which is then tuned using cyclical coordinate descent. We parameterize

RiskCD with bounds of [-10, 10] to keep the integer coefficients within a range that can

be easily multiplied and memorized. The resulting RiskCD-CV integer coefficients are

reported in Table 11. In this case, the RiskCD algorithm does not add any variables that

aren’t also selected by lasso regression, though it does shrink the health services and stigma

coefficients to zero.

RiskCD’s associated R package riskscores includes a function that maps all possible

scores to the probability of the outcome occurring, which is reported for this model in

Table 12. The combination of Table 11 and Table 12 is the information a clinic worker
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would need to predict a patient’s risk of non-adherence. Table 12 can also be expressed

visually as in Figure 4.

Table 11: The RiskCD-CV risk score model estimating the risk of TB medication non-
adherence among adolescents in Peru.

Possible Responses Score

Lives with single dad 0, 1 +4
Number of pills 1, 2, 3, 4, 5 +1
Family dislikes friends 1, 2, 3, 4, 5 +1
Family support 1, 2, 3, 4, 5 −1
In-person DOT + family supervision 0, 1 −10

Min −13 pts
Max 13 pts

Table 12: Predicted TB medication non-adherence risk per RiskCD score.

SCORE ≤ −1 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
RISK ≤ 0.071 0.105 0.154 0.218 0.300 0.398 0.504 0.610 0.706 0.787 0.851 0.898 0.931 ≥ 0.954
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Figure 4: Relationship between RiskCD score and risk of TB treatment non-adherence.
For each possible risk score, we also plot the number of observations in the derivation data
with that estimated risk score and the proportion that experienced the outcome.

7.5 Model Comparison

The derivation AUC for each model is reported in Table 13. Along with having a slightly

higher AUC, the RiskCD model is noticeably better calibrated with the derivation dataset

than the rounded lasso model (Figure 5).

Table 13: Risk score model performance (AUC) on derivation dataset for TB treatment
non-adherence.

AUC 95% CI

Lasso 0.7613 0.6707, 0.8518
Rounded Lasso 0.7716 0.6849, 0.8583
RiskCD-CV 0.7782 0.6976, 0.8589
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Figure 5: Rounded lasso and RiskCD calibration on derivation dataset for TB treatment
non-adherence. Calibration is visualized by fitting a logistic regression model of the ob-
served outcomes against the estimated risk. The 90% confidence intervals are also shown.
If a model is well calibrated, the fitted curve should align with the diagonal line.

Overall, the resulting risk score model highlights important factors associated with a

higher risk of non-adherence that are corroborated by past research. Given the limited

sample size, further work is needed to validate the usefulness of the proposed risk score

models.

8 Discussion

In this paper, we introduce a novel algorithm for estimating integer risk score models for

binary outcomes. A simulation study, experiments on test bed datasets, and two applica-

tions demonstrate the efficiency and efficacy of our algorithm. We compare our algorithm
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to popular rounding methods, showing that these methods often sacrifice performance and

can produce coefficients that are too large to be easily applied in practice. RiskCD offers

an alternative to rounding that heuristically optimizes over an integer constraint.

Further, we compare our algorithm to the current state-of-the-art optimization method,

FasterRisk. While FasterRisk could produce higher validation AUC values than RiskCD,

it’s relative inefficiency and inability to scale to larger datasets is a substantial limitation.

Additionally, FasterRisk requires the user to choose the sparsity parameter, while RiskCD-

CV uses cross-validation to optimally regularize the model.

RiskCD is the first integer risk score model to be implemented in an R package. This

allows the RiskCD algorithm to be accessible to researchers in clinical fields, who are more

likely to use R than Python. While rounding methods can be implemented in R, they

need to be coded by individual researchers since they are not currently available in an R

package, making these methods less standardized.

Future work could consider other more flexible functions to map between the estimated

risk scores and the estimated probabilities for the outcome. Further, one limitation of risk

score models in general is that in order for the risk scores to be easily interpreted the data

is often converted to all categorical variables. Identifying optimal cut-points for continuous

variables is another open question.

The R package associated with this paper is available at https://cran.r-project.

org/web/packages/riskscores/index.html. Code for reproducing the simulations and

applications is available at https://github.com/hjeglinton/RiskCD.
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A Appendix

A.1 TB Medication Adherence Data: Variable Descriptions

Table 14: Full list of variables in TB medication adherence dataset

Variable Type Description

TB medication non-
adherence

binary (0/no, 1/yes) Whether participant took < 95% of doses on time.

Gender binary (male, female) Self-reported identity. Multiple options were provided,
but all participants identified as either male or female.

Age categorical (< 16, 16 −
17, 18+)

Age of participant.

Concomitant TB binary (no, yes) Whether participant had concomitant TB.

Lives with mom binary (no, yes) Whether participant lives with their mother.

Lives with parents categorical (no parents,
single mom, single dad,
2 parents)

Which parent(s) participant lives with.

No current symp-
toms

binary (0/no, 1/yes) Whether participant had no current symptoms at time
of survey (0 = symptoms, 1 = no symptoms).

Pills categorical (1, 2, 3, 4, 5) 1 = 0-3 pills, 2 = 4-6 pills, 3 = 7-9 pills, 4 = 10-11 pills,
5 = 12+ pills

Fixed doses binary (no, yes) Whether participant was prescribed fixed-dose combina-
tion therapy.

Isoniazid monoresis-
tance

binary (no, yes) Whether participant had isoniazid monoresistance de-
tected.
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Table 14: Full list of variables in TB medication adherence dataset

Variable Type Description

Frequency of adverse
reactions

categorical (0, 1, 2, 3, 4) Number of days per week participant has side effects from
TB treatment (0 = 0 days, 1 = 1-2 days, 2 = 3-4 days, 3
= 5-6 days, 4 = 7 days).

Accompanied by
family

categorical (1, 2, 3, 4, 5) Response to statement: “Someone from home accompa-
nies me when I go to the health center for my medica-
tions” (from 1 for never to 5 for always).

Family dislikes
friends

categorical (1, 2, 3, 4, 5) Response to statement: “My mother/father/guardian
does not like my friends” (from 1 for never to 5 for al-
ways).

Obedient autonomy categorical (1, 2, 3, 4, 5) From 1 for never to 5 for always.

Self-efficacy binary (≤ 12, > 12) Score on validated PROMIS treatment self-efficacy scale
with 4 items; higher score is more self-efficacious

Depression binary (≤ 10, > 10) Score on validated (including in adolescents) PHQ-9 de-
pression scale.

Alcohol use binary (0, > 0) Alcohol Use Disorders Identification Test (AUDIT), val-
idated in adults.

Frequency of tobacco
use

categorical (0, 1, 2, 3) 0 = never, 1 = 1-2 times, 2 = monthly, 3 = weekly

Drug use binary (0/no, 1/yes) Whether patient uses drugs, other than tobacco and al-
cohol, on a regular basis.

Adverse childhood
experiences

categorical (0, 1, > 1) Validated score to measure adverse childhood experi-
ences.

Health center stigma categorical (1, 2, 3, 4, 5) Response to statement: “I feel ashamed to be seen at the
health center” (1 for never to 5 for always).

Total stigma binary (≤ 30, > 30) Score on validated stigma scale.

Prior TB treatment binary (0/no, 1/yes) Whether participant previously received treatment for
TB disease.

Prior COVID categorical (no, sus-
pected, confirmed)

Whether participant previously had COVID-19.

COVID concerns categorical (0, 1, 2, 3, 4) Response to question: “How worried are you about get-
ting COVID at the health center?” (1 = not worried,
2 = a little worried, 3 = somewhat worried, 4 = very
worried).

Treatment adminis-
tration

categorical (in person
DOT, family supervision
only, in-person DOT +
family supervision, no
supervision, VDOT +
family supervision)

How participant’s treatment was monitored (DOT = di-
rectly observed therapy).

Psychological inter-
vention

categorical (no interven-
tion needed, MINSA re-
ferral, SAME, not evalu-
ated)

Whether participant received psychological intervention.
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Table 14: Full list of variables in TB medication adherence dataset

Variable Type Description

Family support categorical (1, 2, 3, 4, 5) Median response to the following statements (from 1 for
never to 5 for always): “My mother/father/guardian
treats me with kindness”; “I get along well with my
mother/father/guardian”; “I get along well with other
family members”; “I confide in my family”; “My moth-
er/father/guardian supports me emotionally with my TB
treatment”; “Other family members support me emo-
tionally with my TB treatment”; “Generally my moth-
er/father/guardian and I always have had emotional sup-
port from other family members”; “Generally, I am
happy with my relationship with my mother/father/-
guardian”

Health services categorical (1, 2, 3, 4, 5) Median response to the following statements (from 1 for
strongly disagree to 5 for strongly agree): “The health
worker at the TB program always treats me with re-
spect”; “The providers at the health center have clearly
explained to me what TB is and what the treatment
is like”; “The physical space at the TB program at
the health center is comfortable for adolescents”; “The
providers at the TB program care about my recovery”; “
I am happy with the schedule and quality of care at the
TB program”

Motivation categorical (1, 2, 3, 4, 5) Median response to the following statements (from 1 to
strongly disagree to 5 for strongly agree): “I want to
finish my treatment as soon as possible so as not to infect
my family members”; “I want to finish my treatment as
soon as possible so my family no longer has to worry
about me”; “I want to finish my treatment as soon as
possible so I can continue my studies or work”; “I want
to finish my treatment as soon as possible so I can return
to my normal, personal activities (go out with friends,
play soccer, dance, go skating, etc.)”

TB knowledge categorical (1, 2, 3, 4, 5) Median response to the following statements (from 1 to
strongly disagree to 5 for strongly agree): “TB can be
completely cured”; “If I miss some days of my TB treat-
ment, my TB could come back stronger”; “If I completely
stop taking my TB treatment, my TB could come back
“stronger”

A.2 TB Medication Adherence Data: Population Characteristics
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Table 15: Population summary by adherence status among 210 TB-positive participants
in Lima, Peru.

Characteristic Adherent, N = 1711 Non-Adherent, N = 391

Gender

female 65 (38%) 12 (31%)

male 106 (62%) 27 (69%)

Age

< 16 51 (30%) 10 (26%)

16-17 47 (27%) 12 (31%)

18+ 73 (43%) 17 (44%)

Concomitant TB

no 155 (91%) 33 (85%)

yes 16 (9.4%) 6 (15%)

Lives with mom

no 21 (12%) 10 (26%)

yes 150 (88%) 29 (74%)

Lives with parents

2 parents 99 (58%) 17 (44%)

no parents 13 (7.6%) 1 (2.6%)

single dad 7 (4.1%) 8 (21%)

single mom 52 (30%) 13 (33%)

No current symptoms

0 131 (77%) 32 (82%)

1 40 (23%) 7 (18%)

Pills

1 33 (19%) 2 (5.1%)

2 35 (20%) 6 (15%)

3 15 (8.8%) 7 (18%)

4 88 (51%) 24 (62%)

Fixed doses

no 111 (65%) 29 (74%)

yes 60 (35%) 10 (26%)
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Table 15: Population summary by adherence status among 210 TB-positive participants
in Lima, Peru.

Characteristic Adherent, N = 1711 Non-Adherent, N = 391

Isoniazid monoresistance

no 160 (94%) 39 (100%)

yes 11 (6.4%) 0 (0%)

Frequency of adverse reactions

0 73 (43%) 15 (38%)

1 54 (32%) 14 (36%)

2 32 (19%) 5 (13%)

3 7 (4.1%) 3 (7.7%)

4 5 (2.9%) 2 (5.1%)

Accompanied by family

1 25 (15%) 8 (21%)

2 25 (15%) 7 (18%)

3 32 (19%) 8 (21%)

4 11 (6.4%) 5 (13%)

5 78 (46%) 11 (28%)

Family dislikes friends

1 61 (36%) 9 (23%)

2 58 (34%) 11 (28%)

3 36 (21%) 9 (23%)

4 9 (5.3%) 4 (10%)

5 7 (4.1%) 6 (15%)

Obedient autonomy

1 0 (0%) 1 (2.6%)

2 1 (0.6%) 4 (10%)

3 35 (20%) 6 (15%)

4 58 (34%) 10 (26%)

5 77 (45%) 18 (46%)

Self-efficacy

≤ 12 146 (85%) 37 (95%)

> 12 25 (15%) 2 (5.1%)
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Table 15: Population summary by adherence status among 210 TB-positive participants
in Lima, Peru.

Characteristic Adherent, N = 1711 Non-Adherent, N = 391

Depression

≤ 10 115 (67%) 29 (74%)

> 10 56 (33%) 10 (26%)

Alcohol use

> 0 26 (15%) 6 (15%)

0 145 (85%) 33 (85%)

Tobacco use

0 148 (87%) 32 (82%)

1 18 (11%) 6 (15%)

2 5 (2.9%) 0 (0%)

3 0 (0%) 1 (2.6%)

Drug use frequency

no 151 (88%) 34 (87%)

yes 20 (12%) 5 (13%)

Adverse childhood experiences

> 1 79 (46%) 21 (54%)

0 46 (27%) 9 (23%)

1 46 (27%) 9 (23%)

Health center stigma

1 109 (64%) 27 (69%)

2 29 (17%) 5 (13%)

3 20 (12%) 3 (7.7%)

4 7 (4.1%) 1 (2.6%)

5 6 (3.5%) 3 (7.7%)

Total stigma

≤ 30 154 (90%) 30 (77%)

> 30 17 (9.9%) 9 (23%)

Prior TB treatment

0 169 (99%) 38 (97%)

1 2 (1.2%) 1 (2.6%)
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Table 15: Population summary by adherence status among 210 TB-positive participants
in Lima, Peru.

Characteristic Adherent, N = 1711 Non-Adherent, N = 391

Prior COVID

confirmed 19 (11%) 6 (15%)

no 125 (73%) 23 (59%)

suspected (unconfirmed) 27 (16%) 10 (26%)

COVID concerns

0 51 (30%) 17 (44%)

1 96 (56%) 20 (51%)

2 23 (13%) 2 (5.1%)

3 1 (0.6%) 0 (0%)

Treatment administration

family supervision only 38 (22%) 5 (13%)

in-person DOT + family supervision 25 (15%) 0 (0%)

in-person DOT only 98 (57%) 30 (77%)

no supervision 1 (0.6%) 0 (0%)

VDOT + family supervision 9 (5.3%) 4 (10%)

Psychological intervention

MINSA referral 20 (12%) 4 (10%)

no intervention needed 38 (22%) 9 (23%)

not evaluated 73 (43%) 16 (41%)

SAME 40 (23%) 10 (26%)

Family support

1 1 (0.6%) 2 (5.1%)

2 3 (1.8%) 2 (5.1%)

3 28 (16%) 13 (33%)

4 51 (30%) 7 (18%)

5 88 (51%) 15 (38%)

Health services

3 6 (3.5%) 6 (15%)

4 76 (44%) 16 (41%)

5 89 (52%) 17 (44%)
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Table 15: Population summary by adherence status among 210 TB-positive participants
in Lima, Peru.

Characteristic Adherent, N = 1711 Non-Adherent, N = 391

Motivation

2 1 (0.6%) 1 (2.6%)

3 1 (0.6%) 0 (0%)

4 45 (26%) 10 (26%)

5 124 (73%) 28 (72%)

TB knowledge

2 1 (0.6%) 1 (2.6%)

3 47 (27%) 9 (23%)

4 123 (72%) 29 (74%)
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